
A demo for Smart City Operation Center

Filippos Gouidis, Giorgos Flouris, and
Dimitris Plexousakis

Institute of Computer Science, F.O.R.T.H
Heraklion, Crete, Greece

{gouidis,fgeo,dp}@ics.forth.gr

Abstract. The delivery of Public Services to citizens is developing into
a challenging task, as the urban population increases and the related
networks are becoming more complex and entangled. In this work, we
present a GUI application for Smart City Operation Center (SMOC), a
platform designed for the optimal coordination of a City’s Public Agen-
cies that is based on two eminent AI paradigms: Action Languages (AL)
and Answer Set Programming (ASP). The system receives requests for
services and subsequently deploys the available agents of the different
services, in order to fulfil the demands in a timely manner. This pa-
per provides the technical details behind the implementation, along with
instructions and guidelines for the utilization of the application.

Keywords: Smart City Application, Answer Set Programming, Action
Languages, Multi-Agent Action Coordination

1 Introduction

In the context of a modern city, the delivery of services to the citizens involves
the activation of many different agencies such as the fire brigade, the police
department or the health care services. Typically, the management of the actions
necessary for this objective is carried out in principle by each agency separately,
since it is considered that a continuous coordination is too costly and arduous.
A notable exception is the handling of emergency incidents due to their critical
nature.

Over the last few years, many Smart City projects have been launched with
the purpose of complementing the corresponding agencies in their tasks. For
example, in Amsterdam, the Smart Traffic Management Project 1 is used for the
administration of traffic flow and in the EU the new emerging trend of Connected
Cars 2 is expected, among others, to substantially improve ambulance response
times. However, similarly with the case of the various agencies, the approach
underlying behind these applications is rather specialized than holistic.

1 http://amsterdamsmartcity.com/projects/detail/id/58/slug/smart-traffic-
management

2 http://europa.eu/rapid/press-release MEMO-14-105 en.htm



2 F. Gouidis, G. Flouris, D. Plexousakis

Maintaining constantly a coordinated and synergistic plan, nonetheless, could
be significantly more optimal for a number of reasons. Firstly, this approach
is translated to a substantial cost reduction in terms of human resources and
infrastructure. To start, the activities of two or more servicing organizations
are often interdependent, as for example in the case of traffic regulation by the
police that can facilitate enormously the other servicing units endeavouring to
fulfil their tasks. Hence, a unified approach could serve better the interests of
the groups involved. Last, but not least, the experience and expertise gained by
this type of administration, might be proven crucial in an emergency incident
such as an earthquake or an extreme weather event.

1.1 Smart City Operation Center

Towards this direction, we have developed Smart City Operation Center (SMOC),
a platform for the central coordination of the various services operating in the
urban environment.The main responsibility of SMOC is to manage the city ser-
vices and decide how to effectively deploy the available agents of the different
services, in order to provide optimum and timely assistance to citizens. The way
in which the problem is represented bears strong similarities to the multiple
Travelling Salesperson Problem (mTSP), a heavily studied problem in computer
science and mathematics of NP-hard complexity. Nonetheless, the majority of
the approaches has domain-dependant performance and the extension of the
representation of the problem is far from trivial [1].

Our main objective behind this effort aims at providing an easy-to-use tool
that could cope with a challenging practical problem. In order to develop the
platform, we utilized two eminent AI paradigms: Action Languages (AL) and
Answer Set Programming (ASP), considering that the declarative and highly
expressive nature of these formalisms is well suited for the addressing of the
problem. In addition, the aforementioned characteristics facilitate significantly
the development of solutions that are easily extended and can be used in prob-
lems with similar settings. It should be stated that the version presented in the
context of this work is not final and is amenable to significant improvement.

2 Background

2.1 Event Calculus

Action theories are logical languages for reasoning about the dynamics of chang-
ing worlds, having played a pivotal role in the development of non-monotonic
logics and in formalisms to represent knowledge. The EC [2, 3] is a narrative-
based many-sorted first-order language for reasoning about action and change,
where the sort E of events (or actions) indicates changes in the environment,
the sort F of fluents denotes time-varying properties and the sort T of time-
points is used to implement a linear time structure. The calculus implements
the principle of inertia for fluents, which captures the property that things tend



Declarative Reasoning Approaches 3

to persist over time unless affected by some event, and applies the technique of
circumscription to solve the frame problem and support default reasoning.

