
The MYNG 1.01 Suite
for Deliberation RuleML 1.01:
Taming the Language Lattice

Tara Athan1, Harold Boley2

1 Athan Services (athant.com), West Lafayette, Indiana, USA
taraathan AT gmail.com

2 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
Fredericton, NB, Canada
harold.boley AT unb.ca

Abstract. This article describes the development of MYNG to Version
1.01 in order to integrate the new Deliberation RuleML Version 1.01
Relax NG schema modules – and the RuleML sublanguages they define
– into the RuleML language lattice, as well as to improve the function-
ality of the MYNG GUI and REST interface. MYNG support is pro-
vided for including the new modules of Deliberation RuleML 1.01 into
customized schemas for sublanguages such as Datalog+, Hornlog+, and
their many extensions. To also expose Disjunctive Datalog and exten-
sions as RuleML sublanguages, the MYNG 1.01 GUI options are better
aligned with the emergent structure of Deliberation RuleML features. To-
gether, these modifications led to a vastly increased number of RuleML
sublanguages in the lattice. To assist in ‘taming’ this growth, we intro-
duce the anchor lattice as an abstraction mechanism: a sublattice of the
RuleML language lattice containing the most significant Deliberation
RuleML sublanguages. A MYNG algorithm and interface to discover an-
chors are offered. For each anchor, the highly modular Relax NG schema
has been automatically converted into a monolithic XSD schema, maxi-
mizing compatibility with XML tools.

1 Introduction

RuleML1 is a knowledge representation language designed for the interchange of
the major kinds of Web rules in an XML format that is uniform across various
rule logics and platforms. It has broad coverage and is defined as an extensible
family of sublanguages, whose modular system of XML-serialization schemas
permits rule interchange with high precision. RuleML 1.0 encompasses both
Deliberation RuleML 1.02 and Reaction RuleML 1.03.

1 http://ruleml.org
2 http://ruleml.org/1.0
3 http://reaction.ruleml.org/1.0



2 Tara Athan, Harold Boley

Deliberation RuleML 1.0 introduced a modularization approach based on a
restriction of Relax NG[AB11]. The restricted Relax NG is monotonic, mean-
ing when two modules are combined, e.g. by including them both into a larger
schema, the language defined by the larger schema contains both of the lan-
guages defined by the modules. Because of this monotonicity property, the more
than fifty Deliberation RuleML 1.0 schema modules may be freely combined to
define a fine-grained poset lattice of RuleML sublanguages, with a partial order
based on syntactic language containment. In order to manage the large num-
ber of RuleML sublanguages generated by this approach, the Modular sYNtax
confiGurator (MYNG) application[Ath11] was developed to provide a unified pa-
rameterized schema accessible either directly, using a REST interface, or through
a GUI that exposes the REST interface.

MYNG may be used to configure a RuleML sublanguage with a set of desired
features. The output of the MYNG 1.0 GUI includes:

– the MYNG REST interface URL for a Relax NG schema of the selected
language, and

– a display of the configured Relax NG schema driver.

Relax NG schemas configured using MYNG 1.0 (online through the MYNG
REST interface URL or as local copy after download) may be used outside of
MYNG for schema-aware authoring, instance validation, or parser generation
through XML tools such as oXygen XML and JAXB.

The immediate Deliberation RuleML 1.0 successor Deliberation RuleML
1.014 introduces several new options for obtaining an even more fine-grained
customization of sublanguages, increasing the number of definable RuleML sub-
languages to over 6 billion (not including serialization options). In addition to
providing an interface to the larger language lattice, MYNG 1.01 introduces new
functionality to assist in ‘taming’ its growth, including the display of more infor-
mation about the Relax NG schemas and access to related XSD schemas. This
paper describes the development of MYNG to Version 1.01 in order to provide
this new functionality, as well as to integrate the new Relax NG schema mod-
ules, and the Deliberation RuleML Version 1.01 sublanguages they define, into
the Deliberation RuleML language lattice. MYNG 1.01 has been designed and
implemented to meet the following goals:

– Provide MYNG support for the new modules – and the sublanguages they
define – that are introduced in Deliberation RuleML 1.01.

