
Improving Sparsity Problem in Group Recommendation

Sarik Ghazarian‡, Nafiseh Shabib‡†, Mohammad Ali Nematbakhsh‡
‡University of Isfahan, ‡†Norwegian University of Science and Technology

sarikghazarian@yahoo.com,
shabib@idi.ntnu.no,

mnematbakhsh@eng.ui.ir

ABSTRACT
Group recommendation systems can be very challenging when
the datasets are sparse and there are not many available rat-
ings for items. In this paper, by enhancing basic memory-
based techniques we resolve the data sparsity problem for
users in the group. The results have shown that by con-
ducting our techniques for the users in the group we have a
higher group satisfaction and lower group dissatisfaction.

Keywords
sparsity, group recommendation, collaborative filtering

1. INTRODUCTION
Recommendation systems (RSs) are tools and techniques,

which provide suggestions for items to be used by users.
They generally directed towards helping users for finding
items that are likely interested in the overwhelming number
of items and they try to predict the most suitable products
or services, based on the users’ preferences and constraints.
However, even active users have rated just a few items of
the total number of available items in a database and re-
spectively, even popular items have been rated by only a few
number of total available users in the database. This prob-
lem, commonly referred as a sparsity problem [17]. Different
approaches have been proposed in the research literature fo-
cusing on Sparsity problem for single user recommendations
[21, 24]. However, as far as we know, this is the first work
presenting a complete model for group recommendations,
which resolving sparsity problem for a group. In general,
sparsity has a major negative impact on the effectiveness of
a collaborative filtering approach and especially on group
recommendation. The main challenge behind group scenar-
ios has been that of computing recommendations from a
potentially diverse set of group members’ ratings in a sparse
situations. In this work, we studied sparsity problem in the
group recommendation. First, we formalize the problem of
sparsity in the group recommendation and use our model
for aggregating user rating in a group. Second, we run an
extensive set of experiments with different group sizes and
different group cohesiveness on Millions of Song data set.
Our experiments exhibit that in the most cases the group
satisfaction in our proposed model is higher and the group
dissatisfaction is lower than the previous models, which does
not take into account sparsity.
The rest of paper is organized as follows: Section 2 describes
the sparsity problem for a group and we propose a complete
model for sparsity in the group recommendation. Experi-

ments are presented in section 3. Section 4 provides some
background and formalism. We conclude in section 5.

2. DATA MODEL AND RECOMMENDATION
ALGORITHM

We assume a set of users U = {u1, . . . , un} out of which
any ad-hoc group G ⊆ U can be built. We consider a set
I = {i1, i2, . . . , im} with m items.

2.1 Item-Item Similarity
The basic component of proposed method is a machine

learning regression method called Support Vector Machine
(SVM) which is used for calculating similarities between
items [26]. SVM is a supervised learning technique, which
learns the function that is produced from input data in the
best manner. It uses the built-in function to give appropriate
output for an input data [26]. The input data pairs are as fol-
lows: (x1, y1), ..., (xi, yi). The xi is a record in d dimensional
space and yi is a real value. SVM tries to find f(x) function
which approximates the relations between data points [20].
The target function has two types: linear and nonlinear. In
linear regression the relationships between input and output
data points are linear and their relationships can be approx-
imated by a straight line. The linear function is computed
as equation 1.

f(x) = w.x+ b (1)

, where w ∈ X, X is the input space and b is a real value
[20].
In nonlinear case SVM preprocesses input data. It uses non-
linear mapping function (ϕ → ρ) which maps data from
input space to the new feature space ρ. After this map-
ping action, the standard linear SVM regression algorithm
is applied in the new higher feature space. The dot product
between data points in higher dimensional feature is called
kernel function [23]. Equation 2 shows this function.

K(x, x′) = ϕ(x).ϕ(x′) (2)

There are different kernel functions like linear, polyno-
mial, radial basis function (RBF), and Pearson VII Universal
Kernel (PUK) [23]. In our proposed method PUK function
has been used for modeling the similarities between items,
because it had higher accuracy than other functions.

