
End-user development via sheet-defined functions

Peter Sestoft
∗

Jonas Druedahl Rask Simon Eikeland
Timmermann

ABSTRACT
We have developed an implementation of sheet-defined func-
tions, a mechanism that allows spreadsheet users to define
their own functions, using only spreadsheet concepts such as
cells, formulas and references, and no external programming
languages. This position paper presents the motivation and
vision of this work, describes the features of our prototype
implementation, and outlines future work.

Keywords
Spreadsheets, end-user development, functional programming

1. INTRODUCTION
Spreadsheet programs such as Microsoft Excel, OpenOffice
Calc, Gnumeric and Google Docs are used by millions of
people to develop and maintain complex models in finance,
science, engineering and administration. Yet Peyton Jones,
Burnett and Blackwell [9] observed that spreadsheet pro-
grams lack even the most basic abstraction facility — a way
to encapsulate an expression as a reusable function — and
proposed a design for such a mechanism.

We have implemented this idea in the form of sheet-defined
functions. A user may define a function F simply by declar-
ing which (input) cells will hold F’s formal parameters and
which (output) cell will compute F’s result, as a function of
the input cells. The function definition may involve arbi-
trary additional cells, spreadsheet formulas, calls to built-in
functions, and calls to other sheet-defined functions. Fig-
ure 1 shows an example. In the example, values are referred
to by cell (such as B25). A mechanism that allows for sym-
bolic names (such as “periods”) instead could be added, but
Nardi speculates that end user developers would not neces-
sarily find that better [7, page 44].

Augustsson et al. from Standard Chartered Bank provide
further support for the utility of such abstraction mecha-

∗sestoft@itu.dk, IT University of Copenhagen, Denmark

Figure 1: A sheet-defined function implementing
Excel’s NOMINAL built-in. Cells B23 and B24 are in-
put cells, cell B26 is the output cell, and B25 holds
an intermediate result. The call to DEFINE in cell A22
creates the function. Cell A28 contains a call to the
defined function. It takes around 200 ns to execute
it, of which 80 ns is due to exponentiation (ˆ). As
shown in cell A28, a sheet-defined function is called
just like a built-in or VBA function.

nisms, saying about the traditional combination of Excel
and externally defined functions that “change control, static
type checking, abstraction and reuse are almost completely
lacking” [1].

2. THE VISION
The ultimate goal of this work is to allow spreadsheet users
themselves to develop and evolve libraries of user-defined
functions to support sophisticated spreadsheet models. Defin-
ing a function requires only well-known spreadsheet concepts
such as cell, cell reference and function, and no external pro-
gramming languages. Therefore experimentation and adap-
tation of user-defined functions remain under the control of
the spreadsheet users and domain experts, who need not
wait for an IT department to understand, describe, imple-
ment and test the desired changes.

Any spreadsheet computation can be turned into a sheet-
defined function. This ensures conceptual and notational
simplicity. Moreover, it means that new user-defined func-
tions may arise by refactoring of a spreadsheet model as
it evolves. As a spreadsheet model becomes more refined
and complex, it may be observed that the same cluster of
formulas appears again and again. Such a cluster of formu-
las may then be encapsulated in a sheet-defined function,
and each formula cluster replaced by a call to that function.
This both simplifies the spreadsheet model and improves its



Table 1: Time to compute the cumulative distribu-
tion function of the normal distribution N(0, 1).

Implementation Time/call (ns)
Sheet-defined function 118
C# 47
C (gcc 4.2.1 -O3) 51
Excel 2007 VBA function 1925
Excel 2007 built-in NORMSDIST 993

maintainability, because a bug-fix or other improvement to
the function will automatically affect all its uses, unlike the
traditional situation when there are multiple copies of the
same cluster of formulas.

Sheet-defined functions may be shared with other users in
the same department or application domain, without pre-
venting them from making their own improvements — be-
cause the domain knowledge is not locked into the notation
of a “real” programming language, but one that presumably
is familiar to users and that they are (more) comfortable
experimenting with.

Sheet-defined functions support end-user “tinkering” to de-
velop models and workflows that are appropriate within
their application domain [7]. Clearly not all spreadsheet
users will be equally competent developers of sheet-defined
functions, and clearly not all software should be developed
in this way. However, judging from the huge popularity
of spreadsheets within banks, finance, management, science
and engineering, the immediate response and the user con-
trol offered by spreadsheets are attractive features. Also,
from anecdotal evidence, structured use of spreadsheets is a
flexible, fast and cheap alternative to“big bang”professional
IT projects.