Different dialects have been proposed over the years; in this study, we ax-
iomatize our domains based on the Discrete-time Event Calculus (DEC) [4] and
the recently proposed Functional Event Calculus (FEC) [5]. DEC defines a set of
predicates to express which fluents hold when (HoldsAt ⊆ F ×T ), which events
happen (Happens ⊆ E × T ), what their effects are (Initiates, Terminates,
Releases ⊆ E × F × T ) and whether a fluent is subject to the law of inertia or
released from it (ReleasedAt ⊆ F × T ).

FEC, on the other hand, generalizes the EC to include non-binary (i.e. non-
truth-valued) fluents taking values from the sort V. In accordance to DEC, the
key predicates and functions are Happens ⊆ E × T , V alueOf : F × T → V,
CausesV alue⊆ E × F × V × T , PossV al ⊆ F × V. Non-determinism and trig-
gered actions are supported by both formalisms. Along with the set of domain-
independent rules that axiomatize the notions of inertia, causality and effect,
the execution of reasoning tasks is performed with a set of domain-dependent
axioms expressing the dynamics of the world.

2.2 Answer Set Programming

Answer set programming (ASP) is a recently developed programming technique
combining declarativeness, modularity and expressiveness. It is founded on logic
programming answer set semantics, which drive the computation of stable mod-
els (answer sets). The procedure followed by most of ASP solvers is an enhanced
version of the DPLL algorithm [6]. ASP is gaining increasing popularity due to
its ability to combine an expressive, non-complex language over powerful solvers.

An Answer Set Program is a set of rules of the form:
Rule: A0:- L1, . . . ,Lk−1,not Lk, ...,not Ln.

where Lj are atoms and not represents negation-as-failure. The set of literals
{L1, . . . , Ln} are called the body of the rule and A0 the head. Intuitively, the
head of a rule has to be true whenever all its body literals are true in the
following sense: a non negated literal Li is true if it has a derivation and a
negated one, not Li, is true if the atom Li does not have one. According to
stable model semantics, only atoms appearing in some head can appear in answer
sets. Furthermore, derivations have to be acyclic, a feature that is important to
model reachability. Rules with an empty body are called facts and their head is
unconditionally true, i.e., it appears in all answer sets. Rules with an empty head
are called integrity constraints and are used to reject answer set candidates.

ASP has already proven its potential in expressiveness in comparison to other
declarative approaches, enabling the representation of phenomena for common-
sense and nonmonotonic reasoning ([7, 8]), while its solvers outperform satisfiability-
based and constraint-programming solvers in many domains [9, 10]. The success
of ASP is demonstrated in a wide variety of fields that spans from hardware
design and phylogenetic inference to the Semantic Web. In this study, we use
the most recent ASP implementation developed by Potsdam Answer Set Solv-
ing Collection (Potassco), named Clingo [11]. It combines the grounder Gringo



4 F. Gouidis, G. Flouris, D. Plexousakis

and solver Clasp and encompasses many utilities, such as detailed tuning of
grounding and solving, utilization of useful built-in functions and also the abil-
ity to integrate scripts written in Lua and Python languages, which provides
significant flexibility to developers.

3 Technical Details

In order to address the SCOC setting, planning with a combination of features,
such as temporal and causal constraints, was necessary. The problem incorpo-
rates characteristics of simpler frameworks, such as variations of the Traveling
Salesman Problem, distance graphs and temporal reasoning with precedence or-
dering. Furthermore, it extends them in various ways. In this section, we describe
how the EC and ASP can be applied to approach representational and practical
issues related to the problem of SCOC, revealing strong and weak points of each.

3.1 Representation

Representing SCOC with Event Calculus Axiomatizations The SCOC
planning problem formulates a demanding domain; while RAC theories are well
suited to express some of its aspects, others prove to be more challenging, as
we discuss next. We chose the EC as the specification language to describe
the domain, not only due to its ability to model a multitude of commonsense
phenomena, but also because of the availability of tools that can support our
reasoning tasks.

