
Acting and Bayesian reinforcement structure learning of partially observable
environment

Robert Brunetto, Marta Vomlelová

Charles University, Czech Republic
robert@brunetto.cz

Abstract: This article shows how to learn both the
structure and the parameters of partially observable en-
vironment simultaneously while also online performing
near-optimal sequence of actions taking into account
exploration-exploitation tradeoff. It combines two re-
sults of recent research: The former extends model-based
Bayesian reinforcement learning of fully observable envi-
ronment to bigger domains by learning the structure. The
latter shows how a known structure can be exploited to
model-based Bayesian reinforcement learning of partially
observable domains. This article shows that merging both
approaches is possible without too excessive increase in
computational complexity.

1 Introduction

Partially observable Markov decision processes
(POMDPs) are a well known framework for model-
ing and planning in partially observable stochastic
environments [13], [8].

Such plans could be used in robotics, in dialogue man-
agement or elsewhere. However, the range of their practi-
cal applicability is limited by several difficulties. Firstly,
their usage is limited to small state spaces only (curse
of dimensionality) even when using several approxima-
tions [9].

Secondly, it could be difficult for an expert to specify the
probabilities exactly when applying POMDP to some do-
main. There were several attempts to overcome this prob-
lem by learning the model [7], [3], [4] or applying other
techniques [2], [6].

Following the recent research this article proposes an
approach which could solve both problems at the same
time.

Learning the model by interacting with the environment
(reinforcement learning) was researched a lot [1]. Dur-
ing the last decade Jaulmes and Pineau tried to learn un-
factorized POMDP [7] by assuming a prior probability
distribution over all possible models. Then Poupart and
Vlassis [11] used similar Bayesian reinforcement learn-
ing technique to learn the parameters of a DBN 1 with the
known structure.

If the structure were not known then learning it would
be a challenging problem even in fully observable environ-
ments. Ross and Pineau [10] addressed it and proposed an
online algorithm for it.

1DBN stands for Dynamic Bayesian Network.

This article addresses generalization of the tasks men-
tioned above. We show the way to navigate an agent in an
unknown stochastic dynamic partially observable environ-
ment using near optimal actions. To do so, we combine the
algorithm [11] for learning parameters of POMDP with
the known structure with the algorithm [10] for learning
the structure of MDP.

We take the best ideas of each of them. Right after ex-
plaining the basic preliminaries in section 2 and demon-
strating them on an example in section 3 we present an an-
alytical representation of the belief over parameters (anal-
ogous to [11]) in section 4. Similarly to the article [10] the
belief over structures will be maintained by MCMC2

algorithm described in section 5. This allows us to
use an online action selection procedure described in sec-
tion 7. In the last section we review the approximations
from [11] which can be also applied in our settings mak-
ing our model more traceable and compact.

2 Preliminaries

POMDPs usually model unknown environments as fol-
lows. At each time step the environment with the agent
is in an unobserved state s ∈ S. At this time step agent re-
ceives observation o ∈ O and reward r. Then the agent is
free to choose an action a ∈ A. As the time advances, the
state changes to a new state s′ that stochastically depends
on previous state and action.

We are interested in the special case of POMDPs where
the state space factorizes along several state variables X ∈
X hence each state s is a vector s = (s1, ...s|X|) ∈ S =

∏X∈X.
Rewards and observations behave analogously r ∈

∏R∈R and o ∈ ∏O∈O.
Moreover we can assume without loss of generality that

O ⊆ X and R ⊆ X. It implies that the observation is the
state restricted to observation variables. It will be denoted
as o = sO. Other restriction operations will be denoted
analogously. For an instance, values of reward variables in
the state s can be denoted sR.

We will always restrict vectors which are denoted by
bold lower case letters to sets of variables denoted as bold
upper case letters. Capital letter which won’t be bold will
denote single variable. Lower case non-bold letter will be
its value. Specially in the case when G is

2MCMC stands for Markov Chain Monte Carlo.

