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Abstract: Genome rearrangements are large-scale muta-
tions that change the order and orientation of genes in
genomes. In the small phylogeny problem, we are given
gene orders in several current species and a phylogenetic
tree representing their evolutionary history. Our goal is
to reconstruct gene orders in the ancestral species, while
minimizing the overall number of rearrangement opera-
tions that had to occur during the evolution.

The small phylogeny problem is NP-hard for most
genome rearrangement models. We have designed a
heuristic method for solving this problem, building on
ideas from an earlier tool PIVO by Kováč et al 2011. Our
tool, PIVO2, contains several improvements, including
randomization to select among potentially many equally
good candidates in a hill-climbing search and a more effi-
cient calculation of distances between gene orders. Using
PIVO2, we were able to discover better histories for two
biological data sets previously discussed in research liter-
ature. The software can be found at http://compbio.
fmph.uniba.sk/pivo/.

1 Introduction

In evolution, genome rearrangements are rare genomic
events. They are large-scale mutations that change the or-
der and orientation of genes in genomes. The goal of our
work is to reconstruct likely gene orders in ancestral ex-
tinct species given gene orders in present-day genomes.
Such history reconstruction can help biologists to study
evolutionary processes shaping genomes of living organ-
isms.

In particular, we study the small phylogeny problem.
On input, we have a phylogenetic tree describing an evolu-
tionary history of a set of species. The leaves of the tree are
the extant (current) species, and the internal nodes are their
ancestors. We also know the order of genes in the genomes
of the extant species. The task is to reconstruct the gene
orders of the ancestors, while minimizing the overall num-
ber of rearrangement operations that had to occur during
the evolution (Fig. 1).

The exact definition of the problem depends on the
considered model of genome rearrangement. We use the
breakpoint model (Tannier et al., 2009) and the double-
cut-and-join (DCJ) model (Bergeron et al., 2006), which
we describe in detail in the next section.

The small phylogeny problem is NP-hard for most
genome rearrangement models, and it is in practice ad-
dressed by heuristic algorithms (Sankoff et al., 1976;
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Figure 1: An example of the small phylogeny problem.
We are given a tree as well as the gene orders in the present
day species S1, . . . ,S4. The task is to infer the gene orders
in ancestors S5,S6,S7.

Moret et al., 2001; Adam and Sankoff, 2008; Kováč et al.,
2011). In this paper, we describe a series of improvements
to a recent software called PIVO by Kováč et al. (2011).
Our new implementation, PIVO2, runs faster and is able
to find histories closer to the optimum, as we demonstrate
in a series of experiments on both real and simulated data.

2 Background and Related Work

Genes, chromosomes and genomes. To study genome re-
arrangements, genomes are typically represented as se-
quences of markers called genes. A gene is thus in this
context an identifier of a certain region in the genome.
Genes have an orientation, going from left to right or from
right to left. A sequence of genes is called a chromosome.
We will consider both linear chromosomes, which have
two ends called telomeres, and circular chromosomes,
which do not have a distinct start or end. A genome is
a set of chromosomes. In our work, we will consider a set
of genomes over a set of genes {1,2, . . . ,g} such that each
genome contains exactly one copy of each gene.

To represent genomes more formally, we will call the
two ends (extremities) of a gene its head and tail and de-
note them for gene a as a+ and a− respectively. A pair
of extremities located next to each other in a genome
is called an adjacency. Two consecutive genes do not
need to have the same orientation, and thus an adjacency
between genes a and b can be of four different types:
{a+,b−},{a+,b+},{a−,b−},{a−,b+}. If an extrem-
ity is not adjacent to any other gene, it is called a telom-
ere. We represent it by a singleton set {a−} or {a+}.
A genome is then a set of adjacencies and telomeres in
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Figure 2: Examples of three rearrangement operations: re-
versal, chromosome fusion and chromosome fission

which the tail and head of every gene appear in exactly
one adjacency or telomere.

