
Spreadsheets are Models Too [Position Statement]

Richard F. Paige, Dimitrios S. Kolovos and Nicholas Matragkas
Dept. of Computer Science

University of York, UK
[richard.paige, dimitris.kolovos, nicholas.matragkas]@york.ac.uk

ABSTRACT
Spreadsheets are among the most widely used tools in sys-
tems engineering, especially for documenting system require-
ments and tests, and for supporting tasks like impact anal-
ysis, traceability management and project planning. We ar-
gue for the treatment of spreadsheets as models, in order to
support the systems engineering lifecycle, and to provide a
suitable migration path for organisations to follow in matur-
ing their use of modelling techniques.

1. INTRODUCTION
In Model-Driven Engineering (MDE) approaches to systems
engineering, many different languages are used (e.g., UML,
SysML, domain-specific languages). Usually such languages
are designed and implemented by MDE specialists, who use
metamodelling infrastructure (e.g., EMF/Ecore1) to define
the abstract syntax of such languages, and thereafter exploit
the infrastructure for the purposes of automation – for ex-
ample, generating code or text, version control, validation,
etc. Once languages with metamodels have been provided,
automated model management tools and techniques can be
used for systematically manipulating and modifying models
across the engineering lifecycle. In particular, tools such as
Obeo Designer2, Epsilon [3], or ATL [1] can be applied to
support different engineering tasks.

Systems engineering is expensive and complex, often in-
volves multiple engineering disciplines (e.g., in avionics or
aerospace, it can involve software, mechanical, materials and
power engineering), and substantial communications over-
head between skilled personnel with different vocabularies,
practices and tools. Arguably, MDE as it is currently prac-
ticed (and supported by tools) is insufficient for supporting
the full systems engineering lifecycle. In particular, it can
very easily fall short in the early stages, when requirements
are still being elicited. Often, early requirements are am-

1http://www.eclipse.org/emf
2http://www.obeodesigner.com/download

biguous and need to be described in unconstrained natural
language: using a domain-specific language may place too
many constraints (both conceptual or structural) on speci-
fication. As well, requirements often emerge from previous
developments, and these requirements may have been speci-
fied in non-MDE languages. Combine this with the gradual
increase in MDE skills, there is substantial benefit to be
able to interface MDE languages and tools with non-MDE
languages and tools.

In this position paper, we argue for interfacing spreadsheets
with MDE languages and tools. We provide motivation for
doing this, and briefly touch on some the important technical
challenges of, and alternatives for doing so.

2. MOTIVATION
There have been a number of contributions made related to
integrating spreadsheets into an engineering process. Much
of this work focuses on using software engineering practices
to improve the quality of spreadsheets. This includes work
on bad smell detection and visualisation in spreadsheets
[6], and other analytic approaches that exploit assertions
to identify formula errors [8], or that provide testing tech-
niques for spreadsheets [7]. Constructive approaches such
as [4, 2] focus on generating high quality spreadsheets using
transformation approaches. None of this research has taken
the perspective of treating spreadsheets as models.

We have hinted at a number of motivations for treating
spreadsheets as models, and for supporting the use of model
management operations (such as model transformations) on
spreadsheets. We briefly summarise key motivations.

• Early stages of engineering. MDE operates most effi-
ciently on well-defined languages (that do not change
frequently, or at least, not in significant ways) and
models with limited uncertainty. In the early stages
of requirements engineering, the concepts of interest
in our models may change frequently; they may be
imprecisely defined; and the languages that we use to
express these concepts may need to evolve. MDE tech-
niques may not be the most useful or appropriate in
early stages. Natural language with some restrictions
is widely used for early requirements engineering, as
are tables of natural language requirements. These
can easily be expressed using spreadsheets, which also
enable traceability and (in later stages) requirements
coverage analysis. Being able to treat spreadsheets



as models thus enables defining bridges between early
stages of systems engineering, and later stages, where
more precise languages are needed.

• Support for legacy models. Industry uses spreadsheets,
and many large organisations have legacy spreadsheets
that can play critical roles, such as in project con-
figuration and monitoring/measurement, requirements
capture for product lines, etc. Being able to use such
legacy spreadsheets as-is with new engineering pro-
cesses, practices and tools makes it easier to change
processes and practices while reducing risk of bad ef-
fects on the bottom line.