V. Kůrková et al. (Eds.): ITAT 2014 with selected papers from Znalosti 2014, CEUR Workshop Proceedings Vol. 1214, pp. 21–27
http://ceur-ws.org/Vol-1214, Series ISSN 1613-0073, c© 2014 R. Brunetto, M. Vomlelová

the graph of a Bayesian network, PAGX we will denote
set of variables which are parents3 of variable X in graph
G. Values of variables of parents of X will be denoted
paGX where X ∈ X.

When the time advances to the next step the state s
changes to s′ according to unknown transition probability
P(s′|s,a).

We assume that the transition probability P(s′|s,a) fac-
torizes according to a dynamic Bayesian network with un-
known structure G with unknown parameters.

P(s′|s,a) = ∏
X∈X

P(s′X |(s′,s,a)PAGX)

Dynamic Bayesian network with structure G is de-
scribed as Bayesian network which has X′ ∪X∪ {A} as
its nodes. By (s′,s,a)PAGX we denote (s′,s,a) restricted to
the variables which are parents of variable X according to
structure G.

To emphasize that we take P(s′X |(s′,s,a)PAGX) as an un-
known parameter, we will denote it:

θ
(s′,s,a)PAGX
X . (1)

It is actually a vector of real values between 0 and 1
summing to 1 containing for each value s′X the probability
P(s′X |(s′,s,a)PAGX). As the indexes suggest that we have
such a set of parameters for each state variable X and for
each combination of values of its parents.

Even though we do not assume structure G to be known
we still assume that a prior probability distribution P(G)
over structures G is known. This probability distribution
can express expert’s prior knowledge or it can just prefer
simple structures over more complicated ones.

The transition probability can be expressed as:

P(s′|s,a) =∑
G

P(G) ·P(s′|s,a,G). (2)

We assume that the parameters θ
(s′,s,a)PAGX
X follow the

Dirichlet distribution, which is conjugate to multinomial
distribution.

The hyperparameters are initially set to one or set to the
values that preserve the likelihood of equivalent parame-
ters in equivalent Bayesian networks (see [5]).

Each unknown parameter θ
(s′,s,a)PAGX
X can be regarded

as an additional state feature.
This way a POMDP with unknown parameters can be

converted into a bigger POMDP without unknown param-
eters. Similar remark also holds for the unknown structure.
It can be also regarded as a part of the state hence POMDP

3Parent variable V of variable W is a term used in Bayesian-
networks-literature to denote that there is an arrow from V to W in the
graph of Bayesian network. This is in greater detail explained in sec-
tion 3.

with unknown structure and parameters can be regarded as
a bigger POMDP with known dynamics.

POMDP agent is usually maintaining so called belief
state b(s̃) which represents probability distribution over
possible states. In our case s̃ consists not only of the cur-
rent state s but also of the graph structure and its parame-
ters.

Surprisingly, as Poupart and Vlassis showed [11], even
though there is an infinite number of possible parame-
ters the belief for a given structure can be maintained in
a closed form. We will review it in section 4.

There is only a finite number of possible graphical struc-
tures implying that the whole belief b(s̃) can be maintained
in a closed form. But the number of possible graphs may
be large. That is why approximation is introduced in sec-
tion 5.

The belief is a sufficient statistic for taking a decision.
Agent’s overall algorithm is summarized in algorithm 1.

Algorithm 1: Agent’s life cycle
Data: b initial belief over current state, structures and

their parameters
1 while not TerminationCondition() do
2 a := selectAction(b).action;
3 performAction(a);
4 o := receiveObservation();
5 b := updateBelief(b,a,o);

3 Example

For better readability we illustrate the terms on a problem
taken from [8]. Imagine the following scenario. The agent
is before two doors. Behind one of the doors is a fortune
which would give the agent big reward but behind the sec-
ond door is a tiger which could cause the agent even higher
negative reward. The agent doesn’t know which door is
which. It has three possibilities what to do. It can walk
through one door, walk through second door or wait and
listen behind which door is bigger noise and then face the
same decision with the newly gained information.

