
Validating and Describing Linked Data Portals using RDF
Shape Expressions

Jose Emilio Labra Gayo
University of Oviedo

Dept. of Computer Science
C/Calvo Sotelo, S/N
labra@uniovi.es

Eric Prud’hommeaux
World Wide Web Consortium (W3C) MIT,

Cambridge, MA, USA
eric@w3.org

Harold Solbrig
Mayo Clinic

College of Medicine, Rochester, MN, USA

Jose María Álvarez Rodríguez
Dept. Computer Science

Carlos III University
josemaria.alvarez@uc3m.es

ABSTRACT
In order to improve the quality of linked data portals, it is necessary
to have a tool that can automatically describe and validate the RDF
triples exposed.

RDF Shape Expressions have been proposed as a language based
on Regular Expressions that can describe and validate the structure
of RDF graphs.

In this paper we describe the WebIndex, a medium sized linked
data portal, and how we have employed Shape Expressions to doc-
ument its contents and to automatically validate the shapes of the
resources.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]: Rep-
resentation languages; H.3.5 [Online Information Services]: Web-
based services

General Terms
Theory

Keywords
RDF, Graphs, Validation, Transformation

1. INTRODUCTION
Linked Data portals have emerged as a way to publish data on the
Web following a set of principles [1] which improve data reuse and
integration. As indicated in [2], linked data relies on documents
using RDF representations to make typed statements that link ar-
bitrary things in the world. RDF appears as a data integration lan-
guage and some linked data applications use RDF as a database

Copyright is held by the author/owner(s).
LDQ 2014, 1st Workshop on Linked Data Quality Sept. 2, 2014, Leipzig,
Germany.

technology or as an interoperability layer. However, there is a lack
of an accepted practice to declare and constrain the shape of an
RDF graph in a way that can be automatically validated to augment
the quality of RDF based data portals.

Validation is standard practice in other conventional data languages.
Industrial setting count on parsing grammars for domain-specific
languages, DDL constraints in SQL databases, and W3C XML
Schema or RelaxNG for XML documents.

In the case of RDF, although there are standards for inference like
RDF Schema and OWL, these technologies employ Open World
and Non-Unique Name Assumptions that create difficulties for val-
idation purposes [18].

The RDF Shape Expressions language is intended to perform the
same function for RDF graphs as Schema languages to XML. It
can be used to validate documents, communicate expected graph
patterns for interfaces, and generate user interface forms and code.

The syntax and semantics of Shape Expressions are designed to be
familiar to users of regular expressions (specially RelaxNG). The
main difference is that RDF data is a set (of triples) while regular
expression data is a sequence (of characters). Regular expressions
correlate an ordered pattern of atomic characters and logical opera-
tors against an ordered sequence of characters while Shape Expres-
sions correlate an ordered pattern of pairs of predicate and object
classes and logical operators against an unordered set of arcs in a
graph.

In this paper we propose the use of RDF Shape Expressions to de-
scribe the contents of Linked Data portals in a way that can be
automatically validated.

As a use case, we will describe the development of the 2013 We-
bIndex data portal1, which is a linked data portal of medium size
(around 3.5 million of triples) that contains information about the
statistical computations that have been carried on to generate the
WebIndex. We have selected this use case because it contains a data
model with interrelated shapes and reuses several existing vocab-

1http://data.webfoundation.org/webindex/
v2013

http://data.webfoundation.org/webindex/v2013
http://data.webfoundation.org/webindex/v2013


ularies like RDF Data Cube, Organization Ontology, Dublin Core,
etc.

2. WEBINDEX DATA MODEL
The WebIndex is a multi-dimensional measure of the World Wide
Web’s contribution to development and human rights globally. It
covers 81 countries and incorporates indicators that assess several
areas like universal access; freedom and openness; relevant con-
tent; and empowerment2.

The 2012 version offered a data portal where the data was obtained
by transforming raw observations and precomputed values from
Excel sheets to RDF. The 2013 version of the WebIndex data portal
employs a new validation and computation approach that tries to
obtain a verifiable linked data version of the Web Index data.

The WebIndex data model is based on the RDF Data Cube vocab-
ulary. Figure 1 represents the main concepts of the data model3.