– Better align MYNG GUI options with the emergent structure of Deliberation
RuleML features.

– Offer a MYNG algorithm and interface to discover sublanguages from the
anchor sublattice, which is composed of the most significant Deliberation
RuleML sublanguages.

– Improve the usability of MYNG overall.

4 http://deliberation.ruleml.org/1.01



MYNG 1.01 3

– Automate the (offline) conversion of a highly modular Relax NG schema
into a monolithic XSD schema compatible with the majority of XML tools
including JAXB.

– Increase the automation of the RuleML release procedure as needed for
MYNG.

The rest of this article is structured as follows. Section 2 discusses the new
modules of Deliberation RuleML 1.01. Section 3 expands the above goals into a
design. Section 4 describes the released implementation of the design. Section 5
gives a technology roadmap. Section 6 concludes the article.

2 Overview of New Schema Modules in Deliberation 1.01

A small set of extensions of Datalog yields a major payoff: a standard XML se-
rialization of Datalog+[GOPŠ12]5, a superlanguage of the decidable Datalog±6.
The highlight of Deliberation RuleML 1.01 is the ability to combine one or more
of the following Datalog extensions which together define Datalog+:

– Existential Rules, where the then part of a rule has existentially quantified
variables, as required for description logics7, F-logic8 and PSOA RuleML9,
Rule-Based Data Access10, etc.

– Equality Rules, where the then part of a rule is the Equal predicate,
as needed for user-defined/‘semantic’ equality in logics with equality11 and
functional logic programming12 (this was already allowed in RuleML 1.0)

– Integrity Rules, where the then part of a rule is falsity, as a convenient
way to express negative integrity constraints13.

Note that while Datalog querying is decidable, the Datalog+ extension is
undecidable in its full generality. A decidable Datalog+ sublanguage, such as
Datalog±, may be obtained by imposing restrictions, e.g. using Schematron (see
Section 5 for a discussion of future plans for the MYNG framework.)

In Deliberation RuleML 1.01, each of these Datalog+ features can now also be
combined with a conjunction (e.g., an And of Atoms, rather than just one Atom)
in the then part, as used, e.g., in SWRL14. Moreover, Deliberation RuleML 1.01

5 http://www.slideshare.net/polibear/datalog-and-its-extensions-for-

semantic-web-databases
6 http://ontolog.cim3.net/file/work/RulesReasoningLP/2013-10-31_Concepts-

Foundations-I/Datalog-plus-minus_GeorgGottlob-AndreasPieris_20131031.

pdf
7 http://dl.kr.org/
8 http://flora.sourceforge.net/
9 http://wiki.ruleml.org/index.php/PSOA_RuleML

10 http://wiki.ruleml.org/index.php/Rule-Based_Data_Access
11 https://www.mpi-sb.mpg.de/~uwe/lehre/autreas/v13.pdf
12 https://www.informatik.uni-kiel.de/~mh/FLP/
13 http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf
14 http://www.w3.org/Submission/SWRL/



4 Tara Athan, Harold Boley

permits mixing-in the characteristic Disjunctive Datalog feature of disjunction
(e.g., an Or of Atoms) in the then part, as used for implementing description
logics15.

The portion of the RuleML language lattice corresponding to Datalog+ fea-
tures is shown in Fig. 1.

Fig. 1. Hasse diagram for a sublattice of the RuleML language lattice with infimum
corresponding to the Datalog language (anchor datalog min) and supremum corre-
sponding to the Datalog+ language (anchor datalogplus min). All of the vertices of
the sublattice are identified by their myng-codes. The myng-code for Datalog is shown
in its entirety, while for other vertices only the components that differ from Datalog are
shown. The first row of vertices above the infimum corresponds to individual MYNG
GUI checkbox options: from left to right, Conjunctive Heads, Negative Constraints,
Existential Heads, and Equations. The vertices in the second row above the infimum
are labeled according to the decidable Datalog extensions they contain. The third row
of vertices, unlabeled, corresponds to combinations of conjunctive heads and any two
of the other three options, while the supremum, Datalog+, includes all four options.