This corresponds to algorithm 1. Choosing and per-
forming action is on its lines 2 and 3. After the agent lis-
tens or opens a door it knows what it has heard or whether
it met a tiger or found a fortune. This is shown on line 4
of algorithm 1. Agent then uses this observation to update
its belief on line 5. The belief contains all information
the agent knows i.e. the agent should count how many
times it has heard the the tiger on each side and estimate
where the tiger is. It should also learn usual tiger position
and other facts about the environments’ behaviour. These
information are also stored and updated with belief. We
assume that after opening a door and finding a tiger or a
fortune the experiment restarts itself and the tiger is again

22 R. Brunetto, M. Vomlelová

Tigert

Heardt

Tigert+1

Heardt+1

At

Rewardt Rewardt+1

At+1

Figure 1: The tiger example

placed behind random door. Everything repeats until a ter-
mination condition is reached (line 1). This unspecified
condition allows for example infinite repetition of the ex-
periment until the user terminates it.

This scenario can be modelled as follows. The set of ac-
tions A contains actions for going left, right and listening.

A ∈ {le f t,right, listen}
The set of reward variables R contains only one vari-

able, namely the variable Reward.

R = {Reward}
We assume that domains of all variables are known.

Hence the domain of variable Reward is also assumed to
be known. Let us say that cost of listening is 1, cost of fac-
ing a tiger 100 and reward for finding a fortune 10. Then
Reward ∈ {−1,−100,10}.

The set of state variables X contains variables Tiger,
Heard and Reward.

X = {Tiger,Heard,Reward}
Tiger is position of the tiger and Heard is a variable

containing what has the agent heard.
From this three variables the variable Tiger is unob-

served because agent doens’t know the position of the
tiger. Other two variables are observed.

O = {Heard,Reward}
The agent knows neither the state transition probabili-

ties nor the structure between the variables. It has to learn
it first. The real graphical structure could be for example
like figure 1.

The node shapes have its usual meaning. Squares de-
note the decision(action) variables. Circles denote random
variables and diamonds denote reward variable.

As we are modelling a dynamic environment. We have a
copy of each variable for each time step. The figure shows
only two time slices - for time t and t + 1. We have also
shown only the arrows which point to time t+1. We have
omitted all other arrows.

An arrow starts in a node called parent and goes to a
node called child. As each node is a variable we inter-
change the term parent node and parent variable.

The intuitive meaning of arrows is this: The child
node(variable) X stochastically depends only on combina-
tion of values of parent variables. More rigorous meaning
of an arrow is that child variable X is conditionally inde-
pendent on all other variables given values paGX of its
parents PAGX .

Let G denote the graph from figure 1. Then
PAGRewardt+1 = {At ,Tigert} which is quite natural. The
reward which agent will receive depends on the combi-
nation where it decided to go and where the tiger has
been. This dependence in our example is even determinis-
tic. However this is not general.

For example the variable Heardt+1 depends on its par-
ents stochastically. The reason for it is simple. The agent
could independently of the current state randomly hear in-
correctly. PAGHeardt+1 = {At ,Tigert} because what the
agent hears depends on where the tiger is and on the fact
whether the agent even listed.

In order to make it possible for the agent to learn the
environment it is necessary to let the agent interact with
the environment repeatedly. So the experiment with tiger
restarts itself everytime the agent opens a door. The tiger
is then again placed behind a random door. That is why
PAGTigert+1 = {At ,Tigert}.

Each variable in this example has two parents: the
ternary action variable and one binary variable. Hence to
specify the probability distribution over child variable we
need to specify the probability of each of its values for all
six combinations of values of parent variables ie. we need
to specify P(s′X |(s′,s,a)PAGX). It is specified by 2 ∗ 3 = 6
probability distributions over values of child variable. As
all child variables are binary we need to specify 6 pairs of
numbers between 0 and 1 such that each pair sums to 1.

These pairs of numbers are denoted as in (1).
We interchangeably call such pairs or even above men-

tioned 6-tuples of pairs parameters in plural or a parameter
in singular. By substituting values to s, s′ and a one can
restrict the parameter to one concrete value.

For example let us assume that the agent is listening.
The tiger is behind the right door and that the probability
of correct listening is 0.9 and the probability of opposite
listening outcome is 0.1 then following equalities would
hold:

P(s′Heard |(s′,s,a)PAGHeard) = θ (right,listen)
Heard = (0.9,0.1).

