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Abstract 
The work presented simplifies and makes accessible the 
process of using advanced probabilistic models to reason 
about complex scenarios without the need for advanced 
training. More specifically, it greatly simplifies the effort 
involved in building Bayesian Networks for making 
probabilistic predictions in complex domains. These 
methods typically require trained users with a 
sophisticated understanding of how to build and use these 
networks to predict future events. It entails the creation of 
simplified semantics that keeps the complexity of the 
methodology transparent to users. We provide more 
precise semantics to the definition of concept variables in 
the domain model, as well as using those semantics to 
assign more precise and robust meaning to predicted 
outcomes. This work is presented in the context of a tool 
and methodology, called DecAid, where complex 
cognitive models are created by defining domain-specific 
concepts using free language and defining relations and 
causal weights between them. In response to a user query 
the DecAid, unconstrained, directed graph is converted 
into a Bayesian network to enable predictions of events 
and trends. 

1 INTRODUCTION 
DecAid  is a hypothesis-driven decision support tool that 
facilitates complex strategic decisions with features that 
allow for easy, fast, knowledge capture and modeling in 
complex domains. It identifies the key variables relevant 
to a specific query. While the cognitive, unconstrained, 
model is built, the defined concepts are used to create a 
probabilistic model to forecast events and trends. 
Similarly, the free-language used to define and label the 
concepts is used to generate a document search classifier 
to retrieve evidence for validation of hypotheses raised by 
the predictive model. DecAid’s   goal   is   to   predict 

likelihood, impact and timing of events and trends 
(Kipersztok, 2004).  

DecAid is aimed at strategic decision making where the 
risk of making the wrong decision can be very costly and 
where there is need for argumentative rigor and careful 
documentation of ideas, associations and assumptions 
leading to the final decision. The modeling methodology 
was created to enable domain experts to create Bayesian 
networks (BN) without having to familiarize with the 
theory of graphical probabilistic networks or the practice 
of how to build them. Such users may not also require the 
involvement of a knowledge engineer. At the levels where 
high impact decisions are made, requiring high-level of 
abstraction and dealing with large number of variables 
and interdependencies, it is less likely that decision 
makers will use advanced decision analytic tools 
requiring learning specialized methodology to define and 
represent complex domain knowledge. The overall goals 
and requirements identified for the development of the 
DecAid tool were described in (Kipersztok, 2007). 

In a world of rapid change it is incresingly challenging to 
stay abreast of occurring events and trends, making it 
more difficult to process information without the use of 
advanced technology tools designed to manage 
complexity and large volumes of information. 
Furthermore, strategic decision makers recognize the need 
for argumentative explanations to strategic decisions that 
capture the hypothetical reasoning and the evidential 
context behind each decision. For these reasons the need 
arises to rely on advanced methods to gather, organize, 
process and analyze data and knowledge.  

Bayesian networks practitioners recognize the need to 
make the technology more accessible to end users due to 
the challenges presented during the model creation 
process. Some of the most significant challenges that 
DecAid aims to address are: 1) the complexity in eliciting 
expert knowledge, 2) defining a, potentially, large number 
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of parameters and relations in a particular domain, 3) 
adhering to conditional independence constraint in the 
definition of causal variables, and 4) requiring to avoid 
feedback reasoning during model creation that may result 
in graphs with cycles.    

The first challenge has been addressed by various 
software packages (e.g.,  Netica, GeNIe, Hugin, etc.) that 
enable users to build BN with user-friendly interfaces 
equipped with knowledge elicitation tools. Learning 
algorithms have also provided the means for automated 
construction of BN structures and their parameters from 
data.  To address the second challenge, canonical 
structures have been defined that reduce the number of 
parameters needed to construct conditional probability 
tables (CPT). (Farry et al, 2008) review several canonical 
models, including Influence Networks (Rose and Smith, 
1996), Noisy-OR, Noisy-MAX, Qualitative Probabilistic 
Networks (QPN) and Causal Influence Models (CIM). 
They, in particular, emphasize usability of CIM models 
where the causal influence of each parent is captured by a 
single number and the combined influence of all parents 
is the mean of the individual parent values.  (Pfautz et al, 
2007) address the first three challenges and describe 
additional ones in findings from in-depth analyses of their 
experience in facilitation of model construction from 
numerous projects.  

