
Analysis by Reduction of D-trees ∗

Martin Plátek

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Prague, Czech Republic

martin.platek@ufal.mff.cuni.cz

Abstract: The goal of this study is to introduce and ob-
serve analysis by reduction of dependency trees. We focus
on formalization of certain minimalistic properties of anal-
ysis by reduction of dependency trees, and its complexity
issues.

1 Introduction

We introduce analysis by reduction of D-trees (ARDT) in
order to give a new formal tool for study of individual de-
pendency trees in tree-banks, namely for the study of their
structural complexity. In this way we give at the same time
a tool for observations of properties of the whole tree-
banks, and their interesting subsets. We work in a way
which is close to the formal languages theory. We should
be able to study complexity issues of formal D-tree lan-
guages.

1.1 Analysis by Reduction Based on D-Trees

Analysis by reduction on D-trees is derived from analysis
by reduction of natural language sentences (AR), see [3],
helps one to study AR, and to identify a sentence depen-
dency structure and the corresponding grammatical cat-
egories of an analyzed language. ARDT is based upon
a stepwise simplification of a correctly composed D-tree
(e.g, correctly composed to a correct Czech sentence). It
defines possible sequences of reductions in the D-tree –
each step of ARDT consists in some cuts of some sub-
trees from the input D-tree; here, we allow the cuts of to
be accompanied by some shifts of (a) word(s) (node(s)) to
another horizontal position(s) in the D-tree.

Let us stress the basic constraints imposed on reduction
steps of surface ARDT:

(i) individual words (word forms), their morphological
characteristics and/or their syntactic categories must
be preserved in the course of ARDT;

(ii) a (grammatically) correct D-tree must remain correct
after its simplification;

(iii) shortening of any reduction would violate the princi-
ple of correctness

(iv) a D-tree D which contains a correct D-tree D′ as
a subtree, where D and D′ have the same root, must
be further reduced;

∗The paper reports on the research supported by the grant of GAČR
No. P202/10/1333.

(v) specially, an application of the shift operation is lim-
ited only to cases when a shift is enforced by the
correctness preserving principle (ii), i.e., a reduction
consisting of some cuts of only would result in an in-
correct word order.

Example 1.
(1) Petr.Sb se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

‘Peter – REFL – worries – about – father’
‘Peter worries about his father.’

Petr.Sb se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT ..AuxK

Petr.Sb se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT o.AuxP otce.Obj ..AuxK

delete delete

shift delete

shiftdelete

Figure 1: The schema of AR for sentence (1).
The analysis by reduction of sentence (1) can be summa-
rized with the scheme in Fig.1. Our example sentence can
be simplified in two ways (for simplicity, we do not make
distinction between upper and lower case letters at the be-
ginning of the sentence):
(i) either by deletion of the prepositional group o otce ‘for
father’ (according to the correctness constraint on the sim-
plified sentence, the pair of word forms must be deleted in
a single step, see the left branch of the scheme);
(ii) or by deleting the subject Petr (the right part of the
scheme); however, this simplification results in the incor-
rect word order variant starting with the clitic se (such po-
sition of a clitic is forbidden in Czech); thus the shift oper-
ation is enforced→shi f t Bojí se o otce. ‘(he) worries about
his father.’.
As these possible reductions are independent of each other,
we can conclude that the words Petr and o otce ‘for father’
are independent – in other words, both of them depend on
/ modify a word remaining in the simplified sentence, i.e.,
the verb and its clitic bojí se ‘(he) worries’.

Then, the reduction proceeds in a similar way in both
branches of AR until the minimal correct simplified sen-
tence→ Bojí se. ‘(He) worries.’ is obtained. This sentence
cannot be further reduced.

The order of reductions reflects the dependency rela-
tions, which are usually encoded in the form of so called
dependency tree, see Figure 2. Informally, the words are
‘cut from the bottom of the tree’; i.e., a governing node

V. Kůrková et al. (Eds.): ITAT 2014 with selected papers from Znalosti 2014, CEUR Workshop Proceedings Vol. 1214, pp. 68–71
http://ceur-ws.org/Vol-1214, Series ISSN 1613-0073, c© 2014 M. Plátek



must be preserved in a simplified sentence until all its de-
pendent words are deleted, see [2]. In other words, the
above described AR of the sentence (1) makes it possible
to see the analysis by reduction of the dependency tree for
sentence (1).