In order to model the setting both FEC and DEC have been used. However,
even though both theories are comparable for the given domain, we will focus in
this subsection on FEC, whose ability to model functional fluents offers greater
flexibility. Namely, as it is already elaborated in the Background section, FEC
provides the possibility of using non-binary fluents. Moreover, in contrast to
DEC, FEC can model non-determinism by the usage of disjunction ([5]), a fea-
ture that could be exploited in the context of a future expansion of the platform
aiming to support uncertainty.

We picture the smart city as a graph, whose edges have weights that may
change dynamically as a result of occurring events. To simplify the presentation
we assume one service and one agent type; the axiomatization can trivially be
extended to the more general case, by simply using a different graph per agent
type/service. In compliance with the notation introduced in the previous sec-
tions, let ag, ag1, ... denote variables of the AG sort, l, l1, ... variables of the E
sort, while variables num, num1, ... denote positive reals3.

The following domain closure axioms define all fluents and actions needed
to model SCOC, in order to reason about the state of agents (i.e., being at a

3 All variables in formulae are implicitly universally quantified, unless stated otherwise.
Moreover, we assume E ⊇ AC ∪ EV, i.e., events axiomatized by the Event Calculus
refer both to agent actions and triggered events.



Declarative Reasoning Approaches 5

location or moving), the state of locations (i.e., served or not) and the distance
traveled:

f = At(ag) ∨ f = Moving(ag) ∨ f = RemDist(ag, l1, l2) ∨ f = Step(l1, l2) ∨ f = Served(l).

e = Departs(ag, l1, l2) ∨ e = Arrives(ag, l) ∨ UpdateRemDist(ag, l1, l2, num).

Fluent Step denotes how much distance the agent can cover in one timepoint
along the edge (l1, l2), while RemDist captures the distance that remains to be
traveled. Step is subject to change, as it depends on the state of the world. We
further assume uniqueness of names axioms for actions and fluents. The possible
values for these fluents are appropriated restricted:

PossV al(At(ag), l). PossV al(Step(l1, l2), num). PossV al(RemDist(ag, l1, l2), num).

PossV al(Moving(ag), v) ≡ v = True ∨ v = False.

PossV al(Served(l), v) ≡ v = True ∨ v = False.

Certain predicates are also defined. For instance, Connected(l1, l2, num) denotes
edges and the corresponding distance between locations.

In comparison to other action theories, the explicit representation of time
inside EC predicates facilitates the developer in expressing complex temporal
expressions, necessary in SCOC to model for instance actions with durations,
such as traveling for a given amount of time. Moreover, the calculus has estab-
lished solutions to the frame, ramification and qualification problems, relieving
the developer from the tedious work of explicitly writing frame or minimiza-
tion axioms. Many aspects of the domain can easily be described by axioms
expressing context-dependent effects of actions, action preconditions and state
constraints, with existentially quantified variables whenever needed:

CausesV alue(Arrives(ag, l), at(ag), l, t)← V alueOf(Moving(ag), t) = True.

Happens(Departs(ag, l1, l2), t)→ V alueOf(At(ag), t) = l1.

V alueOf(At(ag), t) = l1 ∧ V alueOf(At(ag), t) = l2 → l1 = l2.

Happens(Departs(ag, l1, l2), t)→ ∃numConnected(l1, l2, num).

In order to handle metric distances between locations or calculate traveled
distances, SCOC calls for extensive use of numerical operations to be incorpo-
rated in the domain description. For instance, we have to recalculate the Step
fluent every time certain agent actions affect it, such as when some agent arrives
at, serves or leaves a particular location. We use the predicate
AffectsCost(ag, l, l1, l2, num, v) to model different variations of the costChange
event introduced in Section 3. For instance, when v = 1 (resp. v = 2, v = 3)
AffectsCost denotes that the cost of traveling from l1 to l2 becomes num when
agent ag arrives at (resp. is present at, departs from) location l. The following
axiom models the case when v = 3 (the rest are similarly defined):

CausesV alue(Departs(ag, l), Step(l1, l2), (num1/num), t)←
[Connected(l1, l2, num1) ∧ V alueOf(At(ag), t) = l ∧ affectsSpeed(ag, l, l1, l2, num, 3)].

