V. Kurkova et al. (Eds.): ITAT 2014 with selected papers from Znalosti 2014, CEUR Workshop Proceedings Vol. 1214, pp. 97—-101
http://ceur-ws.org/Vol-1214, Series ISSN 1613-0073, © 2014 F. Zavoral, J. Yaghob, D. Bednarek, M. Kruli§

A
ITAT

Contemplating Efficiency of the ROOT File Format for Data Intensive
Simulations in Particle Physics

Filip Zavoral, Jakub Yaghob, David Bedndrek, and Martin Kruli§

Parallel Architectures/Algorithms/Applications Research Group
Faculty of Mathematics and Physics, Charles University in Prague
Malostranské ndm. 25, Prague, Czech Republic
{zavoral,yaghob,bednarek,krulis}@ksi.mff.cuni.cz

Abstract: A vast majority of nuclear and particle physi-
cists in the world are currently using the ROOT framework
(developed in CERN) as a software platform for simula-
tions and data evaluations. Some of the simulations and
experiments performed in this domain are very data inten-
sive and they need to be designed with particular emphasis
on the processing performance. We have analyzed the ef-
ficiency of the Background Mixer component employed in
particle simulations of the Belle II project and identified,
that the ROOT file format is unacceptably inefficient. The
structure of the file and the API presented in ROOT frame-
work prevents efficient data retrieval for parallel process-
ing. We propose a data format which overcomes these lim-
itations and which is much more suitable for high perfor-
mance computing. We also demonstrate how to integrate
this novel format into processing pipeline of the Belle II
experiments and present its initial evaluation.

Keywords: particle physics, experiments, ROOT, data for-
mat, HPC, Belle II, performance

1 Introduction

Many empirical sciences, especially physics, have been in-
creasingly dependent on the computer science support. In
this paper, we focus on a particular problem that have been
observed by the particle physicists working on Belle II ex-
periment [1]. Our objective was to improve performance
of a Background Mixer component, which is used for par-
ticle simulations related to the experiment. We have de-
tected that the bottleneck was the ROOT file format, which
is being used for storing the experimental and simulated
data, and its API. In this paper, we propose a novel for-
mat, which is expected to improve the performance of the
Background Mixer module significantly.

The paper is organized as follows. Section 2 briefly in-
troduces the Belle Il experiment, its hardware and software
support, and the related problems of the data processing.
Section 3 addresses the performance issues of accessing
objects in the ROOT files. Our new data format (includ-
ing implementation and integration details) is proposed in
Section 4 and Section 5 concludes our work.

2 Technical Background

2.1 Belle II and Basf2

Belle II [2] is a project headed by Ko Enerugi Kasukoki
Kenkyu Kiko (KEK) centre in Tsukuba, Japan, that stud-
ies the physical process called Charge Parity violation
(CP violation). Such process is responsible for breaking
the matter-antimatter symmetry, which causes the domi-
nance of matter over antimatter in our universe. The par-
ticular task of the project is to search for new sources of
CP-violation that could generate the observed asymmetry.

Since the data flow generated by the KEK particle de-
tector is enormous (up to 1.8 GB/s), a distributed comput-
ing model comprising high-performance grid sites located
all over the globe has been adopted [1] (Figure 1) in order
to ensure better scalability, redundancy, and sharing hard-
ware resources of experiment participants.

Raw Data Storage
and Processing . [kex | PNNL @ Tepe =P RawDaa

[[] cPU —p mDST Data
e _ | B osk s mosTMC
@ g

MC Production
(optional)

]

MC Production

Grid Site

and Ntuple /‘) Cloud
Production /)
[= e N
__________ ‘ o
i N\
| . - \
| N - \

< Locmkwﬁes T\ Local Resovrces
7 R W [A
0o b B o8

Ntuple ‘ Local Resourbes | | Local Resourch:

Analysis

Figure 1: Belle II computing model

A software framework BASF2 (Belle II Analysis
Framework) [3] is being developed for the experimental
and data evaluation purposes of the Belle II experiment.
It is designed to massively process the data using parallel
event processing on the multi-core CPUs. The software
is written in C++ to meet the requirements of high per-
formance processing and to interface well with other tools
used in particle physics. Python scripting language is used
for the configuration scripts.

