
SBBRENG: Spreadsheet Based Business Rule Engine

 Pablo D. Palma

Incentings
Latadia 4623, Santiago, Chile

+562 2207 7158

pablo.palma@incentings.com

ABSTRACT
We developed a software product to replace the use of

spreadsheets as a data processing solution within a specific

business area. This paper explains the characteristics of the tool

and the findings, both resulting from a process of 3 years real life

refinement inside the ICM domain, and that we postulate can be

valid in other business domains.

General Terms
Documentation, Design, Security, Human Factors, Languages.

Verification

Keywords
Spreadsheet, Business Rules Engine, DDD, SEmS'14

1. INTRODUCTION

1.1 Use of spreadsheets for ICM solutions
The last four years our company has been working in the field of

Incentive Compensation Management –ICM-. Current solutions,

based on calculating performance-based payment for employees,

are complex and highly dynamic.

Worldwide, “only a 10% of sales organizations with more than

100 payees deploy prepackaged sales ICM applications” [1].

Almost all the remainder uses Excel. This is a reaction to the

combination of factors: high rate of change, short time available

for implementation, and typically long cycles in IT development.

However, Excel introduces its own limitations. It requires a lot of

human intervention that results in overpayment, and user-

generated errors that could be reduced “by more than 90%” [1]

(see subsection 5.2). In addition, there is “dissatisfaction with the

reliability of spreadsheets in adequately supporting compensation

processes” [1]. Excel also does not accomplish auditing,

accounting and regulation requirements.

In our market, the most important features of ICM software are

flexibility, security, auditing capabilities, and allowing the end

users to update the product themselves by including changes in

business rules.

1.2 Goals for a new ICM software
Some or the issues of pre-existing ICM solutions are:

 World Class ICM software solutions are costly and demand

long implementation processes

 In-house developments are slow1 and rigid2

1 in the range of 2 hrs per 2.000 transactions

 Excel-based solutions are fragile, difficult to audit and error

prone3

 Currently available solutions don’t attempt to improve

problem representation4 beyond conventional system

documentation

 Excel formulas are one-line expressions and are thus difficult

to read (e.g. nested if statements)

1.3 Importance and state of our work
There are two elements we consider important. First, we are

putting in practice some ideas (see Section 8) that may be useful

in other areas of enterprise software development. Second, we

want to determine how well our selection of functionalities

succeeds in creating a tool that best takes advantage of a mental

model of spreadsheets.

Customized ICM applications developed with SBBRENG have

been in use for more than a year in several companies from

different areas: car dealerships, banks, retail, etc. This happens in

the Chilean market where we use the product name IM4

2. BUSINESS RULES ENGINE
Business rules engines aren’t a new product category, they started

around the 80s [2]. Since then, many products and companies

have undergone a cycle of creation, development, merging and

death. We will use two currently successful solutions as

comparison standards: Drools (see Drools Guvnor Knowledge

Base)5 [3] -a component of the open source platform JBoss

BRMS- and ODM [3, 4] by IBM. Both are much larger systems

than SBBRENG, sharing the same global objective: make the

application more business agile.

Drools is a low level programming environment oriented to

efficiently manage a large quantity of conditions of any type. It

provides APIs for integration with other languages, tools and

processing environments. On the other hand, Operational

Decision Management –ODM- is a more business oriented

solution that conceptually splits systems into two different

components, talking to each other under a data contract. One is a

traditional Data Processing System for storing, updating and

reporting information related to some business domain, and the

other is a specialized system for managing and executing the

business rules of the same business domain.

2 no provisions for isolation or special management of business

logic
3 http://eusprig.org/horror-stories.htm
4 problem representation has impact on the maintenance agility

same as on the ability to preserve application coherence
5 http://drools.jboss.org/drools-guvnor.html

SBBRENG is closer to ODM with some big differences: domain

model is not Object Oriented and input/output documents are

simple shared folders for storing interchanging files

3. THE SPREADSHEET-LIKE SIDE OF

SBBRENG

3.1 The ApplyRules operation
A WorkSheet -WS- is a set of files and columns such as each

column has a unique name and each cell stores an immutable

value (current implementation does not yet force this

immutability). A SBBRENG Process is a specific sequence of

steps that modifies a WorkSheet. There is an operation

ApplyRules (•) for implementing SBBRENG Processes,

following statements of Business Rules. A Business Rule is -in

the context of SBBRENG- a directive detailing how to calculate

the numeric values used to run the business.