15 http://www.cs.ox.ac.uk/boris.motik/pubs/hms07reasoning.pdf



MYNG 1.01 5

An instructive suite of examples16 demonstrates the syntax and semantics
of Datalog+ with annotated rules about a business scenario. We include several
excerpts here.

Example 1. Negative constraints to express disjoint classes: “Nothing is both an
employee and a department.” (Negative-constraint rules employ Or() conclu-
sions to represent falsity – “⊥” of Datalog[⊥] – in a queryable manner.)

<Forall><Var>x</Var>

<Implies>

<if>

<And>

<Atom>

<Rel>employee</Rel>

<Var>x</Var>

</Atom>

<Atom>

<Rel>department</Rel>

<Var>x</Var>

</Atom>

</And>

</if>

<then>

<Or/>

</then>

</Implies>

</Forall>

Example 2. Equality rules for expressing functionality: “Everything has at most
one supervisor. ”

<Forall><Var>x</Var><Var>y</Var><Var>z</Var>

<Implies>

<if>

<And>

<Atom>

<Rel>supervises</Rel>

<Var>x</Var>

<Var>z</Var>

</Atom>

<Atom>

<Rel>supervises</Rel>

<Var>y</Var>

<Var>z</Var>

</Atom>

</And>

</if>

<then>

16 http://deliberation.ruleml.org/1.01/exa/DatalogPlus/datalogplus_min.

ruleml



6 Tara Athan, Harold Boley

<Equal>

<Var>x</Var>

<Var>y</Var>

</Equal>

</then>

</Implies>

</Forall>

Example 3. Existential rules: “Every employee who directs a department is a
manager, and supervises at least another employee who works in the same de-
partment.”

<Forall><Var>E</Var><Var>P</Var>

<Implies>

<if>

<And>

<Atom>

<Rel>employee</Rel>

<Var>E</Var>

</Atom>

<Atom>

<Rel>directs</Rel>

<Var>E</Var>

<Var>P</Var>

</Atom>

</And>

</if>

<then>

<And>

<Atom>

<Rel>manager</Rel>

<Var>E</Var>

</Atom>

<Exists><Var>E’</Var>

<And>

<Atom>

<Rel>supervises</Rel>

<Var>E</Var>

<Var>E’</Var>

</Atom>

<Atom>

<Rel>works_in</Rel>

<Var>E’</Var>

<Var>P</Var>

</Atom>

</And>

</Exists>

</And>

</then>

</Implies>

</Forall>



MYNG 1.01 7

In addition to the new features for Datalog+, described above, Deliberation
RuleML 1.01 also has an expanded range of features regarding the length of
term sequences. These arity features allow closer approximations to important
Semantic Web languages: Unary (length one) term sequences in relations and
functions, freely combinable with Binary (length two) term sequences, useful for
graph logics (RDF17) and description logics (OWL18).

Because of the modular schema design, all of the new features of Deliberation
RuleML 1.01 are freely combinable, through module inclusion, with each other
and with the existing RuleML sublanguages. In particular, the new features are
available for other logics in Deliberation RuleML, including Horn logic (Hornlog
RuleML 1.01), e.g. allowing Hornlog existential rules, Hornlog equality rules, and
Hornlog integrity rules, together constituting what may be called Hornlog+.

3 Design of the MYNG 1.01 Release

The goals presented in Section 1 are revisited in the current section under the
design perspective.

3.1 MYNG Support for New Deliberation RuleML 1.01 Modules

The Deliberation RuleML modular schema design was created to allow additions
to the language lattice while maintaining backward compatibility. Sublanguages
in the Deliberation RuleML language lattice are defined by a set of schema mod-
ules, and are identified by a myng-coded name. This unique name is a compact
representation of the REST query that may be used to obtain the driver schema
that combines the defining set of schema modules into one schema. For exam-
ple, the lattice supremum language, containing all other Deliberation RuleML
sublanguages, for Version 1.0 is called

myng-b3f-d7-a7-l1-p3ff-i7-tf3f-a7-ef-sf

and is available from the REST call (a URI with a query)
http://ruleml.org/1.0/relaxng/schema_rnc.php?backbone=x3f&default=x7&

termseq=x7&lng=x1&propo=x3ff&implies=x7&terms=xf3f&quant=x7&expr=xf&

serial=xf19

The myng-code is composed of ten components – collections of modules that
have some common characteristics. Each myng-code component corresponds to
a GUI facet, and a REST query parameter.

