
On the Usage of Dependency-based Models
for Spreadsheet Debugging

Birgit Hofer
Graz University of Technology

Inffeldgasse 16b/II
8010 Graz, Austria

bhofer@ist.tugraz.at

Franz Wotawa
Graz University of Technology

Inffeldgasse 16b/II
8010 Graz, Austria

wotawa@ist.tugraz.at

ABSTRACT
Locating faults in spreadsheets can be difficult. Therefore,
tools supporting the localization of faults are needed. Model-
based software debugging (MBSD) is a promising fault local-
ization technique. This paper presents a novel dependency-
based model that can be used in MBSD. This model allows
improvements of the diagnostic accuracy while keeping the
computation times short. In an empirical evaluation, we
show that dependency-based models of spreadsheets whose
value-based models are often not solvable in an acceptable
amount of time can be solved in less than one second. Fur-
thermore, we show that the amount of diagnoses obtained
through dependency-based models is reduced by 15% on
average when using the novel model instead of the origi-
nal dependency-based model. The short computation time
and the improved diagnostic accuracy enable the usage of
model-based debugging for spreadsheets in practice.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Spreadsheets; D.2.5 [Software Engineering]:
Testing and Debugging—Debugging aids

Keywords
Spreadsheets, Debugging, Model-based Fault Localization

1. INTRODUCTION
Even for small spreadsheets, the localization of faults can
be time consuming and frustrating. Thus, approaches sup-
porting fault localization in spreadsheets are needed. Some
fault localization techniques developed for the software en-
gineering discipline have been adapted to the spreadsheet
domain, for example [1, 9, 10, 8]. Model-based software de-
bugging (MBSD) [16, 18, 13] is one of these techniques. So
far, researchers have only focused on methods that use value-
based models [3, 4, 12, 11]. Value-based models compute a
small set of possible explanations (i.e., diagnoses) for an ob-
served misbehavior. This small set of diagnoses is helpful
for users when debugging. Unfortunately, value-based mod-
els have high computation times and they do not scale: the
underlying solving mechanisms have problems when dealing
with variables with large domains and real numbers. In an
empirical evaluation, Außerlechner et al. [5] showed the limi-
tations of different constraint solvers and SMT (satisfiability
modulo theories) solvers when using these models.

To the best of our knowledge, dependency-based models
have not been used for localizing faults in spreadsheets. The

reason for this may be their inaccuracy. Dependency-based
models compute a significantly higher number of diagnoses
than value-based models. In this paper, we propose a novel
type of dependency-based model which uses equivalence in-
stead of the implication to model the dependency relation
between cells. This allows improvements on the diagnostic
accuracy while keeping the computation times short.

In order to demonstrate the differences between the value-
based, the original dependency-based, and our improved
dependency-based model, we make use of a running ex-
ample. This example is a simplified version of the “home-
work/budgetone”spreadsheet taken from the EUSES spread-
sheet corpus [6]. We manually injected a fault into the
spreadsheet in cell D5. Figure 1a shows the normal (or value)
view of this faulty spreadsheet variant. Figure 1b shows the
formula view of the same spreadsheet. The output cells1 of
the spreadsheet are shaded in gray. The faulty cell D5 is
highlighted with a red box. The fault manifests in the value
of the output cell D7. The expected value for this cell is
78,6%.

(a) Normal view

(b) Formula view

Figure 1: Running example

When using model based debugging, the faulty cell of this
example spreadsheet can be detected independent of the un-
derlying model. There are however differences with respect
to runtime and solution size. The value-based model and
our novel dependency-based model identify three cells that

1An output cell is a cell that is not referenced by any other cell.

could explain the observed misbehavior, while the original
dependency-based model identifies six cells as possible ex-
planations. When using the constraint solver Minion [7],
both dependency-based models require only one third of the
computation time compared with the value-based model.

