
R2E: Rule-based Event Extractor

Jakub Dutkiewicz, Maciej Nowak, Czeslaw Jedrzejek

Institute of Control and Information Engineering,

Poznan University of Technology,

M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland

{firstname.lastname}@put.poznan.pl

Abstract. In this paper we present a rule-based method of event extraction from

the natural language. We use the Stanford dependency parser in order to build a

relation graph of elements from input text. This structure along with serialized

extraction frames is converted into a set of facts. We describe a process of crea-

tion of application of rules, which aims to match elements from the text with

corresponding slots in the extraction frames. A possible match is derived by the

comparison of verbal phrases from the text with lexicalizations of anchors (con-

stituting the most important part of each frame) stored in an ontology. The rest

of the extraction frame is filled with other elements of the dependency graph,

with regard to their semantic type (determined by lexicalizations of allowed types

defined in frames and ontology) and their grammatical properties. We describe

conversions required to create a consistent knowledge base of text phrases, clas-

sification of semantic types and instantiated slots from the extraction frames. We

use the Drools engine in order to extract events from such a knowledge base.

Keywords: event extraction, natural language processing, frames

1 Introduction

Event extraction is the induction of n-ary relations from natural language texts.

Some event extraction systems focus on the text coverage – the more events extracted

the better. There exist ACE and ERE [1] annotation standards specified by Entities,

Relations and Events. Many different strategies for finding event word triggers and slot

filling have been applied. Slot filling has been a topic of the Knowledge Base Popula-

tion (KBP) 2013 task [4] within the Text Analysis Conference workshops that provide

the infrastructure for large-scale evaluation of Natural Language Processing technol-

ogy. All of the mentioned approaches accept events which are semantically nonsensi-

cal. The famous Chomsky’s problem of “the colorless green ideas which sleep furi-

ously” remains untouched.

Here, we present a specific event extraction methodology for the English lan-

guage which partially solves this problem. We use sets of acceptable semantic classes

for event arguments, which are stored within frames. A frame is defined as a pair (R,

S), where R is a semantic type of frame, and S is a set of its slots. Every slot in S is

mailto:%7bfirstname.lastname%7d@put.poznan.pl
http://en.wikipedia.org/wiki/Noam_Chomsky

defined as a pair (Ri, T), where Ri is the relation, and T is a list of allowed semantic

types for this slot. Frame languages are fundamental for annotation [1], event extraction

[2] and querying [3].

In this paper the semantic types of frames and slots are expressed as facts derived

from ontology. The method is an extension of the one dedicated to the Polish language

and presented in [5, 6]. Here, the algorithm [6] is transformed into a set of rules dedi-

cated to a stage of processing.

1.1 Note on the Definitions

To simplify notation, we use the number sign (#) to denote entities within a semantic

data model; the italic font style to denote predicates; the quotation marks to denote

literals; a language of literals is attached after “@” sign in an abbreviated form; e.g.

#Policeman is a semantic class but “Policeman”@en is the English literal. We use

round brackets to express statements, e.g. #hasLex(#Policeman, “Policeman”@en).

Throughout the paper we use the shorten version of Drools syntax by omitting names

of attributes in rules and facts statements. It is due to the space limitations.

2 The System Architecture and its Components

The extraction system consists of four major elements: a taxonomically structured

dictionary, a dependency parser, an extraction frames container and a reasoning module

equipped with extraction rules. The detailed architecture of the dictionary data is de-

scribed in section 2.1. We use the Stanford dependency parser [8], a transformation of

the parser output into facts is straightforward. An example of this transformation is

presented in section 2.2. A specific description of the extraction frames stored in the

extraction frame container is presented in section 2.3. A detailed explanation of extrac-

tion rules is described in section 2.4. The architecture of the system as implemented in

the R2E (Rule-based extraction tool) is illustrated in Fig. 1.

