
A User-Study on Context-aware Group Recommendation
for Concerts

Simen Fivelstad Smaaberg, Nafiseh Shabib, John Krogstie
Norwegian University of Science and Technology

Trondheim, Norway
smaaberg@stud.ntnu.no, {shabib, krogstie}@idi.ntnu.no

ABSTRACT
In this paper, we present a prototype of a group recom-
mendation system for concerts. The prototype is context
sensitive taking the user’s location and time into account
when giving recommendations. The prototype implements
three algorithms to recommend concerts by taking advan-
tage of what users have listened to before: a collaborative
filtering algorithm (K-Nearest Neighbor), a Matrix Factor-
ization algorithm, and a Hybrid approach combining these
two. The usability of the prototype was evaluated using
the System Usability Scale and a user centered evaluation
was performed to evaluate the quality of recommendations.
The results from the usability evaluation shows that users
generally were satisfied with the usability of the prototype.
The results from the Quality Evaluation shows that the K-
Nearest Neighbor and Hybrid approach produces satisfac-
tory results whereas the Matrix Factorization implementa-
tion was experienced to be a bit poorer. The users testing
the prototype were generally satisfied with the quality of
recommendations.

Keywords
collaborative filtering, group recommendation, context-aware

1. INTRODUCTION
Recommendation technology is becoming an increasingly

important part of large systems such as Amazon.com and
eBay.com, and also in the music industry for example Spo-
tify, iTunes and Last.fm recommendations are used in to an
increasing degree. A context-aware group recommendation
system is a recommendation system that recommends items
for groups of people instead of for a single person in the given
context [14]. The group and context part adds additional
challenges compared to a normal recommendation system
for individual users [14]. A group of people is more dynamic
than a single person. You have to consider how the group is
formed, how unified recommendations for the whole group
can be provided, and the dynamics within the group [6] [11].
Context in addition has many traits, but can be seen as ex-
ternal constraints that affects the recommendation process.
This makes the algorithms more complicated. The purpose
of this paper is to present a context-aware group recommen-
dation system for concerts that takes the location and time
of a user into account when making recommendations. This
is done to show that traditional methods for Music Recom-
mendation Systems can also be applied when concerts are
recommended and extra context-variables have to be con-

sidered. Even though group recommendation systems have
been explored, they are not as thoroughly investigated as
recommendation systems for individuals. The same can be
said for recommendation systems for concerts, and context-
aware group recommendation systems, where limited exist-
ing research has been found, in particular on the perceived
usability and quality of such solutions.
In the next section, we present the main approach, data
model and algorithms. In Section 3, the experiments and
evaluations is presented. Related work is described in Sec-
tion 4, before we conclude in Section 5, pointing to future
work.

2. DATA MODEL AND RECOMMENDATION
ALGORITHM

Illustrating the problem of context-based group recom-
mendation, we take the following scenario as an outset:

A group of friends is traveling to a big city to stay there for
a week. Here they wants to attend a concert. Their tastes
in music are quite different, so choosing what concerts to at-
tend is a challenge. Moreover, they may not be familiar with
all the bands playing and would like to have an application
that give them recommendations concerning which concerts
to attend based on the type of music they have listened to
before and their personal musical preferences.

We consider the following requirements for designing context-
aware group recommendation for concerts:

• Recommendations need to be based on the user’s lis-
tening preferences

• The system should be location-aware (concerts close
to a user are preferred)

• The system should be time-aware (not recommend con-
certs that already have taken place or concerts too far
ahead in time)

• Context relaxation should be supported (recommen-
dations for more widespread locations or time-period
can be attempted if not enough concerts are found for
the given location or time)

2.1 Data model
The main concepts used to support these requirements

are depicted in the data-model in Figure. 1. Users have
previously listened to music by existing artists. The artists



are in addition tagged (with musical categories), and one
have information about the tags/interests of users. Based on
listening and tagging history, user-similarity is calculated.
Artist play concerts. The concerts take place on venues
at a certain time and space (geographically located) in a
particular city.