17 http://www.w3.org/RDF/
18 http://www.w3.org/OWL/
19 The PHP script at http://ruleml.org/1.0/relaxng/schema_rnc.php implements

the MYNG REST interface to the parameterized schema for Deliberation RuleML
1.0.



8 Tara Athan, Harold Boley

Each GUI facet has a number of options – checkboxes or radio buttons –
that, for the most part20, correspond to single schema modules, and to single
bits in the hexadecimal values in the myng-code components and REST query
parameter values.

For example, in MYNG 1.0 the GUI facet labeled Implication Options,
corresponding to the REST query parameter implies, and the myng-code com-
ponent i, contains three checkboxes21. Two checkboxes correspond to the mod-
ules defining the values of attributes @material, @direction (and their map

counterparts) for semantic and pragmatic variants of the RuleML implication
element <Implies>. A third checkbox – corresponding to the module defining if
and only if logical connective <Equivalence>, which is syntactic sugar for a pair
of implications – also belongs to this GUI facet. The hexadecimal value of the i

component of the myng-code myng-b3f-d7-a7-l1-p3ff-i7-tf3f-a7-ef-sf is
7, or 111 in binary, indicating all options have been checked.

In the MYNG 1.01 GUI22, we extend the Implication Options GUI facet to
include the following new options, each corresponding to a schema module that
is new in Deliberation RuleML 1.01:

– Conjunctive Heads: Not included in Version 1.0 because conjunction in
the then part of a Datalog rule is syntactic sugar for a pair of rules, but
significant for Version 1.01 because existentially-quantified conjunctions in
the then part of a Datalog+ rule cannot always be decomposed.

– Negative Constraints: The empty Or, interpreted as constantly false, play-
ing the role of falsity in RuleML, is allowed in the then part of an implication.

– Existential Heads: The existential quantifier may be arbitrarily nested
with the logical connectives allowed in the then part of implications.

Three additional bits are prepended to the implies REST query parameter,
and i myng-code component, to accommodate these three new modules.

The schema module for unary term sequences was anticipated in the Version
1.0 myng-code, so we may add options to the Term Sequences GUI facet without
extending the range of values for the REST query parameter termseq (myng-
code component a – for arity). In this case, we simply activate a bit that was
present, but not used, in the Version 1.0 myng-code and REST interface.

3.2 Alignment of MYNG GUI Options with Deliberation RuleML
Features

The considerations of Datalog extensions to realize the Datalog+ sublanguage
of RuleML led to an additional insight regarding Disjunctive Rules, where
a non-empty Or may appear in the then part of an implication. The module

20 A few GUI options correspond to more than one module for the sake of a more
consistent design, and a few modules correspond to no GUI option because they are
required in all non-vacuous sublanguages.

21 http://ruleml.org/1.0/myng
22 http://deliberation.ruleml.org/1.01/myng



MYNG 1.01 9

implementing this feature is present in Version 1.0, but is exposed in MYNG 1.0
as part of the Expressivity “Backbone” GUI facet, a group of radio buttons
where a core expressivity level is selected23. The Version 1.0 design parallels the
hierarchical modularization of the precursor XSD schemas in this regard.

In order to implement Disjunctive Datalog and related Datalog extensions, it
was necessary to detach the option for Disjunctive Heads from the Expressivity
“Backbone” GUI facet and attach it to the Implication Options GUI facet, with
a corresponding increase by one bit to the range of the implies REST query
parameter and the i myng-code component. However, for backward compatibil-
ity with Version 1.0, a bit representing this option is also retained in Version
1.01 in the backbone REST query parameter and the b myng-code component.