BASEF2 is based on a software bus architecture. A large
scale application is designed as a set of pluggable mod-
ules [4], each of which serves as a building block of the
application. The modules are assembled in an execution

98

F. Zavoral, J. Yaghob, D. Bednarek, M. Kruli§

pipeline (which the framework denotes path), where out-
put of each module is interconnected with input of the sub-
sequent module. The data are passed between the modules
as ROOT objects (described in Section 3).

2.2 Background Mixer

One of the essential parts of the experiment is an ac-
curate simulation of the background signal. The back-
ground is generated by Monte Carlo method and the pro-
duced dataset is mixed with other simulated events. The
BASF2 module responsible for this task is called Back-

ground Mixer [5].
Background
Mixer

!

Out.root

ROF builder
(randomizer)

ROF.root

10x
MC.root

MC

Generator

Figure 2: Belle II background mixer module

The presimulated background is added as SimHits (sim-
ulated events on particular detectors) to the already ex-
isting SimHits from the main signal. Both signals are
then mixed together, giving a realistic result. A simpli-
fied scheme of the background mixing process is depicted
in Figure 2.

2.3 Structure of Data Processing

Each BASF2 module has standardized component inter-
face which is mainly responsible for controlling the input
and output data streams. When the module path is exe-
cuted, all relevant datasets are initialized, i.e., their ROOT
objects are fetched in the main memory for onward pro-
cessing.

The input data for the Background Mixer are generated
by three module types: Generator, Component, and De-
tector. The Generator and Component generate main par-
ticles and background particles respectively. The Detec-
tor module simulates the particle detector and generates
SimHit events as they would have been generated by the
real hardware. Various types of generators, components,
and detectors exist and the Background Mixer input ROOT
file keeps the types of the modules that were used for gen-
erating the data.

The Background Mixer input file contains three main
data streams — mcParticles, mcSimHits, and mcPartRels.
The mcParticles stream represents the particles generated
by Generator and Component modules. The mcSimHits
stream holds the SimHits produced by the Detector. The
msPartRels stream provides the n-to-m relation between
particles and SimHits (i.e., which SimHits were produced

by which particles). The data file usually holds thousands
of SimHits per each particle in the stream.

When the Background Mixer is initialized, it receives
a list of generated files with background data. Each file
was generated with a different combination of Genera-
tor, Component, and Detector modules. The Background
Mixer then works as a filter of the main event stream. For
each particle event in the main stream it loads a frame of
particles and SimHits from each of the input files and adds
them to the main stream.

2.4 ROOT File Format

ROOT [6] is an object-oriented C++ framework conceived
in the high-energy physics community. It was designed
for storing and analyzing large volumes of data. It uses
a proprietary ROOT file format for data representation.
Basically any C++ class/structure can be serialized into
a ROOT file in a machine-independent compressed binary
representation.

ROOT File description

3 ———
E] E E
«§ |28 Object 25| “Delefed |23 £
'=§ E§ Data Eg ject Eg E%
3 2 H 2
B L i ——
TBEGIN : Sao N o
File Header Logical Record Header (TKEY)

THbytes: Length of compressed object
Tversion: Key version identifier

TOhjLen: Length of uncompressed object
fDatime: DatefTime when writien to store

‘root’: Root Fle Identifier

fVersion: File version identifier

TBEGIN: Pointer to first data record

TEND: Pointer to first free word at EOF
TSeekFree: Pointer to FREE data record
THbytesFree: Number of hytes in FREE
THfree: Number of free data records
THbytesName: Number of bytes in nameftitle|
fUnits: Number of bytes for pointers
fCompress: Compression level

fKeylen: Humber of bytes for the key
1Cycle : Cycle number

TSeekKey: Pointer to object on file
1SeekPdir: Pointer to directory on file
fClassHame: class name of the object
THame: name of the object