Fig. 1.The R2E tool architecture

2.1 Dictionary Data

Dictionary data are a set of statements used for an event extraction. An initial dic-

tionary is created with use of the T-box of the ontology. Class #Thing is the root of

dictionary. #Event, #IsA and #HasLex classes are required as those classes are technical

core of the dictionary. The dictionary uses two binary relations – the taxonomical sub-

sumption relation expressed by the #isA relation and the lexicalization relation ex-

pressed by the #hasLex relation. Both a subject and an object of the #isA relation are

classes. A subject of the #hasLex relation is a class, and an object is a literal with a

specified language. Together they compose the lexicalization of the class. There are

two special technical languages, which have the special meaning –the language @NER

and the language @RegExp. The language @NER is used in order to express named

entities. Literals in the @RegExp language indicate lexicalizations of classes. The lit-

erals in @NER and @RegExp languages are handled by dedicated subprograms.

Table 1 The set of predicates within the basic dictionary.

Subject Predicate Object

#Event #isA #Thing

#Thing #hasLex “([0-9]|[aA-zZ])*”@RegExp

#Event #hasLex “event”@en

#IsA #isA #Event

#IsA #hasLex “be”@en

#HasLex #hasLex “lexicalize”@en

mailto:

The initial dictionary contains a meta-language vocabulary. This vocabulary is suf-

ficient for extending the dictionary. To extract events, the dictionary needs to contain

event specific data, which consist of the definition of the event itself as well as a vo-

cabulary for the constraints of the event. Extension of the dictionary for the “Distribu-

tion” event is presented in Tab. 2.

Table 2 Extension of the #Distributing event for the basic dictionary.

Subject Predicate Object

#Distributing #isA #Event

#Distributing #hasLex “distribute”@en

#Distributing #hasLex “sell”@en

#Inanimate #isA #Thing

#Product #isA #Inanimate

#Product #hasLex “product”@en

#Organization #isA #Thing

Organization #hasLex “ORGANIZATION”@NER

The vocabulary in Tab. 1 and Tab. 2 is sufficient for extracting events of distributing

some goods as long as a subject of this event is recognized by the named entity recog-

nition subsystem correctly.

2.2 Transformation of the Stanford Dependency Output into Facts.

The Stanford dependency parser output is specified in [8]. Each dependency is de-

scribed as a binary relation, where the relation name is equal to type of dependency and

attributes of the relation are equal to textual values of tokens within the sentence. Lit-

erals which express attributes consist of two parts – the actual literal, which appeared

in the text; and an identifier which is equal to the position of this literal in the text.

There is an empty line in between sentences.

We transform a dependency output format into contextual facts. Each dependency is

transformed into a dependency predicate. The actual dependency type and its arguments

are stored as arguments of this predicate. A position of the arguments in the sentences

stored as a separate argument. On top of that, we store contextual information in the

arguments of this predicate. We use two types of contexts. The first one is the technical

processing context. The separate context of this type should be used for each message.

The second context is the sentence context. Dependencies obtained from one sentence

have the same context of this type. The template of the transformed dependency is

shown below:

dependency(type, argument1, position1, argument2, position2, processingContext,

sentenceContext)

This pattern lets us conveniently design extraction rules and control the activation of

certain rules. A transformation process is implemented in Java. Transformed depend-

encies of a sample message are presented in Tab. 3.

Table 3. A sample transformation of dependencies

2.3 Extraction Frames

Let us define extraction data model as a set of facts which is used as a link between

a predicative structure of the reasoning data and vocabulary used by the dependency

parser output language. The extraction data model consists of subsets called extraction

frames. These frames give a detailed specification of the event by defining thematic

roles. The specified roles represent topology of an event. These roles are described in a

form of slots, consisting of their names, names of the frame, dependency types, lists of

allowed semantic types and optional lists of prepositions. The names are only used to

distinguish slots from each other. The dependency type indicates one of the predicates

used in dependency parser to describe relations between parts of the sentence. The list

of allowed semantic types is defined in the corresponding event definition from the

dictionary described in section 2.1. A list of prepositions is used to differentiate possible

indirect objects. In the example given in Listing 1, we can choose a “weapon” slot by

adding “with” preposition.

An extraction frame may be composed of a varying number of slots. However, it

must contain the exactly one “anchor” slot. It is a dedicated type of the slot, because it

is the first and the necessary condition in the process of extracting events. Only after

the anchor slot is found, the rest of the slots are matched with the elements from the

dependency graph. In the vast majority of cases, a verbal phrase fulfills the role of an

anchor.

Listing 1. Slots within the #Killing frame

Input message Man kidnapped woman. Terrorist kidnapped prime minister.