Acting and Bayesian Reinforcement Structure Learning of Partially Observable Environment 23

Tigert

Heardt

Tigert+1

Heardt+1

At

Rewardt Rewardt+1

At+1ΘTiger

ΘHeard

ΘReward

Figure 2: The tiger example

The first equality holds because

paGHeard = (s′,s,a)PAGHeard = (right, listen).

The agent doesn’t know the value of mentioned param-
eter and as was already explained in previous section the
agent can treat parameters as random variables. This con-
verts the POMDP with unknown parameters to a bigger
POMDP with known parameters. The structure of this
POMDP is shown in figure 2.

Notice that we don’t have a copy of these parameter-
random-variables for each time slice. All time slices share
the same parameter. That is because the parameter doesn’t
change over time.

Information about possible values of these parameters,
along with possible structures and states are maintained in
the belief, which is described in following sections.

4 Belief for a given structure

We begin by describing how belief looks like when we are
given the structure. It is exactly the same as described by
Poupart & Vlassis [11].

The key component is the nice properties of Dirichlet
distribution. Let us have one discrete random variable V
which can take values from 1 up to K with probabilities
(θ1,θ2, ...θK), where ∑i θi = 1.

The usual way to estimate these parameters in Bayesian
statistics is to compute the posterior when assuming that
the prior follows dirichlet distribution. Its density is given
by D(θ ;n) = 1

B(n) ∏i θ ni−1
i , where θ = {θi}i, n = {ni}i are

some hyperparameters and B(n) is a constant depending
on them which makes the distribution sum to one. It is
known as multinomial beta function.

The prior distribution which states that we have no evi-
dence is expressed by setting all hyperparameters ni equal
to 1. It can be interpreted as evidence that all values
were observed exactly once or it can be thought of only
as smoothing the posterior.

The posterior probability that the variable V contains
value i is then equal to proportion of how many times was
value i observed.

P(V = i) =
ni

∑i ni
. (3)

In the fully observable environment then we could es-
timate all parameters in the whole structure by (3). We
would use this estimate for each state variable X and for
each combination of values of its parents paGX . That is
the reason why we add X as a lower index to θ and paGX
as an upper index to θ as in (1).

Each set of parameters θ paGX
X sums to one.

From now on θ without any indexes will denote all these
sets of parameters together.

In this simplified case when the whole history was ob-
served the density of probability of being in "information
state" θ is

∏
X ,paGX

D(θ paGX
X ;npaGX

X)

The problem that not all state features are observable
can be overcome by the following theorem proven by
Poupart and Vlassis [11].

Theorem 1. If the prior is a mixture of products of Dirich-
lets

b(s,θ) = ∑
i

ci,s ∏
X ′,paGX ′

D(θ paGX ′
X ′ ;npaGX ′

X ′ ,i,s) (4)

then the posterior is also a mixture of products of Dirich-
lets

ba,o′(s′,θ) = ∑
j

c j,s′ ∏
X ′,paGX ′

D(θ paGX ′

X ′ ;npaGX ′

X ′, j,s′).

Because the proof of the theorem 1 actually gives us the
algorithm to update the belief we repeat the proof in this
article but for better readability we split it in two lemmas.

The first lemma is technical observation which says that
multiplication by θ paGX

X only scales the Dirichlet distribu-
tion.

Lemma 1. Let θ = (θ1, ...θK) and n = (n1, ...,nK) then

θ jD(θ ;n) = cD(θ ;m)

for some constant c and vector m.

Proof.

θ jD(θ ;n) =
1

B(n)
θ j ∏

i
θ ni−1

i =

=
1

B(n) ∏
i

θ ni−1+[i== j]
i =

=
B(n+ δ)

B(n)
D(θ ;n+ δ) =

=
n j

∑K
i=1 ni

D(θ ;n+ δ)

24 R. Brunetto, M. Vomlelová

where δ = (0, ...1, ...0) is a vector of zeroes with one in
j-th position.

The last equality follows from the property of B(n) say-

ing that B(n) = ∏K
i=1 Γ(ni)

Γ(∑K
i=1 ni)

.

Lemma 2. P(s′|s,a,θ)b(s,θ) is mixture of products of
Dirichlets.