Petr.Sb

bojí.Pred

otce.Obj
se.AuxT

o.AuxP ..AuxK

Figure 2: The dependency tree of sentence (1).

2 Formal Apparatus

In the following we introduce and study a formal apparatus
which allows an algebraic and complexity characteriza-
tion (of properties) of analysis by reduction of dependency
trees informally outlined in the previous chapter. We work
with a finite proper alphabet (vocabulary) Σp (modeling
individual word forms), an alphabet of categories Σc, and
a composed basic alphabet Γ ⊆ Σp × Σc, which models
lexico-morphological disambiguations of individual word
forms.

To realize a projection from Γ∗ to Σ∗p and Σ∗c , respec-
tively, we define two homomorphisms, a proper homo-
morphism hp : Γ→ Σp and a categorial homomorphism
hc : Γ → Σc in the obvious way: hp([a,b]) = a, and
hc([a,b]) = b for each [a,b] ∈ Γ. Proper inclusions are
denoted by ⊂.

Example 2. Proper alphabet :
Σe

p ={ Petr, se, bojí , o, otce, . }
Categorial alphabet:

Σe
c = { Sb, AuxT, Pred, AuxP, Obj, AuxK }

Basic alphabet :
Γe = {b1 = [Petr,Sb], b2 = [se,AuxT], b3 = [boj,Pred],

b4 = [o,AuxP], b5 = [otce,Obj], b6 = [.,AuxK]}

In this paragraph, we introduce so-called D-structures
(Delete or Dependency structures). A D-structure captures
syntactic units (words and their categories used in an cor-
responding sentence) as nodes of a graph and their mutual
syntactic relations as edges; moreover, word order is rep-
resented by means of total ordering of the nodes.

A D-structure on Σp, Σc, and Γ is a tuple D =
(V,E,ord(V )), where the pair (V,E) is a directed acyclic
graph, V is its finite set of nodes, E ⊂ V ×V is its finite
set of edges. A node u ∈ V is a tuple u = [i,a], where
a ∈ Γ is a symbol (word) with a category assigned to the
node, and i is a natural number which serves for an unam-
bigous identification of the node u. Finally, ord(V ) is a
total ordering of V , usually described as an ordered list of
members from V .

Edges are interpreted as representations of syntactic re-
lations between respective lexical units, and ord(V ) serves

for a representation of the word order in the modelled sen-
tence. Let ord(V ) = ([i1,a1], · · · , [in,an]), we say that w =
a1 · · ·an is the string (sentence) of D and write St(D) = w.

Let D = (V,E,ord(V )) be a D-structure, card(V ) =
n, and ord(V ) = ([1,a1], [2,a2], · · · , [n,an]) for some
a1, · · · ,an. We say that D is a normalized D-
structure. Let D = (V,E,ord(V )) be a D-structure, D1 =
(V1,E1,ord(V1)) a normalized D-structure, (V,E) and
(V1,E1) are isomorphic, and St(D) = St(D1). We say that
D1 is a normalization of D.

We say that two D-structures are equivalent if they have
equal normalizations.

In the following we usually do not distinquish between
equivalent D-structures. Note that to any D-structure is its
normalization unambiguously determined.

Further we will work mostly with special D-structures
called D-trees. We say that a D-structure D =
(V,E,ord(V )) on Σp, Σc, and Γ is a D-tree on Σp, Σc, and
Γ if (V,E) is a rooted tree (i.e., all maximal paths in (V,E)
end in its single root).

Example 3. D-strom representing Figure 2:
Tr1 = ({[1,b1], [2,b2], [3,b3], [4,b4], [5,b5], [6,b6]},
{([1,b1], [3,b3]), ([2,b2], [3,b3]), ([4,b4], [3,b3]),
([5,b5], [4,b4]), ([6,b6], [3,b3])},

([1,b1], [2,b2], [3,b3], [4,b4], [5,b5], [6,b6]))

Let D = (V,E,ord(V )), D1 = (V1,E1,ord(V1)), where
(V1,E1) is a subtree of (V,E) which contains the root of D,
and ord(V1) is a permutation of a subsequence of ord(V ).
Then we write D1 ⊂ D.