• Tabular problems need tabular solutions. Some mod-
elling problems are inherently tabular in nature, and
benefit from being able to specify data (models) in
columns and rows (with constraints amongst them)
without requiring relational solutions. Specification of
control laws, or parameters used to configure product
lines, simple requirements capture, and test suite spec-
ification are all problems that lend themselves to tabu-
lar specifications, where spreadsheets can conceivably
provide support. Providing MDE support for such id-
ioms allows engineers who need to use such concepts
to benefit from automated processing support.

• Supporting existing skillsets. Not every organisation
has, or can quickly acquire, expertise in MDE and
model management. Most organisations do have ex-
pertise and skills with spreadsheets. Providing means
for organisations to transition gradually to use of MDE
and model management, and allowing those organisa-
tions to maximise the use of their current skillset, could
reduce the risks associated with adopting MDE.

• Catching repeated errors. Substantial research has been
carried out in MDE in terms of automated support for
identifying and repairing repeated errors in modelling
and model management. For example, updating mod-
els or evolving models after changes in a modelling
language are problems for which good automated or
semi-automated solutions exist. These are problems
with spreadsheets as well (e.g., bad smell detection).
By interfacing spreadsheets with MDE, it may be that
spreadsheet users can exploit MDE solutions.

3. MECHANISMS
There are several plausible ways to interface spreadsheets
and MDE.

• Build injectors which generate models (with metamod-
els) from spreadsheets, thus allowing MDE languages
and tools to be applied to spreadsheets indirectly. Ad-
ditionally, extractors from models to spreadsheets may
also be needed in order to return results to a form
amenable to processing by spreadsheet tools. In both
the injection and extraction, specification blow-up may
be an issue (i.e., encoding or decoding spreadsheets as
or from models may lead to less than optimal spread-
sheet or model sizes or structures).

• Provide equivalents of MDE and model management
operations on spreadsheets, e.g., update-in-place trans-

formations, validation/constraint checking, transfor-
mations, text generation. These would need to be
encoded using any scripting languages provided by a
spreadsheet tool. For example, for Google Spread-
sheets, these operations might be encoded using the
Spreadsheet Service3. However, such encodings would
need to be reimplemented for each spreadsheet tool.

• Provide spreadsheet drivers for model management to-
ols, so that these tools can directly manipulate spread-
sheets like any other form of models. This is the ap-
proach we have taken in Epsilon [5]. A driver must be
implemented for each spreadsheet tool - though some
abstraction is possible (specifically, a spreadsheet in-
terface is provided that needs to be implemented for
each spreadsheet tool). Arguably, implementing an in-
terface for querying and changing spreadsheets via an
API is less expensive than implementing model man-
agement operations for each spreadsheet tool.

4. CONCLUSIONS
Spreadsheets are models: a less constrained and less expres-
sive form of model than those permitted by full-blown MDE
languages and tools. By treating spreadsheets as models,
we can provide ways to bootstrap the MDE process, to en-
able automated and powerful tool support for legacy models,
and a way to maximise use of current skillsets while per-
sonnel are educated in using MDE and model management
techniques. Arguably, MDE and model management tools
should support more model/data representation formats and
techniques like spreadsheets, which allow more flexible and
less constrained styles of specification and design.

5. REFERENCES
[1] Atlas Transformation Language, official web-site.

http://www.sciences.univ-nantes.fr/lina/atl/.

[2] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva.
MDSheet: A framework for model-driven spreadsheet
engineering. In Proc. ICSE, 2012.

[3] Dimitrios S. Kolovos, Louis M. Rose, Antonio Garcia
Dominguez and Richard F. Paige. The Epsilon Book.
2013. http://www.eclipse.org/epsilon/doc/book/.

[4] G. Engels and M. Erwig. Classsheets: automatic
generation of spreadsheet applications from
object-oriented specifications. In Proc. ASE’05, ASE
’05. ACM, 2005.

[5] M. Francis, D. S. Kolovos, N. Matragkas, and R. F.
Paige. Adding spreadsheets to the MDE toolkit. In
Proc. MoDELS. LNCS 8107, Springer-Verlag, 2013.

[6] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting and visualizing inter-worksheet smells in
spreadsheets. In ICSE, pages 441–451. IEEE, 2012.

[7] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and
A. Sheretov. A methodology for testing spreadsheets.
ACM Trans. Softw. Eng. Methodol., 10(1):110–147,
Jan. 2001.

[8] J. Sajaniemi. Modeling spreadsheet audit: A rigorous
approach to automatic visualization. Journal of Visual
Languages & Computing, 11(1):49 – 82, 2000.

3https://developers.google.com/apps-script/
reference/spreadsheet/