This work is related to the work of Mayer and Stumpt-
ner [15] and Wotawa [17]. Mayer and Stumptner evaluated
models for model-based debugging in the software domain.
Wotawa discussed the relationship of model-based debug-
ging and program slicing.

In the remainder of this paper, we will explain the differ-
ent types of models and show the model representations for
the above described running example (see Section 2). In
Section 3, we will empirically compare the different mod-
els with respect to efficiency and effectiveness. The novel
dependency-based model reduces the number of computed
diagnoses by 15% compared to original dependency-based
model. Furthermore, the empirical evaluation shows that
the dependency-based models can be solved in less than one
second even for those spreadsheets whose value-based mod-
els require more than 20 minutes solving time.

2. MODEL-BASED DEBUGGING
In model-based software debugging (MBSD), the cells of a
spreadsheet and the given observations (i.e., the test case2)
are converted into constraints. As the given test case is a
failing test case, this constraint system results in a contradic-
tion. In order to determine which cells could resolve this con-
tradiction, MBSD introduces abnormal variables (AB) for
each cell. These abnormal variables represent the “health”
state of the cells. If a cell c is not abnormal, the formula of
the cell must be correct [18]:

¬AB(c) → constraint(c). (1)

This logic expression can be transformed to

AB(c) ∨ constraint(c). (2)

Having such a constraint system, we are able to use a con-
straint or SMT solver to determine which abnormal variables
have to be set to true to eliminate the contradiction. We
refer the interested reader to [18, 14] for more information
about the principles of MBSD. MBSD can be performed
using either dependency-based or value-based models. We
discuss these models and our novel dependency-based model
in the following subsections.

2.1 Value-based models
When using value-based models, the values of the cells are
propagated. A value-based constraint system contains (i) the
input cells and their values, (ii) the output cells and their ex-
pected values, and (iii) all formulas concatenated with their
abnormal variable. The constraint representation handles
the formulas as equations instead of assignments. This al-
lows to draw conclusions on the input from the output of a
formula. Such a value-based model for spreadsheets is pro-
posed by Abreu et al. [3, 4]. The running example from
Figure 1b is converted into the following constraints:
2A test case is a tuple (I,O), where I are the values for the input
cells and O the expected values for the output cells. A test case
is a failing test case if at least one computed output value differs
from the expected value.

Input:

B2 == 1000

C2 == 1500

B3 == 20

. . .

Output:

D3 == 20.6

B7 == 0.75

C7 == 0.81

D7 == 0.786

Formula constraints:

AB(cellD2) ∨ D2 == B2 + C2

AB(cellD3) ∨ D3 == D4/D2

AB(cellB4) ∨ B4 == B3×B2

AB(cellC4) ∨ C4 == C3× C2

AB(cellD4) ∨ D4 == B4 + C4

AB(cellD5) ∨ D5 == B5

. . .

AB(cellD7) ∨ D7 == D6/D4

Solving this constraint system leads to three possible solu-
tions: Either cell D5, D6 or D7 must contain the fault.

2.2 Original dependency-based models
When using dependency-based models, only the information
about whether the computed values are correct is propa-
gated. Therefore, all cell values are represented as Boolean
instead of Integer or Real values. All variables representing
input cells are initialized with true. All variables represent-
ing correct output cells are also initialized with true. The
variables representing erroneous output cells are initialized
with false. Instead of using the concrete formulas in the
constraints, only the correctness relation is modeled. If the
formula of cell c is correct and the input values of a formula
are correct then cell c must compute a correct value:

AB(cellc) ∨
∧

c′∈ρ(c)

c′ → c (3)

where ρ(c) is the set of all cells that are referenced in c. De-
tails about this modeling for software written in an imper-
ative language can be found e.g. in [17]. The dependency-
based constraints for our running example are as follows:

Input:

B2 == true

C2 == true

B3 == true

. . .