Despite the simplicity of such axioms, the introduction of numerical variables
leads to an explosion of grounded terms having a tremendous impact on perfor-
mance, calling for special measures to be adopted.

Finally, triggered events, i.e., events that occur when the world is in a partic-
ular state, are a significant leverage in modeling real-world domains [12]. In our
case, we use triggered events to keep track of the distance that an agent needs
to travel before reaching the destination location:

Happens(UpdateRemDist(ag, l1, l2, (num1 − num2)), t)← V alueOf(Moving(ag), t) = True∧
V alueOf(RemDist(ag, l1, l2), t) = num1 ∧ V alueOf(Step(l1, l2), t− 1) = num2.



6 F. Gouidis, G. Flouris, D. Plexousakis

Note that, in contrast to most benchmark problems in action theories, in our
case the duration of certain actions, such as the agent’s travel is not known be-
forehand, but needs to be calculated on-the-fly. Our modeling adopts the simple
solution of recalculating the remaining distance at every timepoint according to
the distance the agent has traveled in the previous timepoint (notice that Step
refers to t−1 in the previous axiom). A variation of this problem with static edge
weights has also been implemented to show the difference in performance when
action duration is known a priori. ASP constructs can provide radical solutions,
as we argue in the next section.

Finally, the axiomatization needs also to include the description of the initial
state, specifying the location and state of all agents, as well as the goal state,
i.e., V alueOf(Served(n), Topt) = True for some timepoint Topt. Note that since
the problem we solve is a planning problem, we do not specify completion of
the Happens predicate, letting the reasoner produce all combinations of event
occurrences that can lead to the satisfaction of the goal state. Of course, Topt is
not known beforehand.

Representing SCOC in Answer Set Programming This subsection de-
scribes an alternative modeling that uses ASP as specification language for de-
scribing SCOC, aimed at exploiting the potential of state-of-the-art ASP solvers.
Given the structure of the problem, we based our representation on standard
methods found in the literature for encoding graph traversal, as given for in-
stance in [13]. Due to the dynamic nature of the problem, we extended the
methodology with a treatment of time. In this way, atoms representing dynamic
attributes contain a variable accounting for time. As before, we simplify the set-
ting and assume only one agency and every node of the graph has to be visited
at least by one of the agents.

To accommodate planning, Clingo offers a special functionality where rea-
soning progresses incrementally. Specifically, a special variable, which denotes
timepoints in our case, is acting as a place-holder that increases by a constant
step number to perform grounding and solving in consecutive steps, until an
answer set satisfying the goal state is found. To accomplish this, the program
is divided into 3 independent parts: the basic, the cumulative and the volatile
part. The former contains the definitions that are used throughout the execu-
tion, as well as the initial state, while the latter specifies the goal condition. The
cumulative part, on the other hand, incorporates all rules and constraints that
have to be grounded every time the reasoning progresses by one step.

The state of the graph is specified by predicates, such as in(Ag1,Nd1,1) and
edge(Nd1,Nd2,W,1) contained in the basic part. In order to represent the displace-
ment of the agents, rules able to express cardinality constraints are used:

0{on the road(AG,X, Y, C, t) : edge(X,Y,C, t)}1 : −agent(AG), in(AG,X, t).

This rule states that an agent located at a node at a certain time-point can
initiate at most one movement and this movement should have as destination
a node that is connected (i.e., edge) to the node that is currently located at.



Declarative Reasoning Approaches 7

Such rules give significant leverage to the developer, offering a compact way to
introduce various types of restrictions.

In order to avoid overloading the grounded terms introduced in the Event
Calculus encodings when numerical operations are in place, we embedded in
our ASP encodings external predicates, a special functionality offered by Clingo.
The truth value of these predicates can be decided by scripts written in the Lua
language, without requiring grounding or disturbing execution during reasoning.
Such an external predicate is @new cost appearing in the following rule:

on the road(AG,X, Y, C NEW, t) : −on the road(AG,X, Y, C OLD, t− 1), 0 < C OLD,

e(X,Y,W OLD, t− 1), e(X,Y,W NEW, t), C NEW = @new cost(W NEW,W OLD,C OLD, t).