The purpose of this work is to describe formal semantics 
that enable DecAid to be directly accessible to domain 
experts to create BN models without having to concern 
themselves with these challenges. These semantics are 
aimed at easing the constraints imposed by the 
aforementioned challenges by enabling users to define 
concepts and their relations in free-association mode. 
Concepts are defined and labeled using free language and 
a single numerical weight is assigned to each parent-child 
relation. This effort results in the creation of the DecAid 
(unconstrained) network (DN), a directed graph, which 
allows cycles. The step of creating a BN from the DN 
starts with a query definition, and it involves the 
identification of the query-specific sub graph and removal 
of its cycles by, optimally, minimizing the information 
loss. The result is BN directed acyclic graph specific to 
the query.  

2 FROM DECAID NETWORKS TO 
BAYESIAN NETWORKS   

DecAid is a system for simple but powerful probabilistic 
modeling of arbitrary scenarios. It enables domain expert 
to create DecAid networks by defining concepts with free 
language and causal relations between them. For each 
pair of relations, the user assigns a weight of causal belief. 
There are two types of concepts: a) Event concepts that 
represent quantities that can occur or not-occur; and b) 
Trend concepts that represent quantities that increase, 

remain unchanged, or decrease. Various levels of 
granularity can be selected to define the trend concept 
states. 

In this section we describe the formal definitions that 
enable the creation of a DN and its subsequent conversion 
into a BN. 

2.1  Definition of a DecAid Network (DN) 
Similar to a Bayesian network, each DecAid variable 
(DV) represents a concept, which is some aspect of the 
domain modeled.  More specifically, a DV defines a 
probability distribution over its possible values and it is 
discrete—i.e., finite-valued and typically taking 2, 3, 5, or 
7 values.  For example, we might have a DV named 
‘Barometric   Pressure’   that   has   3   values:   ‘decreasing’,  
‘unchanged’,  and   ‘increasing’.  The set of values is taken 
to have some natural ordering so that we can speak of 
high values versus low values.  If the variable is binary, 
we would say that values such as false / off / does-not-
occur  would  be  “low”  compared  to  true  /  on  /  occurs. 

More formally, a DecAid model M includes a set V of 
DVs and, taken together, the variables in V jointly 
describe a distribution over the entire scenario modeled 
by M.  Along with the set V, the model M includes a 
directed graph structure G connecting the variables of V.  
Each variable in V is a node of G and each arc denotes a 
direct  probabilistic   influence  of   the  parent’s  value  on   the  
distribution  over  the  child’s  values.  The  directed  graph  G 
is unconstrained—all connections are allowed and cycles 
are permitted.  Each arc is labeled with a single real 
number  between  −1  and  1  called  the  weight.  Intuitively, 
the closer |w| is to 1, the stronger the influence of the 
parent over the child and the closer |w| is to 0, the weaker 
the influence.  If the weight is positive, a high parent 
value makes high child values more likely and a low 
parent value make low child values more likely. A 
negative weight flips the influence so that a high parent 
value makes low child values more likely and a low 
parent value makes high child values more likely (other 
things being equal).  Note that a moderate parent value 
will make moderate child values more likely. 

 

Figure 2.1: A DecAid Unconstrained Model 
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Figure 2.1 shows an example of an unconstrained DN 
representing three concept variables in the Aviation 
Safety domain and five parent-child relations with their 
corresponding weights. 

Once, the unconstrained model is built, DecAid is capable 
of transforming the DN into a BN in order to make 
predictions in response to queries. 

 

2.2 Transforming a DecAid Network (DN) 
into a Bayesian Network structure 

A user can make a query to the DN by defining a set of 
observation variables and a target variable. In response 
to the query, DecAid is capable of transforming the 
unconstrained (directed graph) model to a Bayesian 
network by carrying out the following sequence of steps: 

1) Identifying all cycles in the unconstrained model. We 
use an algorithm by (Johnson, 1975) that finds the 
elementary cycles in the directed graph by improving over 
the original algorithm by (Tarjan, 1973);  

2) Eliminating the cycles in the unconstrained model by 
removing the weak edges. This is done, optimally, in 
order to minimize the information loss in the 
unconstrained model. This step constitutes a tradeoff 
between increased expressive power for domain-expert 
users and modest information loss resulting from removal 
of edges that least contribute to the information flow. 

3) Identifying the sub graph relevant to the query by 
pruning the non relevant variables from the resulting 
Bayesian network (Geiger et al, 1990). This step 
constitutes an important feature of DecAid in that it can 
list all the relevant parameters to the user that are relevant 
to a specific user query. 

The last step in the creation of a query specific Bayesian 
network is the creation of the conditional probability 
tables (CPT).  The semantics to achieve that are described 
in section 3. 