Models of genome rearrangement. Genome rearrange-
ments are large-scale mutations that move one or several
genes to a different position or change the number or char-
acter of the chromosomes (Figure 2). The most common
rearrangement is a reversal (or inversion), which happens
when a chromosome breaks at two points and the middle
part is joined back in the opposite direction.

In literature, several genome models were developed
(Fertin et al., 2009), which allow us to measure distance
between two genomes by counting the minimum number
of rearrangements needed to transform one genome to an-
other.

In this work, we concentrate on the double cut and join
model introduced by Yancopoulos et al. (2005) and revised
by Bergeron et al. (2006). This model allows a single gen-
eral rearrangement operation called double cut and join
(DCJ). Informally, we break chromosomes at at most two
positions and rejoin them in a different way. The DCJ op-
eration is explained more formally in the following defini-
tion.

Definition 1. The double cut and join operation acts on
two adjacencies or telomeres A1 and A2 in one of the fol-
lowing three ways:

• If A1 = {p,q} and A2 = {r,s}, they are replaced by
adjacencies {p,r} and {q,s} or by adjacencies {p,s}
and {q,r}.

• If A1 = {p,q} and A2 = {r} (A2 is a telomere), they
are replaced by {p,r} and {q} or by {q,r} and {p}.

• If A1 = {p} and A2 = {q} (both are telomeres), they
are replaced by adjacency {p,q}.

In addition, as the inverse of the third case, an adjacency
{p,q} can be replaced by two telomeres {p} and {q}.

Using DCJ operations, we can simulate all the com-
mon genome rearrangement operations, including rever-
sal, chromosome fusion and fission, as well as circularisa-
tion and linearisation of chromosomes.

The distance between two genomes π and σ is in the
DCJ model defined as the minimal number of DCJ op-
erations that transform π into σ . It can be efficiently
computed using the adjacency graph AG(π,σ) (Figure 3).
This graph is a bipartite multigraph, with one partition for
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Figure 3: An example of the adjacency graph for genomes
shown in Figure 4.

each genome. The vertices correspond to the adjacencies
and telomeres of the two genomes. Every vertex v ∈ π
and w ∈ σ is connected by |v∩w| edges. So, if v and w
represent the same adjacency in both genomes, they are
connected by two edges. If v and w have one common ex-
tremity, they are connected by a single edge, and if they
have no overlap, they are not connected by any edge.

In the adjacency graph, every telomere has degree one
and every adjacency has degree two. If the two genomes
are equal, the graph consists of cycles of length two and
paths of length one. Bergeron et al. (2006) have proved
that the DCJ distance of genomes π and σ can be com-
puted as follows. Let g be the number of genes, c the
number of cycles in AG(π,σ) and pO the number of paths
of odd length. Then the DCJ distance between π and σ
is distDCJ(π,σ) = g− (c+ pO/2). This quantity can be
easily computed in O(g) time.

We will also consider a simple breakpoint model
(Sankoff and Blanchette, 1997), which does not describe
particular rearrangement operations, only defines the dis-
tance between two genomes. Informally, this distance
counts the number of breaks we need to introduce to the
chromosomes of one genome so that by joining them in a
different way we obtain the other genome. For multichro-
mosomal genomes, it was defined by Tannier et al. (2009)
as follows.

Definition 2 (Breakpoint distance). The breakpoint dis-
tance of genomes π and σ is:

distBP (π,σ) = g−a(π,σ)− e(π,σ)

2

where g is the number of genes, a(π,σ) is the number of
common adjacencies in genomes π and σ , and e(π,σ) is
the number of common telomeres in genomes π and σ .

For example, the genomes in Figure 4 have five genes
each, two common adjacencies and one common telomere.
Their breakpoint distance is then 5−2−1/2 = 2.5.