Initial context processing-context(“ext”)

Output

Dependencies

nsubj(kidnapped-2, Man-1)

root(ROOT-0, kidnapped-2)

dobj(kidnapped-2, woman-3)

nsubj(kidnapped-2, Terrorist-1)

root(ROOT-0, kidnapped-2)

amod(minister-4, prime-3)

dobj(kidnapped-2, minister-4)

Transformed

dependencies

dependency(“nsubj”,”kidnapped”,”2”,”Man”,”1”,”ext”,”1”)

dependency(“root”,”ROOT”,”0”,”kidnapped”,”2”,”ext”,”1”)

dependency(“dobj”,”kidnapped”,”2”,”woman”,”3”,”ext”,”1”)

dependency(“nsubj”,”kidnapped”,”2”,”Terrorist”,”1”,”ext”,”2”)

dependency(“root”,”ROOT”,”0”,”kidnapped”,”2”,”ext”,”2”)

dependency(“amob”,”minister”,”4”,”prime”,”3”,”ext”,”2”)

dependency(“nsubj”,”kidnapped”,”2”,”minister”,”4”,”ext”,”2”)

slot("anchor", #Killing, root, #Killing)

slot("victim", #Killing, dobj, #Human)

slot("perpetrator", #Killing, nsubj, [#Human, #Organization])

slot("weapon", #Killing, pobj, [#Weapon, #PhisicalObject], “with”)

After the reasoning process, we receive filled instances of the slots. Instances of slots

are stored with slotInstance predicate, which possess the matched textual value and

additional attributes related to a phrase for which the slot instantiation was performed

on: id of a word and a context indicator (distinct for each analyzed sentence). The ex-

amples of filled slot instances are presented in section 4.

The last part of a system related to extraction frames is a set of lexicalizations. We

can divide this set into two kinds of statements: lexicalizations of anchors and lexical-

izations of dictionary entries. The first group consists of examples of anchors, specific

for a given extraction frame, and is connected to the aforementioned frame. The second

group is crucial in the slot matching process in case the NER module does not find

appropriate group for the analyzed phrase. Additionally, the system offers the use of

regular expressions when defining lexicalizations. Using @RegExp keyword in our

dictionary, we can express, that each uppercase phrase followed by the “.Inc” string

should be interpreted as an instance of #Organization class. These types of expressions

enhance the process of matching phrases from the dependency graph with allowed se-

mantic types of slots. The exemplary lexicalization statements are presented in Listing

2.

Listing 2. Lexicalizations for anchor of the #Killing frame and the #Weapon class

#hasLex(#Killing, "killed")

#hasLex(#Killing, "murdered")

#hasLex(#Weapon, "rifle")

#hasLex(#Weapon, "gun")

3 Extraction Rules

Let us define extraction rules as a set of rules, which convert the parsed sentences

into event specific data. The extraction rules use data provided by dependency parser,

extraction frames data and dictionary data. The extraction rules are specific for given

structures of parsing data. As a result the extraction rules determine how instances of

slots are asserted into the knowledge base. The template for a slot instance is shown

below.

slotInstance(EventClass, TypeOfSlot, textualValue, entryID, extrac-

tionContext, sentenceContext, rootID)

There are two main types of rules: the event recognition rules are designed to recog-

nize the appearance of the event in text; the slot matching rules are designed to supple-

ment recognized events with specific slots. The basic event recognition rule is presented

in Listing 3. The first condition in the illustrated rule accepts only roots of the sentence,

which are supposed to be verbs*. The second condition accepts every slot, which is an

anchor. The third part of the conditions is accepted only if the semantic type of the

event is lexicalized by the verb chosen in the first condition. The lLast condition –

extraction mode, is specified in section 3.1. This rule is activated only for slots with the

“anchor” literal as a type of slot.

Listing 3. Basic event recognition rule

if(

dependency("root","ROOT", "0", ?Lit, ?n, ?ExCtx, ?SCtx)

slot(?Name, ?SemanticType, "anchor", "ROOT", "")

hasLex(?SemanticType, ?Lit))

extraction-mode("basic")

then

insert(

slotInstance(?Name, "anchor", ?Lit, ?n, ?ExCtx, ?SCtx, ?n,

"basic"))

Listing 4 illustrates the basic slot matching rule. This rule is very similar to the Listing

3 rule with one exception – Rule 2 is activated only if the slotInstance of the root has

already been asserted. ID if the root is stored within the arguments of the output asser-

tion.

