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Abstract

We present an unsupervised, comprehensive
methodology for the construction of financial
risk models. We o↵er qualitative comments
on incremental functionality and quantitative
measures of superior performance of compo-
nent and mixture dynamic linear models rel-
ative to alternative models. We apply our
methodology to a high dimensional stream of
daily closing prices for approximately 7,000
US traded stocks, ADRs, and ETFs for the
most recent 10 years. Our methodology au-
tomatically extracts an evolving set of ex-
planatory time series from the data stream;
maintains and updates parameter distribu-
tions for component dynamic linear models
as the explanatory time series evolve; and,
ultimately specifies time-varying asset spe-
cific mixture models. Our methodology uti-
lizes a hierarchical Bayesian approach for the
specification of component model parameter
distributions and for the specification of the
mixing weights in the final model. Our ap-
proach is insensitive to the exact number of
factors, and “e↵ectively” sparse, as irrelevant
factors (time series of pure noise) yield pos-
terior parameter distributions with high den-
sity around zero. The statistical models ob-
tained serve a variety of purposes, including:
outlier detection; portfolio construction; and
risk forecasting.

1 INTRODUCTION

We propose a time varying Bayesian statistical model
for individual stock returns depicted in Figure 1.
Our goal is to accurately model the high dimensional
probability distribution underlying stock returns. We
demonstrate success by constructing better perform-

ing investment portfolios, where the performance goal
is to minimize the standard deviation of returns. In-
vestment professionals seek to minimize the variation
in investment outcomes because doing so results in
higher economic utility for their clients. To illus-
trate this point, consider which of two pension scenar-
ios with equal expected value is preferred: one that
pays 80% salary with probability 1; or, the other that
pays 120% salary with probability 1/2 (if things “go
well”) and pays 40% salary with probability 1/2 (if
things “go poorly”). The economic concept of declin-
ing marginal utility, expressed mathematically with
concave utility functions U(E(x)) > E(U(x)), implies
that given investment scenarios with equal expected
return, individuals prefer the scenario with lowest vari-
ation. Portfolio managers are concerned with gener-
ating acceptable returns with minimal risk; and, risk
managers monitor the portfolio managers, verifying fi-
nancial risks remain within authorized limits. Risk
models, defining the n ⇥ n asset covariance matrix ⌃
and precision matrix ⌃�1, are used by portfolio man-
agers in conjunction with expected return vectors ↵↵↵ to
construct optimal portfolios weights ⌃�1

↵; and, are
used by risk managers given portfolio weights w to
forecast portfolio variance wT⌃w.

We describe the construction of a set of Bayesian
switching state-space models and qualitatively analyze
the on-line behavior of the various component models
and mixture models. We focus our discussion on the
qualitative aspects then conclude by providing quan-
titative measures of our model’s superior performance
relative to competing models. We look at the tradeo↵
of adaption rate and stability of parameter estimates,
evaluating model responsiveness with both synthetic
and real data series. We show that dynamic linear
models are robust 1 with respect to pure noise ex-
planatory variables, appropriately generating param-

1We use the term robust to describe a desirable trait
where an estimation method is stable in the presence of
outlier observations and irrelevant explanatory variables
(noise).
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eter distributions very concentrated around zero. We
comment on the behavior of component models rela-
tive to the mixture consensus. We illustrate compo-
nent and mixture response to outlier observations. In
periods with ambiguous posterior model probabilities,
we describe the di↵usive impact to the mixture dis-
tribution; and, we note surprisingly distinct behavior
when an outlier component is selected with near cer-
tainty. We find unexpectedly similar updating behav-
ior across a range of component models, bringing into
question the necessity of more than two components.
We inspect the impact of implementing intervention
in the estimation process by greatly inflating the vari-
ance of a stock’s posterior distribution subsequent to
a merger event. The intervention is shown to result in
extremely rapid convergence to new dynamics, while
the same model without intervention is shown to main-
tain bias for an unacceptably long period. Lastly, we
compare our two component mixture model against
several alternatives. Analyzing results in Table 1, we
show the positive impact of regularization provided by
the Bayesian framework relative to PCA, and further
improvement of the mixture model as compared to the
single process model.