The rule calculates the remaining distance for agents on the move. The perfor-
mance gains obtained when executing such computationally demanding tasks in
parallel with reasoning is depicted in the evaluation discussed in Section 5.

While the built-in constructs described before offer enhanced functionalities
to support declarative reasoning, certain aspects of SCOC were not handled as
conveniently as with the EC encodings. The representation of inertia, which had
to be explicitly defined in all time-dependent rules, and the treatment of time
in general, are characteristic examples:

−edge(X,Y,C2, t) : −edge(X,Y,C, t), edge(X,Y,C2, t− 1), C2! = C.

edge(X,Y,C2, t) : −edge(X,Y,C2, t− 1), not −edge(X,Y,C2, t).

These rules model the weight of edges at each timepoint, having the law of
inertia explicitly expressed. The first rule implies that if for two consecutive time
moments an edge has different weights, the earlier value must become obsolete
the next time moment, while the second rule indicates that if an edge’s value
has not become obsolete, it is conserved for the next time moment (“−” denotes
strict negation). Similar behavior has to be designed for other atoms, whose
value may change over time. The ease of accommodating such phenomena with
the EC and their direct application to new features with minifemum effort, often
referred to as elaboration tolerance, becomes easily evident.

Finally, the constraint expressing the goal condition, i.e., whether all nodes
have been visited, is expressed as follows and added in the volatile part:

: −not reached(X, t), node(X), query(t).

We additionally made use of Clingo’s built-in function minimize, in order to
achieve a second-level of optimization:

#minimize{C : on the road(AG,X, Y, C, t)}

With this expression we can define a secondary criterion to classify optimal plans,
when more than one are found. Specifically, we choose the one with minimum
distances traveled by all agents, denoted by variable C. Special treatment of
such expressions allows the Clingo solver to calculate solutions effectively.

3.2 Implementation

Recent progress regarding the generalization of the definition of stable model se-
mantics used in ASP [14] has opened the way for highly expressive formalisms to



8 F. Gouidis, G. Flouris, D. Plexousakis

be reformulated in ASP encodings and exploit the several efficient implementa-
tions that are currently available. Specifically, the precise characterization of the
correspondence between stable models and circumscription used by many theo-
ries for reasoning about action and change, such as the Situation and the EC, has
permitted the reformulation of the latter in ASP. For that purpose, we used the
F2LP4 tool to transform our circumscriptive DEC-based axiomatization into a
logic program that can be executed with ASP reasoners. This is important since
not all first- order formulae can be transformed into the clausal form used in ASP
solvers while preserving stable models. F2LP applies the translation developed
in [15] that guarantees that the ASP encoding created as output is equivalent
to the circumscription-based axiomatization. For example the following DEC
axiom:

happens(departs(Ag,Nd1, Nd2), T )→
terminates(departs(Ag,Nd1, Nd2), at(Ag,Nd1), T ).

is transformed via F2LP into the next ASP rule:

terminates(departs(Ag,Nd1, Nd2), at(Ag,Nd1), T ) : −
happens(departs(Ag,Nd1, Nd2), T ), agent(Ag), node(Nd1), node(Nd2), time(T ).

Although the FEC-based axiomatization can also facilely become input to F2LP,
we opted to utilize the dedicated reasoner and encoding style for FEC theories
developed in [16]. The major advantage that this tool offers lies in its capacity
to support reasoning with highly expressive classes of problems with minimum
effort on the developers side. Namely, it can execute the epistemic extension of
FEC [5], which we plan to integrate in future variations of the SCOC setting,
when for example some of the agents locations will not be known initially.