As can be seen, the main concept are observations of type qb:
Observation which have a float value cex:value and are re-
lated to a country, a year a dataset and an indicator.

A dataset contains a number of slices, each of which also contains
a number of observations.

Indicators are provided by an organization of type org:Organization
which employs the Organization ontology[15]. Datasets are also

published by organizations.

As a sample of some data, an observation can be that Spain has
value 23.78 in 2011 for the indicator ITU-B (Broadband subscribers
per 100 population) in the dataset DITU provided by ITU (Interna-
tional Telecommunication Union). This information can be repre-
sented in RDF using Turtle syntax as4:

obs:obs8165 a qb:Observation ;
rdfs:label "ITU B in ESP, 2011" ;
dct:issued

"2013-05-30T09:15:00"^^xsd:dateTime ;
cex:indicator indicator:ITU_B ;
qb:dataSet dataset:DITU ;
cex:value 23.78^^xsd:float ;
cex:ref-area country:Spain ;
cex:ref-year 2011 ;
...other properties omitted for brevity
.

Notice that the WebIndex data model contains data that is com-
pletely interrelated. Observations are linked to indicators and datasets.
Datasets contain also links to slices and slices have links to indica-
tors and observations again. Both datasets and indicators are linked
to the organizations that publish or provide them.

The following example contains a sample of interrelated data for
this domain.

2http://thewebindex.org
3In the paper we will employ common prefixes that can be found
in http://prefix.cc
4The URI of the real observation is http://
data.webfoundation.org/webindex/v2013/
observation/obs8165

dataset:DITU a qb:DataSet ;
rdfs:label "ITU Dataset" ;
dct:publisher org:ITU ;
qb:slice slice:ITU09B ,

slice:ITU10B,
...;

...
slice:ITU09B a qb:Slice ;
qb:sliceStructure wf:sliceByArea ;
qb:observation obs:obs8165,

obs:obs8166,
...

...
org:ITU a org:Organization ;
rdfs:label "ITU" ;
foaf:homepage <http://www.itu.int/>
.

country:Spain a wf:Country ;
wf:iso2 "ES" ; wf:iso3 "ESP" ;
rdfs:label "Spain"

.
indicator:ITU_B a wf:SecondaryIndicator ;
rdfs:label "Broadband subscribers %"

.

A validator of this model can validate the simple structure of each
type of resource but it would be better if it can declare and detect
all these interrelationships.

The WebIndex data model also includes a linked data representa-
tion of computations so it is possible to declare the data from which
a value has been computed so it can be checked. We omit those
classes for brevity.

3. USING SHAPE EXPRESSIONS TO DE-
SCRIBE THE WEBINDEX DATA MODEL

In this section we will describe the WebIndex data model using
Shape Expressions.

The RDF Shape Expressions language is inspired by RelaxNG and
also has two syntaxes: a compact one and an RDF serialization.
The compact syntax is more oriented towards human readability
while the RDF serialization can be employed to exchange and store
shape expressions using standard semantic web tools. A primer to
the Shape Expressions language can be found at http://www.
w3.org/2013/ShEx/Primer.

A shape expression is a labelled pattern for a set of RDF Triples
sharing a common subject. Syntactically, it is a pairing of a label,
which can be an IRI or a blank node, and a rule enclosed in brackets
({ }). Typically, this rule is a conjunction of constraints separated
by commas (,). For example, we can declare the shape of a country
as:

<Country> {
a (wf:Country)

, rdfs:label xsd:string
, wf:iso2 xsd:string
, wf:iso3 xsd:string
}

http://thewebindex.org
http://prefix.cc
http://data.webfoundation.org/webindex/v2013/observation/obs8165
http://data.webfoundation.org/webindex/v2013/observation/obs8165
http://data.webfoundation.org/webindex/v2013/observation/obs8165
http://www.w3.org/2013/ShEx/Primer
http://www.w3.org/2013/ShEx/Primer


Figure 1: Simplified WebIndex data model

The above declaration indicates that a country must have rdf:
type with value wf:Country. It must also have the properties
rdfs:label, wf:iso2 and wf:iso3with a value of type xsd
:string.