Output:

D3 == true

B7 == true

C7 == true

D7 == false

Formula constraints:

AB(cellD2) ∨ (B2 ∧ C2 → D2)

AB(cellD3) ∨ (D2 ∧D4 → D3)

AB(cellB4) ∨ (B2 ∧B3 → B4)

AB(cellC4) ∨ (C2 ∧ C3 → C4)

AB(cellD4) ∨ (B4 ∧ C4 → D4)

AB(cellD5) ∨ (B5 → D5)

. . .

AB(cellD7) ∨ (D4 ∧D6 → D7)

Solving this constraint system leads to six possible solu-
tions: Either cell B4, C4, D4, D5, D6 or D7 must contain

the fault. This dependency-based model computes more
diagnoses because of the implication. In the value-based
model, the cells B4, C4, and D4 can be excluded from the
set of possible diagnoses because B4 and C4 are used to com-
pute D4, and D4 is used to compute D3, which is known to
compute the correct value. Unfortunately, this information
gets lost when using the implication because the implication
allows conclusions only from the input to the output but
not vice versa. This problem will be solved with the novel
dependency-based model that is explained in the following
subsection.

2.3 Novel dependency-based models
In order to eliminate the previously described weakness of
dependency-based models, we use bi-implication (equiva-
lence) instead of the implication. The formula constraints
for our running example from Figure 1b are as follows:

AB(cellD2) ∨ (B2 ∧ C2 ↔ D2)

AB(cellD3) ∨ (D2 ∧D4 ↔ D3)

AB(cellB4) ∨ (B2 ∧B3 ↔ B4)

AB(cellC4) ∨ (C2 ∧ C3 ↔ C4)

AB(cellD4) ∨ (B4 ∧ C4 ↔ D4)

AB(cellD5) ∨ (B5 ↔ D5)

. . .

AB(cellD7) ∨ (D4 ∧D6 ↔ D7)

Solving this constraint system leads to the same 3 diagnoses
as when using a value-based model.

The bi-implication cannot be used in case of coincidental
correctness. Coincidental correctness might occur for exam-
ple in the following situations:

• usage of conditional function (e.g., the IF-function),

• abstraction function like MIN, MAX, COUNT,

• usage of Boolean,

• multiplication with a 0-value, and

• power with 0 or 1 as base number or 0 as exponent.

Please note, that this list gives only examples. It is not
a complete list, because the size of the list depends on the
functions that are supported by the concrete spreadsheet en-
vironment (e.g. Microsoft Excel, iWorks’Number, OpenOf-
fice’s Calc). All formulas where coincidental correctness
might happen still have to be modeled with the implication
instead of the bi-implication.

3. EMPIRICAL EVALUATION
This section consists of two major parts: the empirical setup
(discussing the prototype implementation, the used plat-
form, and the evaluated spreadsheet corpora) and the re-
sults showing that dependency-based models are able to
compute diagnoses within a fraction of a second even for
spreadsheets whose value-based models require more than
20 minutes of solving time. In addition, this empirical eval-
uation shows that the number of diagnoses obtained by the
novel dependency-based model is reduced by 15% on aver-
age compared to the original dependency-based model.

We developed a prototype in Java for performing the em-
pirical evaluation. This prototype uses Minion [7] as a con-
straint solver. Minion is an out-of-the-box, open source
constraint solver and offers support for almost all arithmetic,

relational, and logic operators such as multiplication, divi-
sion, and equality over Boolean and Integers.

The evaluation was performed on an Intel Core2 Duo proces-
sor (2.67 GHz) with 4 GB RAM andWindows 7 as operating
system. We used theMinion version 0.15. The computation
time is the average time over 10 runs.

We evaluated the models by means of spreadsheets from the
publicly available Integer spreadsheet corpus3 [5]. This cor-
pus contains 33 different spreadsheets (12 artificially created
spreadsheets and 21 real-life spreadsheets), e.g., a spread-
sheet that calculates the lowest price combination on a shop-
ping list or the winner of Wimbleton 2012. These spread-
sheets contain both arithmetical and logical operators as well
as the functions SUM and IF. The spreadsheets contain on
average 39 formula cells, the largest spreadsheet contains 233
formulas. Faulty versions of the spreadsheets (containing
single, double and triple faults) were created by randomly
selecting formulas and applying mutation operators [2] on
them. The corpus contains in total 220 mutants. In the
empirical evaluation, we used only the spreadsheets which
contain a single fault, i.e. 94 spreadsheets.

