
Smart and Easy Object Tracking

Petr Fejfar, David Obdržálek

Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University

Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

Abstract. In this work, we present a system which is able to
track objects over time even in situations the objects are not
apart enough to get separated input data. The system
processes distance data repeatedly acquired from a distance
sensor. More specifically, it tracks balls rolling on the floor
using laser rangefinder measurements. The noisy data is first
filtered, then processed for ball detection and consecutively
paired with long-term data of objects movement. Finally,
Kalman filter helps to bridge the drop-outs of object position
information caused by interactions between the balls and
occlusions.

Based on the tracked movements and smart predictions, the
system is able to cope well with two principally different and
poorly distinguishable situations: when two balls pass close to
each other without touching and when two balls collide and
bounce away.

The system has been successfully implemented on a real robot
equipped with a short-distance IR laser rangefinder.

1 Introduction

In robotics, only few systems can work without sensing

and observing the real-world environment in which they

perform their actions. Moreover, simple sensing is usually

not enough. Sensed low-level data needs to be processed

further to obtain high-level object data so that the control

system has enough information about its working

environment to be able to perform its high-level task.

Among the methods for such data manipulation, object

recognition, matching and tracking is often used. Low-level

sensor data is processed so that higher-level object

information or description is retrieved. Then, the

recognized objects are matched against the recognized set

of objects and consecutively such objects are tracked over

time. However, in not so rare situations, the objects are

very similar which makes the matching and tracking

challenging. Moreover, when there are more similar objects

in the scene close to each other, they can get easily

mismatched and exchanged during the matching process

which leads to wrong high-level data being processed at

high control levels. The situation could get even worse

when the objects move and get close to each other or when

they even interact. Therefore, good detection and matching

is highly important.

2 Moving Object Tracking

There are many systems which use video stream or still

pictures as basic input data. Object recognition, matching

and tracking is done using many various methods.

For example, Cheriyadat, Bhaduri and Radke use in [1]

the following approach: the objects are searched based on

their movement between the time snapshots when two

pictures were taken. Input images are interpreted as

2D matrices where each pixel is represented by a real

number. The two directly following pictures (the matrices)

are subtracted and a resulting matrix represents the change

of position of the objects between the two image

acquisition times. The highest numbers can be found at the

edges of moving objects. The process continues by finding

corners using the Shi-Tomasi-Kanade corner detector [2]

and Rosten-Drummond corner detector [3]. Then, the path

along which the corners travel is found using the Kanade-

Lucas-Tomasi (KLT) algorithm [4]. The authors define the

metrics of the “movement similarity” of the corners. Then

they look for corners which appear to move similarly

according to this metrics and gather them in sets. Such

corner sets are then announced as the result of moving

objects detection.

There are many different object tracking algorithms

which take video images as input data. Most of them not

surprisingly work under specific conditions and suffer from

different weaknesses. Some authors therefore suggest using

more different algorithms and then compiling their results.

To illustrate, Siebel and Maybank propose in [5] to track

people using combination of tracking moving areas,

searching human body silhouettes and searching head

silhouettes. The hypotheses of moving people which result

from those different algorithms are then compiled and

filtered which results in a robust algorithm. They can

correctly detect two people holding conversation: while

they could be detected as one bigger moving region, the

body silhouette-searching algorithm correctly detects two

distinct bodies.

Another approach to people tracking was presented by

Cui, Song, Zhao, Zha, and Shibasaki in [6]. The authors use

rangefinder sensors placed close to the ground at ankle

level. They aggregate measurements from multiple sensors

placed around the area and check the ends of individual

rangefinder emitted rays. Such ends denote an obstacle.

The points at those ends are filtered using the Parzen

windows algorithm [7] and the local maxima are

considered to be people legs. The authors focus on the leg

which is still during the walk and pair the legs belonging to

one person. Finally, based on the leg movements they

output the person position.

An interesting combination was also presented in [8]: the

authors extend the rangefinder-based system by using an

additional video camera. By positioning the camera at other

place than the rangefinders, they can also address situations

when the rangefinder is occluded and does not provide

relevant source data. In such situations, the camera may see

the objects because of different observation angle.