3.3 Anchor Discovery

A few Deliberation RuleML sublanguages of special significance have been des-
ignated as anchor sublanguages (or simply anchors); XSD schemas (automati-
cally generated in advance by offline scripts) are made available for these anchor
sublanguages. The supremum language is an anchor, as are the original fifteen
Deliberation RuleML languages of Version 1.0, as well as the greatest Delibera-
tion RuleML sublanguage for each level of the Expressivity “Backbone”.24 For
any given Deliberation RuleML sublanguage L, there is at least one minimal an-
chor sublanguage La containing it. The XSD schema for La is called an anchor
XSD schema for L.25

The design of the language lattice allows implementation of a simple search
algorithm for an anchor schema of some Deliberation RuleML sublanguage L –
the myng-code of L is compared to the myng-codes of the anchors, in ascending
lexicographic order, until an upper bound is found. As long as the membership
of the anchor lattice is kept to a reasonable size, this is not an expensive com-
putation as it is linear in the size of the anchor lattice, and each comparison is
linear in the size of the myng-code, roughly the number of schema modules.26

The Deliberation RuleML anchor lattice will remain small because the gen-
eration of the XSD schema from the modular Relax NG must be repeated for
each sublanguage, due to the inherent incompatibility of the fine-grained Relax
NG modularization approach with the XSD schema language. A positive out-
come of this incompatibility is schema monolithification; the generated XSDs

23 The available expressivity levels in MYNG 1.01 are Atomic Formulas, Ground Fact,
Ground Logic, Datalog, Horn Logic and Full First-Order Logic, while MYNG 1.0 also
contains Disjunctive Logic.

24 The intersection of all anchors is itself an anchor, so that the lattice property is
attained also for the partially ordered subset of anchors. This infimum anchor is not
directly available through the MYNG GUI.

25 The anchor(s) for any particular sublanguage is dependent on the membership of
the anchor lattice, and may not be unique.

26 In the case of a large anchor lattice, the complexity of the search could be reduced
with standard techniques.



10 Tara Athan, Harold Boley

are made monolithic, hence compatible with tools that do not allow recursive
redefinition, such as JAXB27.

3.4 MYNG GUI Usability

To improve usability, the layout, styling and controls of the MYNG GUI have
been modified. The ten GUI facets have been reordered so that options with
the greatest semantic significance are encountered first on left-to-right, top-to-
bottom traversal. Text fields have been added to display the myng-code and
anchor of the form selection – this information is updated with every selection.
Download buttons for the RNC and XSD anchor schemas have been added, and
download is immediately available with every selection, independent of the exist-
ing Generate Schema functionality. The schema URLs, necessary for use of the
online versions of the schemas, are now displayed below the form, including the
URL for the anchor XSD schema. Like the text fields, these URLs are updated
with every selection. Finally, color and font variation have been added to the
GUI for an improved visual design.

3.5 RuleML Release Automation as Needed for MYNG

As in other systems, as the complexity of the RuleML language family increases,
the difficulty of preparing a new release tends to also increase. However, to coun-
teract this trend, in Version 1.01 we have made some strides towards automating
the release process, including the following new or improved procedures:

– Version control of schemas, MYNG code, and associated artifacts.
– Automatic publishing to the RuleML server from the version control system.
– Automation of the conversion from modular Relax NG to monolithic XSD.
– Batch generation of anchor XSD schemas.
– An improved Normalizer.

4 Implementation of the MYNG 1.01 Release

The design presented in Section 3 is taken up in the current section for describing
the implementation. A snapshot of the MYNG GUI is shown in Fig. 2. Tutorials
for using the MYNG GUI to create a custom Deliberation RuleML 1.01 sublan-
guage, usage of the MYNG REST interface, and documentation for contributors
to the development of RuleML are available on the RuleML Wiki.28

The following subsections are organized according to the implemented arti-
facts, some spanning multiple design aspects.

27 The manually-written modular XSDs of Deliberation RuleML 1.0 rely on recursive
redefinition for their hierarchical modularization approach, hence are not JAXB-
compatible.