TTitle: title of the object

Figure 3: Structure of a ROOT file

Internally, the ROOT files are organized as TTrees - con-
tainers optimized for I/O and memory usage. A TTree
consists of branches (as depicted in Figure 4 and Figure 3)
which can contain complete serialized object of a specified
class or which can be split up into sub-branches contain-
ing individual data members of the original object. The
splitting can be done recursively. Branch-based storage is
an example of column-wise (vertical) storage.

Much more detailed description of the ROOT file format
can be found in [6] and [7].

3 ROOT Format Efficiency

The ROOT file format and associated ROOT libraries have
exhibited poor I/O performance in some situations, espe-
cially in case of the Background Mixer component.

Contemplating Efficiency of the ROOT File Format for Data Intensive Simulations in Particle Physics 99

TTree

(in memory)

A

intal
inta2
int a3

int b1 A* b2 B b3

branch
branch B

int a[5] inta
float b
1 double c

branch B.b2
branch B.b3

— r 9

Y y Y

il

< 5 Treeentryi || & 2
= Treeentry 1 o | Tree entry 2 m Treeentry1 || od Tree entry 1
g = = =
& 2 Treeentry3 || 2 Q
a s Tree entry 4 3 s
Tree entry 2 = y 2 Treeentry2 || 2 Tree entry 2

Column-Wise Storage

Figure 4: Internal tree structure of a ROOT file

Figure 5 shows how a ROOT file is accessed when its
logical structure is read sequentially. The file consists of
216 logical entries which were read in the same order as
when they were written. The vertical axis represents the
progress of the processing of the logical entries. The hori-
zontal axis represents the data in the binary file image (ap-
prox. 1.8 MB large). The graph marks, which portions
of the binary image were accessed (I/O operations) when
each logical entry was processed.

The figure indicates that the processing of the very first
entry induces access to approximately 75% of the file data.
However, the processing of subsequent 70 entries were
satisfied from this data cached in memory. Some of the
following entries induced additional reading of the file,
including minor portions that were already read. Never-
theless, the amount of repetitive read operations is almost
negligible and some parts of the file were never accessed.

Figure 6 displays the effect of random access to the log-
ical entries of the same file. In this case, entries were pro-
cessed in randomly permuted order. Almost every event
induced significant access to the file. The accessed areas
have similar size as in the sequential case; however, there
is almost no effect of caching. Consequently, the total disk
traffic was 53 MB (i.e. about 30 times the size of the file),
which significantly exceeds the 1.7 MB, which were read
in the sequential case.

Unfortunately, a random access pattern is currently em-
ployed by the Background Mixer since it is mixing data
from several independent files. The ROOT API permits
the user to handle multiple files at once, but internal limita-
tions and function invariants prevent efficient data caching.
According to reports generated by the cluster task manage-
ment framework, the computational workload uses only
25% of the assigned CPU, which is unacceptably low.

The cost of data processing is a substantial part of the
Belle II project expenses. Significant improvement of the
efficiency would enable more extensive and influential ex-
periments.

50

time
100
|

200
|

T T T
500000 1000000 1500000

o

file position

Figure 5: Access pattern to a ROOT binary format in case
of serial processing

50

time
100
|

150
|

200
|

0 500000 1000000 1500000

file position

Figure 6: Access pattern to a ROOT binary format in case
of random processing

4 Proposed Solution

The ROOT format is tightly coupled with many essential
parts of the ROOT framework, so it would be quite imprac-
tical to significantly alter its structure or API. To solve the
problems observed in the Background Mixer, we propose
anovel GFT data format, where GFT stands for GraFT as
we have grafted this new format from the ROOT format.
It is designed specifically to preserve all the benefits of the
ROOT format and to optimize data I/O operations in many
scenarios, especially in case of the Ground Mixer.