2 BACKGROUND

2.1 RISK MODELS

High dimensional statistical models, central to mod-
ern portfolio management, present significant techni-
cal challenge in their construction. There is extensive
literature on the topic of constructing factor models

or risk models as they are interchangeably known by
practitioners. Consider a matrix of observations

X =
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, (1)

representing log price returns

ri,j = log

✓

pi,j

pi,j�1

◆

, (2)

for assets i 2 1 . . . n, trading days j 2 1 . . . t, and end of
day prices pi,j . The general approach to financial risk
modeling specifies the covariance of asset returns as a
structured matrix. A factor model with p explanatory
time series is specified for the n ⇥ t matrix X with
an n⇥ p matrix of common factor loadings L, a p⇥ t

matrix of common factor returns time series F, and an
n⇥ t matrix of residual error time series ✏✏✏:

X = LF+ ✏

✏

✏ . (3)

An orthogonal factor model (Johnson and Wichern,
1998, Ch. 9) implies diagonal covariance matrices
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Figure 1: Our final two process Bayesian switch-
ing state-space model for log price returns Yn,t =
log (pn,t/pn,t�1) for asset n in time period t. We spec-
ify the prior probabilities ⇡↵ of the switch variable
↵n,t that controls the observation variance: Vn,t = 1
if ↵n,t = {regular model} and Vn,t = 100 if ↵n,t =
{outlier model}. In our final model, we specify the
evolution variance W. Other variables are obtained
or inferred from the data in an unsupervised manner.
The return of an individual asset is modeled as a time
varying regression, with regression coe�cient vector
✓

✓

✓n,t, common factor explanatory vector Ft, and noise:
Yn,t = ✓

✓

✓

T
n,tFt+�n,tvn,t, vn,t ⇠ N(0, Vn,t). The regres-

sion coe�cients are a hidden state vector, evolving as
a Markov chain: ✓✓✓n,t = Gt✓✓✓n,t�1 + �n,twn,t, wn,t ⇠

N(0,W). Gt captures rotation and scaling of the ex-
planatory vector Ft over time, permitting computation
of prior distributions for ✓✓✓n,t from posterior distribu-
tions for ✓✓✓n,t�1. �n,t is an asset and time specific scale
factor applied to both the observation noise vn,t and
the state evolution noise wn,t.
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Cov(F) = I and Cov(✏✏✏) =  . In an orthogonal factor
model, the covariance of the observation matrix X is
simply:

Cov(X) = LLT + . (4)

By construction, risk models based on principal com-
ponent and singular value decomposition (Wall et al.,
2003), including ours, possess this simple structure of
orthogonal common factors and residual errors.

2.2 COMMON FACTORS

In pursing an unsupervised methodology, we utilize an
SVD based approach to identifying characteristic time
series. SVD identifies common variation, both row-
wise and column-wise, in a matrix of data (Wall et al.,
2003). SVD decomposes a rectangular matrix, such as
the returns X, into two orthogonal matrices U and V;
and, a diagonal matrix D:

X = UDVT
. (5)

Given the format of the n ⇥ t returns matrix X in
Equation 3, the mutually orthogonal, unit-length right
singular vectors comprising matrix V that represent
common variation across the columns (t trading days)
are the characteristic time series; the mutually orthog-
onal, unit-length left singular vectors comprising ma-
trix U that represent common variation across rows
(n assets) are the characteristic portfolios; and, the
diagonal singular values matrix D captures scale. The
entries of D are ordered by magnitude, therefore a p-
factor model would use the first p-rows of VT for the
factor return time series.

We exploit the fact that SVD methodically extracts
common variation, ordered by magnitude. The intu-
ition is that “pervasive” sources of return important
to modeling portfolio level return characteristics will
be reliably captured in the first several factors. Points
of concern for some practitioners with regards to the
use of SVD or PCA include:

1. the factors are not readily identifiable (to the hu-
man analyst);

2. the factors can be permuted in order and sign for
data samples adjacent in time; and

3. it’s not clear how many factors to “keep”.

With respect to the first concern of (human) identifia-
bility, we reiterate our goal is an unsupervised process
yielding a high dimensional statistical model with ad-
equate explanatory power as opposed to semantically
meaningful groupings. Examination of assets with sig-
nificant weight in the characteristic portfolios typi-
cally yields meaningful portfolio themes (Johnson and

Wichern, 1998, Ex. 8.5). With respect to the second
concern, the rotation and scaling of factors in di↵er-
ent sample periods, our application incorporates the
method of (Keane and Corso, 2012) to identify these
rotations and maintain parameter distributions in the
presence of rotation and scaling. Although much dis-
cussion surrounds the third concern, the identification
of the “correct” number of factors (Roll and Ross,
1980; Trzcinka, 1986; Connor and Korajczyk, 1993;
Onatski, 2010), we find the regularization provided by
Bayesian dynamic linear models results in regression
coe�cients densely centered around zero for factors
that are pure noise. The functioning of our process
in this regard is analogous to regularized least squares
(RLS) (Bishop, 2006, Ch. 3) and the ability of RLS to
successfully estimate regression coe�cients when con-
fronted with a large number of candidate explanatory
variables.

