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ABSTRACT
Current linked open data standards have encouraged the
publication of a large number of data sets on the public
Web. While some data providers put a lot of energy and
resources into maintaining high quality data, others do not,
meaning that the quality of the data in many LOD sources
is variable and unpredictable. This makes the construction
of novel applications on top of the data more difficult and
expensive than it otherwise would be.

However, these same data standards also open up possibili-
ties for new ways of managing information quality (IQ). In
this paper, we propose one such approach, the IQ-bot, and
present the results of our study of its feasibility. An IQ-
bot is a 3rd party component that crawls the Web of data,
looking for changes that have been made to data sets, and
inferring from them where a correction to a data defect has
been made. These corrections can then potentially be made
available for application to other databases showing evidence
of the presence of the same data defect. In this way, the ben-
efits of the curation effort put into a small number of data
sets can be propagated throughout the Web of data.

1. INTRODUCTION
Linked Open Data standards make possible the creation of
a range of new applications, built with data sets that were
formerly hidden behind web forms or proprietary query in-
terfaces, or else not publicly accessible at all. Unfortu-
nately, the quality of many linked open data sets is extremely
variable. Poor quality data can raise the cost of building
and maintaining new applications; prohibitively so, in some
cases. Or, the problems caused by the poor quality data
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may only become visible when the application is in active
use, and is found to produce incorrect or unhelpful results.

When data consumers must use data that is not fit for pur-
pose, it is common for them to pull a copy of the data set (or
a subset of it) to their local space, where the problems can
be addressed before it is used. The data may then be trans-
lated into a more useful format, or transformed to fit the
schema and semantics required for the computational task
the consumer has to perform. Data from several sources may
be combined, including local data produced by the data con-
sumer’s own processes or organisation. And, any defects in
the data that the consumer discovers (typically during the
attempt to actually use the data) can be corrected.

Ideally, such data consumers will report the defects they find
back to the owners of the original source. In practice, this
does not always happen (although the process is becoming
easier as more sources provide convenient routes for error
reporting). Even when errors are reported, the source own-
ers do not always have the resources to be able to check and
make the corrections immediately. The result is that the
same error may be found and corrected repeatedly by many
different data consumers, in isolation from each other’s ef-
forts. Few resources exist (beyond promising experiments
such as the PatchR repository [11]) to allow data consumers
to benefit from the data correction activities of others, ex-
cept by chance or by a concerted effort on the part of groups
of data producers or consumers, the benefits of which may
not obviously be worth the associated costs.

There is therefore a need for a mechanism to facilitate shar-
ing of both identified defects and their corrections. Any such
mechanism should preserve the freedom of data providers
and consumers to structure their data as they wish, and
should avoid the imposition of heavy-duty global standards
or conventions. In other words, the autonomy of the partici-
pating sources should be respected, as should the scarcity of
time and attention from the domain experts that are avail-
able to find and fix the problems.

In this paper, we propose one possible approach to providing



such a mechanism: the IQ-bot (short for ”Information Qual-
ity Bot”). An IQ-bot is a lightweight, 3rd party component
that crawls data sets of interest to a community, looking
not for data defects per se, but for corrections to data. The
IQ-bot reports any corrections it finds to a central Data Cor-
rections Server. This server is accessed by data set owners,
who can query it to see if any of the corrections found so far
might be applicable to their own data. Relevant corrections
can then be applied to the local data, to raise its quality
level.

The fact that our IQ-bots search for data corrections rather
than data defects is important. The semi-automated dis-
covery of data defects is a Holy Grail for the IQ community.
Many tools have been developed with this goal in mind,
the most successful of which are probably the data profil-
ing tools such as TS Discovery1 and Talend Data Profiler2.
These tools can help a data owner or consumer to under-
stand the overall landscape of their data, and to identify
outliers and other deviations from the “normal” behaviour
of the data. However, the identification of true defects from
the mass of information provided by the tools typically re-
quires both domain knowledge and an understanding of the
state of the world relative to the data at specific points in
the past. This, like any task, requiring significant human
input, is expensive.