100

F. Zavoral, J. Yaghob, D. Bednarek, M. Kruli§

4.1 Format Description

The original logical structure of a ROOT file comprised
only three data streams (Section 2.3). We have decided to
make the format more general, so it can possibly contain
arbitrary number of data streams.

Since we are describing binary file format, technical de-
tails regarding representation of atomic values have to be
observed. All numbers are stored in IEEE 754 represen-
tation with little-endian byte ordering. Strings are stored
as zero-terminated sequences of 8-bit chars (C string con-
vention). In the remainder of this paper we denote basic
integer types as iXX (signed) and uXX (unsigned), where
XX is the number of bits (e.g., u64 stands for 64-bit un-
signed integer).

One GFT file is produced by a combination of three
modules: Generator, Component, and Detector (as de-
scribed in Section 2.3). It is possible to have multiple files
generated with the same combination of these three mod-
ules, but data in one file has to be generated by a fixed
combination.

HOT HOT HOT

Figure 7: Structure of GFT file

A GFT file (Figure 7) contains one main header and
a sequence of HOT (Hierarchial Object Table) data struc-
tures. Each HOT represents one set (originally called
frame) of data, which is mixed with one event from the
main stream.

u16 hver Header version

u32 hsize Header size

u32 idxoffs Index offset

str ged[3] Generator, component, detector names

i16 nstreams Number of streams

str strname[nstreams] Streams names

i16 nstrfld[nstreams] Number of fields in streams

i16 tstrfld[sum(nstrfld)] Types of fields in streams
Figure 8: Main header of GFT file

The GFT main header (Figure 8) comprise global identi-
fication entries followed by the description of data streams
stored in the file. Each stream is defined by its name, num-
ber of data fields in the stream record, and the data type of
the data values in the stream.

The header can optionally contain a HOT index, which
can be used for random access to the HOT data structures.
If the index is present, its offset from the beginning of the
file is stored in the idxoffs entry.

COLD COLD COLD COLD

Figure 9: Schema of the HOT data structure

Each HOT data structure (Figure 9) contains data for
one frame. The data from the streams are restructured into
a column-oriented format, which is much more suitable for
modern computing architectures including GPGPU. Each
data column is stored in a COLD (COLumn Data) struc-
ture and represents one data field of one stream.

u16 hver Header version

u16 hsize Header size
ué4 strnrec[nstreams] Number of records for each stream

u64 fldoffs[sum(nstrfld)] Relative offsets of COLD for each stream field

Figure 10: Header of the HOT data structure

The header of the HOT structure (Figure 10) contains
only the number of records in each data stream and an
index to the COLD data structures. The index is imple-
mented as a sequence of file offsets, which are relative to
the beginning of the HOT data structure.

ul6 hver Header version

ul6 hsize Header size

i16 ftype Field type (copy of tstrfld[x])

i16 hdsize Header data size

ud hdatal] Header specific data (compression table, ...)

Figure 11: COLD header of GFT

The COLD data structure comprises a COLD header
(Figure 11) and a data payload in column-oriented for-
mat. The column data representation permits using spe-
cific compression techniques (e.g., delta encoding com-
bined with RLE compression), which is an important com-
ponent of big data processing. Some forms of compression
require additional data (like the compression dictionary),
so we have introduced header-specific data (entries hdsize
and hdata) to each COLD structure. The column-data pay-
load is stored directly after the header as a vector of values
of given basic data type. The vector is properly aligned to
the size of the data type of its items.

4.2 Implementation Details

We have implemented a prototype library for manipulation
with data in GFT files. The library has two interfaces (gft-
reader and gft-writer), which are responsible for reading
and writing the data respectively. There is currently no

Contemplating Efficiency of the ROOT File Format for Data Intensive Simulations in Particle Physics 101

API for direct data manipulation, since the expected usage
does not modify the data once they are generated.