The Small Phylogeny Problem. In the small phylogeny
problem, we are given a phylogenetic tree and the
genomes of the extant species (see Figure 1). The task
is to compute the genomes of ancestors, while minimizing
the number of genome rearrangement operations required
during evolution. We now define individual terms more
formally.
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Figure 4: Breakpoint distance of the genomes is 5− 2−
1/2 = 2.5

A phylogenetic tree is a binary tree T = (V,E) rooted at
node r, describing evolutionary relationships among a set
of species. The leaves of the tree T are the extant species,
and each internal node represents the most recent common
ancestor of its children.

Let G be the set of all possible genomes on a particular
set of genes. An evolutionary history h is a function that
assigns a genome from G to every node of tree T = (V,E):
h : V → G. The score of history h is

score(h,T ) = ∑
(u,v)∈E

dist(h(u),h(v)),

where dist is the distance measure of the chosen rearrange-
ment model.

In the small phylogeny problem, we are given a phylo-
genetic tree T = (V,E) with leaves L ⊂ V . We are also
given a function g : L→ G, which assigns a genome to
every leaf node. The task is to compute the evolutionary
history h, which extends function g to cover all the nodes
of the tree, while having the lowest possible score.

The median problem is a special case of the small phy-
logeny problem for three species. We are given three
genomes and the goal is to compute the genome mini-
mizing the sum of distances to the three input genomes.
The median problem was shown to be NP-hard for most
rearrangement models, including multichromosomal DCJ
model (Tannier et al., 2009). One interesting exception is
the breakpoint distance, where the median can be com-
puted in polynomial time (Tannier et al., 2009). Being
more general, the small phylogeny is also NP-hard in most
models. The NP hardness of the small phylogeny problem
for the breakpoint distance was shown by Kováč (2014).

Solving the Small Phylogeny Problem. Probably the most
popular method for solving the small phylogeny problem
is the Steinerization method (Sankoff et al., 1976). In this
method, the algorithm iteratively improves the evolution-
ary history until a local optimum is found. In each itera-
tion, the algorithm chooses an internal node v and calcu-
lates median πM of the genomes in its three neighbouring
nodes ϕa, ϕb, ϕc. We replace the genome inside node v
with genome πM , if the new tree has a lower score. When
none of the internal nodes can be improved, the algorithm
has found a local optimum.

Although the median problem is NP-hard in most re-
arrangement models, several solvers have been developed
which in practice work in acceptable running time. The

h(g)

h(a) h(b)

h(e)

Ce : ce,1,ce,2,ce,3

Cg : cg,1,cg,2,cg,3,cg,4

h(c) h(d)

h( f )

C f : c f ,1,c f ,2,c f ,3

cg,1

h(a) h(b)

ce,2

h(c) h(d)

c f ,3

Figure 5: One iteration of the algorithm: For every in-
ternal node (red) the candidate sets are generated (green).
Then the PIVO algorithm selects the best combination of
the candidates (blue).

Steinerization method was used for example in BPAnal-
ysis software for the breakpoint model (Blanchette et al.,
1997) and in GRAPPA software (Moret et al., 2001) for
both the breakpoint and reversal models. The Steineriza-
tion method for the DCJ model was implemented by Adam
and Sankoff (2008). MGR (Bourque and Pevzner, 2002)
is another small phylogeny solver for the reversal model.
It uses a simple heuristic based on operations which bring
genomes closer to other genomes in the tree.

Our work is however based on a different algorithm
called PIVO, which encompasses and extends Steineriza-
tion approaches (Kováč et al., 2011). Next, we describe
this algorithm in more details.

The PIVO Software. The PIVO (Phylogeny by IteratiVe
Optimization) (Kováč et al., 2011) is a small phylogeny
solver, which similarly to previous approaches uses a lo-
cal search to iteratively improve initial history until a local
optimum is found. While Steinerization methods update
one internal node at a time, PIVO can potentially update
values in all internal nodes together. This sometimes al-
lows it to escape from situations where no internal node
can be improved on its own.