V. Kůrková et al. (Eds.): ITAT 2014 with selected papers from Znalosti 2014, CEUR Workshop Proceedings Vol. 1214, pp. 28–33
http://ceur-ws.org/Vol-1214, Series ISSN 1613-0073, c© 2014 P. Fejfar, D. Obdržálek

3 Motivation

For our work, we have selected one of the sub-tasks

needed for implementation of a robot for the SICK Robot

Day 2012 Competition [9]. During the contest, three robots

compete in a circular arena, collecting coloured balls. Each

robot is assigned one colour – green, yellow or white. Its

task is to collect balls of that colour and bring them to

a target area of the same colour. The arena is about 15m in

diameter and 10 balls of each colour are randomly spread

there (see Fig. 1). The three robots have to operate at the

same time. At the start of the match, the balls are still.

However, due to their number and as three robots

independently run there, the balls easily become moving

and bouncing. It is therefore impossible to operate statically

using an image of the scene taken at the match start.

For the operation, the robot may use nearly any type of

sensor. A combination of a colour camera and a laser

rangefinder was selected for ball detection and tracking
1
.

The camera used is a standard “webcam”-type camera. The

rangefinder (SICK LMS 100) provides distance

measurements within 0.5-20m in the angle of 270° with

configurable step of 0.5° or 0.25°. The scanner is mounted

so that we acquire data at the level of approximately the

ball semidiameter (example of data is shown at Fig. 2).

From the camera, the control system finds out the ball

colour. However, due to the significantly varying

illumination both at different places and directions on the

scene (standard gymnasium with full-height windows over

the long side) as well as during the day (as the sun

proceeds), it is quite difficult to obtain proper colours of

objects visible by the camera. Therefore, the idea was to get

the colour whenever possible and connect it with object

tracking which is due to the nature of a laser rangefinder

not colour-aware. For object tracking as such, the colour is

not important. Therefore it is not considered in the

following text.

1
 Other sensors were used on the robot too, but they are

irrelevant to the topic of this paper.

4 Solution

For the ball tracking, the following algorithm was

proposed and implemented:

1. Data is read from the laser rangefinder

2. Data noise is filtered

3. Positions of individual balls are calculated

4. Calculated positions are matched with tracked balls

5. Balls are tracked over long-time

This algorithm is repeatedly run throughout the whole

robot run.

In the following sections, individual steps will be

described more in detail.

4.1 Data Acquisition

As mentioned above, the data was acquired using the

SICK LMS 100 laser rangefinder. Example of a scan is

shown at Fig. 2. The principle of measurement is in

measuring the time of flight of a laser beam. Full set of data

was available 20 times per second which was more than

enough for our task. However, the data was subject to noise

and disturbances caused by the nature of the measurement

method. For example, the laser can easily get reflected on

a shiny surface or can interact with dust in the air. Also, the

distance data may vary with the different properties of the

object from which the laser mirrors. Last, but not least, due

to the speed of the signal, time measuring is crucial and any

inaccuracy in time measuring directly influences the

calculated distance. This can be easily seen as non-linear

room edge at Fig. 2.

4.2 Noise Filtering

To filter the noise, a simple median filter is used.

Originally, floating average was used, but the median filter

better preserves the edges.

Fig. 1. SICK Robot Days 2012 circular playing arena.

Green team starting place (marked by two green balls)

can be seen at far right; white and yellow starting places

are not visible from this position as all the starting places

are located 120° apart around the arena.

Fig. 2. Example of SICK LMS 100 data. Red dot

denotes the sensor position, red lines show individual

range scans (only a selected subset shown). Two blue

circles are the balls with their scan “shadows” clearly

visible. Black boundaries mark the distance measured at

the specific angle.

Smart and Easy Object Tracking 29

4.3 Ball Position Calculation

In the scan, the ball makes “a shadow.” The distance

measured directly to the side of the ball and to the ball itself

differs a lot. Interpreting the scan as a one-dimensional

picture, the boundary between the ball and the background

is represented by an edge. Therefore, the balls are detected

using the edge detection algorithm. Every shadow which is

detected on the scan is then checked for the expected size –

from the distance data, we know the distance to this object

and knowing the ball diameter we can estimate its width in

the data. All objects which do not correspond to this simple

check are discarded. They can result from the noise (if the

object is too narrow) or they can represent an opponent

robot (if it is too wide as the robots are much bigger than

the balls).