For practitioners involved in high-level, strategic, 
decision making the use of Bayesian network building 
tools can be counterintuitive and may require significant 
training time, unavailable to such intended users. Making, 
however, the BN technology accessible through tools like 
DecAid not only will improve the accuracy of decision 
making but will also provide the means to document and 
track the chain of causal reasoning behind each decision. 

 

3 SEMANTICS TO CREATE 
CODITIONAL PROBABILITY 
TABLES 

What follows is a description of the method used to 
express the random variable (RV) encoded by a DV.  That 
is, we show how to calculate a conditional probability 
table (CPT) for each variable in the DecAid model given 
its parent set and the size of each variable. 

3.1 Concepts Defined as Random Variables 
Let X be an n-valued DV from a DecAid model D.   We 
say that the sample space S for X is the real interval [0,1).  
That is, we can suppose that X describes an experiment 
whose outcome is a real number r such   that   0   ≤   r < 1.  
The values of the random variable X break the sample 
space into n disjoint events—namely, half-open intervals 
of equal length.  The set of events is thus:   

  { r � [k/n , (k+1)/n)    :  for  0  ≤  k < n } 

Example (3.1.1)  

If X has 2 states, the events corresponding to the states of 
X are: 

   { r � [0.0, 0.5) , r � [0.5,1.0) }. 

Example (3.1.2)  
If X has 5 states, the events corresponding to the states of 
X are: 

   { r � [0.0, 0.2), r �  [0.2, 0.4), r � [0.4, 0.6), r � [0.6, 
0.8), and r � [0.8, 1.0) }. 

3.2 Conditional Probability Tables 
The heart of the probabilistic semantics is the definition 
of local conditional probability distributions for DecAid 
variables.  We consider the various cases below: a) where 
the variable has no parents, b) where it has one parent of 
weight 1, c) where it has one parent of arbitrary weight, 
and finally, d) where it has any number of parents. 

Case 3.2.1 -Variables without parents 

If X has no parents in D, then it is simply given a uniform 
distribution: 

P(X = xk) = 1/n   for  0  ≤  k < n . 

That is, the event  X = xk corresponds to r � [k/n, (k+1)/n).  
The probability equals the proportion of the total length of 
S contributed by X=xk.  Since the total length of S is 1.0, 
it is simply equal to the length of the interval, which is 
(k+1  −  k)/n = 1/n.  

Example (3.2.1.1)   

If X has 2 states, P(X = xk)  =  0.5    for  0  ≤  k ≤  1. 

Example (3.2.1.2)  

If X has 5 states, P(X = xk)  =  0.2  for  0  ≤  k ≤  4. 

Case 3.2.2 – Variables with one parent and |w| = 1 
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We first describe the case where we have a single parent 
Y and where the link from Y to its child X has weight 1. 
We need to show how to calculate the conditional 
probability P(X = xk | Y = yj).  This is given by the 
formula: 

P(X = xk | Y = yj , w = 1) = P(X = xk  &  Y = yj) / P(Y = yj) . 

That is, the conditional probability of the event X = xk 
given that Y = yj is equal to the intersection of the 
intervals corresponding to these events divided by the 
length of the interval corresponding to Y = yj.  

Example (3.2.2.1)  

Suppose YoX  and Y has 5 states and X has 2 states, 

P(X = x0 | Y = y2) = | Intersection of [0, 0.5) & [0.4, 0.6) | / 
| 0.6 – 0.4 |= 0.5 

The full CPT would be: 

P(x | y) x0 x1 

y0 1 0 

y1 1 0 

y2 0.5 0.5 

y3 0 1 

y4  0 1 

 

Example (3.2.2.2) 

Suppose ZoX and Z has 3 states and X has 5 states, 

P(X = x0 | Z = z0) = | Intersection of [0, 0.2) & [0, 0.33) | / | 
0.33 – 0 | = 0.6 

 

 The full CPT is: 

 

Example (3.2.2.3) 

Suppose YoX and Y has 2 states and X has 5 states, 

P(X = x0 | Y = y0) = | Intersection of [0, 0.2) & [0, 0.5) | / | 
0.5 – 0 | = 0.2 / 0.5 = 0.4 

 

The full CPT is: 

P(x | y) x0 x1 x2 x3 x4  

y0 0.4 0.4 0.2 0 0 

y1 0 0 0.2 0.4 0.4 

 

Case 3.2.3 – Variables with one parent and |w| < 1 

We next look at the case where the weight is different 
than 1.  It is useful to refer to the distribution defined in 
Case 2a as the full-weight distribution—i.e., where w=1. 