In every iteration, PIVO generates a set of candidate
genomes Cv for every internal node v of the tree. Although
Kováč et al. (2011) describe several strategies for gener-
ating these candidates, the PIVO software typically uses
as candidates for node v all genomes within DCJ distance
one from the current genome h(v).

The local search then computes a new history h′ by se-
lecting one genome from each candidate list Cv. The new
history is chosen so that it has the smallest score out of
all histories that can be produced by selecting values from
candidate lists (see Figure 5).

The new history h′ is computed by dynamic program-
ming as follows. Let us denote the i-th candidate of node v
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as cv,i. Let M[v, i] be the lowest possible score we can get
for the subtree rooted at v, if h′(v) = cv,i. For an internal
node v with set of children X , we can compute value M[v, i]
using the following recurrence:

M[v, i] = ∑
u∈X

min
j
{M[u, j]+dist(cv,i,cu, j)}.

In the first phase of the dynamic programming, the val-
ues M[v, i] are computed from leaves up (we set M[v,0] = 0
if v is a leaf). In the second phase, we choose candidates
from root down. In particular, in the root, we can select
any candidate with the lowest score. For each node u with
parent v, we select the candidate cu, j for which the sum
of M[u, j]+dist(h′(v),cu, j) is minimal. If n is the number
of species, g is the number of genes in every genome, and
k is the number of candidates in every internal node, then
the best candidates can be selected in O(ngk2) time (we
suppose that the distance can be calculated in O(g) time,
which is the case for both DCJ and breakpoint distances).
The PIVO algorithm is flexible, and it can work with sev-
eral genome rearrangement models and distances.

In practice, the local search is run several times from
different starting histories to increase the chance that
a near-optimal or optimal history will be found.

3 PIVO2 Algorithm

We have implemented a new version of the PIVO algo-
rithm, which we call PIVO2. Our main contributions are
randomization of candidate selection and a more efficient
algorithm for distance calculations in dynamic program-
ming. Before describing these two topics in more detail,
we briefly outline other changes made to the algorithm.

• The original PIVO software was written in Python;
we have reimplemented it in Java to improve the run-
ning time.

• In PIVO, the local search starts from a history in
which each internal node is initialized with a com-
pletely random genome. However, such histories are
usually very far from the optimum. In PIVO2, we
instead use the genomes of the extant species. In par-
ticular, every internal node v with children u and w is
initialized randomly with h(u) or h(w).

• Kováč et al. (2011) discuss several strategies for gen-
erating candidate list Cv in every iteration of the al-
gorithm. In PIVO2, we adapt the strategy, where the
candidate list Cv contains all histories within DCJ dis-
tance 1 from h(v). Optionally, we prune from this list
all histories that increase the sum of distances to cur-
rent histories in the three neighbours of v too much.

In PIVO2, we also add all genomes h(u) from the
old history to the candidate list of every node v. This
method allows genomes to "jump" from one node to
another.

Based on a proposal in Kováč et al. (2011), we op-
tionally also add the genomes from the previous so-
lutions to the candidate lists. The motivation is that
we may get a better evolutionary history by combin-
ing different solutions.

• To avoid making the same decision in repeated
searches, we have implemented a Tabu search meta-
heuristic (Glover, 1989a,b). The Tabu search tries
to avoid getting always the same local optimum by
keeping a tabu list of already visited configurations
and penalizing configurations that are already on the
list.

PIVO2 keeps a tabu list Tv for every internal node v.
This list contains genomes which were assigned to v
in one of the previously considered histories.

When the dynamic programming calculates the score
of a candidate cv,i, it adds a penalty 1/(|V |+ 1) to
the score, if the candidate cv,i is in the tabu list Tv.
Thus, if there are good candidates which were not
present in previous solutions, the candidate cv,i is
not selected. However, histories with a smaller re-
arrangement score will always be preferred, even if
they incur the tabu penalty in every node.