In order to compare these different implementations in terms of efficiency
and speed, a number of experiments were conducted on random generated clique
graphs. The main findings were the following: 1) in general, none of the imple-
mentations could scale well in large cliques ,2) the purely ASP-based implemen-
tation scored significantly better than the hybrid ones, 3) the major drawback
of EC was its incompetence to deal with the numerical operations and 4) the
grounding phase is far more time-consuming than the solving phase. For more
details regarding the experiments the reader is referred to [17]

At first glance, based on the previous results, it can be argued that the
utilization of EC in the current framework of the problem is unnecessary and,
hence, only the ASP implementation should be applied. Nevertheless, at it has
already been stated, the platform is still under development and the wide exper-
imentation which we plan to conduct regarding the EC encodings, might lead to
enhanced performance. Furthermore, the unique functionalities that EC offers
could be proved particular useful for the extension of the problem. Summarizing,
we suggest that the user concerned only in performance issues should use the
purely ASP encoding. However, we opted to offer, in the context of the current
version, all the different options in order for a more direct comparison to be
possible.

4 F2LP website (last accessed 7/7/2014): http://reasoning.eas.asu.edu/f2lp/



Declarative Reasoning Approaches 9

4 User Guide

4.1 Requirements

Currently, the application can be executed only in a Linux environment. How-
ever, we plan to release a version that supports the family of Windows OS in
the near future. In order for the application to be executed, the following three
components are required: 1) Java Runtime Environment (JRE)5 , 2) a 2.7 ver-
sion or higher of the Python language6 and 3) version 5.1 or higher of the Lua
language 7 .

The necessary files for the deployment of the application are located in
the following url: http://www.ics.forth.gr/isl/MACPDRA/Demo/Demo.zip .
Extract the compressed folder Demo.zip and then launch the Demo.jar file
with JRE. Additionally two tutorial videos can be found in the following urls:
http://www.ics.forth.gr/isl/MACPDRA/Demo/video1.avi and http://www.

ics.forth.gr/isl/MACPDRA/Demo/video2.avi . Please note that for the seam-
less execution of the application none of the files included in the uncompressed
folder should be deleted. Also, to prevent any mishaps, ensure that the permis-
sions of the files enable their execution.

It should be stated that some of the features of the problem are not yet
supported by the application, although the corresponding ASP and AL encodings
address them. Namely, there is no difference in the type of the different agents,
i.e. they all deliver the same services, and the edges of the graphs are static,
that is there is no dynamic interdependency among the agents. Nonetheless,
soon these aspects will be incorporated in the application.

4.2 Basic Commands

The application consists of two sub-windows. The left one is dedicated to the
design of the graph that represents the locations of the city, whilst in the right
the paths that the agents have to travel to provide the servicing are depicted.

There are two options: the user can either use the strictly ASP implementa-
tion or the implementation that is a combination of ASP and AL. By selecting
the former, the user can select the vertices of the graph that require servicing.
On the contrary, in the latter case it is assumed that all vertices should be visited
by the agents. In order to select between these two options, the user must use
the combo button that is located below the left sub-window.

In order to create a new vertex, the user should right-click in an empty space
in the left sub-window. Consequently a name for the new vertex should be given.
Note that each vertex should bear a unique name.

Similarly, to create a new edge between two vertices the user must right-click
on one of the two vertices and then drag the mouse to the other. Then, the
weight of the edge should be given in the pop-up dialog that appears. The value
should be a positive integer.

5 http://www.oracle.com/technetwork/java/javase/overview/index.html
6 http://www.python.org/
7 http://www.lua.org/



10 F. Gouidis, G. Flouris, D. Plexousakis

Fig. 1: Application’s main window

Fig. 2: Creating a vertex

Fig. 3: Creating an edge



Declarative Reasoning Approaches 11

To add a new agent in a vertex, the user must right-click the vertex. In the
dialog that appears the type and the name of the agent should be given. In the
same way, the user can remove an agent from a vertex by selecting the option
’Remove Agent’.

To indicate that a vertex requires servicing, the user must right-click the
vertex. After the service have been added, the color of the vertex turns from
green to red. In order to remove a service from a location, the user must right-
click the vertex and select ’Delete Service’.

Fig. 4: Adding an agent

Fig. 5: Designing a graph



12 F. Gouidis, G. Flouris, D. Plexousakis

To add an image as a canvas, the user must click the button ’Load Image’ that
is located under the right sub-window. The image can be removed by clicking
the button ’Remove Image’. At any time, the user can save a graph in an XML

Fig. 6: A generated plan indicating the paths of the agents

file by using the button ’Save Graph’. Correspondingly, the user can load any
previously saved graphs by using the button ’Load Graph’.