Listing 4. Basic slot matching rule.

if(

slotInstance(?eventName, "anchor", ?lit1, ?id, ?exCtx, ?sCtx,

?rootID)

dependency(?dep, ?lit1, ?id, ?lit2, ?id2, ?exCtx, ?sCtx)

slot(?slotName, ?eventName, ?dep, ?semClass, "")

hasLex(?semClass, ?lit2)

extraction-mode("basic")

)

then(

insert(

slotInstance(?eventName, ?slotName, ?lit2, ?id2, ?exCtx,

?sCtx, ?rootID, ?mode)))

Besides the rules in Listing 3 and Listing 4, there are extraction rules which handle

sophisticated sentences, passive voice or complex definitions of slots, such as:

 Sentences with more than one verb phrase.

o Verb phrases are connected with a conjunction

o Complex sentences

 Passive nominal subjects

 Passive auxiliary verbs

 Prepositional phrases as slots

Complexity of those rules is similar to the ones presented in Listing 3 and Listing 4. At

least one rule for each of mentioned grammatical properties is required to perform a

proper extraction within one extraction mode (a total of 7 rules). For specific sentence

structures, such as phrasal verbs or events with constraints on the slots, additional rules

must be provided. Currently we are using 22 rules to perform extraction within one

extraction mode. The modal auxiliary verb modifiers and negation are handled on a

different level of the process, which is described in section 3.1.

3.1 Extraction Modes

The extraction modes are specified with a special predicate called extraction-mode.

Every rule that is meant to be activated in a certain mode has this predicate included

within its conditions. List of available modes is specified below.

 The basic mode – This is the default mode. It provides the extractions as it is

specified in the previous section. In this mode instances of the slots are always

single words. Word modifiers are stored within the dependencies. This mode

is expressed as extraction-mode(“basic”).

 The Join mode – In this mode instances of the slots are filled with entire

phrases. The identifier of the phrases is created with the use of the identifiers

of words within the phrase. This mode is expressed as extraction-

mode(“join”).

 The Aggressive mode – In this mode, the semantic class of slots, except for

the root slot, is not specified as one of the rule conditions. In this mode, the

extractor generates greater number of less accurate extractions. This mode is

expressed as extraction-mode(“aggro”).

 The Dictionary mode – In this mode, the extractions of #IsA and #HasLex

events feed the dictionary data. As the extractions from complex sentences are

not always correct and the philosophical meaning of the copula verbs is am-

biguous, it is advised to use this mode with special caution. This mode is ex-

pressed as extraction-mode(“dict”).

 The Modality and negation mode – In this mode, the verbs modified by auxil-

iary modal verbs or modified by negation are not extracted. It allows us omit-

ting the supposed events or the explicitly negated events. This mode is ex-

pressed as extraction-mode(“modneg”).

Multiple modes are not allowed, a combination of modes is expressed within a single

statement. E.g. extraction-mode(“aggro-join”) is the correct mode – in this mode, the

slot instances are filled with entire phrases, and the dictionary is not checked for a non-

root slots. Rules for this mode are separate from the rules for “aggro” and “join” modes.

4 Examples

For the purpose of evaluation of our method, we decided to present the whole ex-

traction process using two exemplary sentences, containing event descriptions. In this

section we describe and present the conversion from Stanford output format (depend-

ency graph of elements in the sentences) into facts written according to Drools syntax

[7]. We enrich the knowledge base with statements derived from our dictionary and the

extraction frames serialized into Slots. As the final result of the reasoning process, we

present filled instances of Extraction Frames.

4.1 Sample Extraction in “basic” Mode

In this example, extractor was set to the extraction-mode(“basic”). Stanford depend-

ency parser is shown in the Listing 5; newly created facts are visible in the Listing 6.

The example input sentence is shown below.

Foreign terrorists killed minister of Bolivia with the sniper rifle.