Figure 1: Conceptual Data Model

2.2 Context and Context relaxation
Context captures information that is not part of the database,

such as the user location or the current time. A user would
probably want to get recommendations for concerts in loca-
tions close to where he is located, and not get recommen-
dations for concerts too far ahead in time (unless planning
ahead for a later travel of course), or for concerts that al-
ready have taken place. Therefore the definition of these
context parameters should be a central part of any concert
recommendation system (CRS). In particular, a context pa-
rameter can be relaxed upwards by replacing its value by a
more general one, downwards by replacing its value by a set
of more specific ones or sideways by replacing its value by
sibling values in the a context-hierarchy [13], which in our
case would be an adjecent later day or a neighboring city. To
enable for relaxation of the location parameter, the 100 con-
certs closest to the location specified is also fetched. This is
done by utilizing the Haversine formula1. This formula can
be used to estimate the shortest distance between two points
on the earth surface[3]. In addition, concerts within 5 days
of the date range specified is fetched to support relaxing of
the date range parameter.

2.3 Listen Count Normalization
We have retrieved listening history from the Last.fm music

discovery service. The algorithms in our work are based on
explicit feedback from users, subsequently there is a need
to normalize the listening counts to a predefined scale so
that the algorithms can work optimally on Last.fm dataset.
Similarly to the approach taken by [4], for each user, U ,
its listening counts for each artist, A, is normalized using
the Cumulative Distribution Function (CDF) of the artist
listenings for U . The artists with a listening count falling
within the first 10% of this distribution is assigned a rating of

1http://en.wikipedia.org/wiki/Haversine formula

10; the artists falling within the first 20% of the distribution
is assigned a rating of 9; and so on until the artists within
90 to 100% of the distribution is assigned a rating of 1.

2.4 Neighborhood Model
The K-Nearest Neighbor (KNN) algorithm was one of the

first approaches used in user-based recommendation [5]. In
our work, the KNN algorithm is split into two phases:

1. Filter dataset

2. Recommend concerts

2.4.1 Filter dataset
In a KNN approach, the K-Nearest Neighbors of u are

used as a basis for recommendation. For simplicity reasons
we state that a user that have not listened to any of the
artists in A′ cannot be considered by the algorithm. This
can be done because a user that has not listened to any of
the artists in A′, could only contribute with a listening count
of 0 to all of them, and therefore the user might be left out.

Since the set of artists that are considered in the algorithm
has been reduced to the set of artists A′ playing at one of
the concerts in C′, implicitly the set of users considered for
the algorithm can be reduced to the set of users that have
listened to one or more of the artists in A′.

U ′ =
{
u′ : ∀u′ ∈ U∃a ∈ A′listenedTo(u′, a)

}
(1)

2.4.2 Recommend concerts
In a KNN algorithm, the K most similar users to u are

found, and their ratings are used as a basis for recommenda-
tion. To find these similar users, we applied cosine similarity
based on listening count of two users for each artist. So, the
user vector wi for a user ui ∈ U is defined as the vector of
the users listening counts to each of the artists in A.

wi = {listenCount(i, a) : a ∈ A} (2)

In a normal K-Nearest Neighbor algorithm the K users
with the highest similarity would now be identified and used
as a basis for recommendation. For the purpose of a CRS,
this is not enough. Here, a rating for each of the concerts,
ci, in C′ have to be predicted. Therefore, a 3 step process
is undertaken for each of the concerts:

1. Find the K users, U ′′, with the highest similarity to
u from the subset of U ′ that have listened to one or
more of the artists performing at that concert.

2. Calculate the predicted rating for each of the artists a
playing at the concert. TotalSimilarity is defined as
the sum of similarities to u from each of the users in
U ′′. Each of the users ui in U ′′ will contribute to the
predicted rating with a percentage of sim(ui,u)

totalSimilarity
.

The actual contribution is influenced by the rating
given to a by ui, so this is multiplied with rating(ui, a).
The predicted rating for an artist i will then be:

artistRatingi =

n∑
j=1

sim(uj , u)× listenCount(uj , ai)

totalSimilarity

(3)

3. The overall predicted rating for the concert ci as a
whole for user u is given by the average of the predicted



ratings to each of the m artists performing at ci.

KNNRatinguci =

m∑
k=1

artistRatingk

m
(4)

2.5 Latent Factor Model
Similarly to [7], the n×m user-artist matrix M is reduced

into a set of user vectors, V , where Vi ∈ Rf and artist vec-
tors, B, where Bi ∈ Rf . f is the number of latent factors
to extract (dimensionality of the latent factor space). In
this work, the user-artist matrix consists of the normalized
listen counts for all of the users in U and the artists in A.
To approximate a user u’s rating for an artist a, r̂ua, the
dot product between u’s and a’s latent factor vectors VuBa

is performed. As [7] says: this dot product ”captures the
interaction between user u and item i - the users’ s overall
interest in the item’s characteristics”.

r̂ua = BT
a Vu (5)

We will refer to this model as PureSV D. It uses f = 64
features which are optimized by running over 120 iterations.
The implementation is based on Timely Developments2 im-
plementation of the algorithm.