28 http://wiki.ruleml.org/index.php/MYNG_of_Deliberation_RuleML_1.01_Demo



MYNG 1.01 11

Fig. 2. The top portion of the MYNG GUI includes brief instructions, a set of buttons
for managing the form and downloading schemas, and text fields displaying the myng-
code and anchor. The figure shows the first row of five GUI facets – the second row is
not shown for space considerations. The Relax NG schema URL and the driver schema
are displayed below the second row of GUI facets, in addition to some more detailed
instructions on usage of the schema.

4.1 MYNG 1.01 GUI

The MYNG GUI has been implemented as an XHTML form with embedded
JavaScript since Version 1.0. AJAX is used to call the MYNG REST interface,
with query parameters based on the user’s selections in the form. To accom-
modate the new Version 1.01 schema options and controls, the JavaScript has
been extensively refactored, producing a cleaner code base and allowing future
extensions to be made more easily.

4.2 Parameterized Relax NG Schema

The Deliberation RuleML parameterized Relax NG schema has been imple-
mented as the MYNG REST interface calling a PHP script since Version 1.0.
In MYNG 1.01, a minor extension has been implemented, allowing an increased
range for the implies REST query parameter, for the new Datalog+ modules,
and activating intermediate values of the termseq REST query parameters, for
the new unary term sequences module.

4.3 Release Automation Scripts

A set of open-source Bash scripts29 has been developed for Deliberation RuleML
1.01 to carry out the first stage of the batch generation of anchor schemas,

29 https://github.com/RuleML/deliberation-ruleml/tree/1.01-dev/bash



12 Tara Athan, Harold Boley

utilizing Jing-Trang30. These scripts download the appropriate driver Relax NG
schema for each anchor from the MYNG REST interface running on the RuleML
server, simplify the schema using Jing, and then convert it to XSD using Trang.

The batch script (batch web2xsd.sh) calls an auxiliary script (aux web2xsd.sh)
that executes the conversion of a single modular Relax NG to monolithic XSD.
The auxiliary script may be used directly to obtain XSD schemas for RuleML
sublanguages other than the anchors.

4.4 XSLT Transformation for Post-Conversion XSD Processing

An XSLT transformation has been developed for Deliberation RuleML 1.01 to
implement the second (and final) stage of the generation of monolithic XSD
schemas, including the anchor XSD schemas. This transformation handles some
bugs in the Trang-based conversion process, as well as dealing with some inherent
incompatibilities between Relax NG and XSD.

The most significant incompatibility is in regard to the @xsi:type attribute.
XSD schemas implicitly allow this attribute to be used on any element, permit-
ting users to modify the content model. Relax NG has no such mechanism –
to use the @xsi:type attribute, its behavior must be defined in the grammar.
XSD requires the value of @xsi:type to be a validly-derived type of the element
type declared in the schema, inhibiting the mixing of attributes on the <Data>
element with explicit datatype declaration through @xsi:type. To work around
this constraint, we define a set of types31 in the RuleML namespace to reflect the
XML Schema Datatypes. For example, the following fragment is valid against
both Relax NG and XSD schemas:

<ruleml:Data node="#d1" xsi:type="ruleml:integer">123</ruleml:Data>

while the following fragment is not:

<ruleml:Data node="#d1" xsi:type="ruleml:integer">abc</ruleml:Data>

After the transformation is applied to all anchor XSD schemas, the schemas
must be committed to the Github repository for RuleML32, which automatically
publishes onto the RuleML server through a cron job.

4.5 XSLT Transformations for Normalization

The Deliberation RuleML Normalizer has been implemented since Version 1.0 as
an XSLT transformation that converts a Deliberation RuleML instance file in the
relaxed-form serialization33 into the normalized serialization. In Version 1.01, the

30 https://code.google.com/p/jing-trang/
31 http://deliberation.ruleml.org/1.01/datatypes/SimpleWithAttributes.xsd
32 https://github.com/RuleML/deliberation-ruleml
33 RuleML has long allowed an abbreviated serialization (with optionally skipped edge

tags, also called stripes, and default attribute values) and some freedom in the or-
dering of elements. From Version 1.0 and up, Relax NG schemas for the relaxed
serialization have extended the abbreviated serialization to allow even more free-
dom in element ordering than the XSD schemas, with all permutations possible as
long as any missing edge tags or attributes can be unambiguously reconstructed.



