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Abstract: In the past decade, automated astronomical ob-
servatories collected huge amounts of data which can no
longer be explored by astronomers individually. In our
case, we deal with optical spectra produced by multi-
object low-resolution spectrographs. Due to lower res-
olution and higher level of noise in such surveys, indi-
vidual spectra rarely offer reliable information; however,
since many similar objects expectedly exist in the uni-
verse, global analysis of the spectrum database may reveal
classes of objects sharing similar properties. In this paper,
we propose a novel evolutionary approach to classification
of spectral data which is expected to achieve finer level of
detail than traditional methods. Furthermore, we describe
the most computationally-intensive parts of the method in
the form of parallel cache-aware algorithm.
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1 Introduction

Studying the spectra of celestial objects was the key to
many (if not the majority) of astronomical discoveries of
the last two centuries and it still remains the most valuable
instrument in stellar astronomy.

Stellar spectrum is a recording of radiation intensity in
the frequency domain, usually over a range of visible or
near-infrared wavelengths. The most prominent features
of a stellar spectrum are its general shape (also called con-
tinuum), absorption lines, and emission lines. In most
studies including our approach, the absorption lines are
considered the most important features.

Spectra reveal significant clues about the chemical com-
position, temperature, and velocity of the observed object;
however, the interpretation of the observed facts is difficult
because different physical processes may result in similar
observations.

Large surveys like the Sloan Digital Sky Survey
(SDSS) [1] produce hundreds of thousands spectral mea-
surements using multi-object spectrographs. These de-
vices have lower resolution than single-object spectro-
graphs by design; in addition, the nature of a large survey
requires that relatively fainter objects are measured. Con-
sequently, the measured spectra often lack enough detail
required by traditional classification methods; in particu-

lar, individual measurement of absorption lines is possible
only in the cases of most prominent lines.

This lack of detail may be balanced by a global ap-
proach where a model of the spectrum is compared to
the measured intensity along the complete width of the
spectrum, instead of focusing on the prominent lines only.
Models of stellar spectra can either by synthesized from
the theory or based on the measurement of well-studied
prototype objects, including the Sun. Astronomers have
created libraries of synthetic spectra with varying number
of parameters [2, 3] . To match a real observation, the
model parameters must be determined; a number of meth-
ods has been already proposed based on machine learn-
ing [4], principal component analysis [5], or combined
methods [6].

Unfortunately, some scientifically interesting classes of
objects like Be stars still lack sufficiently general mod-
els and their variability, given by their nontrivial geome-
try, makes parameter determination difficult even for sim-
ple models. Therefore, the classification of such objects
into subclasses is still based rather on specific features
observed in their spectra [7] than on the parameters of
a matching physical model.

Our proposed approach is inspired by evolutionary al-
gorithms. The goal of the method is to create synthetic
spectra to match the observations; however, the synthetic
spectra are not based on a physical model of the object. In-
stead, each synthetic spectrum is matched against as many
observations as possible, trying to cover the given set of
observations by as few synthetic spectra as possible. Of
course, the observed objects are often similar but not com-
pletely identical. Therefore, each synthetic spectrum is
allowed to undergo a transformation before matching to
an observation; the evolutionary algorithm tries to evolve
both the synthetic spectra and the transformation parame-
ters at once.

Compared to the traditional meaning of the synthetic
spectra, the physics in our model is greatly reduced: The
set of the lines in our synthetic spectrum is not derived
from the assumed chemistry of the object but simply
placed to match the observations. On the other hand, the
profiles of the lines are physically sound (corresponding
to the effect of Doppler broadening), and also the transfor-
mations of the spectra correspond to physical variations
like differences in temperature or radial velocity.
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If such a synthetic spectrum is successfully matched to a
set of observed objects, each of the matched observations
require different parameters of the spectrum transforma-
tion. Consequently, the synthetic spectrum corresponds
to a hypothetical object whose spectral characteristics are
close to all the matched objects and the transformations re-
quired to match the individual objects are related to the dif-
ference between the hypothetical object and the observed
object.

Our synthetic spectrum does not offer any physical
model; however, if a model is assigned to the synthetic
spectrum by other means, e.g., by the inspection by an as-
tronomer, the model will probably apply to the observed
objects as well. In addition, the physical meaning of the
spectrum transformation allows the determination of the
required change in parameters of the assigned model, in-
cluding the verification whether the change is physically
plausible. Nevertheless, the physical interpretation of the
transformation is not a part of our method; the physi-
cal background of the transformation merely serves as a
means of defining physically relevant notion of similarity.