From the edges (shown as blue lines at Fig.3), the

expected ball centre is calculated (shown as a cross).

Usually the shortest ray in the middle between the

boundaries prolonged by a ball semidiameter is a good

guess (see also Fig. 4).

4.4 Ball Matching

For this part of the algorithm, the inputs are a set of

actually detected balls and a set of long-time maintained set

of tracked balls. The output will be three sets: balls paired

with measurements, solitary measurements and solitary

balls.

This part of the task is an optimization task. Formally,

we try to minimize the weighted pairing on a full and

symmetric bipartite graph. For this, the Hungarian

algorithm
2
 [10] is used. We minimize the sum of distances

between the ball tracked in long time and the paired ball

detected in the current measurement. As the Hungarian

2
 Also known as Kuhn-Munkres or Munkres assignment

algorithm

algorithm expects the same number of objects in the two

sets to be paired, we add virtual balls in case of uneven

number in the two sets (see Fig. 5). These will be

eliminated after the optimization and it can be proven they

do not affect the optimality of the solution found.

4.5 Ball Tracking

The balls are tracked over time using a basic version of

the Kalman filter (described e.g. in [11]) – we want to

acquire a velocity vector from a series of position

measurements in time which are subject to noise and

dropouts (see later). Despite the strong preconditions for

Kalman filter (especially the requirement that the noise has

Fig. 3. Ball position calculation. Blue lines mark the

boundaries (edges) of a ball, the cross denotes the

resulting ball centre.

Fig. 4. Ball centre detection. Black lines are the individual

scans. Blue dashed lines are the ball boundaries. Red

dashed line is in the middle between them with the length

of the shortest ray between the two boundaries. Green line

is its prolongation by the ball semidiameter and leads to

the centre of the ball (black cross).

Fig. 5. Hungarian algorithm pairing.Full line circles are

the predicated (tracked) balls, dashed circles are the balls

detected in the new scan, red line marks the pairing (the

picture shows only a subset; the detected ball at bottom

right does not pair with either of the two tracked balls).

30 P. Fejfar, D. Obdržálek

to be of normal distribution), the filter is so robust that it is

still very well useful even when these conditions are not

fully met in real life.

For our problem, the Kalman filter can overcome

problems with short-time ball occlusions caused by balls

travelling on trajectories which seemingly cross from the

point of the observer view. In such case, one of the balls

(the one further away from the observer) will not be visible

for some time as it is occluded by the closer one. In the

input data processing, this means that only one ball will be

detected and the second one will be missing. However,

thanks to the nature of the pairing algorithm and Kalman

filter “prediction”, this is usually only a temporary dropout

during which the occluded ball is in fact represented by that

added virtual ball. Real tests have shown correct matching

is maintained or re-established after the occluded ball

leaves the other ball shadow.

The Kalman filter can filter the noise if the process

model is linear in respect to the position and control and if

the noise is of a normal distribution. The linearity usually

does not impose problems for simple systems; however, the

noise distribution is in real life often anything else but

normal.

5 Implementation

As mentioned earlier, this work was motivated by the

SICK Robot Day 2012 Competition. However, it was

implemented after the event based on the observations and

experience gained. It was also tested on the real input data

logs gathered during the competition. For data acquisition,

the SICK LMS 100 laser rangefinder was used (mounted

on the robot during the competition), but other input source

which provides a distance measuring could be used too.

The implementation of the main algorithm was done so

that the solution could be used not only for this particular

robot but also in other cases where object tracking is

required. The core of the algorithm is written in C++ with

the use of Boost library [12] (TCP/IP communication,

thread management, input/output, data structures for

mathematical calculations).

Supportive visualisation and debugging tools were

written with the use of OpenGL [13] and Qt [14] libraries,

however that part is not necessary for the main algorithm

use.