Example 4. D-strom representing a subtree of Tr1:
Tr2 = ({[1,b1], [2,b2], [3,b3], [6,b6]},
{([1,b1], [3,b3]), ([2,b2], [3,b3]), ([6,b6], [3,b3])},
([1,b1], [2,b2], [3,b3], [6,b6]))

We can see that Tr2 ⊂ Tr1.

We say that a set T of D-trees on Σp, Σc, and Γ is
a D-language on Σp, Σc, and Γ. We write T ∈D(Σp,Σc,Γ).
We say that St(T ) is the string language of T, hp(St(T ))
is the proper language of T , and hc(St(T )) the categorial
language of T .

Now we introduce a basic operation for analysis by re-
duction on D-trees. It is determined by a node u of a D-tree
which is not the root of the D-tree We call this operation
an u-cut). Note that any node u of a D-tree D, where u is
not the root of D, unambiguously determines a partition of
D into two subtrees:

1) lower subtree TL(u,D) of D by u, i.e. such a maximal
subtree of D containing only nodes on some path leading
to u (including the node u),

2) upper subtree TU (u,D) of D by u, i.e. such a max-
imal subtree of D containing the root of D, and all nodes
which are not from TL(u). An u-cut on D transforms D to
TU (u,D). We denote such a u-cut (directly) by TU (u,D).
We can see that TU (u,D) is again a D-tree .

Now we introduce an operation called shift, suitable
for an enhancement of analysis by reduction on D-trees.

Analysis by Reduction of D-trees 69



A shift means a move of a single node of a D-tree to some
new place in its ordering, i.e., only the total ordering of the
set nodes is changed.

Consider u-cuts and shifts being the only operations al-
lowed on (a set of) D-trees. Based on these operations, we
can naturally define a partial order�T on a D-language T .
We say that t1 is Dt-reduced to t2 in T and write t1 �T t2
iff:

1. t2 is is obtained from t1 by a sequence O of u-cuts
possibly followed by some shifts (O contains at least
one u-cut); t1

O→ t2;

2. the application of any proper subsequence O′ of O on
u would end up with a D-tree outside T .

3. Let TU (u,D) be an u-cut from O. Any substitution of
TU (u,D) by some TU (v,D) in O such that TU (u,D)⊂
TU (v,D)⊂ D would end up with a D-tree outside T .

By �+
T we denote transitive, non-reflexive closure of �T .

Example 5.
Tr3 = ({[2,b2], [3,b3], [6,b6]},
{([2,b2], [3,b3]), ([6,b6], [3,b3])}, ([3,b3], [2,b2], [6,b6]))

Let T1 = {Tr1,Tr2,Tr3}. We can see that

Tr1 �T1 Tr2 �T1 Tr3,

and that the Dt-reduction Tr2 �T1 Tr3 uses a shift.

The partial order �T naturally defines the set Lmin
�T

of min-
imal D-trees in T :

Lmin
�T

= {v ∈ T | ¬∃u ∈ T : v�T u}.

Example 6.
Tr4 = ({[2,b2], [3,b3], [4,b4], [5,b5], [6,b6]},
{([2,b2], [3,b3]), ([4,b4], [3,b3]), ([5,b5], [4,b4]),
([6,b6], [3,b3])},

([3,b3], [2,b2], [4,b4], [5,b5], [6,b6]))

Let T2 = {Tr1,Tr2,Tr3,Tr4}. We can see that

Tr1 �T2 Tr2 �T2 Tr3, Tr1 �T2 Tr4 �T2 Tr3,

, and that the Dt-reductions Tr2 �T2 Tr3, and Tr1 �T2 Tr4
use a shift.

Further we can see that Lmin
�T2

= {Tr3}.

2.1 Analysis by Reduction for a D-Language

Let T be a D-language. We write DtP(T ) ={ u�T v|u,v∈
T}. We say that DtP(T ) is the DS-precedence set for T .

We say that DtP(T ) is an analysis by reduction AR(T )
for T if AR(T ) = DtP(T ), and T = Lmin

�T
∪{v;∃u,v�T u ∈

AR(T )}, and Lmin
�T
⊆ {v;∃u,u�T v ∈ AR(T )}.