• In the DCJ model, a genome can be a mix of lin-
ear and circular chromosomes. However, in the real
world, the organisms usually have either one circular
or several linear chromosomes. PIVO was designed
to be flexible with respect to allowed chromosome
architectures, because it was used to study the mito-
chondrial genomes of yeasts from a group contain-
ing both linear and circular genomes (Valach et al.,
2011). The preferred type of genome architecture
(circular or linear) can be prioritised by penalizing
genomes which do not have the preferred structure.
In PIVO2 we have implemented more refined penal-
ties. In particular, if the minimum number of DCJ
operations to transform a given genome cv,i to a pre-
ferred genome architecture is r, we add penalty 2r to
M[v, i] in the dynamic programming algorithm. With
this penalty setting, the genomes in ancestral nodes
mostly have the preferred architecture.

3.1 Randomization of Candidate Selection in the
PIVO2 Algorithm

In the second phase of the dynamic programming algo-
rithm for candidate selection, the original PIVO software
always selects the first best candidate in each node. How-
ever, often there are multiple solutions with the optimal
score. By choosing the first one, PIVO makes the same
decision in repeated searches. In the PIVO2 algorithm, we
have introduced randomized candidate selection, in which
we choose a random history out of all combinations of can-
didates with the best score. The randomization ensures
that each of these evolutionary histories will be picked
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with equal probability. To do so, we need to extend the
dynamic programming algorithm as outlined below.

In the first phase of the dynamic programming, the
PIVO2 algorithm calculates the score M[v, i] of each can-
didate cv,i, but it also counts how many solutions with this
score exist in the subtree rooted at v, if cv,i is selected. This
value is denoted Q[v, i]. If node v has a child u, we first find
the set B[u, i] of candidates in Cu for which optimal value
for cv,i is achieved. This set is computed as follows:

B[u, i] = {cu, j ∈Cu |M[u, j]+dist(cu, j,cv,i) = M[v, i]}

If node v has children u and w, we can then use sets
B[u, i] and B[w, i] to compute Q[v, i]. First, the number of
solutions is summed in each subtree separately, and the
two sums are then multiplied.

Q[v, i] =

(
∑

j∈B[u,i]
Q[u, j]

)
·
(

∑
j∈B[w,i]

Q[w, j]

)

If node v is a leaf, we set Q[v,0] = 1.
In the second phase of the dynamic programming algo-

rithm, we start at the root r and consider the set of candi-
dates with minimal score:

B∗ = {cr,i | cr,i ∈Cr,M[r, i] is minimal}

The algorithm then selects candidate cr,i ∈ B∗ with proba-
bility Q[r, i]/Q[r], where Q[r] is the total number of solu-
tions with minimal score:

Q[r] = ∑
j: cr, j∈B∗

Q[r, j]

Choosing the candidate in other internal nodes is even eas-
ier, because it is already known, which candidate was se-
lected in the parent node. If node v is a child of node p
and if cp,k was selected in p, then the algorithm selects a
candidate from B[v,k]. The probability of selecting candi-
date cv,i ∈ B[v,k] is Q[v, i]/Q[v], where Q[v] is the number
of solutions with minimal score in the subtree rooted at v:

Q[v] = ∑
j: cv, j∈B[v,k]

Q[v, j]

This randomized selection can be implemented without in-
creasing the overall time complexity of the dynamic pro-
gramming algorithm.

3.2 Efficient Distance Computation in PIVO2

The PIVO algorithm computes distances between many
pairs of candidates. When it calculates the scores M[v, i]
of candidates of node v (with children u and w), it com-
putes distances between every pair of candidates from Cv
and Cu, and from Cv and Cw, respectively.