Data corrections, on the other hand, are concrete changes
to data, identifiable using entirely automatic means. They
form a visible trail in the data, in some cases recorded ex-
plicitly in the form of a change (or transaction) log, in other
cases encoded implicitly in the difference between versions
or snapshots of the data. Some data changes arise from
the addition of new data (addressing incompleteness of the
data set), while others make changes to existing data (ad-
dressing inaccuracies, inconsistencies or a lack of currency
in the data, for example). In other words, the changes can
be viewed as actions taken by the data owner in response to
a perception of poor data quality or the presence of a data
defect. The corrections tell us both something about the
defect that was identified and the action that was decided
on as being an appropriate response.

By searching for and storing these corrections, we can gain
extra value from the work done by curators and domain ex-
perts to locate data defects and remove them. The effort put
into curating one resource can be picked up by an IQ-bot,
and made available for easy application by the owners of
other sources. This acts as a counterpoint to the (currently
more common) process of data pollution, whereby data from
one source is copied into another, propagating defects from
the first source to the second, and onwards to any other
dependent sources. IQ-bots give us a mechanism for spread-
ing not defects, but corrections to defects throughout the
Web of data. Thus, effort put into raising the quality levels
of core data sets can have benefits for a much wider range
of data sources, including sources unknown to the curators
doing the original defect correction work.

In the remainder of this paper, we present our preliminary

1www.trilliumsoftware.com/home/products/TSDiscovery
.aspx
2www.talend.com/resource/data-profiler.html

study into the feasibility of the IQ-bot approach for finding
and applying data corrections on typical linked data sources.
We begin by surveying the state of the art in information
quality management for linked open data (Section 2). Next,
we present an architecture for the IQ-bot approach, showing
the core components that are needed and the way they work
together (Section 3). Subsequently, we present the results of
our two feasibility studies, the first of which explores the ex-
tent to which current linked open data sets are versioned or
are amenable to snapshot differencing techniques (Section 4)
and the second of which considers the changes made to one
specific versioned data set, and whether they can be applied
to other data sets to improve data quality (Section 5). Fi-
nally, we conclude and outline some of the near-term future
directions for the work (Section 6).

2. RELATED WORK
Linked Open Data (LOD) is a set of principles and technolo-
gies that enable owners of data sets to share their data across
the Web. With the constant growth in the number and size
of LOD data sources, LOD has given rise to a wealth of freely
available, structured information on the Web, which organi-
zations as well as citizens have been taking advantage of by
browsing and analysing the open Web of data. LOD is usu-
ally represented in RDF (the Resource Description Frame-
work), having the form of an entity-relationship graph in
which facts consisting of triples of subjects, predicates and
objects are specified. Data sets are typically connected to
one another through links between entities, showing where
they represent the same or related real world entities.

The growing popularity of LOD has led the information
quality community to investigate its quality under a vari-
ety of use cases. For example, Kontokostas et al. proposed
a methodology for quality assessment of linked data, which
employs SPARQL query templates that can be automati-
cally instantiated into quality test queries [12]. The test
queries are associated with RDF triples and serve a number
of purposes, such as assessment of quality of data (includ-
ing ontologies and vocabulary schemas) considering integrity
constraints as well as domain-specific semantics, the creation
of libraries of quality test patterns for rapid development of
new test cases and a metric for coverage of RDF test cases.

Also addressing the problem of quality of ontologies used
with LOD, Abedjan et al. identified common ontology mis-
use patterns by employing frequency analysis and rule min-
ing, and devised an algorithm to suggest individual ontology
re-engineering improvements [2]. The aim is to improve the
quality of LOD ontologies by overcoming any mismatches
between the data and the ontology. Such mismatches arise
due to differences between the original purpose for which
the ontology was engineered and the unpredictable ways in
which new applications utilize it. These mismatches account
for the many of the difficulties data consumers face when try-
ing to discover and integrate domain-specific information.

Contributions regarding IQ and data integration in a LOD
context include the work of Heise and Naumann, in which a
set of data integration operators are proposed and used to
extend an existing Web-scale data analysis framework [10].
The proposed operators form an algebra for a declarative
query language, Jqal, with which users are able to specify



Figure 1: An Example Configuration of the IQ-bot Components

the integration of several, possibly large, data sources into a
single, wide and deep data source. The data integration op-
erators implement sophisticated data cleansing techniques,
such as record linkage, generating high quality integrated
data sets, which facilitate complex queries over the relation-
ships of the different types of entities, yielding the generation
of new insights from the data.