2.3 DYNAMIC LINEAR MODELS

The Bayesian dynamic linear model (DLM) frame-
work elegantly addresses our need to process streams

of data. DLMs are state space models very similar to
Kalman filters (Kalman, 1960) and linear dynamical
systems (Bishop, 2006, Ch. 13). We summarize the
matrix variate notation and results from (West and
Harrison, 1997, Ch. 16.4). Define t the time index, p
the number of common factors, and n the number of
assets. The observations Yt are generated by matrix
variate dynamic linear models characterized by four
time varying parameters,

�

Ft,Gt, Vt,Wt

 

that define
the observation and state evolution equations. We now
define and comment on the DLM parameters as they
pertain to our application:

• Yt =
⇥

Yt,1, . . . , Yt,n

⇤T
, log price returns at time t,

common to all component DLMs;

• Ft a p ⇥ 1 dynamic regression vector, factor re-
turns at time t, common to all component DLMs;

• Gt a p ⇥ p state evolution matrix, accounts for
rotation and scaling of factor return time series
at time t, common to all component DLMs;

• Vt an observational variance scalar, individually
specified for each component DLM, greatly in-
flated in the DLMs generating “outliers” at time
t;

• Wt an evolution variance matrix, individually
specified for each component DLM, controls rate
of change in factor loadings at time t;

• ⌃t =

2

6

4

�

2
t,1

. . .
�

2
t,n

3

7

5

, unknown diagonal ma-
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trix composed of n-asset specific variance scales
at time t;

• ⌫

⌫

⌫t, n⇥ 1 vector of unknown observation errors at
time t;

• ⇥t =
⇥

✓t,1, . . . , ✓t,n

⇤

, a p⇥n unknown state matrix
whose columns are factor loadings of individual
assets on common factor returns at time t; and,

• ⌦t =
⇥

!t,1, . . . ,!t,n

⇤

, a p ⇥ n unknown evolution
errors matrix applied to the state matrix at time
t.

We specify our model variances in scale free form
(West and Harrison, 1997, Ch. 4.5), implying multipli-
cation by asset specific scales �2

t,i in univariate DLMs:

Ct = �

2
t,iC

⇤
t , Vt = �

2
t,iV

⇤
t , and Wt = �

2
t,iW

⇤
t . When

using matrix variate notation, ⌃t is a right variance
parameter, discussed below, scaling the n columns of
the matrix on which it operates. When we specify
models in § 3.5, we will specify scale free parameters
V

⇤
t 2

�

1, 100
 

and W⇤
t 2

�

.00001, .001, .1
 

. For sim-
plicity, we shall omit scale free notation.

The observation equation is:

Yt = ⇥T
t Ft + ⌫

⌫

⌫t, ⌫

⌫

⌫t ⇠ N[0, Vt⌃t] . (6)

The distribution of the observation errors ⌫

⌫

⌫t is mul-
tivariate normal, with mean vector 0 and unknown
variance Vt⌃t.

The state evolution is:

⇥t = Gt⇥t�1 +⌦t, ⌦t ⇠ N[0,Wt,⌃t] . (7)

The distribution of the state matrix evolution errors
⌦t is matrix normal (Dawid, 1981), with mean ma-
trix 0, left variance matrix Wt controlling variation
across rows (factors) of ⇥t, and right variance matrix
⌃t controlling variation across columns (assets) of ⇥t.
As our implementation uses diagonal matrices for both
Wt and ⌃t, we implicitly assume independence in the
evolution of factor loadings across the factors i 2 1 . . . p
and across the assets j 2 1 . . . n.

Mapping factor model notation of (Johnson and Wich-
ern, 1998) in Equation 3 to DLM notation of (West
and Harrison, 1997) in Equation 6: X !

⇥

Y1 . . .Yt

⇤

;

L ! ⇥T
t ; F !

⇥

F1 . . .Ft

⇤

; and, ✏✏✏ !

⇥

⌫

⌫

⌫1 . . .⌫⌫⌫t

⇤

. The
crucial change in perspective involves the regression
coe�cients, L ! ⇥T

t . Where as the other matrices in
Equation 3 are simply collections of columns present
in Equation 6, the static regression coe�cients L now
evolve with time in Equation 7 as ⇥T

t .

As typical with a Bayesian approach, our process
begins with a prior distribution reflecting our belief

about the unknown state parameter matrix ⇥0 and
the unknown variance scale matrix ⌃0 before data ar-
rives. Our initial belief is expressed as a matrix nor-

mal/inverse Wishart distribution:

(⇥0,⌃0) ⇠ NW�1
�0

[m0,C0,S0] , (8)

with mean matrix m0, left variance matrix C0, right
variance matrix S0, and degrees of freedom �0. We al-
low our estimate of observational variance to vary over
time by decaying our sample variance degrees of free-
dom parameter �t�1 immediately before computation
of the prior distribution Equation 10.

The marginal distribution for the state matrix ⇥0 is a
matrix T distribution:

⇥0 ⇠ T�0 [m0,C0,S0] . (9)

LetDt =
⇥

Yt . . .Y0

⇤

refer to the information available
subsequent to observing Yt. The conjugate parameter
distributions are updated as follows.