The semantics of Shape Expression validation acts as a type infer-
ence system which infers a type (shape) for a given node in an RDF
graph.

With the previous declaration, a Shape Expressions validator would
infer:

country:Spain  <Country>

The Shape Expressions language is inspired by Regular Expres-
sions and the rules can contain cardinality constraints with the val-
ues + (one or more), * (zero of more), ? (zero or one) and even
ranges {m,n} (between m and n repetitions).

It is also possible to declare that the value of some property has a
given shape using the @ character.

For example, the shape of datasets can be described as:

<DataSet> {
a (qb:DataSet)

, qb:structure (wf:DSD)
, rdfs:label xsd:string?
, qb:slice @<Slice>+
}

which declares that a dataset must have rdf:typewith value qb:
DataSet and qb:structure with value wf:DSD. It may have
a rdfs:labelwith a value of type xsd:string and must have
one or more slices with the shape Slice.

In a similar way, it is possible to declare slices as:

<Slice> {
a (qb:Slice)

, qb:sliceStructure ( wf:sliceByYear )
, qb:observation @<Observation>+
, cex:indicator @<Indicator>

}

The declarations for observations and indicators are similar:

<Observation> {
a (qb:Observation)

, cex:value xsd:float
, dct:issued xsd:dateTime
, rdfs:label xsd:string?
, qb:dataSet @<DataSet>
, cex:ref-area @<Country>
, cex:indicator @<Indicator>
, cex:ref-year xsd:gYear
}

<Indicator> {
a ( wf:PrimaryIndicator

wf:SecondaryIndicator
)

, rdfs:label xsd:string
, rdfs:comment xsd:string ?
, skos:notation xsd:string ?
}

Finally, organizations can be declared as:

<Organization> {
a ( org:Organization )

, rdfs:label xsd:string
, foaf:homepage IRI
, org:hasSubOrganization

@<Organization>
}

As can be seen, Shape Expressions offer an intuitive way to de-
scribe the contents of linked data portals. In fact, we have em-
ployed Shape Expressions to document both the WebIndex5 and
Landbook6 data portals. The documentation defines templates for
5http://weso.github.io/wiDoc
6http://weso.github.io/landportalDoc/data

http://weso.github.io/wiDoc
http://weso.github.io/landportalDoc/data


the different shapes of resources and for the triples that can be re-
trieved when dereferencing those resources.

These templates define the dataset structure in an intuitive way and
can be used to act as a contract between developers of the data por-
tal. We noted that having a good data model with its corresponding
Shape Expressions specification facilitated the communication be-
tween the different teams involved in the development of the data
portal.

4. IMPLEMENTATIONS OF SHAPE EXPRES-
SIONS

Currently, there are four implementations of Shape Expressions in
progress:

• FancyShExDemo7 was the first prototype implementation in
Javascript. It handles semantic actions which can be used to
extend the semantics of shape expressions and even to trans-
form RDF to XML or JSON. It supports a form-based sys-
tem with dynamic validation during the edition process and
SPARQL queries generation.

• JSShexTest8, developed by Jesse van Dam is another Javascript
implementation. It both supports the SHEXc and SHEX/RDF
syntax of Shape Expressions and contains a validation se-
mantics for testing purposes based on truth tables.

• Shexcala9: an implementation developed in Scala with an
efficient implementation based on derivatives of regular ex-
pressions. It supports validation against an RDF file and
against a SPARQL endpoint. In the following section we
describe an online validation service which is implemented
on top of ShExcala.

• Haws10: a Haskell implementation based on type inference
semantics and backtracking. This implementation can be
seen as an executable monadic semantics of Shape Expres-
sions [10].

5. RDFSHAPE: AN RDF SHAPE VALIDA-
TION SERVICE

RDFShape11 is an online RDF Shape validation web service that
can be used to validate both the syntax and the shape of RDF data
against some schema.

The online service has five types of inputs for RDF:

• By URI: The RDF data to be validated is downloaded from a
given URI

• By File: The data is uploaded from a local file

• By Input: The data is inserted in a textarea

• By Endpoint: The RDF data triples are retrieved from a SPARQL
endpoint on demand. The user has to provide the URI of the
endpoint.