Despite the amount of work addressing the use of data de-
pendencies and integrity constraints for error detection and
data repairing in recent years (e.g., [4, 7, 8, 14, 9, 5]), these
techniques have yet to be thoroughly revisited in terms of
their potential applicability to LOD. The work described by
Bauckmann et al. represents one contribution in this di-
rection. They identify a new case for conditional inclusion
dependencies, typically found in LOD data, and propose
algorithms for efficiently detecting the presence of such de-
pendencies [3].

Perhaps the most comprehensive contribution to LOD qual-
ity management to date is the work of Abedjan et al., in
which a Web-based tool for a variety of LOD data manage-
ment tasks is proposed (ProLOD++) [1]. The tool adapts
existing data profiling tasks for relational data to the RDF
model. The proposed tool provides a variety of functions
based on research in LOD data management, including data
profiling tasks for generation of common data profiling statis-
tics (e.g., predicate frequencies, value distributions, etc.);
data mining tasks for inverse as well as synonym predi-
cate discovery, identification of dependencies between sub-
jects, predicates and objects; identification of entities via
predicate combinations, etc.; and data cleaning tasks for
data auto-completion, ontology alignment and fact genera-
tion/amendment.

All this work represents progress, but many important as-
pects of the data quality problem in a LOD context are still
unaddressed. To the best of our knowledge, no tool or re-
source has yet been proposed for identifying corrections in
curated LOD sources, to enable the benefits of the work done
to maintain high quality in those sources to be propagated
further through the Web of data.

3. PROPOSED IQ-BOT ARCHITECTURE
Three different types of component are needed to support
crawling the Web of data for data corrections and storing
them in a reusable form. Figure 1 illustrates these compo-
nent types in one typical configuration. In the figure, boxes
with a grey outline are pre-existing data sources, while boxes

outlined in black show the new components needed to carry
out the crawling and correction application processes.

On the leftmost side of the figure, we see a number of pre-
existing data sources. These are the versioned, curated data
sources that a particular user community wishes to monitor
for data corrections3. A number of IQ-bot components are
connected to these sources. The IQ-bots perform regular
monitoring of the sources for data updates. For example,
an IQ-bot monitoring a database of gene information might
discover from an update that the gene formerly known as
“FTHFD” is now known as “ALDH1L1”4. Exactly what
this monitoring entails depends on the sources themselves
and the facilities they offer for notifying external agents of
changes (or the lack of them). We envisage that multiple
IQ-bot components might be active simultaneously in the
general case, providing load balancing and also handling dif-
ferent kinds of sources with different change management
facilities.

The IQ-bots report any changes they find to a central Defect
Corrections Server. This server stores the corrections in its
persistent store, as well as potentially classifying and order-
ing the corrections in order to make them easier to find and
apply. In the figure, we show just a single server, although
it is possible to imagine scenarios in which multiple servers
might exist (where, for example, the different servers store
corrections from data in different domains).

Meanwhile, a bioinformatician working with her own collec-
tion of gene data (created by combining data generated in
her lab with data from species-specific public databases such
as SGD5) wishes to carry out an important analysis. Before
running the lengthy analysis, she first runs her local Cor-
rection Engine, to make any improvements to the quality of
the data that might have been discovered. The Correction
Engine connects to the user’s preferred Defect Correction
Server, and checks if any new corrections have been discov-
ered since the last update to this source. The Correction
Engine then examines the local data sources, looking for op-
portunities to apply the new corrections to the data. If there
are matches, then these are presented to the bioinformati-
cian, who can choose to accept them (apply them to the

3In this configuration, the users predefine the list of sources
to be monitored. In others, the sources might be identified
by some other means, such as by following links in data sets.
4www.uniprot.org/uniprot/Q8R0Y6
5yeastgenome.org



data) or reject them as being inappropriate.

The two studies described in the rest of this paper aim to
assess the feasibility of providing this kind of facility, in the
context of the current linked open data landscape.