Prior distribution at t:

(⇥t,⌃t|Dt�1) ⇠ NW�1
�t�1

[at,Rt,St�1] , (10)

where at = Gtmt�1 and Rt = GtCt�1G
T
t +Wt.

Forecast distribution at t given the dynamic regression
vector Ft:

(Yt|Dt�1) ⇠ T�t�1 [ft, QtSt�1] , (11)

where ft = aTt Ft and Qt =
�

Vt + FT
t RtFt

 

.

In our application, Ft is not available until Yt

is observed. Therefore, we accommodate ran-
dom regression vectors Ft (Wang et al., 2011,
§ 7). Define µFt = E(Ft|Dt�1) and ⌃Ft =
Cov(Ft|Dt�1). The forecast distribution with Ft un-
known is (Yt|Dt�1) ⇠ T�t�1 [f̂t, Q̂tSt�1], where the
moment parameters of the multivariate T forecast
distribution are now f̂t = aTt µFt and Q̂tSt�1 =
�

Vt + µ

T
Ft
RtµFt + tr (Rt⌃Ft)

 

St�1 + aTt ⌃Ftat.

Posterior distribution at t:

(⇥t,⌃t|Dt) ⇠ NW�1
�t

[mt,Ct,St] , (12)

with mt = at + Ate
T
t , Ct = Rt � AtA

T
t Qt, �t =

�t�1 + 1 and St = �

�1
t

⇥

�t�1St�1 + ete
T
t /Qt

⇤

where
At = RtFt/Qt and et = Yt � ft.

2.4 UNIVARIATE DLMS

In § 2.3, we summarized results for matrix variate
DLMs. Setting the number of assets n = 1, results
for univariate DLMs immediately follow.

23



2.5 MULTI-PROCESS MODELS

(West and Harrison, 1997, Ch. 12) define multi-process
models composed of component DLMs. Consider a
set of DLMs A =

�

A1, . . . ,Ak

 

. Let ↵t reference
the component DLM realized at time t, A↵t 2 A. If
the observations Yt are generated with one unknown
DLM ↵t = ↵ for all time, the observations are said
to follow a multi-process, class I model. If at di↵erent
times s 6= t, the observations are generated by distinct
DLMs ↵s 6= ↵t, the observations are said to follow a
multi-process, class II model. In an unsupervised mod-
eling process, we need to accommodate the arrival of
both typical and outlier observations. We accomplish
this with a multi-process class II model, where various
component DLMs are appropriate for various subsets
of the observations. We assume fixed model selection
probabilities, ⇡t(A↵) = ⇡(A↵).

With class II models, there are |A|

t potential model
histories for each asset. We avoid this explosion in
model sequences by considering only two periods, t�1
and t, thereby limiting distinct model sequences in our
mixtures to |A|

2. As each asset has its own history,
no longer sharing common scale free posterior variance
Ct, our mixture models are asset specific, forcing the
use of univariate component DLMs. Parameters 1⇥ 1
in univariate DLMs are now displayed with scalar no-
tation. To avoid clutter, we omit implicit asset sub-
scripts.

Inference with multi-process models is based upon
manipulation of various model probabilities: the
posterior model probabilities for the last model
pt�1(↵t�1); the prior model probabilities for the cur-
rent model ⇡(↵t); and, the model sequence likelihoods
p(Yt|↵t,↵t�1, Dt�1). Posterior model sequence proba-
bilities for current model ↵t and last model ↵t�1 upon
observing Yt are:

pt(↵t,↵t�1) = Pr[↵t,↵t�1|Dt]

/ pt�1(↵t�1)⇡(↵t)p(Yt|↵t,↵t�1, Dt�1) .

(13)

The unconditional posterior parameter distributions
are computed as mixtures of the |A|

2 component DLM
sequences

p(✓✓✓t|Dt) =
k
X

↵t=1

k
X

↵t�1=1

pt(✓✓✓t|↵t,↵t�1, Dt)pt(↵t,↵t�1) .

(14)
The posterior model probabilities are

pt(↵t) = Pr[↵t|Dt] =
k
X

↵t�1=1

pt(↵t,↵t�1) . (15)

The posterior probabilities for the last model ↵t�1

given the current model ↵t and information Dt are

Pr[↵t�1|↵t, Dt] =
pt(↵t,↵t�1)

pt(↵t)
. (16)

After each time step, the posterior mixture distribu-
tion for each component DLM is approximated with
an analytic distribution using the methodology de-
scribed in (West and Harrison, 1997, Ch. 12.3.4). The
Kullback-Leibler directed divergence between the ap-
proximation and the mixture is minimized in the pa-
rameters: mt(↵t), Ct(↵t), St(↵t), and �t(↵t). Let
St(↵t,↵t�1) refer to the variance scale estimate ob-
tained with the DLM sequence ↵t�1, ↵t. The param-
eters of the approximating distributions are as follows.
The variance scale estimates St(↵t) are:

St(↵t)
�1 =

1

pt(↵t)

k
X

↵t�1=1

pt(↵t,↵t�1)

St(↵t,↵t�1)
. (17)

The weights for computing the moments of the KL
divergence minimizing approximation to the posterior
distribution are:

p

⇤
t (↵t�1) =

St(↵t)

pt(↵t)

pt(↵t,↵t�1)

St(↵t,↵t�1)
. (18)

The mean vector mt(↵t) for DLM ↵t is:

mt(↵t) =
k
X

↵t�1=1

p

⇤
t (↵t�1)mt(↵t,↵t�1) . (19)

The variance matrix Ct(↵t) for DLM ↵t is:

Ct(↵t) =
k
X

↵t�1=1

p

⇤
t (↵t�1)

n

Ct(↵t,↵t�1) +

[mt(↵t)�mt(↵t,↵t�1)] ⇥

[mt(↵t)�mt(↵t,↵t�1)]
T
o

. (20)

The degrees of freedom parameter, �t(↵t) is important
to the KL minimization. Intuitively, if the component
DLMs are in discord, the resulting mixture may be
described as “fat-tailed”, and the precision of the un-
known variance scale parameter reduced. We compute
�t(↵t) using the procedure described by (West and
Harrison, 1997, Ex. 12.7), with a further correction
term. The approximation West and Harrison utilize,
based upon an algorithm for computing the digamma
function �(x) discussed in (Bernardo, 1976), is appro-
priate when x ! 1. However, when estimating the
reciprocal of the KL minimizing �t(↵t), we find the er-
ror in the approximation remains rather constant, and
we apply a correction to eliminate this constant.
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(a) Synthetic scenario 1: abrupt increase in factor loading
✓t, units are percent per annum. Observations Yt are syn-
thesized returns using SPY (S&P 500 ETF) until March
30, 2012; and, 2⇥SPY thereafter. Note “true” factor load-
ing doubles from approximately 10 to 20.
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(b) Synthetic scenario 2: abrupt decrease in factor load-
ing ✓t, units are percent per annum. Observations Yt are
synthesized returns using SPY until March 30, 2012; and,
AGG (Barclays Aggregate Bond ETF) thereafter. Note
“true” factor loading drops from approximately 10 to 0.

Figure 2: Unmonitored mixture models responding to abrupt change. Black line is true value of latent state
variable ✓1,t. Other lines are the posterior mean m1,t (first common factor loading) obtained with three di↵erent
mixture models discussed in § 3.5. None of the three above models responded quickly enough to the dramatic
change in dynamics. A method of intervention to improve responsiveness is discussed in § 4.5.

3 APPLICATION DESIGN

3.1 END USERS

Our application enables a proprietary trading group
at a financial services firm to better understand the
aggregate behavior of stock portfolios. The models
provide a statistical framework required for construct-
ing portfolios, assessing portfolio risk, and clustering
assets. The assets of primary interest are the common
shares of the largest 1000 - 2000 companies in the US
stock market. The group focuses on larger companies
because the liquidity of larger stocks generally makes
them cheaper and easier to transact. The group’s
strategies include short selling: borrowing stock, sell-
ing borrowed shares; and, attempting to profit by re-
purchasing the shares at a lower price. Larger stocks
are generally easier to borrow.

3.2 BIAS-VARIANCE TRADEOFF

In implementing our application, one of the first issues
encountered is a machine learning classic, the bias-
variance tradeo↵ [Ch. 2.9](Hastie et al., 2009). With
respect to DLMs, a trade o↵ is incurred in the e↵ec-
tive number of observations as the evolution variance
is varied. A model with greater evolution variance will
generate parameter distributions with greater variance
but lower bias. A model with lower evolution variance
will generate parameter distributions with lower vari-
ance but greater bias. A relatively smooth, lethar-
gic, slowly adapting model does not track evolving
dynamics as quickly as a rapidly adapting model; on

the other hand, the quickly adapting model delivers
a noisier sequence of parameter distributions. Out-
side our applied context, the loss function might be
specified as squared error or absolute error. In the
context of a risk model, the loss function should con-
sider a portfolio manager’s cost of over-trading due
to a model adapting excessively (variance); as well a
risk manager’s problems arising in a system adapt-
ing too slowly (bias). The appropriate loss function
depends critically on the intended end use. A quan-
titative trader constructing portfolios with quadratic
optimization tends to magnify errors in a model, as the
optimization process responds dynamically to param-
eter estimates (Muller, 1993). In contrast, a firm-wide
risk manager, who typically evaluates sums of individ-
ual asset exposures, but does not dynamically respond
to individual asset risk attributes, may prefer less bias
and more variance, as error in the factor loadings of
one asset may be o↵set by error in another asset in the
summation process. We construct a variety of mix-
tures along the bias-variance continuum as discussed
in § 3.5 and as illustrated in Figure 2.