PUK : k(x, x′) =
1[

1 +

 2
√
‖x−x′‖2

2
√

2
(1
ω

)−1

σ

2]ω (3)

2.2 Listen Count
The algorithms in our work are based on explicit feed-

back from users; subsequently there is a need to normalize
the listening counts to a predefined scale so that the algo-
rithms can work optimally. In the [11], they modified basic
latent factor model to convert implicit ratings to the explicit
ones. Similarly to the approach taken [11], a boolean vari-
able (pui) shows the user’s interest on an item (equation 4
). If a user has listened to a song (lui), its boolean variable’s
value is 1 otherwise it is 0. Thus, implicit data do not in-
dicate users’ preferences, rather they show confidence (cui)
about users’ preferences and there is a direct relationship be-
tween confidence value and the number of times that each
user has listened to a song (equation 5). The relationship is
controlled by constant α.

pui =

{
1 if lui > 0
0 if lui = 0

(4)

cui = 1 + αlui (5)

By these alternations, the equation of latent factor model
modified as equation 6. This equation is a least square op-
timization process by considering user factors (pu) or item
factors (qi) to be fix in each step. After finding user factors
and item factors, their dot products show the users’ explicit
ratings on items.

min
q∗,p∗

=
∑

ruiis known

cui(rui − qTi pu)2 + λ(‖qi‖2 + ‖pu‖2) (6)

2.3 Sparsity Calculation
The sparsity value was computed as follows:

The ratio of specified ratings of items in the initial user-
item matrix to the whole specified and not specified items’
ratings.

SparsityV alue =
Num.of specified ratings

Num.of all possible ratings
(7)

2.4 Group Modeling
We define the following hypothesis: The relevance between

a group and an item i is only dependent on the relevance of
i to individual members of the group. Using this hypothesis,
we derive the following definition that not only includes the
preferences of individual users but also integrates the users
preferences when they are in a group while recommending a
set of items.

2.4.1 User-User Similarity
The major goal of this component is to overcome the

weakness of Pearson’s correlation method in the sparsity
situation. The Pearson’s correlation is limited to the joint
items in both users’ preference lists. In a random group set-
ting, the collections of common items between users are very
small, so comparing users based on very few items leads to
lower accuracy [8, 19]. To solving this problem, the idea of
proposed method is to compare all items rated by one user
with all items in another user in the group, one by one. In
other words, our method involves all possible combination
of items in preference lists of both users. Equation 8 demon-
strates the idea. The basic part of this equation is based on
our conception of similar and dissimilar users:
Two users are considered similar, if they have close ratings

for similar items.
Two users are dissimilar, if they have rated two dissimilar
items.
Given a group G, the similarity of each user u ∈ G is denoted
as:

UserSimuv =
Σ∀i∈Ru

⋂
∀j∈Rv (1− |rui−rvj |

rmax−rmin
)× ItemSimij

Σ∀i∈Ru
⋂
∀j∈Rv |ItemSimij |

(8)
, Ru = {i|rui 6= 0}, Rv = {j|rvj 6= 0} , and rmax and rmin
are maximum and minimum possible values of the ratings.
Note that, ItemSimij is equal to similarity values between
items i and j which is calculated by the SVM regression
model that has been explained in the 2.1.

2.4.2 User-Item Relevance
Given a group G, the relevance of a user u ∈ G for an item

i ∈ I is denoted as:

Relui = r̄u +
Σv∈U (rvi′ − r̄v)× UserSimuv

Σv∈U |UserSimuv|
(9)

, where i′ is the most similar item to i that user v has rated.
Thus, by considering i′ in the relevance function, it is not
required to take into account just the users who have rated
the same item, but it considers all ratings given by users,
and we can use ratings of other most similar items to the
target item to fill in the sparseness.

2.4.3 Group Relevance
The preference of an item i by a group G, denoted as

Grel(G, i), is an aggregation over the preferences of each
group member for that item. We consider two main aggre-
gation strategies:
Average

Grel(G, i) =
Σu∈GRelui
|G| (10)

Least Misery

Grel(G, i) = minu∈G(Relui) (11)

2.5 Group Satisfaction
To evaluate our methods accuracy in group recommenda-

tion process, we used group satisfaction metric [5].
This metric is the average of all group members’ satisfaction
for recommended items

Gsat =
Σu∈UUsat

|G| (12)

User’s satisfaction is shown as Usat(u) which is calculated:

Usat =
Σki=1Relui

k ∗Max(Relui)
(13)

, where Relui is user preference on item, k is the number of
items, and Max(Relui) is maximum preference value of user
u for all items.