We represent a SBBRENG Process using the formula

 BRk • WSp => (WSk
p, OFp)

Where: • is the ApplyRules operation

 BRk is a subset of the Business Rules comprising the

 Application

 WSp is a current WorkSheet that is part of the

 Application

 WSk
p is a new WorkSheet that will be part of the

 Application

 OFp is an Output File that consists of a subset of

 WSk
p

Operation • adds new columns at the right of WSp. Business

Rules define how to calculate the immutable values of the new

cells. New columns can reference any column located at its left

(Figure 2).

.

AA BB CC DD EE FF GG HH II JJ

a1 b1 c1 d1 e1 f1 g1

a2 b2 c2 d2 e2 f2 g2

a3 b3 c3 d3 e3 f3 g3

 Figure 2: A SBBRENG Process

A SBBRENG Application is a sequence of Processes as seen

below:

Process 1: BR1 • WSa

Process 2: BR2 • WSb

 ……………………… .

Process k: BRk • WSm

3.2 The Assemble operation
An Input File becomes a WS when it contains all the information

referenced by one or more Business Rules. When Business Rule

references are contained in several Input Files, it is necessary to

build a WorkSheet by assembling several Input Files. We use the

Assemble operation (+) for this purpose, as shown in the

following formula.

 IFi (p) + IFk (q) => WSa

Where p is a column of IFi and q is a column of IFk, and they

provide a mechanism for matching rows of the Input Files.

Operation + produces a WorkSheet out of all the columns of both

Input Files. The WorkSheet contains all the IFi (p) rows and for

each of them, only one matching IFk (q) row. The matching logic

is the same of an Excel Table Lookup operation, in which p is a

column in the data and q represents the first column of the table.

The + operation is associative but not commutative.

The + operation can also be applied to a WorkSheet. In such

cases we have a precedence of Processes. Figure 3 shows an

example in which BR1• WSa precedes BR2 • WSb.

 Figure 3: Process precedence

There are situations where it is necessary to assemble the same file

more than one time, using different column keys. In such a case

SBBRENG adds a prefix to column names to avoid collisions. In

the following example, IFk is applied twice:

 (IFi (p) + IFk (q)) (r) +IFk (s) => WSb

4. NON COMPATIBLE SPREADSHEET

FUNTIONALITY
The most important difference with Spreadsheets is spreadsheet

interactivity, because SBBRENG follows a batch processing

model. Other examples of incompatible features are Table

Lookup, Dynamic Tables, external links, totals and other

processing

secuence

can use any value from

columns AA to GG

WSp

WSk
p

columns calculated by

Business Rules

columns

names

Business User

External
Systems

Rules

Engine

Input

Document

Output

Document

Figure 1: ODM high level view

aggregated values in the same column as the original data,

macros, different formulas in the same column, and the

programming language.

5. SOME ADITIONAL FEATURES OF

SBBRENG

5.1 Referential Transparency
A SBBRENG application offers “referential transparency”, which

is the base for providing reproducible results. In order to achieve

that goal, it is necessary to replace links to external sources (other

spreadsheets, Databases, etc.) by static Input Files containing the

external linked information.

5.2 Separation of Data and Parameters
In the context of SBBRENG, Parameters are a special type of

data: input files are produced by other systems, but parameters are

maintained by users. Parameters represent a high level system

abstraction, which is required to adapt the system behavior. Data

is stored in Files and WorkSheets, and Parameters are stored in a

special repository. SBBRENG’s IDE provides the means for

Parameter editing.

5.3 Iteration over Data
The calculus performed on each column follows a cycle. Rows are

filtered by conditions and grouped by some column values. The

logic applied to the cells belonging to a group, is repeated for

each group until reaching the last. Some SBBRENG core

functions offer aggregated operations over groups, e.g. count,

sum, average, max.