4. FEASIBILITY STUDY
In order to determine whether the IQ-bot approach just de-
scribed is feasible, we undertook a study of a sample of linked
data sets. Our aim was to answer the following questions.

• The IQ-bot approach depends crucially on the abil-
ity to efficiently identify changes that have been made
to data sources. This is made much easier if sources
are explicitly versioned by their providers, using soft-
ware platforms that give details of the changes be-
tween versions. We therefore wanted to know: what
software support is available for versioning of
linked open data sets? and what proportion of
linked open data sets currently use this soft-
ware support?

• If a data set of interest is not accessible through a
version management framework, the IQ-bot approach
can still deliver results if previous versions of the data
set are made available. That is, instead of providing
just the most recent version of the data, with all up-
dates applied, some linked open data providers main-
tain RDF dumps of previous major versions of their
data. In this case, we can identify the changes that
have been made in a version by comparing its con-
tents with its most recent predecessor. So, if a source
creates new versions relatively frequently, and makes
them publicly available for some time afterwards, the
IQ-bot approach can be considered feasible if sufficient
time is available to perform the snapshot differenc-
ing. We therefore wanted to know: what proportion
of LOD sources make their previous versions
available, after the data has been updated? and
what frequency of updates are typical?

• If versions are maintained for only a very small number
of LOD sources, then the IQ-bot approach may not be
feasible. In this case, we have another option. We can
take regular snapshots of the data set to be monitored,
and store the most recent locally for comparison when
the next snapshot is taken. By comparing successive
pairs of snapshots, we can discover the changes that
have been made recently. This option requires only
that we can take an RDF dump of the data set (or
can produce one through a query or set of queries at
a SPARQL endpoint), and that we have sufficient lo-
cal disk storage to be able to keep copies of the RDF
dumps of all sources we are monitoring, between snap-
shots. This requirement doesn’t seem onerous, given
current disk storage costs. However, for completeness,
we have also attempted to gain answers to the fol-
lowing questions: what proportion of linked open
data sets are available as an RDF dump, or of-
fer a SPARQL endpoint? and what sizes are
typical for linked open data sets?

The answers that emerged from our feasibility study are
described below.

Versioning Support for LOD. We are beginning to see
the emergence of platforms for linked open data that pro-
vide explicit support for versioning. The prime example of
this at present is Apache Marmotta6, which offers a version-
ing module on top of the KiWi data store. When versioning
is enabled, a Marmotta application will automatically track
changes to RDF data, at the transaction level, and allow
specific versions of the data set to be queried. It also sup-
ports the creation of snapshots of the data, which can be
referred to and queried directly, too.

This kind of facility is exactly what we need to implement
IQ-bot-style correction crawling efficiently. Unfortunately,
we couldn’t find any publicly accessible versioned data sources
that used Marmotta. The main RDF triple stores (we looked
at Jena’s TDB7, Virtuoso8 and Sesame9) offer support for
transactions but not versions per se. Some proposals for
handling versioning of RDF data can be found in the lit-
erature (e.g. the work of Van de Sompel et al. [13]). But,
these have not so far resulted in widespread use of versioning
mechanisms for the management of linked open data. This
is a development that will presumably come when the field
has matured to the level where normal data management fa-
cilities are available as standard for linked open data, just as
they are for current transaction-based information systems.

Informal Version Management for LOD. Since we found
little evidence that linked data providers are making use of
versioning tools, the feasibility of the IQ-bot approach re-
quires that other, more informal approaches to version man-
agement be in widespread use. In order to assess how far
this might be the case, we examined a list of 902 data sets,
provided by the Datahub.io website. Datahub.io is a data
management platform where users can publish, register and
access LOD from organisations around the world and across
a range of application domains. It therefore provides access
to a good cross-section of the range of LOD sources.