2.6 Group DisSatisfaction
To evaluate our methods in group recommendation pro-

cess, we also used group dissatisfaction metric [13]. This
metric is the fraction of dissatisfied users whose satisfaction
measures were less than a threshold. In our case we consider

the threshold equals to 0.6.

GdisSat =
|U|
|G| (14)

, where u|Usat < 0.6 (equation 13)

3. EXPERIMENTS
We have shown after solving sparsity problem for each

single user in the group, we have a higher group satisfaction
and lower group dissatisfaction.
Dataset description: In this section, we evaluate our

method with Million Song Dataset (MSD)1, in the music rec-
ommendation scope. The Million Song Dataset (MSD) is a
collection of music audio features and metadata that has cre-
ated to support research into industrial-scale music informa-
tion retrieval. It is freely-available collection of meta data for
one million of contemporary songs such as song title, artist,
publication year, audio features, and much more [14]. In ad-
dition, The MSD is a cluster of complementary datasets con-
tributed by the community: SecondHandSongs dataset for
cover songs, musiXmatch dataset for lyrics, Last.fm dataset2

for song-level tags and similarity, and Taste Profile subset
for user listening history data. Comprising several comple-
mentary datasets that are linked to the same set of songs,
the MSD contains extensive meta-data, audio features, song-
level tags, lyrics, cover songs, similar artists, and similar
songs. In this work, we have used information about song’s
features such as title, release, artist, duration, year, song-
hotness, songs similarity, users listening history, and song’s
tags. In addition to this information, we have information
about song tags and its degrees in Last.fm dataset, which
the tag’s degree shows how much the song is associated to a
particular tag. In our work, for each song we consider three
main tags.
We implemented our prototype system using Java and for
computing SVM model’s accuracy we used WEKA3.

3.1 Item-Item Similarity
In order to use similarity data between songs and create

SVM regression model, we needed to prepare suitable data,
preprocessing, for training process as follows: song, release,
artist, term1, term2, term3, song-hotness, duration, year,
similarity-degree.
In MSD, about half of songs have at least one tag. In this
research for each song, its three most relevant tags were con-
sidered. If a song didn’t have three relevant tags, remaining
tags were filled with the highest one. Similarity-degree is an
integer attribute in [0, 1] interval. 1 shows the most simi-
lar songs and conversely 0 is used for dissimilar songs. In
SVM model each record should be represented as a point
in input space. To achieve this purpose similarity based
functions have been used [10]. For computing similarity
between string attributes, Jaro-Winkler method has been
used, which gives 1 to most similar items and 0 to dissimi-
lar ones. For terms, we used similarity function of nominal
attributes. After computing similarity between correspond-
ing pairs of attributes, each record came in form: title-dif,
release-dif, artist-dif, term-dif, song-hotness-dif, duration-
dif, year-dif, similarity-degree The ”dif” suffix stands for the

1http://labrosa.ee.columbia.edu/millionsong
2http://last.fm
3http://www.cs.waikato.ac.nz/ml/weka

differences. Then we used these new records to create SVM
model for predicting similarities between songs.

3.1.1 Item-Item similarity results
For computing SVM model’s accuracy, mean absolute er-

ror (MAE) [25] values of different regression models were
compared by using Waikato Environment for Knowledge
Analysis (WEKA) software tool. All parameters in different
methods were tested. In all SVM methods with different
kernel functions like PUK, RBF , normalizedPolyKernel,
and polyKernel, the PUK kernel function with σ = 1 and
ω = 1 had the minimum and best MAE value. Figure 1 il-
lustrates different MAE values for different regression meth-
ods in WEKA. Therefore, in our work PUK function has
been used for modeling the similarities between items.

Figure 1: MAE value for different regression meth-
ods

3.2 User Collection Phase
We selected subset of users to provide their music prefer-

ences. Later, those users are used to form different groups
and perform judgments on group recommendations. For this
aim, we selected those users who have at least listened to fif-
teen songs in our dataset. As mentioned in previous section,
MSD contains listening history of users, which shows the
number of times each user has listened to a particular song.
Thus, preferences have been expressed in implicit format.
This format is not equivalent to explicit one, which shows the
exact preferences of users. Since, the user-based and item-
based collaborative filtering (CF) approaches have been de-
signed for explicit ratings, conversion of implicit feedbacks to
explicit ones was essential. In order to achieve explicit one,
we have used latent factor model with some alternations as
proposed in the Listen Count in the previous part.

