
A Spreadsheet Cell-Meaning Model for Testing

Daniel Kulesz
Institute of Software Technology

University of Stuttgart
daniel.kulesz@informatik.uni-stuttgart.de

ABSTRACT
Most attempts to test spreadsheets use the spreadsheet-
internal model to automatically detect input, intermediate
and output cells. In this paper, we discuss an example which
shows why this approach is problematic even for simple
spreadsheets. Following this, we derive a number of require-
ments for more feasible spreadsheet cell-meaning models and
describe a first prototype we have designed.

1. INTRODUCTION
Regardless of the hazards which can arise when using spread-
sheets, most businesses today regard them as indispensible
tools for supporting their processes. This fact, together with
the billions of existing spreadsheets [7], indicates a strong
need for finding faults in spreadsheets.

There are many approaches for finding faults in spreadsheets
[6]. One of them is testing, where the spreadsheet’s input
cells are populated with values and the values in the spread-
sheet’s output cells checked for certain criteria (e.g. [5, 3]).
To accomplish this, knowing which of the spreadsheet’s cells
are input cells and which are output cells is mandatory.
However, virtually no testing approaches use a designated
model for this purpose. Instead, they rely on the model
that spreadsheet execution environments use internally for
(re)calculation purposes, and which can easily be extracted
when considering the dependencies between cells:

• Input cells: Non-formula cells referenced by formula
cells

• Intermediate cells: Formula cells referenced by other
cells and referencing other cells themselves

• Result cells: Formula cells not referenced by other cells
but referencing other cells themselves

We will refer to this model as the ‘naive model‘ throughout
this paper. While this model is certainly correct from a

Figure 1: Example for a grading spreadsheet

technical point of view, looking at it from the perspective of
a spreadsheet user’s domain can lead to imminent conflicts
in a number of cases. In this paper we discuss these cases and
propose an explicit model which is more difficult to extract
but which we believe is better suited for testing spreadsheets.

Since the model is concerned with the type of cells from the
perspective of what the cells mean to users, we could refer
to it as “cell-type model”. Unfortunately, the term “cell-
type” is usually already used for describing the data type of
a spreadsheet cell’s contents. To avoid confusion, we use the
notion of “cell-meaning model” instead.

2. ISSUES WITH THE NAIVE MODEL
Figure 1 shows a spreadsheet for managing grades of a study
course. The spreadsheet is filled with data by a course in-
structor and later passed to a secretary for transferring the
grades to a different system. Furthermore, the spreadsheet
is used for statistical purposes by the manager of the study
course this exam belongs to. We want to use this spread-
sheet as a showcase with counter examples, arguing why the
naive model can lead to a biased perception of the actual
input cells and output cells of a spreadsheet:

• The total points (D7 to D12) could be output values



for a secretary who has to process these grades fur-
ther (e.g. write letters to students), but these cells are
referenced by the grade cells (E7 to E12). Thus, the
cells would be regarded as intermediate cells by naive
models and not as output cells.

• The study program manager might not be interested
at all in the total points of the particular students but
only in the failure rate (B15). Thus, he would not see
the grades as output cells.

• Spreadsheet authors sometimes use defensive program-
ming techniques and introduce checks themselves. The
plausibility column (G) is such an example: It checks
whether any of the grades for Task 1 or Task 2 are
outside acceptable limits (zero to maximum points for
the task). The naive model would treat the cells in the
plausibility column (G7 to G12) as output as well.

• The second worksheet named ‘grading key‘ is refer-
enced by VLOOKUP functions in the grade column’s
cells (E7 to E12). The naive model would therefore
interpret these referenced cells as input cells. How-
ever, none of the users of this spreadsheet is supposed
to change the contents of these cells as they contain
merely static data.

3. REQUIREMENTS
We are convinced that biased perceptions can be reduced if
a spreadsheet is tested using a model explicitly designed for
this purpose. From the discussion in the previous section,
we derive the following requirements for such a model:

• User-specifiable: It must be possible for users to
specify the cells themselves. If automatic extraction is
used, users must be able to change it.

• Support for views: Since users have different per-
ceptions and needs of the same spreadsheet, we either
need one testing model with different views or it must
be allowed that more than one testing model instance
per spreadsheet exists.

• Input cell types: The model must separate input
cells at least into two types: data cells (which contain
data that rarely changes or is fed from another system)
and actual decision variables which are supposed to be
manipulated by the user (of this model).