3.3 UNIVERSE OF ASSETS

We identify two universes of assets: a relatively nar-
row set that will be used to construct explanatory time
series; and, an all inclusive set for which we will gen-
erate factor loading and residual volatility estimates.
It is desirable that the assets used to construct the
common factor returns trade frequently and with ad-
equate liquidity to minimize pricing errors. We also
avoid survivor bias, the methodological error of omit-
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ting companies no longer in existence at the time a
historical analysis is performed. We eliminate this haz-
ard by defining our common factor estimation universe
using daily exchange traded fund (ETF) create / re-
deem portfolios for the last 10 years. Brokers create

ETF shares (in units of 50,000 ETF shares) by deliv-
ering a defined portfolio of stock and cash in exchange
for ETF shares; or, they redeem ETF shares and re-
ceive the defined portfolio of stock and cash. Given the
create / redeem definitions that were used as the basis
for large transactions during the historical period, the
assets in an ETF portfolio represent an institutionally
held, survivor bias free, tradeable universe. Its likely
the component shares were readily available to borrow,
as the component shares were held by custodian banks
for the ETF shareholders. Our data base permits us
to obtain data for surviving and extinct stocks. The
ETF we select for our factor estimation universe is the
Vanguard Total Stock Market ETF (VTI) (Vanguard
Group, Inc., 2014). As of April 2014, including both
mutual fund and ETF share classes, the Vanguard To-
tal Stock Market fund size was approximately USD 330
billion. The VTI constituents closely approximates
our desired universe, with the number of component
stocks typically ranging from 1300 - 1800.

3.4 DATA PREPARATION

Data preparation involves constructing the artifacts
demanded by § 2.3: Yt, Ft, and Gt. Each trading day,
using price, dividend, and corporate action data for all
7000 - 8000 stocks, ADRs, and ETFs in our US pricing
data base (MarketMap Analytic Platform, 2014), we
construct dividend and split adjusted log price return
observation vectors Yt. For stocks in the VTI ETF
on that day, we construct a variance equalized histor-

ical returns matrix rt =
⇥

Yt�T+1 . . .Yt

⇤

⌃̂
� 1

2
t where

⌃̂t is the diagonal matrix of sample variance for the
period t� T +1 to T . Using (Keane and Corso, 2012,
§3.c), we compute Ft, from the first p right singular
vectors from a singular value decomposition of rt. As
the vectors are unit length, and we desire unit variance
per day, Cov(Ft) = I, we scale the right singular vec-
tors by

p

T . The scaled characteristic time series from

adjacent data windows, rt�1 =
⇥

Yt�T . . .Yt�1

⇤

⌃̂
� 1

2
t�1

and rt =
⇥

Yt�T+1 . . .Yt

⇤

⌃̂
� 1

2
t are then used to com-

pute Gt as described in (Keane and Corso, 2012, §3.e):

Gt =
�

FtF
T
t

��1
FtF

T
t�1 . (21)

We are a little flexible with the notation in Equa-
tion 21, where Ft and Ft�1 are p⇥(T�1) sub-matrices
representing time aligned subsets of two factor return
matrices, the scaled right singular vectors obtained
from the decomposition of rt�1 and rt. Elsewhere,

viz. Equation 11, Ft refers to a p⇥ 1 dynamic regres-
sion vector, the right most column of the transposed
and scaled right singular vectors, corresponding to the
desired vector of common factor returns for day t.

3.5 MODEL COMPONENTS

The component DLMs in our mixture model share ob-
servations Yt, common factor scores Ft, and state evo-
lution matrices Gt. The component DLMs are di↵er-
entiated by the variance parameters: the observational
variance scale Vt, and the evolution variance matrix
Wt. We construct a set of component DLMs following
the approach of (West and Harrison, 1997, Ch. 12.4).
For component DLMs that will accommodate “typ-
ical” observation variance, we set Vt = 1; for com-
ponent DLMs that will accommodate outlier observa-
tions, we set Vt = 100. For the evolution variance, we
similarly select a base rate of evolution Wt = .00001;
and, inflate Wt by a factor of 100 and 1002 to permit
increasingly rapid changes in the factor loadings.

3.6 OUTPUT

The format of the output risk model will be a n ⇥ p

factor loading matrix and a n ⇥ 1 residual volatility
vector. These p+1 numeric attributes for n stocks are
stored in various formats for subsequent use through-
out the organization.

4 EVALUATION
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Figure 3: Distribution of factor loadings for the Van-
guard Total Market Index portfolio on April 30, 2014.

Left axis is density,

Z

dx = 1.