3.3 Group Formation
We considered two main factors in forming user groups i.e.

group size, group cohesiveness [2]. We hypothesized that
varying group sizes will impact to the group satisfaction.
We chose three group sizes, 3, 5, and 10, representing small,
medium, and large groups, respectively. Similarly, we as-
sumed that group cohesiveness (i.e., how similar are group
members in their music tastes) is also a significant factor
in their satisfaction with the group recommendation. As
a result, we chose to form three kinds of groups: similar,
dissimilar, and random.

3.4 Result Interpretation
After predicting unknown items’ score in all users’ pref-

erence lists, it is essential to aggregate users’ preferences to

make recommendation for a group. For this purpose, we
used basic methods (average and least misery) and recom-
mended k items with highest values. To evaluate our method
in the group recommendation process, we used group satis-
faction and dissatisfaction metrics. The reason that we used
group dissatisfaction metric is observing how the algorithm
performs when we have dissatisfied members in the group.
Note that, the sparsity value for each group is the following
numbers.
Similar group : G3=0.31 G5=0.55 G10=0.77
Dissimilar group : G3=0.52 G5=0.68 G10=0.80
Random group : G3=0.58 G5=0.72 G10=0.84

3.4.1 Varying Group size
We examined the effect of different group sizes on group

satisfaction/dissatisfaction in Figure 2. The number of rec-
ommended items is fixed 10 and the group sizes varies be-
tween 3, 5, and 10 members. As we can see in Figure 2, in
the similar groups, the group satisfaction remains the same
even though the number of people in each group is increas-
ing. In addition, in most of cases our algorithm has higher
group satisfaction in both average and least misery meth-
ods in compare of CF method, which does not take into
account sparsity. Additionally, with increasing the group
sizes the sparsity value is increasing, but our algorithm per-
forms fairly constant. Moreover, the result shows that in the
dissimilar and random groups we have lower dissatisfaction.

3.4.2 Varying Top-k
We examined the effect of different recommendation items

(Top-k= 5,10,15, and 20) on group satisfaction/dissatisfaction
in Figure 3. The group size is fixed 10. The result shows
that with increasing the number of items, the group satis-
faction is decreasing in all the groups but it decreases more
in the similar and dissimilar groups than random groups. In
general, our method has a higher group satisfaction in com-
pare of CF method. Also, the result shows that, we have less
dissatisfaction when we applied Average as an aggregation
method and we have less dissatisfaction in our method.

3.4.3 Varying Group Cohesiveness
We examined the effect of different group cohesiveness on

group satisfaction/dissatisfaction in Figure 4. Group co-
hesiveness varies between similar group (similarity between
members>0.5), dissimilar (similarity between members<0.5)
and random members. The number of recommended item
is fixed 10. Our observation showed that for small groups,
group satisfaction is very close to each other in different
techniques, but in the random groups we can see noticeably
change in the group satisfaction between CF and our pro-
posed method that takes into account sparsity. In addition,
the result shows that in the dissimilar and random group
our method has a lower dissatisfaction.

4. RELATED WORK
Research on recommendations is extensive. Typically, rec-

ommendation approaches are distinguished between: content-
based, collaborative filtering, and hybrid [1]. Recently, there
are also approaches focusing on group recommendations.
Group recommendation aims to identify items that are suit-
able for the whole group instead of individual group mem-
bers. Group recommendation has been designed for various
domains such as news pages [18], tourism [9], music [6], and