The PIVO2 algorithm uses the "Neighbour" and the
"Tree" strategies to generate candidate sets Cv. For every

π σ

σ1

σm

π1

πn

Figure 6: Efficient breakpoint distance calculation of a set
versus a set.

node v, the "Neighbour" method generates Θ(g2) candi-
dates, where g is the number of genes. These candidates
are in DCJ distance 1 from the genome assigned to node v
in the previous iteration. The "Tree" method generates
Θ(|V |) candidates. Usually, the number of genes is larger
than the tree size, and so g2� |V |. Therefore, the major-
ity of distance calculations is made on pairs of genomes
πi and σ j, such that all πi have distance 1 from a genome
π , and all σ j have distance 1 from a genome σ (see Fig-
ure 6). We have designed a faster method of calculating
the breakpoint and DCJ distances in such cases.

We first describe the algorithm for efficient break-
point distance calculation. To represent adjacencies in
a genome, we use array G, which for every extremity
stores its adjacent extremity (see Figure 7). We call G the
genome array. Telomere extremity e is stored as G[e] = e.
The head of gene a is represented at index 2a− 1 and its
tail at index 2a− 2. Every adjacency is thus stored twice
and telomeres are stored once.

Let Dπ,σ be the set of all indices where genome arrays
of genomes π and σ differ. We will call this set the differ-
ence set between π and σ . The breakpoint distance of π
and σ can be calculated as |Dπ,σ |/2, and is thus related to
the Hamming distance between the genome arrays repre-
senting the two genomes.

We will first describe a subroutine
update(π,σ ,σ ′,d,D), which gets genome arrays of
genomes π , σ and σ ′, the breakpoint distance d between
π and σ , and the difference set D between σ and σ ′. It
calculates the breakpoint distance between π and σ ′ in
O(|D|) time. We will initialize the distance with value d
and update it for every index i ∈ D as follows:

• If π[i] = σ ′[i], we subtract 1/2 from the distance.
This is because σ [i] 6= π[i], and thus index i con-
tributes value 1/2 to the distance between π and σ ,
but it does not contribute anything to the distance be-
tween π and σ ′.

• Otherwise if π[i] = σ [i], we add 1/2 to the distance.
This is because index i does not contribute anything
to the distance between π and σ , but contributes 1/2
to the distance between π and σ ′.

• Otherwise the distance does not change, because
π[i] 6= σ [i] and π[i] 6= σ ′[i], and thus index i con-
tributes 1/2 to both distances.

A DCJ operation cuts at most two adjacencies or telom-
eres and creates at most two new adjacencies or telomeres
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Index 0 1 2 3 4 5 6 7 8 9 10 11
Extremity -1 +1 -2 +2 -3 +3 -4 +4 -5 +5 -6 +6

Adjacent extremity -1 -2 +1 -3 +2 -4 +3 -5 +4 -6 +5 +6
Genome 1: 1 2 3 4 5 6 $

Index 0 1 2 3 4 5 6 7 8 9 10 11
Extremity -1 +1 -2 +2 -3 +3 -4 +4 -5 +5 -6 +6

Adjacent extremity +4 -2 +1 -3 +2 -4 +3 -1 -5 -6 +5 +6
Genome 2: 1 2 3 4 @ 5 6 $

Figure 7: Genome arrays of two genomes with breakpoint distance 1.5.

using the same extremities. Thus the difference set be-
tween the original and the new genomes will have size at
most four. During "Neighbour" candidate generation, we
know for every candidate which DCJ operation was per-
formed, and we can save this additional information as a
difference set without increasing the time complexity.

Let us now describe a method for calculating the break-
point distance between every pair of genomes πi ∈ A and
σ j ∈ B, where every πi ∈ A is a genome in DCJ distance
1 from a genome π , and every σ j ∈ B is a genome in DCJ
distance 1 from a genome σ (see Figure 6). We know for
every genome πi ∈ A the difference set Dπ,πi and for every
genome σ j ∈ B the difference set Dσ ,σ j . Our algorithm
first calculates the distance d of π and σ in O(g) time. The
computation of distance between πi and σ j then proceeds
in two update steps:

• d′ = update(π,σ ,σ j,d,Dσ ,σ j)

• distBP(πi,σ j) = update(σ j,π,πi,d′,Dπ,πi)

Our algorithm reduces the time complexity of comput-
ing distances between all pairs of genomes πi ∈ A and
σ j ∈ B from O(g · |A| · |B|) to O(g + u · |A| · |B|), where
u is the size of the difference sets. Note that in our case
u≤ 4, and thus it can be considered a constant.