Table 1 compares the three types of models with respect
to fault localization capabilities and runtimes. The fault
localization capabilities are expressed by means of the num-
ber of cells that are single fault diagnoses. The runtime
is measured by means of Minion’s average solving time in
milliseconds. The spreadsheets are divided into two sub-
groups: spreadsheets whose value-based models are solved
by Minion in less then 20 minutes and spreadsheets whose
value-based models could not be solved within 20 minutes
(i.e. 31 from 94 spreadsheets). For these 31 spreadsheets,
the dependency-based models are solved in less than one sec-
ond. These runtime results indicate that dependency-based
models are better suited for debugging large spreadsheets
than value-based models.

Table 1: Evaluation results

Model
Single fault Solving time
diagnoses (in ms)

63 spreadsheets
Value-based 4.0 56818.8
Original dep.-based 13.2 32.0
Novel dep.-based 11.0 31.6
31 spreadsheets
Value-based - > 20 minutes
Original dep.-based 45.0 187.4
Novel dep.-based 38.6 164.8

Considering the diagnostic accuracy, the value-based model
yields better results. It computes only one third of the di-
agnoses of the original dependency-based model. The im-
proved dependency-based model computes on average 15%
less diagnoses than the original dependency-based model.

Table 2 gives an overview of the reduction that can be achieved
when using the novel instead of the original dependency-
based model. The reduction is expressed by means of the
following metric:

Reduction = 1−
|Diagnoses in the novel model|

|Diagnoses in the original model|
. (4)

3
https://dl.dropbox.com/u/38372651/Spreadsheets/Integer Spreadsheets.zip

Table 2: Summary of the achieved reduction when using the
novel model instead of the original dependency-based model

Reduction Number of spreadsheets
0% 64

]0%;10%] 0
]10%;20%] 1
]20%;30%] 1
]30%;40%] 2
]40%;50%] 5
]50%;60%] 0
]60%;70%] 4
]70%;80%] 2
]80%;90%] 7
]90%;100%] 8

For 64 spreadsheets, no reduction in the number of diagnoses
was achieved when using the novel dependency-based model
instead of the original model. However, for 15 spreadsheets,
a reduction of more than 80% was achieved.

4. DISCUSSION AND CONCLUSIONS
Locating faulty formulas in spreadsheets can be time con-
suming. This paper addresses the fault localization prob-
lem by means of model-based diagnosis. Our most impor-
tant contribution is the introduction of a novel dependency-
based model. This novel dependency-based model improves
previous work in two ways: (1) Compared to the original
dependency-based model, it reduces the amount of diagnoses
that have to be manually investigated by 15%. (2) Com-
pared to the value-based model, it reduces the required solv-
ing time and allows the computation of diagnoses in real-
time where the value-based model cannot compute solutions
within 20 minutes. The savings in computation time can be
explained by the reduction of the domain: The dependency-
based model requires only Boolean variables instead of In-
tegers and Real numbers.

The reduction of the domain comes with additional advan-
tages: (1) An arbitrary solver can be used, because all solvers
support at least Boolean variables. Even spreadsheets con-
taining Real numbers can be debugged with any solver when
using dependency-based models. (2) The user does not need
to indicate concrete values for the erroneous output vari-
ables. The information that an output cell computes the
wrong value is sufficient.

In the description of the model, we listed all types of coinci-
dental correctness occurring in the spreadsheets used in the
empirical evaluation. This list is not exhaustive. For using
this model in practice, the list has to be extended.

We are convinced that the model presented improves the
state of the art in model-based diagnosis. Further work in-
cludes a user study and the adaptation to other types of
programs, e.g. programs written in imperative or object-
oriented languages.