TV programs [27]. Group is defined as two or more individu-
als who are connected to one another. A group can range in
size from two members to thousands of members. A group
may be formed at any time by a random number of people
with different interests, a number of persons who explicitly
choose to be part of a group, or by computing similarities
between users with respect to some similarity functions and
then cluster similar users together [15, 2]. There are two
dominant strategies for groups: (1) aggregation of individ-
ual preferences into a single recommendation list or (2) ag-
gregation of individual recommendation lists to the group
recommendation list [2, 3]. In other words, the first one cre-
ates a pseudo user for a group based on its group members
and then makes recommendations based on the pseudo user,
while the second strategy computes a recommendation list
for each single user in the group and then combines the re-
sults into the group recommendation list.
However, in the both approaches we may faced the sparsity
problem. Sparsity is one of the major problems in memory-
based CF approaches [22]. In sparseness conditions most
cells of user-item matrix are not rated. The reason is that
users may not willing to provide their opinions and prefer-
ences and they do this only when it is necessary [7]. In these
type of matrices, the accuracy of calculated predictions by
applying memory-based CF approaches is low, since there
are not enough information about user ratings [12]. Lately,
Ntoutsi applied user-based CF approach in order to predict
unknown ratings [16]. For this, they partitioned users in
to clusters. Then for predicting a particular item’s rating
for a user, they considered just the ones in the cluster of
target user instead of all users in dataset. They calculated
the relevancy of an item to a user based on the relevancy of
that item to similar users in the target user’s cluster. More-
over, they involved a support score in prediction process to
be shown how many users in the cluster have rated that
item. Because of using memory-based approaches as basis,
this approach also cannot be used in sparse data situations.
Chen et al. proposed a method which predicts each item’s
group rating by considering its similar items that have been
rated by whole group or by most subgroups [4]. For this
aim, first they applied collaborative filtering technique and
find each user’s preferences on that item and then used ge-
netic algorithm according to subgroups’ ratings to achieve
the item’s overall score. However, our main focus in this re-
search is on sparsity problem in users’ preference lists, Chen
et al. worked on sparsity problem in groups’ ratings, for this
reason they could use collaborative filtering in their calcula-
tions.

5. CONCLUSION
We formalize the problem of sparsity in the group recom-

mendation and use our model for aggregating user rating for
the group. In this work, we proposed a new method that
overcomes the weakness of basic memory-based approaches
in sparsity. We evaluated our method in sparse cases and
compared it with prior methods. The results show that in
sparse matrices our proposed method has better group sat-
isfaction and lower group dissatisfaction than basic CF. In
addition, in conditions where user-based approach can be
run, our proposed method performs better. In the future,
we plan to peruse the accuracy of our proposed method in
other less been paid fields like TV programs, books and im-
ages, and we want to investigate our research in the big

Figure 2: Comparison of group satisfaction and group dissatisfaction with varying group size

Figure 3: Comparison of group satisfaction and group dissatisfaction with varying Top-k

Figure 4: Comparison of group satisfaction and group dissatisfaction with varying group cohesiveness

groups.

6. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[2] S. Amer-Yahia, S. B. Roy, A. Chawlat, G. Das, and
C. Yu. Group recommendation: semantics and
efficiency. Proc. VLDB Endow., pages 754–765, 2009.

[3] S. Berkovsky and J. Freyne. Group-based recipe
recommendations: Analysis of data aggregation
strategies. In Proceedings of the Fourth ACM
Conference on Recommender Systems, pages 111–118,
2010.

[4] Y.-L. Chen, L.-C. Cheng, and C.-N. Chuang. A group
recommendation system with consideration of
interactions among group members. Expert Syst.
Appl., 34(3):2082–2090, 2008.

[5] I. A. Christensen and S. N. Schiaffino. Entertainment
recommender systems for group of users. Expert Syst.
Appl., 38(11):14127–14135, 2011.

[6] A. Crossen, J. Budzik, and K. J. Hammond. Flytrap:
Intelligent group music recommendation. In
Proceedings of the 7th International Conference on
Intelligent User Interfaces, IUI ’02, pages 184–185,
New York, NY, USA, 2002. ACM.

[7] L. N. Dery. Iterative voting under uncertainty for
group recommender systems (research abstract). In
J. Hoffmann and B. Selman, editors, AAAI. AAAI
Press, 2012.

[8] A. Eckhardt. Similarity of users’ (content-based)
preference models for collaborative filtering in few
ratings scenario. Expert Syst. Appl.,
39(14):11511–11516, Oct. 2012.

[9] I. Garcia, L. Sebastia, and E. Onaindia. On the design
of individual and group recommender systems for
tourism. Expert Syst. Appl., 38(6):7683–7692, June
2011.