MYNG 1.01 13

Normalizer has been fixed to provide the correct attributes with default values
for all RuleML sublanguages.34 It is expected that default values of attributes
will no longer be used in Deliberation RuleML 1.02, which, among other postive
benefits, would allow a single Normalizer XSLT to be used for all sublanguages.

5 Roadmap of MYNG 1.02 and Beyond

The RuleML Wiki hosts the RuleML issue tracking system35, which is used
to manage the development of MYNG, as well as the RuleML language itself.
Users are encouraged to post bug reports and enhancement requests. In MYNG
Version 1.02 and beyond, we expect to see the following improvements.

– New syntax from Deliberation RuleML 1.02 will be integrated into MYNG.

– New anchor languages will be added, based on user suggestions.

– MYNG functionality will be improved, including:

• Add a Clear button36 that unchecks all checkboxes, to facilitate configu-
ration of minimal RuleML sublanguages, as a complement to the current
Reset button that favors maximal sublanguages.

• Provide a visual indicator of the (lattice) distance from the anchor to
the RuleML sublanguage selected by GUI options, especially the zero-
distance case of exact match between the anchor and the selected options.

• Implement the inverse functionality of determining the options corre-
sponding to a given anchor or named language selected by the user.

– Progress will continue towards making MYNG a language-lattice develop-
ment environment :

• Add validation of an instance against the configured Relax NG schema,
using, e.g., Validator.nu.37

• Implement the determination of the lub schema for a valid instance of
the supremum language, using validation against penultimate Relax NG
schemas containing all modules but one, and properties of the language
lattice.38

• Add Schematron validation, e.g. using Validator.nu, to impose additional
language restrictions, such as the Datalog± restrictions that restore de-
cidability

• Enable on-the-fly conversion of Relax NG schemas configured using MYNG
into monolothic XSD schemas

34 http://deliberation.ruleml.org/1.01/xslt/normalizer/
35 http://wiki.ruleml.org/index.php/Category:Issues
36 http://wiki.ruleml.org/index.php/MYNG_GUI_Clear_Button
37 http://validator.nu
38 http://wiki.ruleml.org/index.php/MYNG_Checker



14 Tara Athan, Harold Boley

6 Conclusions

MYNG has been envisioned as a framework for the design and use of highly-
configurable syntaxes from a language lattice, specified with modular schemas
expressed in a monotonic restriction of Relax NG. Following up on the prototype
MYNG 1.0, here we have described the goals, design and implementation of
MYNG 1.01, and provided a roadmap to MYNG 1.02 and beyond. The MYNG
schema design pattern was initially applied to Deliberation RuleML (1.0, and
then 1.01) and recently transferred to Reaction RuleML (1.0). We look forward
to integrating MYNG with other XML applications.

References

[AB11] Tara Athan and Harold Boley. Design and implementation of highly modular
schemas for xml: Customization of ruleml in relax ng. In Frank Olken,
Monica Palmirani, and Davide Sottara, editors, Rule - Based Modeling and
Computing on the Semantic Web, volume 7018 of Lecture Notes in Computer
Science, pages 17–32. Springer Berlin Heidelberg, 2011.

[Ath11] Tara Athan. Myng: Validation with ruleml 1.0 parameterized relax ng
schemas. In Proceedings of the 5th International RuleML2011@BRF Chal-
lenge, co-located with the 5th International Rule Symposium. CEUR-WS.org,
2011.

[GOPŠ12] Georg Gottlob, Giorgio Orsi, Andreas Pieris, and Mantas Šimkus. Datalog
and its extensions for semantic web databases. In Thomas Eiter and Thomas
Krennwallner, editors, Reasoning Web. Semantic Technologies for Advanced
Query Answering, volume 7487 of Lecture Notes in Computer Science, pages
54–77. Springer Berlin Heidelberg, 2012.