The overall predicted rating for the concert ci as a whole
for user u is given by the average of the predicted ratings to
each of the m artists performing at ci.

mfRatinguci =

m∑
a=1

r̂ua

m
(6)

2.6 Hybrid Model
The predictions given by the algorithms in the previous

two sections are in this phase aggregated to produce the
final top N concerts to return to the user. For each of the
concerts, ci, in C the final rating for the concert for u, ruci ∈
Ru is given by:

r̂uic =
mfRatinguci + knnRatinguci

2
(7)

The N concerts with the highest rating ruci in R are se-
lected and returned to the user.

2.7 Aggregation strategy
In this work, an average aggregation strategy (which com-

putes the group preference for an item as the average of
group members’ preferences for that item) is used to ag-
gregate individual ratings into a group rating for a concert.
Since, in a music recommendation system we have to utilize
implicit feedback, there is no such thing as a negative pref-
erence. For example, a listen count of 0 does not necessarily
mean that a user does not like the artist, just that the user
has not listened to the artist before. The user might like the
artist, but he has not discovered it, or he might dislike it.
Therefore, it is impossible to know for certain how to inter-
pret a listen count of 0. Similarly, a low listening count may
not mean that a user does not like the artist, he might just
have discovered the artist or just joined the system. Again,
it is impossible to know. Thus, we can safely assume that
Least Misery ( which computes the group preference for an

2http://www.timelydevelopment.com/demos/NetflixPrize

item as the minimum among all group members’ preferences
for that item) in an aggregation method would not be ap-
plicable thus we used the average strategy.

3. EXPERIMENTS
We evaluate our group recommendation system from two

major angles. First, from the usability perspective (Sec-
tion 3.1), and second quality perspective (Section 3.2).
We implemented our prototype system using Java and MySQL
for the back end. The front end was developed in JavaScript
and HTML5, and is based on the Durandal.js3 Model View
Viewmodel framework.
Dataset description: We use the Last.fm dataset for eval-
uation purposes. Last.fm has become a relevant online ser-
vice in music based social networking. In our particular
CRS the data was fetched using Last.fm’s publicly available
API4.The dataset as seen in Table 1 consists of 2, 891 con-
certs in Vancouver, New York, London, Oslo, and surround-
ing areas, between 18. February 2014 and 6. June 2014. The
dataset was built by first fetching concerts within a 100km
radius from the specified cities. Then, information about
the artists performing at those concerts were fetched. Users
that have listened to the artists found are then fetched, be-
fore the 30 most listened to artists for each user are fetched
and saved. In addition to these data, information about the
venue that each concert is held at and the most used tags for
each artist is stored. When a new user was created where
no existing data was present in Last.fm, he would need to
rate at least 5 artist that are registered in Last.fm. In the
quality experiments below, we have looked upon differences
when providing 5 or 10 ratings.

Property Count

Users 25720
Artists 80877
Concerts 2891
Listening counts 769370
Tags 159348
Tags for artists 1358715
Artist concert participation 6845
User similarities 17025096
Venues 596
User features 17025096
Artist features 5085312

Table 1: Dataset properties

3.1 Usability Experiment
In this work, to evaluate the usability, we recruited 15 par-

ticipants to use the system and answer three questionnaires,
the System Usability Scale (SUS), an Application Specific
survey (AS) and a questionnaire to gather Background In-
formation (BI). The result view of the system can be seen
in Figure 2 giving an indication on the look and feel of the
system.

The System Usability Scale is a ”reliable, low-cost usabil-
ity scale that can be used for global assessments of systems
usability” [2]. It gives a global view of subjective assess-
ments that indicates how users agree or disagree with the
3http://durandaljs.com/
4http://www.last.fm/api



Figure 2: Result view of the prototype

statement. Nielsen suggests that 5 users are enough to find
the majority of usability problems of a system, those 5 par-
ticipants could reveal about 80% of all usability problems
[9]. In general, one should run usability tests with as many
participants that schedules, budgets, and availability allow.
On this basis we are confident that with our 15 users, we
have covered the main usability issues of the application.