[10] J. Han, M. Kamber, and J. Pei. Data Mining:
Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edition,
2011.

[11] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In Proceedings
of the 2008 Eighth IEEE International Conference on
Data Mining, ICDM ’08, pages 263–272, Washington,
DC, USA, 2008. IEEE.

[12] Z. Huang, H. Chen, and D. D. Zeng. Applying
associative retrieval techniques to alleviate the
sparsity problem in collaborative filtering. ACM
Trans. Inf. Syst., 22(1):116–142, 2004.

[13] J. K. Kim, H. K. Kim, H. Y. Oh, and Y. U. Ryu. A
group recommendation system for online communities.
Int. J. Inf. Manag., 30(3):212–219, June 2010.

[14] B. McFee, T. Bertin-Mahieux, D. P. Ellis, and G. R.
Lanckriet. The million song dataset challenge. In
Proceedings of the 21st International Conference
Companion on World Wide Web, WWW ’12
Companion, pages 909–916. ACM, 2012.

[15] E. Ntoutsi, K. Stefanidis, K. Nørv̊ag, and H.-P.
Kriegel. Fast group recommendations by applying user
clustering. In Proceedings of the 31st International
Conference on Conceptual Modeling, pages 126–140.
Springer-Verlag, 2012.

[16] E. Ntoutsi, K. Stefanidis, K. Nørv̊ag, and H.-P.
Kriegel. Fast group recommendations by applying user
clustering. In ER, pages 126–140, 2012.

[17] M. Papagelis, D. Plexousakis, and T. Kutsuras.
Alleviating the sparsity problem of collaborative
filtering using trust inferences. In Proceedings of the
Third International Conference on Trust Management,
iTrust’05, pages 224–239, Berlin, Heidelberg, 2005.
Springer-Verlag.

[18] S. Pizzutilo, B. De Carolis, G. Cozzolongo, and
F. Ambruoso. Group modeling in a public space:
Methods, techniques, experiences. In Proceedings of
the 5th WSEAS International Conference on Applied
Informatics and Communications, AIC’05, pages
175–180, Stevens Point, Wisconsin, USA, 2005. World
Scientific and Engineering Academy and Society
(WSEAS).

[19] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Application of dimensionality reduction in
recommender systems: A case study. In WebKDD
Workshop at the ACM SIGKKD, 2000.

[20] A. J. Smola and B. Schölkopf. A tutorial on support
vector regression. Statistics and Computing,
14(3):199–222, Aug. 2004.

[21] X. Su, T. M. Khoshgoftaar, X. Zhu, and R. Greiner.
Imputation-boosted collaborative filtering using
machine learning classifiers. In Proceedings of the 2008
ACM Symposium on Applied Computing, SAC ’08,
pages 949–950, New York, NY, USA, 2008. ACM.

[22] X. Su, T. M. Khoshgoftaar, X. Zhu, and R. Greiner.
Imputation-boosted collaborative filtering using
machine learning classifiers. In SAC, pages 949–950,
2008.

[23] B. Ustun, W. Melssen, and L. Buydens. Facilitating
the application of support vector regression by using a
universal pearson vii function based kernel. 2006.

[24] J. Wang, A. P. de Vries, and M. J. T. Reinders.
Unifying user-based and item-based collaborative
filtering approaches by similarity fusion. In E. N.
Efthimiadis, S. T. Dumais, D. Hawking, and
K. Järvelin, editors, SIGIR. ACM, 2006.

[25] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu,
and Z. Chen. Scalable collaborative filtering using
cluster-based smoothing. In R. A. Baeza-Yates,
N. Ziviani, G. Marchionini, A. Moffat, and J. Tait,
editors, SIGIR, pages 114–121. ACM, 2005.

[26] H. Yu and S. Kim. Svm tutorial — classification,
regression and ranking. In G. Rozenberg, T. Bäck, and
J. Kok, editors, Handbook of Natural Computing,
pages 479–506. Springer Berlin Heidelberg, 2012.

[27] Z. Yu, X. Zhou, Y. Hao, and J. Gu. Tv program
recommendation for multiple viewers based on user
profile merging. User Model. User-Adapt. Interact.,
16(1):63–82, 2006.