To quickly gain a picture of how many of these linked open
data sets were versioned to some extent, we used a script
to query the description pages on Datahub.io, to find out
how many data sets were using the “versioned” tag. We
found that 253 data sets described themselves as being ver-
sioned, constituting some 28% of the full collection. This
sounds promising, as far as the IQ-bot approach goes. Un-
fortunately (though predictably), the accuracy of this tag
seems to be in doubt. We found examples of data sets not
tagged as versioned in Datahub.io that had details of recent
changes, and other versioning information, on their home
Web pages. Similarly, many of the data sets that described
themselves as being versioned gave little evidence of this on
inspection. Around 120 of the data sets tagged as versioned
listed their version number as “0.1” or “1” or some similar
string suggesting that versioning was intended, rather than
actually achieved by the data owners. Around 50 data sets
gave a version number greater than 1 (or 0.1), indicating
that at least two versions of the data have been in existence
at some point, while the others gave date of last update as
their version ID, from which we could conclude little. Even

6marmotta.apache.org
7jena.apache.org
8virtuoso.openlinksw.com
9www.openrdf.org



as an under-estimate, 50 out of 900 is perhaps a rather small
proportion, but still leaves room for IQ-bots to be of use if
these 50 include some major curated data sets in varying
domains. (They do; for example, WordNet, DBpedia live,
Linked Life Data, and data sets from Bibliotheque Nationale
de France are included).

Snapshot Comparisons for LOD. Many more data sets
become eligible for IQ-bot-style crawling if we can record
snapshots of the source contents at regular intervals, and
work out the differences between them. We again used a
script to query the Datahub.io index of data sets. The tags
indicate that just 27 out of the full set of 902 data sets offered
an RDF dump of their data. This seems very low, calling
the accuracy of this tag into question. We did a manual
search of 5 of the sources, and found that 4 out of 5 offered
an RDF dump, but on their own Website and not through
Datahub.io. Data sizes of these dumps range from 17,000
triples to greater than 1 billion triples. Clearly, the storage
of many RDF dumps from the larger sources would have to
be justified by significant data improvement resulting from
the data corrections that could be detected and reused.

The tags on Datahub.io suggest that 510 of the data sets
offer a SPARQL endpoint through datahub, which looks
promising as a last ditch route to obtaining snapshots. How-
ever, the (anecdotal) experience of our colleagues working
with linked open data is that the proportion of data sets
with live, usable SPARQL endpoints is likely to be much
lower than this.

5. DATA CORRECTIONS IN UNIPROT
Our general feasibility study showed that there are suffi-
cient access routes to change information for linked open
data sets to make IQ-bots a realistic option in certain do-
mains, even if some work has to be put in (for example, to
allow snapshot comparisons). We further wanted to assess
whether we could identify actual data corrections (and the
defects that lie behind them) from a real data source, and
whether the corrections we found could be applied to other
data sources. To achieve this, we needed a versioned, well-
curated, widely-used data source. We chose the well known
UniProt database10 for this second feasibility study.

UniProt is a comprehensive, heavily curated database of in-
formation on protein sequence, structure and function. The
database aims to document the set of proteins that have
been discovered so far, plus our current understanding of
their form and function within living organisms, and the ev-
idence (experimental or otherwise) that supports this inter-
pretation. It is a major global resource for scientists working
in molecular biology and cognate disciplines.

Information in UniProt comes from two main sources. A
team of expert curators works to extract high-quality in-
formation from the scientific literature, and to associate
this with the relevant protein records (called “entries” in
UniProt terminology). Though well resourced, this team can
cover only a small fraction of the proteins that are stored in
the database, with new proteins being discovered frequently
every year. Therefore, a second source of information is

10uniprot.org

utilised: automated analyses of the literature and the data in
UniProt make predictions about the features of un-curated
proteins. This data is also added to the database, but is
annotated with evidence codes to indicate to users that it
comes with a weaker supporting evidence base than the in-
formation entered by the expert curators.

The UniProt team produces a new release of the database
every four weeks. We examined a single release, to see if we
could identify defect corrections from the changes made in
that release. UniProt was a good choice for this study be-
cause of the high frequency of changes made by the curators,
and because it provides several ways to access the details of
the changes that have been made in each release:

• The UniProt Web search form allows comparison of
arbitrary versions of a particular entity, showing the
results as a difference between two textual representa-
tions of the entry from the selected versions.

• A Java API for accessing UniProt remotely allows us to
query for the entries that have changed in a particular
release. (We then have to compare the updated entries
for ourselves, before we can get information about the
specific changes that have been made.)