7http://www.w3.org/2013/ShEx/FancyShExDemo
8https://github.com/jessevdam/shextest
9http://labra.github.io/ShExcala/

10http://labra.github.io/haws/
11http://rdfshape.weso.es

• By dereference: The RDF triples are obtained by dereferenc-
ing the URIs of the resources that will be validated and using
content negotiation to ask for RDF/XML or Turtle represen-
tations.

The RDFShape tool allows the user to specify whether to use a
Shape Expression schema or not. If not, the tool just checks that
the RDF can be parsed. Otherwise, the user can also enter a Schema
by URI, by File or by Input.

Finally, it is possible to validate a specific IRI or just any IRI in the
RDF graph. Specifying an IRI is recommended when validating by
Endpoint to check the shape of a given IRI in the endpoint and it
is mandatory when using by dereference, as it will be the IRI that
will be dereferenced to validate its representation.

Figure 2 contains a screen capture of the RDFShape validation tool.

6. VALIDATING LINKED DATA PORTALS
USING SHAPE EXPRESSIONS

RDF Shape Expressions can be used not only to describe the con-
tents of linked data portals, but also to validate them.

We consider that one of the first steps in the development of a linked
data portal should be the Shape Expression declarations of the dif-
ferent types of resources. Shape Expressions can play a similar role
to Schema declarations in XML based developments. They can act
as a contract for both the producers and consumers of linked data
portals.

Notice, however, that this contract does not suppose an extra-limitation
between the possible consumers a linked data portal can have. There
is no impediment to have more than one shape expressions which
enforce different constraints. As a naïve example, the declarations
of the iso2 and iso3 code of Countries can be further constrained
using regular expressions to indicate that they must be 2 or 3 alpha-
betical characters or could be more relaxed saying that it may be
any value (not only strings). The advantage of Shape Expressions
is that they offer a declarative and intuitive language to express and
refer to those constraints.

Shape Expression declarations can also be employed to generate
synthetic linked data in the development phase so one can perform
stress tests. For example, during the development of the WebIndex
data portal, we implemented the wiGenerator12 tool which is a sim-
ple program that can generate random linked data that follows the
WebIndex data model with any number of indicators, years of coun-
tries specified by the user. These fake RDF datasets can be em-
ployed to perform stress and usability tests of the data visualization
software.

Shexcala offers the possibility to validate a URI in an endpoint or
by dereferencing it (retrieving the RDF data behind that URI). The
implementation performs a generic SPARQL query to obtain all the
triples that have a given node as subject in the endpoint:

construct { $node ?p ?y } where {
$node ?p ?y .

}

12http://labra.github.io/wiGenerator/

http://www.w3.org/2013/ShEx/FancyShExDemo
https://github.com/jessevdam/shextest
http://labra.github.io/ShExcala/
http://labra.github.io/haws/
http://rdfshape.weso.es
http://labra.github.io/wiGenerator/


Figure 2: Screen capture of RDFShape tool

Once the triples are retrieved, the system validates the Shape Ex-
pressions declarations of that graph to check the shape of that node.

In this way, it is very easy to perform shape checking on the con-
tents of linked data portals. For example, one can retrieve all the
nodes of type qb:Observation and check that they have the
shape <Observation>.

Notice that in general, this kind of validation is context sensitive to
a given data portal. Shape Expressions deliberately separates types
from shapes.

For example, LandPortal also expresses a shape for its use of qb:
Observation. Both WebIndex and LandPortal respect the RDF
data Cube definition of an Observation, but they can require or pro-
hibit different properties (from that ontology or elsewhere) on those
Observations. The observations in WebIndex have different shapes
than the observations in LandPortal, but all of them have type qb
:Observation without introducing any logical conflicts. This
reflects a different usage pattern than generally seen for OWL or
SPIN constraints (see 8). We consider that this difference between
structural shapes and semantic types of resources improves the sep-
aration of concerns involved in linked data portal development.

Nevertheless, although some shapes can be specific to some linked

data portals, nothing precludes to define templates and libraries of
generic shapes that can be reused between different data portals.