The main purpose of the method is the reduction of the
number of spectra that must be inspected manually; con-
sequently, there is no strict requirement of separation of
the resulting clusters, only the requirement for high intra-
cluster similarity.

The paper is organized as follows. Section 2 revises
related work in the fields of spectra classification and evo-
lutionary algorithms. The following section describes the
mathematical background of our synthetic spectra, their
transformation, and how they are matched to the ob-
servations. Section 4 describes our co-evolution algo-
rithm. Section 5 summarizes the approach and suggests
the modes of its application.

2 Related Work

The idea of the astronomic spectra classification is not
completely new. In the past, the most preferred ap-
proach was based on the examination of significant spec-
tral line [8, 9].

Bazaghan [10] proposed the self organizing maps as an
unsupervised artificial neural network algorithm for clas-
sification of the stellar spectra. Jiang et al. [11] used prin-
cipal component analysis methods to reduce dimensional-
ity of the data, where only the first two eigenvectors are
selected. Furthermore, they proposed a hierarchical clus-
tering method for the data mining approach.

Bromová et al. [7] attempted to employ wavelets as de-
scriptors of the stellar spectra. The spectra were sampled
by discrete wavelet transformation and various transfor-
mations of the coefficients into Euclidean space were used,
thus the descriptors were simple vectors. The k-means al-
gorithm [12] was applied on the descriptors to find similar
spectra, especially to identify the spectra of Be stars. Their
implementation achieved 76% precision on a sample set of

656 spectra with manually annotated ground truth; how-
ever, the sample set consisted of high-precision low-noise
spectra from a single-object spectrograph. When applied
to multi-object spectrograph measurements, the precision
was lost.

A simpler technique [13] used 2D curves like the Bezier
curve to approximate the histogram and then compare the
coefficients or the defining points of the curves.

Evolutionary algorithms and especially genetic algo-
rithms have been used for various types of classification
and clustering problems. As a representative, we have se-
lected the work of Maulik [14], which proposes a cluster-
ing technique based on genetic algorithm. The algorithm
is similar to the k-means clustering algorithm [12], but the
centroids are a population of individuals which is refined
using the genetic approach.

In physics, genetic algorithms have been used for clas-
sification and pattern recognitions in mass spectra. Lavine
et al. presented a genetic algorithm for classification of
wood types measured by Raman spectroscopy [15]. A
year later, Lavine presented more generalized version of
the genetic algorithm for pattern recognition in mass spec-
tra [16]. However, the aim of these methods is the clas-
sification into reliably defined and well separated classes
of materials while our goals include discovering of such
classes.

Another approach to mass spectra analysis was devised
by Geurts et al. [17]. Their method is based on assembling
a decision tree which detects proteomic biomarkers in the
spectrum. Their objective was to devise a method for au-
tomated detection of various diseases in the body fluids.

3 Mathematic Model

Each synthetic spectrum Si is defined as a set of lines; each
line is determined by its position l, width w, and inten-
sity d.

Si = {〈li,1,wi,1,di,1〉, ...,〈li,ni ,wi,ni ,di,ni〉}
The line parameters are expressed in units that allow

easy application of physically relevant transformations:
the position is expressed as the logarithm of wavelength
because Doppler shifts act as multipliers of the wave-
length, the width uses a unit corresponding to the temper-
ature associated to Doppler broadening, and the intensity
is measured using the logarithm of attenuation which is
proportional to the density of the gas generating the ab-
sorption line.

Each line generates wavelength-dependent attenuation
corresponding to Doppler broadening, described by the
function

Al,w,d(λ ) = e−de−((log10λ−l)/w)2

Since computing the value of this function is expensive
and cannot be vectorized, the function is tabulated in our
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implementation, using equidistant sampling in the four di-
mensions log10λ , l, w, and d. In log10λ , the sampling
points are equal to the sampling points of the observed
spectra (which are, fortunately, normalized to equidistant
in our database). In l, w, and d, the approximation was
improved by quadratic interpolation, i.e., using tabulated
values of A and all its first and second partial derivatives.
In addition, the following equivalences are used to reduce
the number of samples:

Al+x,w,d(λ ) = Al,w,d(λ ·10−x)

Al,w,d1+d2(λ ) = Al,w,d1(λ ) ·Al,w,d2(λ )

Using these tricks, the number of samples, required to
achieve the precision similar to the precision of the mea-
sured spectra, was reduced to approx. 3 ·106. This amount
could easily fit into the memory but still poses significant
burden on the cache hierarchy, requiring careful design of
the algorithm.