• Although access to these versioning facilities is not cur-
rently available for RDF/SPARQL users, the UniProt
database is made available as an RDF dump, leaving
open the possibility of storing the dump after each re-
lease, for snapshot comparison purposes.

Since for our feasibility study, we planned to do the analy-
sis by hand, we chose to use the search form for extracting
a text-based representation of the changes. We examined
changes made in the release covering 1st March 2014 to 24th
March 2014. During this time, changes were made to 5,139
protein entries in UniProt. This is typical of the scale of
changes that occur in each release. Of these changed en-
tries, we looked at 14 in detail to extract data corrections11.
Most of the changed entries had been updated in several
ways, so the actual number of detailed changes we exam-
ined was 134. By “change” here we mean a small conceptual
change, such as adding a new feature to a protein or deleting
a keyword from a set of keywords. Since we were working
with the textual comparison interface, without full knowl-
edge of the underlying database schema, it was not possible
for us to work out in detail the exact number of attribute
value changes, additions and deletions. Table 1 summarises
the results.

Space precludes us from giving our detailed analysis of each
of the entries. Instead, we will present some examples of the
changes we examined, and our classification of them accord-
ing to the underlying defect, for the different IQ dimensions
covered.

• Completeness: several of the entries were changed in
order to increase the completeness of the information
stored. As our collective understanding of the struc-
ture and function of proteins grows, incompleteness

11This number was chosen based on the amount of time we
had available to research each changed entry, rather than
having any significance in itself.



Entry ID Versions Compared No. of Changes IQ Dimensions Covered No. of Changes Not Interpretable
as Defect Corrections

P62258 119 → 120 11 Consistency, currency, completeness 0
P31947 148 → 149 8 Consistency, currency, completeness 0
Q02152 125 → 126 3 Currency 1
P00350 122 → 123 1 Accuracy 0
P12023 177 → 178 5 Completeness, currency 0
P54645 133 → 134 22 Currency 0
P14164 125 → 126 3 Consistency 0
P31414 115 → 116 67 Consistency, currency 0
P98057 94 → 95 2 Precision 0
P0CI58 9 → 10 1 Syntactic accuracy 0
D9U298 12 → 13 1 Syntactic accuracy 0
Q9LFN6 91 → 92 7 Consistency, currency, completeness 0
P32169 112 → 113 1 Accuracy 0
P0C6Y0 49 → 50 2 Completeness, currency 0

Table 1: Summary of the Entries Examined from the March 2014 UniProt Release

can arise in our scientific databases, unless work is
done to repair it. This is a major task for the ex-
pert curators for UniProt, who examine the literature,
and amend the data to include new results and inter-
pretations appearing in credible research sources. An
example of this can be seen in the changes to entry
Q9LFN6. Here, a new publication has been added (in-
dicating a new source of evidence about the protein),
and new features have been added to the entry as a
result. The old descriptions of the function and sub-
cellular structure of this protein were annotated with
the phrase “By Similarity”. This means that they were
added to the entry not because of strong experimental
evidence for this particular protein, but because strong
experimental evidence linked these terms to a protein
that is structurally similar to this one. The new pub-
lication apparently provides information and evidence
directly about this protein. The old features acquired
“by similarity” were therefore replaced with the new
information, for which stronger evidence exists. This
change increases both the completeness and also the
credibility of the entry.

Another source of new data for UniProt comes from
the results of automated analyses. New results can be
generated when better algorithms are implemented, or
when existing algorithms are run over new (more com-
plete) data sets. This kind of completeness correction
can be seen in entry P31414. It seems likely that all the
67 changes made to this entry in this record arose be-
cause new information was added to a protein to which
P31414 is similar. Prior to this release, this entry had
a small set of annotations postulating the existence
of various helical structures within the protein chain.
The evidence codes indicated that these annotations
had come from an automated analysis tool. In this re-
lease, these speculative annotations are replaced by a
host of more detailed and precise annotations coming
from another protein “by similarity”. Presumably, new
(strongly supported) information had become available
for this similar protein, and was therefore copied over
in the entry for P31414.