Let Pfull(X | yj ) be the distribution over the values of X 
given Y = yj under the assumption that the arc from Y to X 
has weight w = 1.  Let U(X) be the uniform distribution 
over the values of X.  Then,  if  the  weight  is  0  ≤  w < 1, we 
have 

P(X | yj ,  0  ≤  w < 1 ) = w·Pfull(X | yj ) + (1 – w)·U(X) 

That is, the final distribution is a weighted combination of 
the distribution calculated in Case 3.2.1 and the uniform 
distribution—which is the default distribution if there 
were no parent. Note that the weight acts as the 
probability that we get the full-weight distribution instead 
of a uniform distribution.   

 

Example (3.2.3.1) 

Following the previous example (II.2.3), suppose YoX 
and Y has 2 states and X has 5 states.  But now suppose 
that the weight of the arc is w = 0.6, then we have  

P(X = x0 | Y = y0)  = w·Pfull(X | y0 ) + (1 – w)·U(X) 

                             = 0.6·0.4 + (1.0 – 0.6)·(1/5)  

= 0.24 + 0.4·0.2 = 0.3 + .08 = 0.32 

 

The full CPT is: 

 

If   the   weight   is   negative,   the   direction   of   the   parent’s  
influence is reversed.  If Y is an m-valued variable, we can 
calculate the resulting distribution using a similar 
calculation   above   but   for   the   “opposed”   value   of   the  
parent.    By  “opposed”  we  mean  the value at the other side 
of the range—i.e., highest is opposed to lowest, second-
highest is opposed to second-lowest, etc. More 
specifically, if the weight w < 0, we have 

P(x | z) x0 x1 x2 x3 x4  

z0 0.6 0.4 0 0 0 

z1 0 0.2 0.6 0.2 0 

z2 0 0 0 0.4 0.6 

P(x | y) x0 x1 x2 x3 x4

  

y0 0.32 0.32 0.2 0.08 0.08 

y1 0.08 0.08 0.2 0.32 0.32 
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P(X | yj , –1  ≤  w < 0) = w·Pfull(X | ym-j-1 ) + (1 – w)·U(X) 

 

   Example (3.2.3.2) 

Following the previous example (II.2.3), suppose YoX 
and Y has 2 states and X has 5 states.  But now suppose 
that the weight of the arc is w = –0.6, then we have  

P(X = x2 | Y = y1) = 0.6·0.2 + (1.0 – 0.6)·(1/5) = 0.12 + 
0.4·0.2 = 0.12 + .08 = 0.2 

The full CPT is: 

P(x | y) x0 x1 x2 x3 x4  

y0 0.08 0.08 0.2 0.32 0.32 

y1 0.32 0.32 0.2 0.08 0.08 

 

Case 3.2.4 – Variables with multiple parents  

The remaining situation is when we have a variable with 
multiple parents.  In this situation, we assume that the 
influence of each parent is independent of the influence of 
other parents.  So, if X has parents Y1, Y2,  …,  YN, we set 

P(X | Y1, Y2,  …,  YN) = c·P(X | Y1) ·P(X | Y2)  ·…·P(X  |  YN) 

where c is normalization constant to make the distribution 
sum to 1. 

 

Example (3.2.4.1) 
Suppose X has 5 states and two parents: Y with 2 states 
and weight 0.5 and Z with 3 states and weight –0.5.  As 
we saw above from examples (3.2.2.1) and (3.2.2.2), if we 
ignore the weights of the arcs and the fact that there are 
multiple parents, we have for parent Z: 

Pfull(X | z0) = [ 0.6, 0.4, 0.0, 0.0, 0.0 ] 

And for parent Y: 

Pfull(X | y0) = [ 0.4, 0.4, 0.2, 0.0, 0.0 ] 

 

Next, adding in the effect of the weights on the 
distributions, we get:  

P(X | z0, w= –.5) = [ 0.1, 0.1, 0.1, 0.3, 0.4 ] 

and 

P(X | y0, w= .5) = [ 0.3, 0.3, 0.2, 0.1, 0.1 ]   

Now, combining both parents we get 

P(X | y0 , z0) = c·P(X | y0)·P(X | z0) 

= c·[ 0.3, 0.3, 0.2, 0.1, 0.1 ]·[ 0.1, 0.1, 0.1, 0.3,      
0.4 ] 

= c·[ 0.03, 0.03, 0.02, 0.03, 0.04 ] 

= [0.2, 0.2, 0.13, 0.2, 0.27]  

The full CPT is: 

 

4 DISCUSSION 
DecAid is used for strategic decision making. Here are a 
few examples of such decisions: a) when to launch a new 
product into a specific market, b) how close is a rouge 
country to achieving nuclear weapon capability, or c) 
whether to invest in a particular emerging technology. 
These are decisions that involve several variables and 
their inter relations. The system enables decision makers 
to define concepts of the problem in a simple, intuitive, 
manner using free language. As the user defines the 
concepts and relations, the system is creating an 
unconstrained model. Once, the model is built, DecAid is 
capable of making predictions in response to queries by 
converting the unconstrained model into a Bayesian 
network.  