3. THE FUNCALC PROTOTYPE
We have created a prototype implementation of sheet-defined
functions, called Funcalc. The implementation is written in
C#, is quite compact (12,000 lines of code) and compiles
sheet-defined functions to .NET bytecode [3] at run-time.
As shown by Table 1 execution efficiency is very good; this
is due both to local optimizations performed by our function
compiler and to Microsoft’s considerable engineering effort
in the underlying .NET just-in-time compiler.

Funcalc features include:

• a “normal” interpretive spreadsheet implementation;

• a compiled implementation of sheet-defined functions;

• recursive functions and higher-order functions;

• functions can accept and return array values in addi-
tion to numbers and string;

• automatic specialization, or partial evaluation [12];

• facilities for benchmarking sheet-defined functions.

Because Funcalc supports higher-order functions, the value
contained in a cell, say A42, may be a function value. This

Table 2: Time to call a square root function; includes
recalculation time.

Calling Time/call (ns)
Sheet-defined function from Funcalc 400
Excel built-in from Excel 160
.NET function from Excel/Excel-DNA 4,900
VBA function from Excel 12,000

value may be called as APPLY(A42,0.053543,4) using built-
in function APPLY.

Function values are built by applying a sheet-defined func-
tion to only some of its arguments, the absent arguments
being given as NA(); the resulting function value will dis-
play as NOMINAL(#NA,4) or similar.

Such a function value may be specialized, or partially eval-
uated, with respect to its available (non-#NA) arguments.
The result is a new function value with the same behavior
but potentially better performance because the available ar-
gument values have been inlined and loops unrolled in the
underlying bytecode. For more information, see [5] and [12].
Specialization provides some amount of incremental compu-
tation and memoization, and we do not currently have other
general mechanisms for these purposes.

A forthcoming book [13] gives many more details of the im-
plementation, more examples of sheet-defined functions, and
a manual for Funcalc. A previously published paper [15]
presents a case study of reimplementing Excel’s built-in fi-
nancial functions as sheet-defined functions.

A comprehensive list of US spreadsheet patents is given in
a forthcoming report [14].

4. INTEGRATION WITH EXCEL
In ongoing work [10] we integrate sheet-defined functions
with the widely used Microsoft Excel spreadsheet program,
rather than our Funcalc prototype, as illustrated in Figures 2
and 3. This enables large-scale experimentation with sheet-
defined functions because they can be defined in a context
that is familiar to spreadsheet users and provides charting,
auditing, and so on.

The main downside is that calling a sheet-defined function
from Excel is much slower than from the Funcalc implemen-
tation (yet apparently faster than calling a VBA function);
see Table 2. However, the sheet-defined function itself will
execute at the same speed as in Funcalc. This work uses the
Excel-DNA runtime bridge between Excel and .NET [4].

5. FUTURE WORK
So far we have focused mostly on functionality and good
performance. We emphasize performance because we want
sheet-defined functions to replace not only user-defined func-
tions written in VBA, C++ and other external languages,
but to replace built-in functions also. Domain experts in
finance, statistics and other areas of rather general interest
should be able to develop well-performing high-quality func-
tions themselves and not have to rely on Microsoft or other
vendors to do so.



Figure 2: Funcalc as Excel plug-in, showing formulas of sheet-defined function TRIAREA with input cells A3,
B3 and C3, intermediate cell D3, and output cell E3. The call to DEFINE in cell E4 creates the function.
Through the new “Excelcalc” menu one can interact with the underlying Funcalc implementation and the
Excel-Funcalc bridge (mostly for development purposes).

Figure 3: Same sheet as in Figure 2, here showing values rather than formulas. Note the editing in progress
of a call to sheet-defined function TRIAREA in cell E6.



However, a well-performing implementation of sheet-defined
functions is just the beginning: one should investigate ad-
ditional infrastructure and practices to support their use.
For instance, how can we extend the natural collaboration
around spreadsheet development [8] in a community of users
to cover also libraries of sheet-defined functions; how can we
support versioning and merging of such libraries in a way
that does not preclude individual users’ tinkering and ex-
perimentation; how can we support systematic testing; and
so on.