After the graph has been designed, the user can generate the plan for the
agents by clicking the button ’Generate’ that is located under the right sub-
window. By clicking the button ’Proceed’, the agents advance according to the
previously generated plan.

5 Conclusions

In this paper, we presented a smart city application that relies on the formalisms
of AC and ASP. While the investigation behind its implementation builds on
the latest theoretical and applied advancements in both fields, its user-friendly
interface enables people less or not familiar with these theories to harness its
potential and utilize it in the context of a highly demanding domain: a Smart
City environment. Conversely, by exploiting the direct and swift visualization
rendering that this tool provides, we could be aided significantly in our research
by gaining insights about the merits and the drawbacks of the aforementioned
paradigms.

Before concluding, we would like to stress, once again, that the platform
is currently under development and, therefore, does not lack deficiencies, the
most important of which having to do with scalability and computational issues.
Besides, as SCOC will expand, we plan to include more features such as un-
predictable events, durational and prioritized tasks. This way, we aspire toward



Declarative Reasoning Approaches 13

developing more efficient, real-world implementations for SCOC. Moreover, the
GUI can be further improved and simplified, facilitating, thus, to a larger degree
the inexperienced user. Nonetheless, despite the enhancements and adjustments
that might be required, it is our belief that SCOC already constitutes a reliable
tool that can be used for both practical and theoretical applications.

References

1. Kumar, T.S., Cirillo, M., Koenig, S.: On the traveling salesman problem with
simple temporal constraints. In: 10th Symposium of Abstraction, Reformulation,
and Approximation(SARA’13). (2013) 73–79

2. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation
Computing 4(1) (1986) 67–95

3. Miller, R., Shanahan, M.: Some alternative formulations of the event calculus.
In: Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, London, UK, Springer-Verlag (2002) 452–490

4. Mueller, E.: Commonsense Reasoning. 1st edn. Morgan Kaufmann (2006)
5. Miller, R., Morgenstern, L., Patkos, T.: Reasoning about knowledge and action in

an epistemic event calculus. In: 11th International Symposium on Logical Formal-
izations of Commonsense Reasoning (Commonsense’13). (2013)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM (JACM) 7(3) (1960) 201–215

7. Eiter, T., Ianni, G., Krennwallner, T.: Reasoning web. semantic technologies for
information systems. (2009) 40–110

8. Coban, E., Erdem, E., Ture, F.: Comparing ASP, CP, ILP on two Challenging
Applications: Wire Routing and Haplotype Inference. In: Proc. of the 2nd Inter-
national Workshop on Logic and Search (LaSh 2008). (2008)

9. Kim, T.W., Lee, J., Palla, R.: Circumscriptive event calculus as answer set pro-
gramming. In: 21st International Joint Conference on Artificial Intelligence (IJCAI-
09). (2009) 823–829

10. Celik, M., Erdogan, H., Tahaoglu, F., Uras, T., Erdem, E.: Comparing ASP and CP
on four grid puzzles. In: Proc. of the 16th International Workshop on Experimen-
tal Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
(RCRA’09). (2009)

11. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The potsdam answer set solving collection. Ai Communications
24(2) (2011) 107–124

12. Tran, N., Baral, C.: Reasoning about Triggered Actions in AnsProlog and Its
Application to Molecular Interactions in Cells. In: 9th International Conference
on the Principles of Knowledge Representation and Reasoning (KR2004). (2004)
554–564

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers (2012)

14. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175(1) (2011) 236–263

15. Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in
the general theory of stable models and in answer set programming. Journal of
Artificial Intelligence Research 43(1) (2012) 571–620



14 F. Gouidis, G. Flouris, D. Plexousakis

16. Ma, J., Miller, R., Morgenstern, L., Patkos, T.: An epistemic event calculus for asp-
based reasoning about knowledge of the past, present and future. In: Proc. of the
19th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR-19). (2013)

17. Gouidis, F., Patkos, T., Flouris, G., Plexousakis, D.: Declarative reasoning ap-
proaches for agent coordination. In: Artificial Intelligence: Methods and Applica-
tions. Springer (2014) 489–503