7. EXTENSIONS AND CHALLENGES
At the moment of this writing, the W3C has just chartered a RDF
Data Shapes Working Group with the mission to produce a lan-
guage for defining structural constraints on RDF graphs. The Shape
Expressions language is being used as part of the working group
discussions so it is possible that some parts of the language will
change in the future.

There are currently several topics and extension proposals for the
Shape Expression language that may be interesting to mention:

• The Shape Expression language contains other common reg-
ular expression operators like alternatives (|), negations (!),
groupings using parenthesis, etc. that can express more com-
plex patterns. For example, we could declare that Countries
can have either wf:iso2 or wf:iso3, and that they must
not have the property dc:creator as:

<Country> { a (wf:Country)
, rdfs:label xsd:string
, ( wf:iso2 xsd:string



| wf:iso3 xsd:string
)

, ! dc:creator .
}

• Open vs Closed shapes. An open shape is a shape expression
that validates nodes that contain the triples specified in the
shape but can also contain other triples. A closed shape only
validates nodes with those triples and no more. For example,
if we declare users shapes as:

<User> { a foaf:Person }

and we have the following triples:

:john a foaf:Person,
foaf:name "John" .

Using closed shapes, the system would not assign :john
the shape <User> because it contains an extra triple, while
using open shapes it would assign it that shape.

It is perceived that open shapes fit better in an Open World
web, while closed shapes would be better for more controlled
environments.

In this line of work, there is also a proposal to reuse shape
descriptions by including other shape declarations. For ex-
ample, one may be interested to say that providers have the
shape <Organization> but also contain the property wf
:sourceURI as:

<Provider> & <Organization>
{ wf:sourceURI IRI }

• Incoming edges, relations and named graphs. The current
Shape Expression language is based on describing the sub-
jects of an RDF graph. It would be possible to extend the
language to handle also objects and properties. For example,
we can declare reverse arcs using the operator ^ to indicate
incoming arcs. The Country declaration could be:

<Country> { a (wf:Country)
, rdfs:label xsd:string
, wf:iso2 xsd:string
, wf:iso3 xsd:string
, ^ cex:ref-area @<Observation> *
}

with the meaning that a country can receive (zero or more)
arcs with property cex:ref-area of shape <Observation
>.

In the same way, it may be interesting to declare the shape
of RDF nodes that act as properties. Another extension pro-
posal is to describe named graphs. These two proposals are
not difficult to add, but it is not clear which syntax would be
intuitive enough for them.

• More expressiveness. The Shape expression language can
be extended with semantic actions to increase the expres-
siveness of the language. Semantic actions are marked by
%lang { actions %} which means that the validator
can invoke a processor of the language lang with the corre-
sponding actions.

The Javascript implementation supports semantic actions in
Javascript and SPARQL which can add more expressiveness
to the validation declarations. In fact, it also contains two
simple languages (GenX and GenJ) which enable an easy
way to transform RDF to both XML and JSon.

Following the RelaxNG path, the Shape Expression language
can be seen as a simple Domain Specific Language which
is tailored to express the structure of RDF graphs. It is not
intended to perform strong constraint checking or validation
using computations. However, with semantic actions or shape
expression validators embedded in other tool chains that pos-
sibility could be offered.

In the same way, the interplay between Shape Expressions
and reasoners is not established. Some applications could do
inference between checking the shape of RDF graphs, while
other applications could check the shapes before invoking a
reasoner. Another possibility that could be explored is to
have some built-in way that could invoke reasoning capabil-
ities.

One of the challenges of the Shape Expressions language is the
performance of Shape checking. A naïve implementation of Shape
checking using backtracking can lead to exponential growth. We
have found that using regular expression derivatives offers an ef-
ficient implementation and we are currently evaluating its perfor-
mance.

8. RELATED WORK
Improving the quality of linked data has been of increasing interest
in the last years. Sieve[11] proposed a framework for expressing
quality assessment methods as well as fusion methods. RDFU-
nit[8] is a test-driven framework that can run test cases against an
endpoint. In the case of RDF validation, the main approaches can
be summarized as:

• Inference based approaches, which try to adapt RDF Schema
or OWL to express validation semantics. The use of Open
World and Non-unique name assumption limits the valida-
tion possibilities. In fact, what triggers constraint violations
in closed world systems leads to new inferences in standard
OWL systems. [4, 18, 12] propose the use of OWL expres-
sions with a Closed World Assumption to express integrity
constraints.