The transformation of the spectrum consists of a global
change to all line parameters and multiplication of the re-
sulting attenuation curve by a black-body radiation curve
BT for the temperature T . The resulting synthetic spec-
trum curve is defined as:

Ci,T,l′,w′,d′(λ ) = BT (λ ) ·
ni

∏
j=1

Ali, j+l′,wi, j ·w′,di, j ·d′(λ )

Thus, each transformed spectrum is defined by the quin-
tuple 〈i,T, l′,w′,d′〉 where i is the index of base spectrum
and P = 〈T, l′,w′,d′〉 are the parameters of the transforma-
tion

3.1 Matching Synthetic Spectra to Observations

Matching against the observed spectrum O incorporates
another physically relevant transformation – multiplying
the value by a factor m reflecting the both the absolute lu-
minosity of the object and its distance from the observer.
The value of m is determined using the method of least
squares, i.e., minimizing the sum

R = ∑
λ

(O(λ )−m ·C(λ ))2

σ2(λ )

In this definition, the quadratic residua are divided by
variance σ2(λ ) estimated for each measured wavelength.
The inverse variance 1

σ2(λ ) is a part of the SDSS data along
the flux O(λ ). The application of estimated variance al-
lows to suppress the parts of the measured spectra affected
by the noise caused by the atmospheric background.

The minimal value of R is

Rmin = ∑
λ

O(λ )2

σ2(λ )
−

(∑λ
O(λ )·C(λ )

σ2(λ ) )2

∑λ
C(λ )2

σ2(λ )

Since we need a measure of the match quality which is
consistent over differently luminous objects, we use a nor-
malized form of the sum:

∆(O,C) = 1−
(∑λ

O(λ )·C(λ )
σ2(λ ) )2

∑λ
O(λ )2

σ2(λ ) ·∑λ
C(λ )2

σ2(λ )

This function may act as a distance between the ob-
served spectrum O and the synthetic spectrum S, albeit its
symmetry is broken by the fact that the variance σ2 is as-
sociated to the observation. Since the presence of the σ2

factors is merely a technical trick to minimize the influ-
ence the sky background and it does not significantly af-
fect the method, we will omit the σ2 data in the description
of the evolutionary algorithm, for simplicity.

4 Evolutionary Algorithm

Assume that we have a set of observations O =
{O1, ...,Om}.

As stated in the previous section, our goal is to establish
a set of synthetic spectra S = {S1, ...,Sn}, and to assign one
of the synthetic spectra to every observation together with
a set of transformation parameters.

Nevertheless, the nature of evolutionary algorithms re-
quire a population of candidate solutions – in our case, it
means that every observation may be assigned to several
spectra from the set S, each with different transformation
parameters.

Thus, our population consists of two parts: A set S of
synthetic spectra and a set P = {P1, ...,Pp} of pairings.
Each pairing is a tuple

Pk = 〈ik, jk,Tk, l′k,w
′
k,d
′
k〉

where ik is the index of a base synthetic spectrum, jk is
the index of an observed spectrum, and 〈Tk, l′k,w

′
k,d
′
k〉 are

the parameters of the transformation as described in the
previous section. In other words, Pk is a link between the
synthetic spectrum Sik and the observation O jk .

The quality of each pairing Pk is evaluated using the pre-
viously defined distance function ∆:

q(Pk) = 1−∆(O jk ,Cik,Tk,l′k,w
′
k,d
′
k
)

In traditional settings, the fitness function q would con-
trol the evolution of the population P and defining mu-
tation and/of crossover operators over P members would
be sufficient to create a working evolutionary algorithm.
However, in our case, we must simultaneously evolve also
the set S of the synthetic spectra.

The structure and flow of data is depicted in Figure 1.