 
Figure 4.2: Predictions made by DecAid Model  

Figure 4.2 shows two such predictions derived from the 
model in Figure 2.1. The first prediction forecasts a 0.85 
probability  that  “Public  concern”  will   increase  given  that  
“Occurrence   of   accidents”   has   increased   and  
“Government   oversight”   does   not   occur.   The   second  
prediction lowers   the   forecast   that   “Public   concern”  will  
increase  to  a  0.53  probability,  if  “Government  oversight”  
occurs.  

At the final stage of making decisions, summarization and 
argumentation becomes critical steps. It is the aim of 
DecAid to facilitate the capture of knowledge and 

P(x | y, z) x0 x1 x2 x3 x4  

y0 , z0  0.2 0.2 0.13 0.2 0.27 

y0 , z1 0.15 0.3 0.4 0.1 0.05 

y0 , z2 0.48 0.36 0.08 0.04 0.04 

y1 , z0 0.04 0.04 0.08 0.36 0.48 

y1 , z1 0.05 0.1 0.4 0.3 0.15 

y1 , z2 0.27 0.2 0.13 0.2 0.2 
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information for that last stage, as well, by combining the 
predictive analytic capability obtained from the cognitive 
models with the ability to retrieve evidential data and 
information to validated predictive hypotheses, which is 
outside the scope of this paper. 

The complete probabilistic semantics of a DecAid model 
include how the local probability models are combined 
(not discussed here). The cornerstone of the semantics, 
however, is the definition given here for the complete 
CPT of a local variable from the simple numeric weights 
associated with its parents as provided by the end-user 
creating the model. 

DecAid variables represent a tradeoff between simplicity 
of model definition and expressive power.  Aside from 
adding temporal modeling (Nodelman, et. al. 2002, 2003) 
to DecAid, there are additional areas where the balance 
between simplicity and expressivity could be further 
enhanced. In one such area there is, currently, complete 
symmetry between the positive effect of a parent taking 
on a high value and the negative effect of a parent taking 
on a low value.  Sometimes this symmetry is warranted 
but sometimes it is not.  For example, consider a child 
variable   “Strength of a   Fire”   (“fire”)   with   a parent 
“Oxygen   Level   Present”   (“oxygen”).   Increasing   oxygen  
will tend to increase the fire and decreasing oxygen will 
tend to lessen the fire.  But now consider an alternative 
parent  “Use  of  fire-extinguisher”.    If  the  fire-extinguisher 
is used, that will tend to lessen the fire.  But lack of fire-
extinguisher use does not, in itself, increase the fire.  So 
we may, in general, want to allow an asymmetry between 
the impact of a high-value parent and a low-value parent 
where the high-value has the regular effect but the low-
value has no special impact on the child.  

 
Furthermore, the assumption that the effects of multiple 
parents are independent of each other is strong.  
Obviously, there are many cases where this assumption is 
unwarranted.  The problem would be to find a simple, 
understandable way for end-users to convey extra 
information about covariance and to find an algorithm 
that could examine the link structure in other parts of the 
DecAid model and extract some useful information about 
the dependencies among the parents. 

5. SUMMARY 
The semantics definition is given in this paper for the 
complete CPT of a local variable from simple numeric 
weights associated with its parents as provided by the 
end-user creating a DecAid model. Explicitly, 1) The 
values of a DV are represented as equal-length 
subintervals of the unit interval and making explicit that 
they have a natural ordering so they can be seen as 
coming in opposed pairs (except for a possible middle-
most value). 2) A single parent full-weight conditional 

probability is defined as the size of the intersection of 
parent and child intervals divided by the size of parent 
interval. 3) The magnitude of the weight is used as the 
probability that you get the full-weight conditional 
distribution instead of a uniform distribution. 4) The sign 
of the weight is used to reverse the direction of influence. 
And 5) the probabilistic influence of multiple parents on a 
child are assumed to be independent of one another. 

The semantics described in this paper enable the creation 
of a Bayesian networks from an unconstrained, directed 
graph model created by a user within a simpler, more 
intuitive, framework implemented in a tool called DecAid, 
without requiring specialized training in how to build 
Bayesian networks. 
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