4.1 NUMBER OF FACTORS

A Bayesian DLM updated with an “explanatory” se-
ries of pure noise is expected to generate posterior
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Figure 4: Multi-Process Models. See § 4.3 for discussion. Figure 4(a),(c),(e) units are percent per annum.
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regression parameter distributions densely surround-
ing zero given su�cient observations. Further, a
linear combination of independent DLMs is a DLM
(West and Harrison, 1997, Principle of Superposition,
p. 188). We use these two points to justify the in-
clusion of a relatively large number of independent
explanatory series. Given the regularization inherent
in Bayesian DLMs, we believe the risk of omitting a
common factor far exceeds the risk of including noise.
In our application, we focus on aggregate (portfolio
level) forecasts, therefore it is extremely important to
identify common sources of variation that may appear
insignificant at the individual asset level. (West and
Harrison, 1997, Ch. 16.3) discuss in detail the hazard
of omitted common factors in aggregate forecasts. In
Figure 3, we show the distribution of factor loadings
for the VTI constituents on April 30, 2014. The distri-
bution of factor loadings for the first five common fac-
tors obtained from our two component mixture model
are shown in comparison to the distribution of loadings
on Gaussian noise, Ft ⇠ N[0, 1]. Figure 3 is consis-
tent with our viewpoint, note the high density of zero
loadings for the noise series, and the relatively di↵use
factor loadings for the first five common factor series
extracted with SVD. The factor loadings on the noise
series have a mean loading µm = 0 bp2, and a stan-
dard deviation of � = 2 bp. In contrast, the loadings
on the first factor have a mean loading of µm = �82bp
and a standard deviation of �m = 21bp.

4.2 MIXTURE DYNAMICS

Figure 4 shows the price movement and model re-
sponse for IBM during the second half of 2013. In Fig-
ure 4(g), the price histories for IBM and the S&P 500
ETF SPY are displayed. Note the sharp drop in IBM’s
price on October 17, 2013 corresponding to an earnings
announcement. This event is helpful in understand-
ing the interaction of components in our multi-process
models. We construct three multi-process models, the
simplest of which is a two component mixture (the
“base model”), comprised of a standard component
DLM to handle the majority of the observations Yt,
and an outlier component DLM. We specify common
evolution variance Wt = .00001 I; observation vari-
ance Vt = 1 for the standard component; and observa-
tion variance Vt = 100 for the outlier component. The
base model and component estimates for the first fac-
tor loading m1,t appear in Figure 4(a) and magnified
in Figure 4(b). We specify a three component mixture
(the “adaptive model”) by adding a component DLM
with inflated evolution variance Wt = .001 I. The
adaptive model and component estimates for the first
factor loading m1,t appear in Figure 4(c) and magni-

2A basis point (bp) is 10, 000�1.

fied in Figure 4(d). Finally, we specify a four compo-
nent mixture (the “very adaptive model”) by adding
a component with further inflated evolution variance
Wt = .1 I. The very adaptive model and compo-
nent estimates for the first factor loading m1,t ap-
pear in Figure 4(e) and magnified in Figure 4(f). The
posterior component model probabilities for the very
adaptive model appear as a bar chart in Figure 4(h),
where the bottom bar corresponds to the probability
of the outlier component, the second bar corresponds
to the very adaptive component DLM, the third bar
corresponds to the adaptive component DLM, and the
top bar corresponds to the base component DLM. We
specified the fixed DLM selection (prior) probabili-
ties as

�

.01543, .00887, .0887, .887
 

for the components
{outlier, very adaptive, adaptive, base} respectively.
Note several occurrences where the posterior probabil-
ity of an outlier observation significantly exceeds the
DLM selection probability. The white line in Figure
4(h) corresponds to the degrees of freedom parameter
�t for the T-distribution that approximates the mix-
ture model’s posterior parameter distribution.

4.3 QUALITATIVE COMMENTS

To supplement the more analytically precise discussion
in § 2.5, we make the following qualitative comments
as to the interaction of the mixture components:

• the mixture in Figure 4(e) with larger evolution
variance adapts faster; the mixture in Figure 4(a)
with smaller evolution variance appears smoother;

• time t component posteriors are 1-period depar-
tures from the t � 1 consensus, see Figure 4(a),
(b), (c), (d), and (e);

• an outlier component “ignores” current observa-
tions Yt and forecast error |et|, responding to the
t � 1 posterior consensus mt�1, see Figure 4(b)
and (d);

• in periods of noise, the other components return
to the outlier component’s estimate with 1-period
lag, see left-hand side of Figure 4(b) and (d);

• in periods of level change, the outlier follows the
other components’ estimate with 1-period lag, see
right-hand side of Figure 4(b) and (d);

• when the posterior probability of the outlier com-
ponent spikes up, the degrees of freedom parame-
ter �t usually drops, reducing the precision of the
variance scale estimate St, see Figure 4(h);

• however, when the outlier component is selected
with very high probability, there is no impact to
�t as the observation is ignored, see October 17,
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Figure 5: In a deal announced April 15, 2013, Life Technologies Corporation was acquired by Thermo Fisher
Scientific Inc. for USD 14 billion. The change in price behavior is noticable in Figure 5a. The factor loading
estimates for two mixture models are compared in Figure 5b. One mixture model is unmonitored, the other
benefits from intervention subsequent to the news event. See discussion in § 4.5

2013 in Figure 4(h), noting that the white line
does not drop when Pr{ outlier } ⇡ 1;

• except for the very adaptive component, the re-
sponse does not vary with Wt, see Figure 4(d)
and (f), where W=.001 and W=.00001 responses
are nearly identical.