4.1 Symbiotic Evolution

Our population consists of two parts, S and P, which shall
evolve simultaneously like a pair of different species liv-
ing in a common environment. In addition, the members
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Figure 1: Synthetic spectra transformation and matching

of P are linked to members of S, resembling symbiosis be-
tween the two species. The symbiosis is asymmetric as
each individual from S hosts several individuals from P.

Although there are numerous examples of such symbio-
sis in the nature, only few attempts [18] exist to transfer
this mechanism to the world of evolutionary algorithms.

Such a symbiosis requires to solve a set of additional
problems:

• If S was fixed, the population P could be divided
into isolated islands attached to individual observa-
tions from O, evolving independently. However, the
co-evolution of S causes that all members of P may
mutually interfere through the S population.

• The transformation expressed by a P individual is not
able to hit the associated observation perfectly; the
minimal possible distance (however measured) from
the observation depends on the associated S individ-
ual. Thus, some P individuals may approximate their
objects more easily than others. Consequently, en-
forcing a global fitness function for P would pre-
maturely kill individuals attached to those observa-
tions from O which are hard to approximate. In other
words, there is no globally acceptable fitness function
for P members; instead, P members must be com-
pared only locally among the subset attached to the
same observation.

• A fitness function must be defined for the members
of S. Naturally, it shall be based on the fitness of the
P members linked to the evaluated individual of S.
However, merely summing the fitness will not work
due to the expected large differences in the number of
linked P members.

• Migration (i.e., re-linking a P member to a different S
member) must be supported as an equivalent to mu-
tation of the P member. Consequently, a notion of
distance must be defined on S in order to favorize
short-distance migrations over long-distance ones –
i.e., small mutations over large ones.

• Poor-fitness S members must not die-out because P
members may be linked to them.

In our approach, these problems are addressed as fol-
lows:

The system keeps track of family relationships in the set
S. It means that, when an individual is created by muta-
tion or crossover, the source individuals are preserved and
the parent-child relation is saved in the form of a directed
acyclic graph. Fortunately, the S individuals are shared
and thus significantly less numerous than the P population;
consequently, storing the complete history of its evolution
is feasible.

Keeping S members forever solves the problem of or-
phaned P members. Nevertheless, the main advantage is
elsewhere:

The graph of relationships allows distance measurement
between the members of S, consistent with the factual dif-
ference of the corresponding synthetic spectra. If two
members of S share a common ancestor, the number of
generations between them and the ancestor may be used
as a measure of distance. Assuming that the genetic oper-
ators represent movement to small distances in the space
of spectra, close relatives in the S graph are close also in
the space. Of course, the converse implication is not true,
because distant nodes in the S graph may also represent
neighbors in the spectral space.

This notion of distance is used in the mutation of P
members: A P member may randomly relocate to a dif-
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ferent S individual; however, only to a sibling or a child of
its previous host – this way, the relocation preserves local-
ity in the space of spectra.

In addition, the relocation of the P members is con-
trolled by their fitness: Poorly fit individuals relocate to
siblings in an attempt to find a replacement for the current
poorly fitting host. Well fit individuals relocate to children
of their host, attempting to improve the fitness.

The evolution of S members must support the need for
relocation of P members. It means that S members oc-
cupied by a number of well-fit P members must generate
offspring to enable their relocation. In other words, the fit-
ness of an S member, being a controller of its fertility, must
reflect the sole presence of well-fit P members, regardless
of their number and independently of the presence of other
P members.

This approach is detailed in Algorithm 1. The algorithm
contains a number of steps that require tuning or may be
realized in different ways. For instance, the vague final
condition on line 3 may be implemented as a check for
stagnating summary fitness over the P population; how-
ever, in many cases, it would be rather limited by the com-
puting resources available.

Algorithm 1 The co-evolution algorithm
Require: O the observations ; N, t, MM, MX evolution pa-

rameters
1: S := random population of spectra
2: P := random population of pairings on S×O
3: while not satisfied do
4: compute the fitness q(Pk) for every Pk ∈ P
5: for every O j ∈ O, determine P′j = the top N associ-

ated P members according to q
6: P′ :=

⋃
j P′j

7: for every Si ∈ S, determine n(Si) = the number of P′

members hosted by Si
8: S′ := {Si ∈ S | n(Si)> t}
9: for every Si ∈ S′ generate MM children of Si by ran-

dom mutation
10: randomly select MX pairs from S′ for crossover
11: relocate every Pk ∈ P′ to a randomly selected child

of the linked S member
12: relocate every Pk ∈ P \ P′ to a randomly selected

sibling of the linked S member
13: end while

4.2 Parallel Implementation

The most computationally intensive part of the co-
evolution algorithm is the calculation of population fitness.
Thanks to the tabulation of line curves, the computation
consists mostly of multiplication and addition. These sim-
ple operations are well supported by SIMD instructions of
contemporary CPU’s; consequently, the throughput of the
arithmetic unit is very high, in the order of 1010 operations
per second per core.