Proof.

P(s′|s,a,θ)b(s,θ) =

= (∏
X∈X

θ (s′,a,s)PA X
X)b(s,θ) (5)

= (∏
X∈X

θ (s′,a,s)PA X
X)∑

i
ci,s ∏

X ,paX
D(θ paX

X ;npaX
X ,i,s)

= ∑
i

ci,s ∏
X∈X

θ (s′,a,s)PA X
X)∏

paX
D(θ paX

X ;npaX
X ,i,s) (6)

= ∑
i

cs′
i,s ∏

X ,paX
D(θ paX

X ;n′paX
X ,i,s) (7)

(8)

b(s,θ) in the formula (5) is replaced by its the defi-
nition. Then formula (6) is received by switching the
terms. Moreover thanks to lemma 1 θ (s′,a,s)PA X

X can be
consumed by dirichlet distribution D(θ paX

X ;n′paX
X ,i,s) where

paX = (s′,a,s)PA X .
Let c and δ be the as in lemma 1. ci,s must be multi-

plied by c. That is why it was replaced by cs′
i,s = c · ci,s in

equation (7).
n′paX

X ,i,s = npaX
X ,i,s + δ when paX = (s′,a,s)PA X and

n′paX
X ,i,s = npaX

X ,i,s otherwise.

Proof of Theorem 1.

ba,o′(s,θ) = kδ (s′O′ = o)∑
s

P(s′|s,a,θ)b(s,θ)

P(s′|s,a,θ)b(s,θ) is mixture of products of Dirichlets
by lemma . Hence ∑s P(s′|s,a,θ)b(s,θ) is also mixture of
products of dirichlets which are closed under multiplica-
tion by constant. It follows that ba,o′(s,θ) is mixture of
products of dirichlets.

Theorem 1 implies that the belief b(s,θ) over state s and
information state θ can be maintained in a closed form.
But how can we from this representation get the probabil-
ity of being in a specific state? We show in the following
theorem that this can be easily done.

Theorem 2. θ in formula (4) for the mixture of products
of dirichlet can be integrated out in a closed form.

Proof.

b(s) =

∫
b(s,θ)dθ =

= ∑
i

ci,s

∫
∏

X ′,paGX ′
D(θ paGX ′

X ′ ;npaGX ′

X ′ ,i,s)dθ =

= ∑
i

ci,s ∏
X ′ ,paGX ′

∫
D(θ paGX ′

X ′ ;npaGX ′
X ′ ,i,s)dθ =

= ∑
i

ci,s

The first equation defines symbol b(s). The second fol-
lows from the definition of b(s,θ) by switching sum and
integral. The third equation switches integral and multi-
plication which is possible in this case because each factor
depends on the different variable of multidimensional in-
tegration. Density of all probability distributions (includ-
ing Dirichlet distribution) integrates to one and product of
ones is one. That is why the last equation holds.

Despite this encouraging results the number of compo-
nents in the mixture grows exponentially. Luckily the be-
lief can be approximated by the approximation proposed
by Poupart & Vlassis. This will be described in section 7.
Firstly, in the next section, we describe the way the belief
over possible structures is maintained.

5 Belief over structures

The simplest and most naive approach to maintaining the
overall belief which contains the probability of structure,
its parameters and state would be straightforward. It is suf-
ficient to keep the belief for each structure and probability
of the structure. The problem is that the number of graphs
on given number of vertices grows very fast with the in-
creasing number of vertices but we want to maintain only
the small number of graphs.

We propose to remember only one randomly chosen
structure where the probability that the structure G is cho-
sen would be proportional to the probability P(G|history).

The probability P(G|history) could be difficult to com-
pute. But, as Ross & Pineau noted in article [10] about
MDP, a Markov chain of graphs can be maintained using
Metropolis-Hastings algorithm. The algorithm will ensure
that the Markov chain converges to distribution of graphs
which is equal to P(G|history).

The Metropolis-Hastings algorithm needs to use
P(history|G) which can be computed as follows: It is
equal to P(o|a,b,G) ·P(ht−1|G), where ht−1 denotes his-
tory up to previous time step.