3.1.1 Results
The results from the SUS survey yielded a SUS score of

79.83. [1] proposes an adjective rating scale to help deter-
mine what SUS scores actually mean. According to these
adjective ratings, a SUS score of 79.83 would fall into some-
where between Good and Excellent. There is no absolute
score when it comes to usability evaluations, but a score of
79.83 is a good indication on that the users found the us-
ability of the prototype satisfactory. The results from the
Application Specific survey (AS) showed that 66% of the
participants believed that the would use this application in
future. 87% of the participants answered either OK or Sat-
isfied when asked how satisfied they were with the quality
of recommendation from these music recommendation ser-
vices, although the real quality evaluation in a group setting
was postpone to the quality evaluation reported below. Con-
crete improvement proposals gathered were used to develop
the second version of the system where more detailed quality
experiment was undertaken

3.2 Quality Experiment
To evaluate the quality of recommendations from the im-

proved system, two groups consisting of two and three peo-
ple respectively were asked to find recommendations both
individually and in a group setting, for different dates and
places, and to rate how satisfied they were with the given rec-
ommendations. For this purpose, we showed three different
lists where each list was the result of using the three differ-
ent algorithms (k-NN algorithm, MF algorithm, the hybrid
approach). Each of the lists are given ”random” case ids and
placed in a random order. The participants were asked to
find recommendations individually, in a group of two people,
and in a group of three people, for two different timespans
(18/02/2014 − 03/03/2014 and 05/03/2014 − 09/07/2014),
and two different cities (London and New York). When

Algorithm Number of
selections

Percentage

Matrix Factorization 7 17.5%
k-Nearest Neighbor 16 40.0%
Hybrid approach 17 42.5%

Table 2: Preferred algorithm selection by users

the second group were asked to find recommendations for a
group of 3 people, a user from the first group were added
to the recommendation process. For each step, they rated
each of the algorithms on how satisfied they were with the
recommendations given on a scale from 1-5, where 1 is Very
dissatisfied and 5 is Very satisfied.

3.2.1 Results
As seen in Table 2, the MF algorithm were overall picked

as giving the most appealing results 7 out of 40 times, the
kNN algorithm 16 out of 40 times, and the hybrid approach
in 17 out of 40 cases. Overall, the kNN algorithm received
an average rating of 3.72 in the 40 responses, the Hybrid
approach 3.62, and the MF algorithm an average of 2.87 as
seen in Table 3. Table 4 shows statistics when recommen-

Algorithm Average
rating

Variance Standard
Devia-
tion

Matrix Factoriza-
tion

3.13 0.73 0.85

k-Nearest Neighbor 2.28 0.92 0.96
Hybrid approach 2.38 0.75 0.87

Table 3: Overall Average statistics per algorithm

dations were given for groups consisting of 1, 2 and 3 users
respectively. From these results there is a clear trend that
the kNN and the hybrid approach tend to produce more sat-
isfying recommendations than the MF approach as the av-
erage ratings given to the two are generally lower, and they
were picked as the favorite algorithms significantly more.
An overall average rating of 3.72 and 3.62 out of 5 from the
kNN and Hybrid approaches respectively, indicates that the
participants were reasonably satisfied with the results given.
In general, recommendations given for users created based
on 10 of the user’s favorite artists, produced more satisfying
results than when 5 artists were used in the user creation
process. Moreover, by increasing the number of users in a
group from two to three users user satisfaction is decreasing.

3.3 Insight about Serendipity in Concert Rec-
ommendation Systems

Serendipity is concerned with the novelty of recommen-
dations and in how far recommendations may positively
surprise the user [12] and it has received increased atten-
tion that recommendation system should provide novel and
serendipitous recommendations. The emphasis should be
put on the lesser known artists, the long tail of the listen
count curve. However during the development and testing
of this prototype it was observed that a full focus on this
may not be the best approach for a CRS. Our findings show
that people tend to prefer to go to concerts with artists they