• Output cell types: Apart from intermediate cells,
the model must support cells which provide the data
with final results (which the user is looking for) as well
as support for plausibility and other additional cells.

Apart from these rather theoretical requirements, we identi-
fied two major practical requirements for the success of the
implementation of such a model:

• Understandability: It must be easy for spreadsheet
users to understand the model with no or little train-
ing, so that users can identify cells correctly in the
sense of the model.

• Acceptance: Even if the model would be easily un-
derstandable for spreadsheet users, its benefits must be
striking so that spreadsheet users will be motivated to
take the effort connected with using the model. (Basi-
cally this requires a proper attention investment model
as described by Blackwell and Burnett [2] [1]).

It seems infeasible to expect spreadsheet users to identify all
cell-meanings manually, especially for huge spreadsheets. As
already discussed, fully automated cell-meaning detection
seems impossible — but it might be beneficial to consider
assisting users by proposing cell-meanings based on auto-
detection techniques.

A promising starting point could be the work of Hermans
[4] which tries to identify plausibility cells automatically by
inspecting result cells for two additional constraints: the for-
mula starting with the IF operation and containing at least
one branch which can result in a string. While this cer-
tainly works in many cases (including our small example),
we have already seen spreadsheets which use numeric out-
puts for plausibility cells so this approach would fail. Yet,
since such cases are pretty rare, asking users to just validate
auto-detected cell-meanings instead of asking them to spec-
ify cell-meanings themselves might result in lower overall
effort and thus higher acceptance.

4. PROTOTYPE
We prototyped a cell-meaning model which takes into ac-
count the requirements stated in the previous section. The
model is illustrated in Figure 2 as a standard UML class
diagram.

We provide a partial implementation of our prototype in our
tool ‘Spreadsheet Inspection Framework‘ which is available
as open source software from GitHub1. The implementation
allows users to manually mark cells and use them later for
specifying test cases, but does not support all proposed cell-
meaning types yet and lacks auto-detection capabilities.

5. FUTURE WORK
To assess the feasibility of the model, further research is
required. A crucial aspect for evaluation will be the question
whether the cell types can be communicated clearly to users,
so users will tag existing spreadsheet cells according to our
proposed model.

Another important aspect will be the acceptance of the model.
Since we believe that acceptance might be very low without
a reasonable level of automated assistance, it seems worth-
while to address this point first.

Although we explained the theoretical limitations of the
naive model in this work, it must be explored whether the
additional manual effort connected with applying our model
yields enough benefits in terms of its ability to detect faults
in spreadsheets more accurately.

1https://github.com/kuleszdl/Spreadsheet-Inspection-
Framework



Figure 2: The cell-meaning model we propose

6. ACKNOWLEDGEMENT
We would like to thank Zahra Karimi, Kornelia Kuhle, Mandy
Northover, Jochen Ludewig and Stefan Wagner for their con-
structive feedback on earlier versions of this position paper.
Furthermore, we received many good hints and comments
from the reviewers for which we are very thankful.

7. REFERENCES
[1] A. Blackwell and M. Burnett. Applying attention

investment to end-user programming. In Human
Centric Computing Languages and Environments,
2002. Proceedings. IEEE 2002 Symposia on, pages
28–30. IEEE, 2002.

[2] A. F. Blackwell. First steps in programming: A
rationale for attention investment models. In Human
Centric Computing Languages and Environments,
2002. Proceedings. IEEE 2002 Symposia on, pages
2–10. IEEE, 2002.

[3] M. Fisher II, G. Rothermel, D. Brown, M. Cao,
C. Cook, and M. Burnett. Integrating automated test
generation into the wysiwyt spreadsheet testing
methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM),
15(2):150–194, 2006.

[4] F. Hermans. Improving spreadsheet test practices.
Center for Advanced Studies on Collaborative Research,
CASCON, 2013.

[5] D. Jannach, A. Baharloo, and D. Williamson. Toward
an integrated framework for declarative and interactive

spreadsheet debugging. In Proceedings of the 8th
International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pages
117–124. SciTePress, 2013.

[6] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors–a
survey of automated approaches for spreadsheet qa.
Journal of Systems and Software, 2014.

[7] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In
Visual Languages and Human-Centric Computing, 2005
IEEE Symposium on, pages 207–214. IEEE, 2005.