4.4 UNRESPONSIVENESS TO Wt

The phenomenon we find most surprising is the in-
sensitivity of the components to Wt below a cer-
tain threshold. Digging further into this phenomenon,
in a mixture, the various component models view of
the t � 1 posterior parameter distribution are very
similar. Thinking about univariate DLMs, and as-
suming for discussion F = 1 and G = 1, the
magnitude of the adaptive scalar At = Rt/Qt =
(Ct�1 +Wt) / (Ct�1 +Wt + Vt). When Wt ⌧ Ct�1,
as describes our situation, At ⇡ Ct�1/ (Ct�1 + Vt) as
seen in Figure 4(d) and (f). Only when Wt is signifi-
cant relative to Ct�1 does response vary noticeably.

4.5 INTERVENTION

Our discussion of IBM focused on the mixture mod-
els’ processing of unusual observations. We now ex-
plore an example where the data generating process
changes abruptly, similar to our synthetic illustrations
in Figure 2. In April 2013, the acquisition of Life
Technologies Corporation by Thermo Fisher Scientific
Inc. was announced. The stock’s sensitivity to the
market, as expressed in its first common factor load-
ing, dropped abruptly, as shown in Figure 5. While
our goal is an unsupervised estimation processes, the
Bayesian DLM framework facilitates structured inter-
vention when necessary. For one of the mixture models

in Figure 5b, we intervene and inflate the prior param-
eter variance following the April 15th announcement,
R++

t = Gt (Ct�1 + I)GT + Wt, where the identity
matrix reflects the increased uncertainty in the param-
eter distribution relative to the usual prior variance in
Equation 10. When subsequent updates occur, the
DLM with the inflated prior variance adapts to the
new dynamics rapidly and satisfactorily.

Table 1: Risk Model Performance

Volatility s.e. t-stat

GMV portfolio
PCA (1) 4.62 0.07 40.48
PCA (10) 3.41 0.05 29.87
DLM (10) 2.17 0.03 6.82
Mixture (10) 1.96 0.03

MSR portfolio
PCA (1) 4.07 0.06 49.38
PCA (10) 2.06 0.03 28.84
DLM (10) 1.30 0.02 4.39
Mixture (10) 1.22 0.02

Cap Weight 20.31 0.29
Equal Weight 24.62 0.35

4.6 RISK MODEL PERFORMANCE

To access the performance of our two component mix-
ture model, we construct daily portfolios from the VTI
universe for the most recent ten years, May 2004 to
April 2014. The number of trading days during this
period was 2,516. In Table 1, we report realized out-
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of-sample volatility and the standard error (se) of the
volatility measure for two strategies: global minimum
variance (GMV); and, maximum Sharpe ratio (MSR)
(Demey et al., 2010). We implement four risk models:
1-factor PCA; 10-factor PCA; 10-factor DLM; and, 10-
factor 2-component mixture model. We permit short
positions, and do not constrain position weights. The
PCA models are constructed using (Connor and Kora-
jczyk, 1988). The mixture model is the same model we
presented earlier, with noise “factor ten” present. For
each strategy, we report the t-statistics for the vari-
ous models’ realized volatility compared to the mixture
model’s realized volatility. For context on the ambient
volatility of the ten year period, we provide realized
volatility for two portfolios that are long only and do
not use a risk model: the capitalization weighted port-
folio; and the equal weighted portfolio.

5 CONCLUSION

The ability to integrate SVD with Bayesian methods
allows our application to process large data streams in
an unsupervised fashion. We demonstrate that a two
component multi-process model achieved better reduc-
tion in volatility than alternative models. The two
component model out-performed alternative models
including a single process model. We find the robust-
ness of Bayesian DLMs with respect to noise inputs
of great practical value, allowing us to favor inclusion
of factors, potentially capturing pervasive sources of
common movement important to aggregate forecast-
ing. The inclusion of an outlier model adds great
functionality, delivering robustness to the estimation
process. The insensitivity of the mixture models to
multiple evolution variance values leads us to favor
mixtures of just two components, a typical evolution
variance value for both components, and an inflated
observation variance in the outlier component. We
would recommend generating several models of vary-
ing adaptiveness, evaluating the variance-bias tradeo↵
in light of a user’s specific situation. We favor the ju-
dicious use of intervention for events such as mergers.
We would like to explore using news feeds to system-
atically intervene for events known to impact an assets
dynamics.
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