Similar, but a more complex method also works for DCJ
distance calculation between all pairs of genomes πi ∈ A
and σ j ∈ B. Recall that to compute the DCJ distance, we
represent the two genomes as an adjacency graph, in which
each connected component is a cycle or a path. We can
compute the DCJ distance if we know the number of cycles
and paths of odd length in this graph.

For our algorithm, it is more convenient to divide each
vertex containing two extremities into two vertices con-
nected by an auxiliary edge. For example the vertex 1-
5+ in the top partition of Figure 3 is divided into vertices
1- and 5+ connected by an auxiliary edge. Regular edges
connect the new vertex 1- to its counterpart 1- in the other
genome and similarly for 5+. Each vertex then represents
one extremity in one of the genomes and cycles and paths
are simply lists of extremities. Note that auxiliary edges
are not counted when distinguishing paths of odd and even
lengths.

Instead of difference sets, we will now characterize the
differences between a pair of genomes by a set of discon-

nect and connect operations. Each disconnect operation
removes one auxiliary edge corresponding to a removed
adjacency between two extremities, and each connect op-
eration creates a new auxiliary edge, corresponding to a
new adjacency. A DCJ operation corresponds to at most
two disconnect and two connect operations.

We spend O(g) time to compare genomes π and σ . We
compute their adjacency graph, find its components and
compute the DCJ distance. We can then compute the DCJ
distance between πi ∈ A and σ j ∈ B in O(o3) time, where
o is the size of the connect and disconnect sets between
π and πi and σ and σ j respectively. To do so, we store
the positions of individual extremities in the components
of the original graph. We maintain each modified compo-
nent of the graph after updates as a list of intervals from
the original components (which are paths or cycles). By
appropriately linking these structure together, we can pro-
cess each update (connect or disconnect) in O(o2) time.
Details are omitted due to space constraints and can be
found in the thesis by Herencsár (2014). The overall run-
ning time to compute distances between all pairs is thus
O(g+o3 · |A| · |B|).

4 Experiments

In this section, we present the results of an experimental
comparison of PIVO2 to the original PIVO on real and
simulated data sets.

Real data. We have first run PIVO2 on two real biologi-
cal data sets previously considered in literature. The first
data set consists of 13 chloroplast genomes from plants
of the Campanulaceae family (Cosner et al., 2000), each
genome consisting of a single circular chromosome. The
reconstruction of ancestral genomes of these species un-
der the DCJ model was studied in several earlier works,
as outlined in Table 1. We consider two cases: when
ancestors are restricted to have a single circular chromo-
some and when their genome architecture is unrestricted.
In the unrestricted case, PIVO2 was able to achieve better
results than previous approaches, including PIVO. In the
restricted case, we match the score obtained by PIVO.

The second data set contains 16 mitochondrial genomes
of pathogenic yeasts from the CTG clade of Hemias-
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Table 1: Scores obtained by various algorithms for two
real data sets. All values except for PIVO2 were obtained
from literature.

Genome architecture
Software unichr. restr. any
Campanulaceae data set (13 genomes, 105 genes each)
ABC (Adam and Sankoff, 2008) 64 59
GASTS (Xu and Moret, 2011) 63 -
PIVO (Kováč et al., 2011) 59 59
PIVO2 59 56

Hemiascomycetes data set (16 genomes, 25 genes each)
PIVO (Kováč et al., 2011) 78 -
PIVO2 77 75

comycetes (Valach et al., 2011). As we have already dis-
cussed, these genomes have various architectures: some
consist of a single linear chromosome, one consists of two
linear chromosomes, and the rest consist of a single circu-
lar chromosome.