Given the high performance of the arithmetic unit, the
memory and cache subsystem becomes the bottleneck of
the algorithm. Furthermore, the observed spectra are
matched against the base synthetic spectra almost ran-
domly and the base spectra are also created from essen-
tially randomly selected line curves. Consequently, iter-
ation along the population would lead to random access
both to the tabulated line curves and to the database of ob-
served spectra. Thus, such a naive approach would lead to
poor cache hit ratios and, consequently, poor performance.

To improve the performance of the fitness calculation,
we developed the Algorithm 2. The algorithm is based
on dividing the data into appropriately sized groups which
can fit in a level of the memory hierarchy:

The data set O of observed spectra may be so large that
it must be located in external storage. Consequently, it
must be divided into groups {GO

j } and processed group-
by-group. The size of every GO

j group shall be selected
so that the corresponding spectra fit into the last level of
cache. For our Xeon CPUs with 8 MB L3 caches, the
optimal group size was about 50 spectra.

The set of tabulated line curves is typically slightly
larger than the last level of cache; therefore, it is di-
vided into groups {GA

n}. To manage the division, the lines
that constitute the synthetic spectra must be collected and
sorted according to the associated line curves (line 9 of
Algorithm 2).

To employ parallelism while avoiding locking, every
GO

j group must be further divided into as many groups
as there are computing units. To balance the size of the
groups, the division is done indirectly, dividing the set of
lines sorted along the observed spectra (line 12 and 13)
into equivalently sized groups {GL

m}.

5 Conclusion

Our evolutionary algorithm categorizes observations into
sets represented by a common synthetic spectrum – this
spectrum offers a reasonable representative of the set of
observations.

Furthermore, the method may improve the comprehen-
sibility of the spectrum, because the evolution of the syn-
thetic spectrum produces results similar to the averaging of
the observations in the associated set. Averaging measure-
ments is a well-established technique used for improving
the signal-to-noise ratio; however, raw averaging would
produce invalid results due to differences in the measure-
ment conditions like Doppler shifts. Our method helps to
find the set to be averaged and, at the same time, it suggests
transformations whose inversions shall be applied before
averaging.

Although our approach is similar to clustering and
similarity-based methods, there is a principal difference:
Our method does not guarantee that similar objects will
be arranged in the same set. There is only a complemen-
tary guarantee that the objects in the same set are similar.
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Algorithm 2 Parallel fitness calculation algorithm
Require: O the observations ; A line curves ; S synthetic

spectra line lists ; P pairings and transformation pa-
rameters

Ensure: fitness value q(Pk) for every Pk ∈ P
1: for each group GO

j ⊆ O of observed spectra do
2: read the group GO

j into memory
3: L′ := /0
4: for each pairing Pk ∈ P associated to a spectrum

from GO
j [in parallel] do

5: allocate and initialize buffer Ck for the trans-
formed spectrum

6: compute transformed line list L′k from the base
line list and the transformation parameters

7: L′ := L′∪L′k
8: end for
9: sort L′ by the index of the referenced line curve

10: for each group GA
n ⊆ A of the line curves do

11: determine the range L′′ ⊆ L′ corresponding to GA
n

12: sort L′′ by the index of the observed spectrum
13: for each group GL

m ⊆ L′′ [in parallel] do
14: for each transformed line 〈k, l,w,d〉 ∈ GL

m do
15: multiply the line curve Al,w,d to the buffer Ck
16: end for
17: end for
18: end for
19: for each pairing Pk ∈ P associated to a spectrum

from GO
j [in parallel] do

20: compute fitness q(Pk) of Ck w.r.t. the associated
spectrum

21: end for
22: end for

Even more, the sets may intersect, so the method must be
perceived only as a means of reducing the number of ob-
servations to be inspected manually.
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