• SPARQL Inferencing Notation (SPIN)[7] constraints asso-
ciate RDF types or nodes with validation rules. These rules
are expressed as SPARQL ASK queries where true indi-
cates an error or CONSTRUCT queries which produce spin
:ConstraintViolations. SPIN constraints use the ex-
pressiveness of SPARQL plus the semantics of the ?this
variable standing for the current subject and the spin:
ConstraintViolation class.

• SPARQL-based approaches use the SPARQL Query Lan-
gugage to express the validation constraints. SPARQL has
much more expressiveness than Shape Expressions and can
even be used to validate numerical and statistical compu-
tations [9]. However, we consider that the Shape Expres-
sions language will be more usable by people familiar with
validation languages like RelaxNG. Nevertheless, Shape Ex-
pressions can be translated to SPARQL queries. In fact, we



have implemented a translator from Shape Expressions to
SPARQL queries. This translator combined with semantic
actions expressed in SPARQL can offer the same expressive-
ness as other SPARQL approaches with a more succinct and
intuitive syntax.

There have been other proposals using SPARQL combined
with other technologies. Fürber and Hepp[6] proposed a
combination between SPARQL and SPIN as a semantic data
quality framework, Simister and Brickley[17] propose a com-
bination between SPARQL queries and property paths which
is used in Google and Kontokostas et al [8] proposed RDFU-
nit a Test-driven framework which employs SPARQL query
templates that are instantiated into concrete quality test queries.
We consider that Shape Expressions can also be employed in
the same scenarios as SPARQL while the specialized valida-
tion nature of Shape Expressions can lead to more efficient
implementations.

• Grammar based approaches define a domain specific lan-
guage to declare the validation rules. OSLC Resource Shapes [16]
have been proposed as a high level and declarative descrip-
tion of the expected contents of an RDF graph expressing
constraints on RDF terms. Shape Expressions have been in-
spired by OSLC although they offer more expressive power.

Dublin Core Application Profiles [5] also define a set of val-
idation constraints using Description Templates with less ex-
pressiveness than Shape Expressions.

The main inspiration for Shape Expressions has been RelaxNG [19],
a Schema language for XML that offers a good trade-off between
expressiveness and validation efficiency. The semantics of Re-
laxNG has also been expressed using inference rules in the spec-
ification document [14] and is based on tree grammars [13]. In the
case of Shape Expressions the underlying semantics can be defined
in terms of regular bag expressions [3].

Shape Expressions are also being employed in the development of
more specialized validators. For example, the Vaskos project13 is
developing a SKOS validator using a combination between Shape
Expressions and SPARQL queries.

9. CONCLUSIONS
Shape Expressions have been proposed as a Domain Specific Lan-
guage that can describe and automatically validate RDF. They of-
fer a more expressive way to define sets of RDF graph shapes than
OSLC’s Resource Shapes or Dublin Core’s Application Profiles.
There are trade-offs between expressiveness and implementability,
but compared to schema languages in other data models, Shape Ex-
pressions represent a conservative point in that spectrum, emulating
mostly the expressiveness of RelaxNG.

From a tooling perspective, shape expressions can be used stand-
alone to validate RDF graphs and endpoints offering a dedicated
language that can be implemented efficiently and generate special-
ized error messages for the concrete task of shape validation.

Given that Shape Expressions can be translated to SPARQL queries,
they can also be combined with other widely deployed infrastruc-
ture.

13http://vaskos.chemaar.cloudbees.net/

The complexity of the validation algorithms for Shape Expressions
offers some theoretical challenges related to regular bag expres-
sions that have been tackled in [3]. The last implementation of
Shexcala contained an algorithm based on derivatives of regular
expressions which greatly improved the efficiency of the validation
process.

Although the language is new and the syntax can seem strange at
first sight, we noticed that people are able to learn the syntax and
to declare shape expressions quickly.

In general we consider that the benefits of validation can help the
adoption of RDF based solutions where the quality of data is an
important issue.