Our concept of sheet-defined functions should be subjected
to a systematic usability study; the study conducted by
Peyton-Jones, Blackwell and Burnett [9] assumed that func-
tions could not be recursive, whereas ours can.

Finally, sheet-defined functions lend themselves well to par-
allelization, because they are pure (yet strict, an unusual
combination) so that computations can be reordered and
performed speculatively, and often exhibit considerable ex-
plicit parallelism. In fact, they resemble dataflow languages
such as Sisal [6]. Presumably some of the 1980es techniques
used to schedule dataflow languages [11] could be used to
perform spreadsheet computations efficiently on modern mul-
ticore machines. The result might be “supercomputing for
the masses”, realizing Chandy’s 1984 vision [2].

6. CONCLUSION
We have presented a prototype implementation of sheet-
defined functions and outlined some future work. Our hope
is that such functionality will become available in widely
used spreadsheet programs, or via a full-featured version of
the plugin described in Section 4, and will enable spread-
sheet users to develop their own computational models into
reusable function libraries, without loss of computational
efficiency and without handing over control to remote IT
departments or software contractors. Moreover, there seems
to be a technological opportunity to harness the power of
multicore machines through spreadsheet programming.

7. REFERENCES
[1] L. Augustsson, H. Mansell, and G. Sittampalam.

Paradise: A two-stage DSL embedded in Haskell. In
International Conference on Functional Programming
(ICFP’08), pages 225–228. ACM, September 2008.

[2] M. Chandy. Concurrent programming for the masses.
(PODC 1984 invited address). In Principles of
Distributed Computing 1985, pages 1–12. ACM, 1985.

[3] Ecma TC39 TG3. Common Language Infrastructure
(CLI). Standard ECMA-335. Ecma International,
sixth edition, June 2012.

[4] Excel DNA Project. Homepage. At
http://exceldna.codeplex.com/ on 28 February 2014.

[5] N. D. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and
Automatic Program Generation. Prentice Hall, 1993. At
http://www.itu.dk/people/sestoft/pebook/pebook.html
on 9 June 2013.

[6] J. McGraw et al. Sisal. Streams and iteration in a
single assignment language. Language reference
manual, version 1.2. Technical report, Lawrence
Livermore National Labs, March 1985.

[7] B. A. Nardi A small matter of programming.
Perspectives on end user programming. MIT Press,
1993.

[8] B. A. Nardi and J. R. Miller Twinkling lights and
nested loops: distributed problem solving and
spreadsheet development. International Journal of
Man-Machine Studies, 34:161–184, 1991.

[9] S. Peyton Jones, A. Blackwell, and M. Burnett. A
user-centred approach to functions in Excel. In ICFP
’03: Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming,
pages 165–176. ACM, 2003.

[10] J. D. Rask and S. E. Timmermann. Integration of
sheet-defined functions in Excel using C#. Master’s
thesis, IT University of Copenhagen, 2014. (Expected
June 2014).

[11] V. Sarkar and J. Hennessy. Compile-time partitioning
and scheduling of parallel programs. In ACM
SIGPLAN ’86 Symposium on Compiler Construction,
pages 17–26, June 1986.

[12] P. Sestoft. Online partial evaluation of sheet-defined
functions. In A. Banerjee, O. Danvy, K. Doh, and
J. Hatcliff, editors, Semantics, Abstract Interpretation,
and Reasoning about Programs, volume 129 of
Electronic Proceedings in Theoretical Computer
Science, pages 136–160, 2013.

[13] P. Sestoft. Spreadsheet Implementation Technology.
Basics and Extensions. MIT Press, 2014. ISBN
978-0-262-52664-7. (Expected August 2014). 313
pages.

[14] P. Sestoft. Spreadsheet patents. Technical Report
ITU-TR-2014-178, IT University of Copenhagen, 2014.
ISBN 978-87-7949-317-9. (To appear).

[15] P. Sestoft and J. Z. Sørensen. Sheet-defined functions:
implementation and initial evaluation. In Y. Dittrich
et al., editors, International Symposium on End-User
Development, June 2013, volume 7897 of Lecture
Notes in Computer Science, pages 88–103, 2013.