Due to this variability in the genome architecture of ex-
tant species, the ancestral genomes could have a single cir-
cular chromosome, or one or more linear chromosomes.
The original PIVO algorithm found an evolutionary his-
tory with score 78 (Kováč et al., 2011), and the PIVO2
algorithm found a better evolutionary history with score
77. If we allow ancestral genomes with an arbitrary archi-
tecture (including a mixture of circular and linear chromo-
somes in the same ancestor), an evolutionary history with
score 75 was found by the PIVO2 algorithm (no result was
published for the original PIVO algorithm).

Results on simulated data. We have also tested our algo-
rithm on simulated data and compared its speed and accu-
racy to the original PIVO software. To generate data, we
have used the phylogenetic tree of the Campanulaceae. A
random genome consisting of 25 genes was generated for
the root, and random evolution consisting of DCJ opera-
tions was simulated along branches of the tree. No restric-
tions were applied on the karyotype, i.e. an arbitrary mix
of linear and circular chromosomes was allowed. The ex-
tant genomes, which were produced by simulating random
evolution, were used as the input for both algorithms.

Overall, we have generated 5 such test cases, which dif-
fered by the number of mutations allowed along each edge,
ranging from 3 to 8. These histories have a relatively high
number of events in a short genome, and as a result, it
is often possible to find a lower-scoring history than the
one actually generating the data. For each input, we have
run both PIVO and PIVO2 local searches many times and
recorded the local optimum from each run. For each input,
the overall best history found by PIVO2 was better or the
same as the one for PIVO. In addition, the distribution of
local optima was shifted towards lower values for PIVO2,
as illustrated for one test case in Figure 8.

On each input, PIVO2 performed on average more iter-
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Figure 8: Histogram of scores of individual runs of lo-
cal search in PIVO2 (red) and PIVO (blue) on a simulated
test. The simulated history has score 103, the best result
by PIVO2 has score 100 and the best result by PIVO2 has
score 105.

ations of candidate selection than PIVO in each run. For
example on the input considered in Figure 8, the average
number of iterations for PIVO was 5.3 and for PIVO2 it
was 8.6. However, this increase is amply justified by the
fact, that the PIVO2 algorithm gives better results than the
original PIVO.

Finally, we have compared the speed of individual can-
didate selection runs, to asses the impact of our faster
distance calculation. The original PIVO algorithm was
written in Python, and the PIVO2 algorithm was reim-
plemented in Java. Inherently, Python runs slower than
Java, and therefore, it is difficult to compare the speed of
the two implementations meaningfully. According to our
measurements, PIVO2 (with efficient distance calculation
mode switched off) is approximately 6-7 times faster than
the original PIVO. As we will show next, PIVO2 runs even
faster in the efficient distance calculation mode.

We have again created several simulated test cases, but
in these tests we gradually increased the number of genes.
The PIVO2 algorithm was run with the efficient distance
calculation mode enabled or disabled, and we measured
the average time needed to compute the distances be-
tween each pair of candidates of two neighbouring internal
nodes. The results are shown in Figure 9. As we would
expect, the speedup increases with the number of genes,
because we have lowered the asymptotic complexity.

5 Conclusion

In this work, we have introduced several improvements to
the PIVO algorithm for reconstruction of ancestral gene
orders. The resulting software, PIVO2, was able to find
histories with better score and has a potential to be useful
for evolutionary studies on real biological data sets.

One possibility for further research is in the area of ef-
ficient distance computation. Our algorithm could be ex-
tended to sets of candidates which are likely to contain
clusters of very similar genomes, but these clusters are not
given explicitly in advance. The algorithm would have to
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Figure 9: Ratio of the time needed for basic and fast dis-
tance calculation for one pair of nodes. As the number of
genes in the genome increases, the speedup grows as well.

discover such clusters automatically, choose a representa-
tive of each cluster, compute distances between represen-
tatives and then adjust the distances for other members of
the clusters.
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Kováč, J., Brejová, B., and Vinař, T. (2011). A practical
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