10. REFERENCES
[1] T. Berners-Lee. Linked-data design issues. W3C design issue

document, June 2006.
http://www.w3.org/DesignIssue/LinkedData.html.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. International Journal Semantic Web Information
Systems, 5(3):1–22, 2009.

[3] I. Boneva, J. E. Labra, S. Hym, E. G. Prud’hommeau,
H. Solbrig, and S. Staworko. Validating RDF with Shape
Expressions. ArXiv e-prints, Apr. 2014.

[4] K. Clark and E. Sirin. On RDF validation, stardog ICV, and
assorted remarks. In RDF Validation Workshop. Practical
Assurances for Quality RDF Data, Cambridge, Ma, Boston,
September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[5] K. Coyle and T. Baker. Dublin core application profiles.
separating validation from semantics. In RDF Validation
Workshop. Practical Assurances for Quality RDF Data,
Cambridge, Ma, Boston, September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[6] C. Fürber and M. Hepp. Using sparql and spin for data
quality management on the semantic web. In
W. Abramowicz and R. Tolksdorf, editors, Business
Information Systems, volume 47 of Lecture Notes in Business
Information Processing, pages 35–46. Springer, 2010.

[7] H. Knublauch. SPIN - Modeling Vocabulary. http:
//www.w3.org/Submission/spin-modeling/,
2011.

[8] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, R. Cornelissen, and A. Zaveri. Test-driven
evaluation of linked data quality. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14,
pages 747–758, Republic and Canton of Geneva,
Switzerland, 2014. International World Wide Web
Conferences Steering Committee.

[9] J. E. Labra and J. M. Alvarez Rodríguez. Validating
statistical index data represented in RDF using SPARQL
queries. In RDF Validation Workshop. Practical Assurances
for Quality RDF Data, Cambridge, Ma, Boston, September
2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[10] J. E. Labra Gayo. Reusable semantic specifications of
programming languages. In 6th Brazilian Symposium on
Programming Languages, 2002.

[11] P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve: Linked
Data Quality Assessment and Fusion. In 2nd International
Workshop on Linked Web Data Management (LWDM 2012)

http://vaskos.chemaar.cloudbees.net/
http://www.w3.org/2012/12/rdf-val
http://www.w3.org/2012/12/rdf-val
http://www.w3.org/Submission/spin-modeling/
http://www.w3.org/Submission/spin-modeling/
http://www.w3.org/2012/12/rdf-val


at the 15th International Conference on Extending Database
Technology, EDBT 2012, March 2012.

[12] B. Motik, I. Horrocks, and U. Sattler. Adding Integrity
Constraints to OWL. In C. Golbreich, A. Kalyanpur, and
B. Parsia, editors, OWL: Experiences and Directions 2007
(OWLED 2007), Innsbruck, Austria, June 6–7 2007.

[13] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy
of xml schema languages using formal language theory.
ACM Trans. Internet Technol., 5(4):660–704, Nov. 2005.

[14] OASIS Committee Specification. RELAX NG Specification:.
http://relaxng.org/spec-20011203.html, 2001.

[15] D. Reynolds. The Organization Ontology.
http://www.w3.org/TR/vocab-org/, 2014.

[16] A. G. Ryman, A. L. Hors, and S. Speicher. OSLC resource
shape: A language for defining constraints on linked data. In
C. Bizer, T. Heath, T. Berners-Lee, M. Hausenblas, and
S. Auer, editors, Linked data on the Web, volume 996 of
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[17] S. Simister and D. Brickley. Simple application-specific
constraints for rdf models. In RDF Validation Workshop.
Practical Assurances for Quality RDF Data, Cambridge,
Ma, Boston, September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[18] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity
constraints in OWL. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-10). AAAI,
2010.

[19] E. van der Vlist. Relax NG: A Simpler Schema Language for
XML. O’Reilly, Beijing, 2004.

http://www.w3.org/TR/vocab-org/
http://www.w3.org/2012/12/rdf-val

	1 Introduction
	2 WebIndex data model
	3 Using Shape Expressions to describe the WebIndex data model
	4 Implementations of Shape Expressions
	5 RDFShape: An RDF Shape validation service
	6 Validating linked data portals using Shape Expressions
	7 Extensions and challenges
	8 Related work
	9 Conclusions
	10 References