Then the idea of computing P(o′|a,b) is as follows:
P(o′|a,b) is equal (9) to sum of P(s′|a,b) over states s′
compatible with observation o′ and P(s′|a,b) can be com-
puted directly from hyperparameters. For the simplicity of
notation we omit conditioning on G.

More precisely it is as follows:

Acting and Bayesian Reinforcement Structure Learning of Partially Observable Environment 25

P(o′|a,b) =

= ∑
s′∈S

s′O=o′

P(s′|a,b) (9)

= ∑
s′∈S

s′O=o′

∑
s

∫

θ
P(s′|a,s,θ)b(s,θ) (10)

= ∑
s′∈S

s′O=o′

∑
s

∑
i

cs′
i,s (11)

Conditioning on b can be replaced as in (10).
P(s′|a,s,θ)b(s,θ) in formula (10) is a mixture of prod-
ucts of dirichlets by lemma 4. Hence by theorem 2 it can
be replaced by sum of coefficients as in 10.

The algorithm for belief update is given in algorithm 2
where q(G′|G) is the probability of transition from graph
G to graph G′. This distribution can be set any arbitrary
way which will ensure that all graphs are reachable. P(G)
is prior distribution over graph structures and the probabil-
ity P(history|G′) can be computed as described above.

Random transitions with probability
min

(
1, P(history|G′)P(G′)q(G′|G)

P(history|G)P(G)q(G′|G)

)
are well known under

the name Metropolis-Hastlings algorithm. This algorithm
ensures that the Markov chain of graphs converges to the
distribution P(G|history) which implies that our algorithm
eventually learns either the correct structure or a structure
with is equally good with respect to encountered history.

One possible way of implementing random changes and
distribution q(G′|G) is local change of the graph structure
which can include deleting, reversing or adding edge. If
the change would be local affecting only limited number
of variables then necessary changes to representation of
ba,o will be also local.

This change depends on distribution q(G′|G) and isn’t
explicitly written in algorithm 2. We assume that this
change is done on the line G := G′ which changes the
structure.

Algorithm 2: updateBelief(b, a, o)
Data: belief b (containing structure G and belief for

that given structure), action a, observation o
Result: representation of belief for the next time step
G’ := random modification of G;

With a probability min
(

1, P(history|G′)P(G′)q(G′|G)
P(history|G)P(G)q(G′|G)

)

G:=G’;
b := ba,o;
Simplify representation of b by an approximation
from section 7.

Final change of belief inside one given structure b :=
ba,o can be done as in theorem 1. This change includes the

changes of coefficients ci,s and hyperparameters npaGX ′

X ′ ,i,s .

The changes are described in the proof of theorem 1 and
associated lemmas.

6 Action selection

Which action should the agent choose? It should choose
the action which maximizes his expected reward with re-
spect to the probability distribution b(s) over the states.
This expected reward can be tractably estimated by a re-
cursive approach using depth limited Monte Carlo search.

The algorithm for each action samples several new
states. Each sampled state s is then restricted to the ob-
servation and then used to update the belief. Its value can
be then again estimated by the same algorithm using re-
cursion up to some maximum depth.

This generates sampled walks(series of states) of equal
length. Their rewards are summed and in the maximum
depth some simple estimate V (b) of the value of belief b is
added to the estimate eg. V (b) = ∑s b(s)reward(s) where
reward(s) = ∑R∈R sR.

At each level of recursion is the best action chosen. For
clarity this Monte Carlo search is shown in algorithm 3.

Algorithm 3: selectAction(b, d)
Data: belief b, depth d
Static variable: the number of samples N

Result: utility estimate of belief state and
selected action

if d = 0 then
return V (b);

maxQ := -∞;
forall the actions a ∈ A do

Q := 0;
for i=1 to N do

s′ := sampleState(ba);
o′ := s′O;
b′ := updateBelief(b,a,o);
Q+= (reward(s′)+
+γ · selectAction(b′,d − 1).utility)/N;

if Q > maxQ then
maxQ := Q;
selectedAction := a;

return (maxQ,selectedAction);

The state can be sampled by algorithm 4.