We can see that DtP(T ) is determined unambiguously
by T . Therefore, if T have some analysis by reduction, the
analysis by reduction AR(T ) is determined unambiguously
by T .

Example 7. We can see that
AR(T2) = {Tr1 �T2 Tr2, Tr2 �T2 Tr3, Tr1 �T2 Tr4,

Tr4 �T2 Tr3} .

2.2 Lexical Complexity

Let T ∈ D(Σp,Σc,Γ) be a D-language. We suppose in
the following that the alphabets (vocabularies) Σp,Σc,Γ
are minimal due to T , i.e., any removing of some sym-
bol of some of this alphabets would cause some removing
of some D-tree(s) from T . The syntactic analysis of nat-
ural languages is from the point of view of computational
linguistic a very difficult task. One of the main reasons of
this fact is the enormous size of vocabularies correspond-
ing to Σp,Σc,, and Γ. E.g. we have access to vocabu-
lary with circa 700 000 items for Czech word forms. An-
other source of complexity for the syntactic analysis is the
lexical ambiguity in the vocabularies corresponding to Γ.
E.g., the Czech word jarní has 28 different morphologi-
cal disambiguations. In the following paragraph we fo-
cus on such type of structural complexity measures which
will witnesses relative structural simplicity of dependency
trees for Czech sentences.

2.3 Structural Complexity

With respect to the previous motivation, we focus on the
number of cuts and shifts used in individual Dt-reductions,
and on the number of nodes deleted in individual Dt-
reductions. We use particular abbreviations for languages
with restriction on these complexity measures. In particu-
lar, prefix Dt- is used to identify the D-languages without
any restriction, and Dc- is used for languages with cuts
only. Further, the prefix c(k)- is used to indicate that at
most k cut-operations are available in one Dt-reduction.
We use the syllable de(i)- for languages with at most i
deleted nodes in a single Dt-reduction, and s(j)- for lan-
guages with at most j shifts in a single Dt-reduction.
For each type X of restrictions, we use D(X) to denote
the class of all D-languages with Dt-reductions fullfil-
ing X-restrictions. Further, Dn(X) denote the classes of
D-languages which are determined by D-languages with
D-trees which can be reduced by Dt-reductions fullfiling
X-restrictions at most n-times.

Let T2 be the D-language given by Example 6. We can
see that T2 ∈ D2(c(1)-s(1)-de(2)-Dt), and that this com-
plexity classification of T2 is optimal.

Let us consider all purely dependency D-trees from the
Prague Tree-Bank ([1]). We believe (by our observations)
that this set is a subset from D100(c(1)-s(1)-de(7)-Dt).
The most important observation is that the analysis by re-
duction of pure dependency trees is characterized by one
cut in one Dt-reduction. If we should consider also coor-
dinations etc., the situation will be surely more complex.

70 M. Plátek



2.4 Hierarchies

We are able to show that there are infinite hierarchies of
formal (in)finite D-languages with analysis by reduction
based on the measures c(i), s(i), and de(i).

We plan also introduce and study hierarchies based on
the degrees of discontinuity and/or non-projectivity of in-
dividual Dt-reductions, and all that to model by restarting
automata.

Conclusion and Perspectives

We have introduced analysis by reduction of D-trees in or-
der to formally characterize the basic properties of the de-
pendecy based syntactic analysis of Czech sentences. We
will show in the close future that it is a fine tool for the de-
scription of structural complexity and ambiguity of natural
language (Czech) sentences.

References

[1] Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr
Pajas, Jan Štěpánek, Jiří Havelka, Marie Mikulová, Zdeněk
Žabokrtský, and Magda Ševčíková-Razímová. Prague
Dependency Treebank 2.0. Linguistic Data Consortium,
Philadelphia, 2006.

[2] Markéta Lopatková, Martin Plátek, and Vladislav Kuboň.
Modeling Syntax of Free Word-Order Languages: Depen-
dency Analysis by Reduction. In Matoušek, V. et al., edi-
tor, Proceedings of TSD 2005, volume 3658 of LNCS, pages
140–147. Springer, 2005.

[3] Martin Plátek, Markéta Lopatková, and Dana Pardubská. On
Minimalism of Analysis by Reduction by Restarting Au-
tomata. In Accepted for Conference on Formal Grammar
2014. Springer.

Analysis by Reduction of D-trees 71