Listing 5. The Stanford parser output

amod(terrorists-2, Foreign-1)

nsubj(killed-3, terrorists-2)

root(ROOT-0, killed-3)

dobj(killed-3, minister-4)

prep(minister-4, of-5)

pobj(of-5, Bolivia-6)

prep(killed-3, with-7)

det(rifle-10, the-8)

nn(rifle-10, sniper-9)

pobj(with-7, rifle-10)

Listing 6. The extracted facts.

slotInstance(#Killing, "anchor", "killed", "3", "ext", "1", "3", "basic")

slotInstance(#Killing, "perpetrator", " terrorists ", "2", "ext", "1",

"3", “basic”)

dependency("amod", "terrorists", "2", "Foreign", "1", "ext", "1")

slotInstance(#Killing, "victim", "minister", "4", "ext", "1", "3",

"basic")

dependency("prep", "minister", "4", "of", "5", "ext", "1")

dependency("pobj", "of", "5", "Bolivia", "6", "ext", "1")

slotInstance(#Killing, "weapon", "the sniper rifle", “8-10”, "ext", "1",

"3", "basic")

dependency("det", "rifle", "10", "the", "8", "ext", "1")

dependency("nn", "rifle", "10", "sniper", "9", "ext", "1")

4.2 Sample Extraction in “join” Mode

The extractor mode is set to extraction-mode(“join”) in this example. The Stanford

dependency parser output is shown in the Listing 7; these are newly created facts. The

newly created facts are visible in the Listing 6. The input sentence is shown below.

GoodsForYou Inc. sells and delivers chemical products for exclusive members.

Listing 7. The Stanford parser output

nn(inc.-2, GoodsForYou-1)

nsubj(sells-3,Inc.-2)

root(ROOT-0, sells-3)

cc(sells-3, and-4)

conj(sells-3, delivers-5)

nn(products-7, chemical-6)

dobj(sells-3, products-7)

prep(products-7, for-8)

amod(members-10, exclusive-9)

pobj(for-8, members-10)

Listing 8. The extracted facts.

slotInstance(#Distributing, "anchor", "delivers", "5", "ext-join", “1”,

“join”)

slotInstance(#Distributing, "supplier", "GoodsForYou Inc.", "1-2", "ext-

join", “1”, “join”)

slotInstance(#Distributing, "recipient", "exclusive members", "9-10",

"ext-join", "1", "join")

slotInstance(#Distributing, "object", "chemical products", "6-7", "ext-

join", "1", "join")

slotInstance(#Selling, "anchor", "sells", "3", "ext-join", "1", "join")

slotInstance(#Selling, "seller", "GoodsForYou Inc.", "1-2", "ext-join",

"1", "join")

slotInstance(#Selling, "buyer", "exclusive members", "9-10", "ext-join",

"1", "join")

slotInstance(#Selling, "object", "chemical products", "6-7", "ext-join",

"1", "join")

4.3 Quantitative evaluation

To test the method, we equipped the system with data sufficient for extraction of 16

separate events - #Injuring; #Stealing; #Punishing; #Accessing; #Killing; #Kidnap-

ping; #Purchasing; #Recommending; #Hiding; #Delivering; #Poisoning; #Searching;

#Attacking; #Breaking In; #Meeting; #Travelling, #Rescheduling. We have used tax-

onomies and vocabulary, which were applied in our previous work [5, 6]. We manually

annotated 100 MUC [13] messages (each consisting from 3 to 30 sentences) with the

mentioned events. To diminish the influence of low quality vocabulary stored within

the dictionary, we have used the aggressive mode extraction. Within the 100 messages

we marked 162 events. The system was capable of extracting 113 events correctly and

33 events incorrectly. However, within the 113 events only 55 had all the semantic slots

instances matched correctly. 16 events had one semantic slot instance error, 19 events

had two slot errors, and 23 events had more than 2 slot errors. Measures for the evalu-

ation are presented in Tab. 4.

Table 4 Evaluation measures for the quantitative evaluation for 16 events

 Precision Recall F-measure

Event recognition 77% 70% 73%

Event extraction (no errors) 38% 34% 35%

Event extraction (up to 1 error) 49% 44% 46%

Event extraction (up to 2 errors) 62% 56% 58%

The most significant factor that has influenced the extraction is the quality of vocab-

ulary stored within taxonomies. We are currently working on extending the dictionary

with external resources.