Algorithm 4: sampleState(b)
Data: b(s)
Result: sampled state s
return state sampled according to weights ∑i ci,s

Firstly, it draws a graph according to graph posterior.
Then it randomly draws a state with probabilities ∑i ci,s.
Which is correct as can be seen thanks to theorem 2.

26 R. Brunetto, M. Vomlelová

7 Approximate representation of the
mixture of products of Dirichlets

As noted in section 4 the number of components of the
mixture representing current belief for a given graph grows
exponentially with time which is untraceable. Each com-
ponent of the mixture is associated with coefficients ci,s.
Naturally some of these coefficients will be smaller while
the others will be bigger. We propose to handle this ap-
proximately and keep only some components with bigger
coefficients.

There are several possibilities:

1. Keep k components with the greatest coefficients.

2. Sample k components with coefficients used as a
probability.

3. Instead of generating a lot of components and the
sampling only k of them one can directly generate
only these randomly chosen components.

For a more detailed description of these and other ap-
proximations along with some of their advantages and dis-
advantages we encourage the reader to read [11] where the
same approximations are described.

8 Conclusion and Future Work

This article has shown the design of an agent. The
agent can be placed to an unknown partially observable
environment and it can learn its dynamics by interac-
tion with it. During the interaction it takes into account
the exploration-exploitation trade-off and chooses a near-
optimal action. The dynamics of the environment learnt by
our agent is represented by a dynamic Bayesian network
which structure is also learnt by our model.

The algorithm could at any time return the graph of dy-
namic Bayesian network it is currently maintaining as the
estimate of the real structure.

This article has shown a possible way of combining
known techniques of reinforcement learning of structure
of MDP and parameters of POMDP in order to learn both
the structure and parameters of POMDP simultaneously.

I am currently implementing and testing the proposed
algorithms. One thing I am going to test is the alterna-
tive representation of belief over possible structures. We
proposed to maintain one Markov chain of possible graph
structures. Alternatively algorithm could maintain several
such Markov chains. It could lead to the possibility of
more precise decisions. Another alternative is to use a par-
ticle filter [12] where each paticle is a graph of dynamic
Bayesian network. I am looking forward to reporting em-
piric results in the near future.

Acknowledgement: This research was supported by SVV
project number 260 104 and by GAČR No. P202/10/1333.

References

[1] Barto, A. G. (1998). Reinforcement learning: An introduc-
tion. MIT press.

[2] Brunetto, R. (2013). Probabilistic modeling of dynamic sys-
tems. Informacne Technologie-Aplikacie a Teoria.

[3] Doshi-Velez, F. (2009). The infinite partially observable
markov decision process. In NIPS (pp. 477-485).

[4] Doshi, F., Wingate, D., Tenenbaum, J., & Roy, N. (2011).
Infinite dynamic bayesian networks. In Proceedings of the
28th International Conference on Machine Learning (ICML-
11) (pp. 913-920).

[5] Heckerman, D., Geiger, D., & Chickering, D. M. (1995).
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine learning, 20(3), 197-243.

[6] Itoh, H., & Nakamura, K. (2007). Partially observable
Markov decision processes with imprecise parameters. Ar-
tificial Intelligence, 171(8), 453-490.

[7] Jaulmes, R., Pineau, J., & Precup, D. (2005). Active learning
in partially observable markov decision processes (pp. 601-
608). Springer Berlin Heidelberg.

[8] Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1), 99-134

[9] Pineau, J., Gordon, G., & Thrun, S. (2011). Anytime Point-
Based Approximations for Large POMDPs. arXiv preprint
arXiv:1110.0027.

[10] Poupart, P., & Vlassis, N. A. (2008). Model-based Bayesian
Reinforcement Learning in Partially Observable Domains.
In ISAIM.

[11] Ross, S., & Pineau, J. (2012). Model-based Bayesian re-
inforcement learning in large structured domains. arXiv
preprint arXiv:1206.3281.

[12] Russell, S., & Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall, 3rd edition

[13] Smallwood, R. D., & Sondik, E. J. (1973). The optimal con-
trol of partially observable Markov processes over a finite
horizon. Operations Research, 21(5), 1071-1088.

Acting and Bayesian Reinforcement Structure Learning of Partially Observable Environment 27