5.4 Domain Model
5.4.1 Introduction
Five objects support Domain modeling: Matrix, Classifier, List,

Rules and Files. Files are input/output files. Rules are pieces of

code that have some specific properties (i.e. name, filter, sequence

and granularity). The three remaining objects are the most

important, because they store in their structure the values of the

Parameters of the application. This allows a direct user interaction

with the Domain Model representation, when adjusting

Parameters values.

Parameters directly represent elements of the ubiquitous language

[5] Those elements appear in several real life working documents:

memos, agreements, contracts, regulations, etc. The shape of the

Parameters as used in SBBRENG mimics its representation in

documents. Therefore, business users understand them without

requiring further explanations.

As needed, some Parameters may have embedded logic that is

executed every time they are used in a Rule.

5.4.2 Matrixes
Matrixes are bi-dimensional arrays of values and conditions that

return a value (or several values) based on the evaluation of its

embedded logic.

Matrixes have two headings, X and Y. Each heading represents a

tree of conditions: sibling nodes make an OR and parent-child

nodes make an AND. It is very easy to see the tree as a set of

adjacent boxes with the outermost boxes of the headings matching

columns or rows of the Matrix. Each box has a label that makes

apparent its associated condition.

Spot

Clients

Recurrent

Clients

Premiun

Clients

Recurrent

Clients

Premiun

Clients

5% 6% 7% 7% 8%

North Region 4% 5% 6% 0% 0%

South Region 3% 4% 5% 0% 0%

North Region 5% 6% 7% 7% 8%

Central Region 4% 5% 5% 6% 6%

South Region 3% 4% 5% 0% 0%

New Products Old Products

Salesmen type A

Salesmen

type B

Salesmen

Type C

Figure 4: A Matrix

Matrixes change the way in which complex nested conditions are

visualized (see figure 5)

A B

C
1 2 3 4

5 6

a b c d e

 (A && (1 || 2 || 3))
|| (B && (5 && (a || b || c)) || (6 && (d || e))
|| C

Figure 5: Equivalence of nested conditions

Matrixes are self-explanatory for anyone familiar with the

Business Domain of the application. Their behaviour doesn’t

depend on the context in which they are used; it only depends on

the values of some of the input data in a clear and explicit manner.

Matrixes provide a powerful mechanism of Domain

representation, because of its expressivity and because of the way

they isolate behavior.

5.4.3 Classifiers
Classifiers are Boolean expressions whose value is automatically

set based exclusively on the input data and remain immutable

until the input data change. They represent business concepts,

mostly corresponding to nouns in the ubiquitous language.

Regardless of how many relationships input fields have in the

system they comes from, Classifiers implements only those

conditions required by our application. Classifiers are used by

Matrixes to build its embedded logic.

 Classifiers create a conceptual layer for mapping a SBBRENG

application Domain with the Domain of systems where the input

data were generated. Classifiers are used by Matrixes to build its

embedded logic. Classifiers increase program readability and

improve our ability to adapt to changes in the Input Files.

5.4.4 List and Constants
A List is a Dictionary where a value associated to an entry can be

simple or complex. Constants are Lists that use a special syntax.

5.5 Programming Language
We use JavaScript to replace spreadsheets’ functions. To improve

productivity, we developed a library of "core functions"

frequently used in our Domain of applications. It is easy to add

new core functions.

We also provide a graphic block language, similar to MIT's

Scratch [6] and others [7]. Blocks automatically generate the

equivalent JavaScript instructions. Blocks are very well suited to

SBBRENG because each Rule is made of a few instructions.

Blocks were initially implemented for the Assemble operation,

and we have plans to extend it to the Rules.

5.6 Auditing
A Run is a complete execution of a SBBRENG Application. Each

Run is stored as a backup document containing all inputs, outputs,

parameters and logic utilized. SBBRENG automatically assigns a

unique ID to each Run. Later, a Run can be opened as read-only

for revision, but it cannot be modified. It is possible to reprocess

a backup document, generating a new backup document with a

different ID.

Additionally, there is a log of the changes made to the parameters,

the input files and the logic, indicating old and new values, the

user involved and date/time of all changes.

5.7 IDE
There is a special IDE -Integrated Development Environment- to

support all tasks: application development, documentation,

design, testing, etc. It also has functions for running applications,

for reviewing previous Runs and for downloading results.