The selection of libraries and tools makes it easy to port

the algorithm to other platforms, both general and

specialized embedded, as well as use the visualization tools

at different platform than the core algorithm. Originally, the

system was developed and tested on Microsoft Windows

running on a mid-range laptop machine but it can be with

no change compiled and used on Linux systems. Porting for

ROS as a currently very popular system in robotics is

straightforward (the algorithm can be nearly directly

wrapped in a ROS node). It is certainly possible to use it in

other systems too (e.g. FreeRTOS was considered but

finally not ported as it was not needed).

6 Results

The implemented system was proposed to help solve ball

tracking in a specific task in real life. Therefore, we judge

its success by evaluating different situations which may in

the model conditions occur. In the following text, these

situations are listed and discussed with showing typical

figures of the respective cases.

Fig. 6-9 show the respective cases. A ball is represented

by its centre as a cross (calculated from the laser scan, see

paragraph 4.3). Around the ball, the shadow cone typical

for rangefinders is shown (black cone; adjacent laser scan

points are connected by a line for better visibility). Grey

line shows the previous trajectory of the ball (as recorded

based on the ball matching, see paragraphs 4.4 and 4.5).

Violet line is a current velocity vector (as tracked by the

filter).

Fig. 6-8 show the evolution of the respective situation in

time (each of the four snapshots depicts one typical phase).

Fig. 9 shows ball clusters as a typical case when our ball

detection fails.

6.1 Single Ball Tracking

This is the very basic situation. There is only a single

ball in the scan area. The situation is shown at Fig. 6. The

ball was travelling right to left on a straight path. Starting

with speed 0, the Kalman filter first gets adapted to the real

ball speed and noise. In the central part of the ball move,

the filter well corresponds to the real ball position. As the

ball leaves the scan sector, the ball detection algorithm

starts to have problems, which are well compensated by the

Kalman filter.

Fig. 6. Single ball tracking. Top left: First detection of the

ball. Top right: Kalman filter adaptation to the noise,

speed and position stabilization. Bottom left: Stabilized

movement. Bottom right: Problems to detect the ball

which is too far from the sensor.

Smart and Easy Object Tracking 31

6.2 Tracking Multiple Objects with Occlusion, without

Collision

When two balls move towards each other, two situations

may happen: either the balls collide and bounce, resulting

in the balls travelling in directions opposite to their original

ones. In this paragraph, the first situation is addressed.

When the two balls do not collide, the ball closer the

scanner is tracked as if it moves alone (see Fig. 7 showing

the evolution of this situation in time). The ball at bigger

distance from the scanner is occluded, but continues to

move with the same direction and speed as before the

occlusion started. Here, the Kalman filter bridges the time

when the ball is occluded and precisely tracks the ball

meanwhile. That is well seen at the time the second ball

leaves the first ball shadow.

6.3 Tracking Multiple Objects with Collision

When two balls collide, they form a single object on the

scanned data and they cannot be separated as two balls.

However, the Kalman filter continues to predict the

movement individually. Fig. 8 shows this situation in time.

When the two balls separate (Fig. 8 bottom left), their

velocity vectors are deformed and do not correspond to

data maintained by Kalman filter. During a few consecutive

scans (pictures), it adapts and continues to track.

In our implementation, the balls move relatively slowly

in comparison to the frequency of the laser scans (20 per

second) and to data processing which makes the filtering

successful. Preliminary tests have shown that even under

real conditions with full number of balls in game we can

afford dropping and skipping lot of scans
3
 while still

maintaining the correct tracking.

3
 This is by intention, not as a result of e.g. slowness of

the algorithm

6.4 Object Clusters

In this paragraph we show an example of a situation

when our algorithm fails.

When more balls are close to each other forming

a cluster, we cannot easily distinguish whether it is a ball

cluster or an obstacle of totally different nature, for

example an opponent robot. On Fig. 9, the lower cluster is

most likely formed by two balls. The upper cluster might

be a single ball on the right plus two close balls on the left.

However, it can be another obstacle as well (e.g. an

opponent robot, room equipment, a person etc.).

Our algorithm was design to search and track individual

balls and cannot cope with such situation. It may be

possible to analyse the object shape – e.g. roundness of the

obstacle – instead of just checking the edges like described

in paragraph 4.3.