The metadata contained in the headers (main header,
HOT headers, and COLD headers) are sufficiently small,
thus the API caches them for the entire time the file is
opened. The payload data are read and written in the gran-
ularity of HOT structures. A HOT structure usually takes
kilobytes or tens of kilobytes, thus the read/write opera-
tions have acceptable overhead.

Current implementation uses standard synchronous I/O
of the operating system for reading and writing the file
data, since it was easiest for implementation and our first
objective was to create a proof of concept only. In the fu-
ture implementations, we are planning to experiment with
the asynchronous I/O and memory mapped files.

Our preliminary experiments indicate that the reading
overhead is below 10%, which is much more acceptable
than 3000% overhead observed for the ROOT files.

4.3 Integration in Belle Framework

The integration of the proposed format into the processing
chain of BASF?2 is quite straightforward. We have identi-
fied two places where the proposed format could be used.

First, when the background are generated, they will be
directly written to the GFT format by the MCGenerator
module. The module has to be modified to use gft-writer
instead of the original ROOT file API. Since the existing
pregenerated data for the Background Mixer are intended
for the evaluation purposes only, they may be discarded
and generated again (no conversion tool is required).

Second, the Background Mixer has to be mod-
ified to use GFT format instead ROOT for-
mat. The template <class SIMHITS> class
Belle2: :background: :Generator has to be reimple-
mented using gft-reader. The performance improvement
of this modification should be twofold. The data stored
in the GFT format will be accessed almost sequentially
and read only once. Furthermore, an additional speedup
caused by non-interleaving access to the ROOT library
is expected, since the ROOT API will be used solely for
accessing the main particle stream.

5 Conclusion

The analysis of the Belle II Background Mixer data flows
showed that the underlying ROOT file format is unaccept-
ably inefficient for the purposes of combining data from
multiple files together. We have proposed a novel data for-
mat GTF which is more suitable for efficient data stream
processing and adopts some design features of high perfor-
mance data formats. At present, the reader and writer APIs
of the proposed GFT format are implemented in a form of
library and our preliminary performance experiments in-
dicate, that the new format has much lower overhead then
ROOT format.

In the future work, we are going to integrate the back-
ground processing chain and thoroughly evaluate its ef-
ficiency. We expect a significant speedup of the particle
simulations and better utilization of the Belle II hardware
infrastructure.

Acknowledgment

This paper was supported by Czech Science Foundation
(GACR) projects P103/13/08195 and P103/14/14292P and
by SVV-2014-260100.

References

[1] T. Kuhr, “Computing at Belle I1,” Journal of Physics: Con-
ference Series, vol. 396, 2012.

[2] Ko Enerugi Kasokuki Kenkyu Kiko (KEK) - High Energy
Accelerator Research Organization. (2014) Belle II Project.
[Online]. Available: http://belle2.kek.jp/

[3] R. Itoh, S. Lee, N.Katayama, S.Mineo, A.Moll, T.Kuhr,
and M.Heck, “Implementation of Parallel Processing in the
Basf2 Framework for Belle 1I,” Journal of Physics: Conf.
Ser., vol. 396, 2012.

[4] D. Y. Kim, “The Software Library of the Coming Belle II
Experiment and its Simulation Package,” in Proceedings of
the 2013 IEEE Nuclear Science Symposium. 1EEE, 2013.

[5] P. Kvasnicka, “Background mixing status and plans,” in /5th
OM of the Belle Il Collaboration, Blacksburgh. KEK, 2013.

[6] R Brun et al. (2014) Root. [Online]. Available: http:
/lroot.cern.ch/

[7] L. Antcheva et al, “ROOT — A C++ Framework for Petabyte
Data Storage, Statistical Analysis and Visualization,” Com-

puter Physics Communications, vol. 182, no. 6, pp. 1384 —
1385, 2011.