The IDE offers two views: a conventional nested folders type and

an advanced mental map type [8, 9]. The latter is the base for

some advanced visualization options that ease the understanding

of an Application (pending development).

5.8 Documentation
Documentation is a part of a broader content we call problem

representation. It includes parameters, code, blocks, ad-hoc

descriptions, etc. Additional to the content, there are tools for

filtering information, displaying information, and displaying

information relationships. Some of this functionality is currently

in use; some is pending development. Because documentation is

supported by the IDE, it is always available on line when working

with the application.

6. SOFTWARE STRUCTURE
On the Server side, there is a Web application than runs on IIS

using .NET and SQL Server.

On the Client side, there is the IDE running in any modern

browser.

7. RESULTS
Security and auditability of the applications were improved in

relationship to spreadsheets, as a result of some new specific

functionality (see Subsections 5.1, 5.2 and 5.6).

Documentation was improved when compared to conventional

solutions, because of the integration of different types of

information into one common repository (see Subsections 5.7,

5.8) and the availability of new capabilities based on the use of a

Mental Map.

The use of the Domain Model (see Subsection 5.4) enhanced

productivity of development and maintenance, because less code

is required to implement the same business logic compared to

solutions using spreadsheet (See Sub Subsection 5.4.2)

Performance is good. We were expecting 10 min per 2.000

transactions and 4 hrs per 3.000.000 transactions, but real

numbers were 4 min and 1 hr 45min, respectively. We were using

a conventional entry level server.

8. KEY LESSONS LEARNED FROM

WORKING WITH SBBRENG
Looking at one of the components of the productivity equation,

we think we successfully tried some new ideas, like a new

approach for representing the Business Rules Domain, a method

for avoiding complex nested conditions, an IDE based in a Mental

Map, a graphic replacement for the programming language of

spreadsheets, some mechanisms to improve security and

auditability, etc.

But looking at the other component -the process of getting and

agreeing to specifications for building the application- we think it

is necessary to achieve important improvements. The ubiquitous

language requires more elaboration6. The cognitive process that

ends with a working application can probably take advantage of

the impressive new findings in neuroscience. Focus, resources,

new instruments and new methodologies are moving the limits.

“Constant development of more sensitive and accurate

neuroimaging and data analysis methods creates new research

possibilities” [10].

9. FUTURE DEVELOPMENTS
We are interested in two areas for future development. The first is

improving automatic analysis capabilities used during the testing

phase, and the other is improving visualization capabilities for

mental maps in the IDE.

10. REFERENCES
[1] Dunne, M. 2010. MarketScope for Sales Incentive

Compensation Management Software. Gartner MarketScope

Series (March 2010)

[2] Bosh 2010. The Past, Present, and Future of Business Rules.

Bosch Software Innovations GmbH. (March 2010)

[3] Craggs, S. 2012. Competitive Review of Operational

Decision Management, Lustratus Research (October 2012)

[4] IBM 2012. Why IBM Operational Decision Management?

Software. Thought Leadership White Paper (June 2012)

[5] Evans, E. 2003. Domain-Driven Design. Addison Wesley; E

(August 2003)

[6] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,

Silver, J., Silverman, B. and Kafai Y. Scratch: Programming

for all. Communications of the ACM (November 2009)

6 it has been apparent that some additional concepts are necessary

[7] Hosick, E. 2014. Visual Programming Languages -

Snapshots. (February 2014)

http://blog.interfacevision.com/design/design-visual-

progarmming-languages-snapshots/

[8] Eppler, M. 2006. A comparison between concept maps,

mindmaps, conceptual diagrams, and visual metaphors as

complementary tools for knowledge construction and

sharing. Faculty of Communication Sciences, University of

Lugano

(USI), Lugano, Switzerland

[9] Novak, J., and Cañas, A. 2008. The Theory Underlying

Concept Maps and How to Construct and Use Them. Florida

Institute for Human and Machine Cognition (IHMC)

[10] Jääskeläinen, L. 20012. Cognitive Neuroscience:

Understanding the neural basis of the human mind .

Jääskeläinen & Ventus Publishing ApS (November 2012)|

http://bookboon.com/

.