Average
rat-
ing

Variance Standard
Devia-
tion

Algorithm 1 2 3 1 2 3 1 2 3

Matrix
Factor-
ization

2.7 3.3 3.1 0.46 1.12 0.77 0.67 1.06 0.88

k-Nearest
Neighbor

4.2 3.7 3.5 0.62 1.12 1.17 0.78 1.06 1.08

Hybrid
approach

3.7 3.6 3.4 0.68 0.93 0.93 0.82 0.97 0.97

Table 4: Statistics when recommendations were
given for groups consisting of 1, 2 and 3 users re-
spectively

kNN MF

Artist # of
listen-
ers

Artist # of
listen-
ers

Avicii 548 Arctic Monkeys 2388
Katy Perry 676 Lorde 554
Arctic Monkeys 2388 Beyoncé 585
Disclosure 535 Metronomy 418
Kanye West 1578 Cut Copy 378
Nine Inch Nails 1270 Alkaline Trio 383
The National 1687 Panic! at the

Disco
Drake 712 Slowdive 308
Interpol 784 Katy Perry 676
Arcade Fire 2165 Pretty Lights 234

Average 1234 Average 632

Table 5: Number of listeners for the top artist play-
ing at the top 10 concerts between 18/02/2014 and
17/07/2014 in London for user simensma

already familiar with and the concert scene might not the
place were people try to be adventurous and discover new
music, it is easier, more convenient, and cheaper to discover
and becoming familiar with new artists first, before decid-
ing to attend a concert with them. This might be one of the
causes why the kNN and Hybrid approaches received better
ratings from the test users when it came to quality of recom-
mendations, as collaborative filtering (CF) approaches tend
to have a popularity bias causing the more popular artists
to be recommended. An example of this can be seen in Ta-
ble 5 where the top artist and how many users have listened
to them for the 10 top concerts recommended for the user
simensma in London between 18/02/2014 and 17/07/2014
can be seen. The 5 most frequently used tags to describe
simensma’s top artists are electronic,house,dance,indie, and
electro house. On average, 1234 users had listened to each
of the artists recommended by the kNN algorithm whereas
632 users on average had listened to each of the artists rec-
ommended by the MF algorithm.

3.4 Threat to validity
The quality evaluation was performed with only two groups

of 2 and 3 people. This low number of participants means
that each participant had a very large impact on the results.
The statistics produced when a user was created with 5 and
10 favorite artists, were based on n = 10 samplings each;
the same was the case with the statistics produced for the
results with varying group sizes. By looking at the top tags
used for the artists each of the users registered, it is ap-
parent that the users’ taste in music are quite different as
they share few top tags amongst them. However, because
of the low number of users and sample sizes, even with this
diversity, it cannot be said that these five users are repre-
sentative for the whole potential user base, and therefore,
further testing should be performed to measure the Qual-
ity of Recommendations created by the prototype. Even
though more testing is needed, there still is a strong indica-
tion that the KNN and Hybrid approaches perform better
than the MF approach as suggested with a sample size of n
= 40. Similarly, it can be said that the five users testing the
prototype were reasonably happy with the resultss.

4. RELATED WORK
Group Recommendation Systems try to provide recom-

mendations to a group of people instead of a single indi-
vidual. There are two main approaches of accomplishing
this: calculating recommendations individually for each of
the members of the group, and then aggregating the in-
dividual results, or merging the preferences of each of the
members of the group, and then providing one set of recom-
mendations based on the merged profile [10][8]. In either of
the approaches, there are many ways this merging can be
accomplished [8]. This includes least misery, average, and
average without misery. The choice of aggregation strategies
should be decided based on the problem you are trying to
solve, as there is no universal best strategy that works in all
cases. As argued above, we choose an average aggregation
strategy. Recommendation Systems for Music (MRS) have
increasingly become an important part of music services.
Services such as iTunes, Spotify, last.fm and Pandora all
incorporate music recommendations centrally in their user
interface. With an ever growing collection of music, these
services compete in finding new and innovative ways on how
users can discover new music. Celma [4] identifies three use
cases typical for a MRS: neighbor finding, playlist genera-
tion and artist recommendation. Neighbor finding consists
of finding users with a similar taste in music as you. Playlist
generation usually means finding songs to recommend for a
user, but instead of just returning the top N songs, songs
that go well together are preferred. Artist recommendation
usually consists of finding artists based on a user’s profile,
be it the artist with the highest predicted rating or novel
artists. Different services apply a variety of techniques when
it comes to the recommendation process [15]. Some of them
are acoustic analysis, text analysis, editorial review, and the
use of activity data. This diversity indicates that people
have different ways to think about music. Enthusiasts and
savants might prefer to try out new and little known artists,
whereas casual users might prefer well known artists and
the latest ‘big hits’. With such a diverse set of expectations,
creating a music recommendation system that works well for
all of them is challenging. In general these techniques are
provided for creating recommendations for individual users,
little work being done to support groups of users.