This particular completeness correction is a complex
one; it has elements of consistency, currency and pre-

cision. (We have noted elsewhere the fact that real
data defects often combine elements of several IQ di-
mensions, rather than being cleanly classifiable within
the scope of just one [6].) Other, more conventional,
forms of completeness correction can be seen in the
set of sample entries. Of particular note in the con-
text of this paper are the additions of new links to
other datasets. Entries Q02152, P12023 and P0C6Y0
all had additional links to other data sets added in this
release.

• Currency: both entries P62258 and P31947 have a
change to an annotation placed on a link to another
database. In this case, the link is to a record in Bi-
oGrid12, a database of protein and gene interactions.
The value that annotates the link is a number which
seems to correspond to the number of interactions cur-
rently present in BioGrid for the protein that the entry
represents. If a recent new release of BioGrid had more
interactions for this protein, then the count of the in-
teractions stored in UniProt would need to increase,
to maintain consistency with BioGrid, and currency of
the number of interactions recorded. This appears to
be what happened to both these entries in this release.

• Accuracy: the entry with accession number P322169
was involved in just one change: an update to correct
the end page number on one of the publications associ-
ated with the entry. The page numbers for this paper
were changed from “1454–1474” to “1454–1462”. It is
not clear whether the error being corrected here arose
during data entry into UniProt, or whether erroneous
data was copied from another system.

• Syntactic accuracy: the changes to entries P0CI58 and
D9U298 both involve the correction of a typo. Both en-
tries contain a link to a specific record in the InterPro
database13 with accession number IPR002061. Inter-
Pro is a database that uses predictive models to assign
proteins to protein families, based on their sequence
and structure, and information in other databases. As
well as pointing to the relevant InterPro record, entries

12thebiogrid.org
13www.ebi.ac.uk/interpro



in UniProt appear also to contain a copy of the family
name from InterPro.

In this case, a typo was present in the family name.
Originally, the family name was given as the string
“Scorpion toxinL/defesin”, but this is not correct. The
last word of the family name should be“defensin”. Pre-
sumably, this error was originally present in InterPro,
but has since been corrected there, and this change is
the propagation of that correction to UniProt. (We
cannot easily check this, as InterPro does not appear
to provide access to its recent versions.)

• Precision: An example of a correction where infor-
mation was made more precise can be found in entry
P98057, where two terms describing the function of the
protein are replaced by the term that is their common
child in the ontology (in this case, the GO ontology
of structural and functional terms for genes and pro-
teins14). The version of this entry prior to this data
release was annotated with the following two terms:

– ion transmembrane transport

– proton transport

In the version of the entry that is part of this March
2014 release, however, these two terms were removed
and replaced with:

– hydrogen ion transmembrane transport

which is a child of both the deleted terms in the GO on-
tology. This change, then, appears to be a refinement
of the interpretation of the function of this protein, to
use a more specific (and therefore more precise) term.

Our experience in looking at these changes was encouraging.
With some basic domain knowledge, and some checks of re-
lated information in other databases, we were able to form a
set of hypotheses about the kinds of defect being corrected in
the case of all but one of the changes. This hard-to-classify
change was an update to an evidence code assigned to an
annotation. Unlike the other changes to evidence codes we
observed, this involved replacing a (slightly) stronger evi-
dence code (whose source was given as the UniProtKB it-
self) with a weaker evidence code (with its source labelled
as being the Ensembl database). We could not form any
good hypotheses as to why this stronger evidence code was
being replaced by a weaker one, and therefore had difficulty
in categorising this correction under one of the defect types.
However, it is entirely possible that this failure is due to
gaps in our knowledge of this domain, and of the specific
circumstances of this change.