5 Conclusions

In this paper we presented a modified version of our event extraction system. There

are numerous advantages coming from the introduction of rule-base extraction over the

algorithmic extraction used in our previous work [5, 6]. First of all, this type of meth-

odology is much easier to configure. A modification of the existing rules and an addi-

tion of new extraction rules is far less complicated than remodeling of the algorithm.

Another advantage is the use of a knowledge base as the data storage. Because of that,

in the future releases of our system we plan to incorporate query answering as a form

of exploration of the knowledge base. On top of that we plan to develop a natural lan-

guage interface for the system configuration and provide more comprehensive vocab-

ulary and taxonomical data. The last positive aspect of rule-based approach is the ho-

mogeneity of data. In our solution parsed input text, dictionaries derived from the on-

tology, extraction frames and rules are all expressed in the same way (the Drools syntax

[7]), in order to enable the reasoning. Our work is similar to several other methods, in

particular these applied in Boxer [9], FRED [10] and Lemon [11]. We use the RDF

triple format for the specification of the dictionary; as it is done in FRED. However our

system does not accept events with nonsensical classes of attributes. Equipping our

knowledge base with Wordnet data would provide sufficient dictionary for the extrac-

tion. Incorporating lexical data from external sources is elaborately specified in Lemon.

Our tool has the most important features listed for extractor functionalities on page 4 in

[12], namely no 10. semantic role labeling, no 11. event detection and no 12. frame

detection.

The web-link to the project site is https://github.com/PUTR2E/R2E.

Acknowledgement. This work was supported by the Polish National Centre for Re-

search and Development (NCBR) No O ROB 0025 01 and 04/45/DSPB/0105

grants.

References

1. Aguilar J., Beller C., McNamee P., Van Durme B., Strassel S., Song Z. and Ellis J.: A Comparison of

the Events and Relations Across ACE, ERE, TAC-KBP, and FrameNet Annotation Standards. ACL

Workshop: EVENTS (2014)

2. Hobbs, J. and Riloff, E.: "Information Extraction", Handbook of Natural Language Processing, 2nd

Edition (2010)

3. Lally A., Prager J. M., McCord M. C., Boguraev B., Patwardhan S., Fan J., Fodor P., and Chu-Carroll

J.: Question analysis: How Watson reads a clue. IBM Journal of Research and Development 56(3): 2

(2012)

4. Proceedings of the Sixth Text Analysis Conference (TAC 2013), NIST, Gaithersburg, Maryland,

USA; http://www.nist.gov/tac/publications/2013/papers.html (2013)

http://www.cs.utah.edu/~riloff/pdfs/NLPHandbook-IE.pdf
http://www.nist.gov/tac/publications/2013/papers.html

5. Dutkiewicz J. and Jedrzejek C.: Ontology-based event extraction for the Polish Language, Proceed-

inds of 6th LTC’13 Eds. Vetulani Z., Uszkoreit H., Fundacja AMU, pp. 489–493 (2013)

6. Dutkiewicz J., Falkowski M., Nowak M., and Jedrzejek C.: Semantic Extraction with Use of Frames,

PolTAL 2014 – 9th International Conference on Natural Language Processing

will take place September, Warsaw, Poland, in print. (2014)

7. Drools rule engine, drools.jboss.org

8. Marie-catherine De Marneffe, C. D.: Stanford typed dependencies manual. (2008)

9. Curran J.R., Clark S., and Bos J.: Linguistically Motivated Large-Scale NLP with C&C and Boxer.

Proceedings of the ACL 2007 Demonstrations Session (ACL-07 demo), pp. 33–36 (2007)

10. Draicchio F., Gangemi A., Presutti V., Nuzzolese A. G.: FRED: From Natural Language Text to RDF

and OWL in One Click. ESWC (Satellite Events): 263–267 (2013)

11. McCrae J., Spohr D., and Cimiano P.: Linking lexical resources and ontologies on the semantic web

with lemon. In Proceedings of the 8th extended semantic web conference on The semantic web: re-

search and applications, Berlin, Heidelberg, pp. 245–259 (2011)

12. Gangemi A.: A Comparison of Knowledge Extraction Tools for the Semantic Web. ESWC: 351–366

(2013)

13. Fourth Message Understanding Conference, (MUC-4): Proceedings of a Conference Held in McLean,

Virginia (1992)