5. CONCLUSION
In this paper, a prototype of a context-aware group rec-

ommendation system for concerts was presented. The proto-
type implemented three different algorithms, a Matrix Fac-
torization algorithm, a k-Nearest Neighbor algorithm and a
Hybrid approach of the two. The usability of the prototype
was evaluated using the System Usability Scale (SUS) and
an Application Specific Survey (AS). 15 people were asked to
undertake these surveys. In total, the prototype got a SUS
score of 79.83 which is a good indication on that the users
found the usability of the prototype satisfactory. However,
the comments from the free text answers shows that there
where room for improvements. The AS mainly focused on
the usability of the context relaxation part of the prototype,
to find out if it was easy to find concerts close to the pa-
rameters specified when it comes to time and location. The
results from the AS showed that the users in general were
satisfied with how this process worked. The goal for this
prototype was to recommend concerts to a user within the
location and timespan given that the user could be inter-
ested in attending. To evaluate how well this was achieved,
a Recommendation Quality Evaluation(QE) was undertaken
with two groups consisting of 2 and 3 people respectively.
Through a range of scenarios, the groups were told to find
recommendations for the dates and location asked about,
and for each algorithm, rate how satisfied they were with the
results. The results from the QE showed that the users gen-
erally were satisfied with the KNN implementation and the
Hybrid approach, whereas they were less satisfied with the
MF approach. The QE was also undertaken to see how dif-
ferent group sizes affected the quality of recommendations.
The results showed that the users became less satisfied when
the number of members in the group increased from one to
two and three respectively, which is to be expected as differ-
ent preferences has to be taken into account in larger groups.
However, the QE was only performed with five participants,
so there is a need for an evaluation with more participants
to able to draw any further conclusions. Another way to go
from here is to have a look at the context-aware part of the
application. Is there any benefit in making relaxation of con-
text an implicit part of the algorithm instead of something
performed by the user explicitly? How would other context
variables, such as listen recency affect the satisfactions when
recommending concerts?

6. REFERENCES
[1] A. Bangor, P. Kortum, and J. Miller. Determining

what individual sus scores mean: Adding an adjective
rating scale. Journal of usability studies, 4(3):114–123,
2009.

[2] J. Brooke. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189:194, 1996.

[3] C. A. Cassa, K. Iancu, K. L. Olson, and K. D. Mandl.
A software tool for creating simulated outbreaks to
benchmark surveillance systems. BMC Medical
Informatics and Decision Making, 5(1):22, 2005.

[4] O. Celma. Music recommendation and discovery: The
long tail, long fail, and long play in the digital music
space. Springer, 2010.

[5] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, Jan. 2004.

[6] D. R. Forsyth. Group dynamics. Brooks/Cole, Pacific
Grove, Calif., 2. edition, 1990. Donelson R. Forsyth.
graph. Darst ; 24 cm. Fräüher u.d.T.: An introduction
to group dynamics.

[7] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[8] J. Masthoff. Group modeling: Selecting a sequence of
television items to suit a group of viewers. User
Model. User-Adapt. Interact., 14(1):37–85, 2004.

[9] J. Nielsen. Usability engineering. Elsevier, 1994.

[10] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and
C. Yu. Space efficiency in group recommendation.
VLDB J., 19(6):877–900, 2010.

[11] N. Shabib, J. A. Gulla, and J. Krogstie. On the
intrinsic challenges of group recommendation. In
RSWeb@RecSys, 2013.

[12] G. Shani and A. Gunawardana. Evaluating
recommendation systems. In Recommender Systems
Handbook, pages 257–297. Springer, 2011.

[13] K. Stefanidis, E. Pitoura, and P. Vassiliadis. On
relaxing contextual preference queries. In MDM, pages
289–293, 2007.

[14] K. Stefanidis, N. Shabib, K. Nørv̊ag, and J. Krogstie.
Contextual recommendations for groups. In ER
Workshops, pages 89–97, 2012.

[15] B. Whitman. How music recommendation works and
doesn’t work.
http://notes.variogr.am/post/37675885491/

how-music-recommendation-works-and-doesnt-work,
2013. Accessed: 2013-04-27.