We next set about looking for other databases (not just
copies of UniProt) where some of these corrections could
be applied, to improve the data quality. Since we were per-
forming this process manually, we were limited to shallow
Web searches using Google, and (where available) individ-
ual deep Web searches using keyword based search forms on
the resources themselves. Nonetheless, we were able to iden-
tify the same defect present in other databases for several of
the changes. Here, we list a few representative examples:

14geneontology.org

• The replacement of the two GO terms with their com-
mon child (from entry P98057). We found a couple of
databases which had the two deleted GO terms from
this change, but not the child term. One example is
from ZFin, the database of gene information about the
Zebra Fish species15. The two deleted terms appear
in the set of “biological process” annotations for the
ATP6V1AA gene. Of course, there may be good rea-
sons why the child term is not used in the case of this
gene; an expert decision would need to be made before
the correction could be safely applied. But, the IQ-bot
can flag the existence of the possibility to the expert,
and assist in making and documenting the change if
the expert decides to apply it. We also found the pat-
tern of terms relevant to this correction in BioCyc16,
on the record for the gene mrpE (accession number:
BSU31640), and in SGD17, on the record for the gene
YGR020C.

• The correction for the “Scorpion toxinL/defesin” typo
(from entries P0CI58 and D9U298). We were able to
locate a database containing this typo: the LAMP
database of anti-microbial peptides, managed by Fu-
dan University in China. The relevant record could be
found at the following link, at the time of writing:

biotechlab.fudan.edu.cn/database/

lamp/detail.php?id=L01A000663

• The addition of a new publication (to entry Q9LFN6).
We were not able to locate a data source that has
exactly the same set of publications as the UniProt
version of this entry before the March release. How-
ever, we did locate databases with records for this pro-
tein where this publication was missing. This was the
case for both the Gramene database18, which recorded
no publications at all for the protein (despite having
schema elements for the recording of publications), and
the NCBI database19 (which records the full set of pub-
lications for the gene, but only one publication for the
corresponding protein).

From the above, we can see that we were able to view almost
all the changes in the examined entries as defect corrections,
and that we were able to infer something about the form
and kind of the defect that is being corrected by the change.
With a little effort, we were also able to locate other datasets
where the corrections might have been able to point out
problems to the data owners. The next step is to undertake a
more systematic study, using a prototype IQ-bot, to discover
whether more places where the corrections could be applied
can be discovered by chasing links in the linked data sets.

6. CONCLUSIONS
From our first feasibility study, we showed that some ac-
cess to change information can be gathered from a signif-
icant proportion of linked open data sets, even if specific
software support for working with versions is not at present

15zfin.org
16biocyc.org
17yeastgenome.org
18ensembl.gramene.org
19www.ncbi.nlm.nih.gov/protein/238481238



widely adopted. The usefulness of the (somewhat simple)
version management facilities provided by UniProt (behind
the scenes, when viewed from a linked data perspective) in
carrying out our second feasibility study illustrates the value
that could accrue if more use is made of tools such as Apache
Marmotta’s versioning module.

A second feasibility study, focussing on UniProt, also showed
that differences between versions of well curated sources can
be a rich source of information on the data defects discov-
ered in those sources by the curation processes (both manual
and automatic), as well as providing details of how to deal
with those defects. Defects from all the basic IQ dimen-
sions were discovered in our small study of a tiny part of
just one release, which bodes well for the usefulness of the
technique as a whole, when applied to entire releases over
a period of time. In addition, we were able to find related
databases that also contained some examples of the defects
these corrections were intended to address.

We are in the process of implementing our first IQ-bot, plus
a Corrections Server to record the corrections/defects it finds
and a simple Correction Engine to allow the recorded cor-
rections to be applied to a locally stored data set. Our first
IQ-bot monitors the UniProt database for changes, using its
embedded versioning support that allows us to request a list
of changed entries between specific versions programmati-
cally.

A number of important research questions remain to be an-
swered before a full IQ-bot system can be deployed for actual
use, and before the value of the approach proposed here for
crawling for data corrections can be assessed. How far is
snapshot comparison a realistic approach to obtaining up-
date information from real scale data sets? Can all changes
to data sets be seen as data corrections (that is, as changes
that improve the data quality in some way)? If not, how
can we distinguish changes which do improve data quality
from those that don’t? What information must be stored
alongside each data correction, to enable it to be reused in a
wide range of contexts, and also to prevent corrections from
continually being suggested in contexts in which they are
not suitable? What information must be stored to allow the
data owner to make good decisions about whether to apply
a correction to a data set (or record) or not? Can we find
places where the corrections might be applied by following
the links in the data, or are more general deep Web searches
required? In our current and future work, we are exploring
these and other questions relating to the concept of IQ-bots.
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