Acknowledgments
The research herein is partially conducted within the compe-
tence network Softnet Austria II (www.soft-net.at, COMET
K-Projekt) and funded by the Austrian Federal Ministry of
Economy, Family and Youth (bmwfj), the province of Styria,
the SteirischeWirtschaftsförderungsgesellschaft mbH. (SFG),
and the city of Vienna in terms of the center for innovation
and technology (ZIT).

5. REFERENCES
[1] R. Abraham and M. Erwig. GoalDebug: A

Spreadsheet Debugger for End Users. In Proceedings
of the 29th International Conference on Software
Engineering (ICSE 2007), pages 251–260, 2007.

[2] R. Abraham and M. Erwig. Mutation Operators for
Spreadsheets. IEEE Transactions on Software
Engineering, 35(1):94–108, 2009.

[3] R. Abreu, A. Riboira, and F. Wotawa.
Constraint-based debugging of spreadsheets. In
CibSE’12, pages 1–14, 2012.

[4] R. Abreu, A. Riboira, and F. Wotawa. Debugging of
spreadsheets: A CSP-based approach. In 3th IEEE
Int. Workshop on Program Debugging, 2012.

[5] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer,
R. Spörk, C. Mühlbacher, and F. Wotawa. The right
choice matters! SMT solving substantially improves
model-based debugging of spreadsheets. In Proceedings
of the 13th International Conference on Quality
Software (QSIC’13), pages 139–148. IEEE, 2013.

[6] M. Fisher and G. Rothermel. The EUSES Spreadsheet
Corpus: A shared resource for supporting
experimentation with spreadsheet dependability
mechanisms. SIGSOFT Software Engineering Notes,
30(4):1–5, 2005.

[7] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast,
scalable, constraint solver. In Proceedings of the 7th
European Conference on Artificial Intelligence (ECAI
2006), pages 98–102, 2006.

[8] B. Hofer, A. Perez, R. Abreu, and F. Wotawa. On the
empirical evaluation of similarity coefficients for
spreadsheets fault localization. Automated Software
Engineering, pages 1–28, 2014.

[9] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and
E. Getzner. On the Empirical Evaluation of Fault
Localization Techniques for Spreadsheets. In
Proceedings of the 16th International Conference on
Fundamental Approaches to Software Engineering
(FASE 2013), pages 68–82, Rome, Italy, 2013.

[10] D. Jannach, A. Baharloo, and D. Williamson. Toward
an integrated framework for declarative and
interactive spreadsheet debugging. In Proceedings of
the 8th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE
2013), pages 117–124, 2013.

[11] D. Jannach and U. Engler. Toward model-based
debugging of spreadsheet programs. In JCKBSE 2010,
pages 252–264, Kaunas, Lithuania, 2010.

[12] D. Jannach and T. Schmitz. Model-based diagnosis of
spreadsheet programs: a constraint-based debugging
approach. Automated Software Engineering, pages
1–40, 2014.

[13] C. Mateis, M. Stumptner, D. Wieland, and
F. Wotawa. Model-based debugging of Java programs.
In Proceedings of AADEBUG, 2000.

[14] W. Mayer and M. Stumptner. Model-based debugging
– state of the art and future challenges. Electronic
Notes in Theoretical Computer Science, 174(4):61–82,
May 2007.

[15] W. Mayer and M. Stumptner. Evaluating models for
model-based debugging. In Proceedings of the
International Conference on Automated Software
Engineering (ASE), 2008.

[16] R. Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32(1):57–95, 1987.

[17] F. Wotawa. On the Relationship between
Model-Based Debugging and Program Slicing.
Artificial Intelligence, 135:125–143, February 2002.

[18] F. Wotawa, M. Nica, and I.-D. Moraru. Automated
debugging based on a constraint model of the program
and a test case. The journal of logic and algebraic
programming, 81(4), 2012.