Fig. 7. Multiple balls, no collision. Ball 1 travels right to

left, ball 2 bottom to top (top left), ball 2 partially

occludes ball 1(top right), ball 1 leaves the shadow

(bottom left), balls continue to move independently

(bottom right)

Fig. 8. Multiple balls, collision. Ball 1 travels right to left,

ball 2 bottom to top (top left), the balls collide, forming

one object on the scan (top right), balls separate (bottom

left), balls continue to move independently (bottom right)

Fig. 9. Ball clusters On this scan, the ball detection fails:

two balls close to each other (bottom / left), several balls

in one area or completely another obstacle (top / right)

32 P. Fejfar, D. Obdržálek

7 Conclusion and Future Work

The presented algorithm detects and tracks moving

unisized balls on a laser rangefinder scans. It tracks their

movement in longer time and well copes with the

occlusions and collisions.

However, there are also situations this algorithm in

principle cannot handle well (as shown for example in

paragraph 5.4). Based on the real behaviour in our model

situations, several ideas arose. These two are the major

ones:

One of the improvements considered is a different

algorithm for ball centre detection in the raw scan data (for

example, Fig. 4 shows slight asymmetry which is not taken

into account). Consecutively, as mentioned in paragraph

4.3, knowing the expected ball size, we calculate the

expected cone width at the measured distance from the

observer and compare that with the measured width,

discarding objects where these data does not correspond.

But we could also test the shape of the detected obstacle.

That might detect multiple balls located close to each other;

however, that might also compromise simplicity and speed

of the edge detection.

Secondly, the pairing might be improved. Currently, only

the position information is used. Adding speed and

direction to the pairing algorithm might help better

distinguish between two balls passing each other and

bouncing and thus exchanging their positions after they

separate.

Acknowledgment

This work was partially supported by the Czech Science

Foundation under the project No. P103/10/1287.

References

[1] A.M. Cheriyadat, B.L. Bhaduri, R.J. Radke,
“Detecting Multiple Moving Objects in Crowded
Environments with Coherent Motion Regions,” IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, 2008, p. 1-8.

[2] J. Shi, C. Tomasi, “Good Features to Track,“
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition CVPR-94, 1994, pp. 593-600.

[3] E. Rosten, T. Drummond, R. Boyle, “Machine
Learning For High-Speed Corner Detection.”
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition CVPR-94, 1994, pp. 430-443.

[4] B.D. Lucas, T. Kanade, “An Iterative Image
Registration Technique with an Application to Stereo
Vision,” Proc. of 7

th
 International Joint Conference on

Artificial Intelligence, 1981, pp. 674-679.
[5] N.T. Siebel, S.J. Maybank, “Fusion of Multiple

Tracking Algorithms for Robust People Tracking,”
Proceedings of the 7th European Conference on
Computer Vision ECCV’02 – Part IV, 2002, pp. 373-
387.

[6] J. Cui, X. Song, H. Zhao, H. Zha. R. Shibasaki, “Real-
Time Detection and Tracking of Multiple People in
Laser Scan Frames,” Augmented Vision Perception in
Infrared, 2009, p. 405-439.

[7] E. Parzen, “On Estimation of a Probability Density
Function and Mode,” Ann. Math. Statistics 33, 1962,
pp. 1065-1076.

[8] J. Cui, H. Zha, H. Zhao, R. Shibasaki, “Multi-modal
Tracking of People Using Laser Scanners and Video
Camera,” Image and Vision Computing 26 vol.2, 2008,
pp. 240-252.

[9] “SICK Robot Day 2012 Competition”,
http://www.sick. com/robotday2012

[10] H.W. Kuhn, “The Hungarian Method for the
Assignment Problem,” Naval Research Logistic
Quarterly, 1955 vol.2, pp.1-2.

[11] G. Welch, G. Bishop, “An Introduction to the Kalman
Filter,” University of North Carolina at Chapel Hill,
Department of Computer Science, 1995.

[12] “Boost C++ Libraries”, http://www.boost.org
[13] “OpenGL – The Industry’s Foundation for High

Performance Graphics”, http://www.opengl.org
[14] “Qt Project”, http://qt-project.org

Smart and Easy Object Tracking 33

