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Abstract

This paper explores the e↵ects of parameter
sharing on Bayesian network (BN) parameter
learning when there is incomplete data. Us-
ing the Expectation Maximization (EM) al-
gorithm, we investigate how varying degrees
of parameter sharing, varying number of hid-
den nodes, and di↵erent dataset sizes impact
EM performance. The specific metrics of
EM performance examined are: likelihood,
error, and the number of iterations required
for convergence. These metrics are important
in a number of applications, and we empha-
size learning of BNs for diagnosis of electrical
power systems. One main point, which we
investigate both analytically and empirically,
is how parameter sharing impacts the error
associated with EM’s parameter estimates.

1 INTRODUCTION

Bayesian network (BN) conditional probability tables
(CPTs) can be learned when the BN structure is
known, for either complete or incomplete data. Dif-
ferent algorithms have been explored in the case of
incomplete data, including: Expectation Maximiza-
tion [8, 14, 15, 28], Markov Chain Monte Carlo meth-
ods such as Gibbs sampling [17], and gradient descent
methods [9]. Expectation Maximization (EM) seeks to
maximize the likelihood, or the Maximum a Posteriori
(MAP) estimate, for the BN CPTs.

We focus in this paper on EM [8, 14, 15, 28], an itera-
tive algorithm that converges to a maximum likelihood
estimate (MLE). While EM is powerful and popular,
there are several challenges that motivate our research.
First, when computing MLEs, EM is easily trapped
in local optima and is typically very sensitive to the
placement of initial CPT values. Methods of making
EM less prone to getting trapped in local optimal have

been investigated [11, 18, 34, 38]. Second, EM is often
computationally demanding, especially when the BN
is complex and there is much data [2,3,29,35]. Third,
parameters that EM converges to can be far from the
true probability distribution, yet still have a high like-
lihood. This is a limitation of EM based on MLE.

In this paper we investigate, for known BN structures,
how varying degree of parameter sharing [17, 25, 26],
varying number of hidden nodes, and di↵erent dataset
sizes impact EM performance. Specifically, we are:

• running many random initializations (or random
restarts) of EM, a technique known to e↵ectively
counter-act premature convergence [10,22];

• recording for each EM run the following metrics:
(i) log-likelihood (``) of estimated BN parameters,
(ii) error (the Euclidean distance between true
and estimated BN parameters), and (iii) number
of EM iterations until convergence; and

• testing BNs with great potential for parameter
sharing, with a focus on electrical power system
BNs (reflecting electrical power system compo-
nents known to exhibit similar behavior).

Even when EM converges to a high-likelihood MLE,
the error can be large and vary depending on initial
conditions. This is a fundamental limitation of EM us-
ing MLE; even a BN with high likelihood may be far
from the true distribution and thus have a large error.
Error as a metric for the EM algorithm for BN param-
eter learning has not been discussed extensively in the
existing literature. The analysis and experiments in
this paper provide new insights in this area.

Our main application is electrical power systems, and
in particular NASA’s Advanced Diagnostics and Prog-
nostics Testbed (ADAPT) [27]. ADAPT has already
been represented as BNs, which have proven them-
selves as very well-suited to electrical power system
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health management [12, 19–21, 30–33]. Through com-
pilation of BNs to arithmetic circuits [4, 5], a broad
range of discrete and continuous faults can be detected
and diagnosed in a computationally e�cient and pre-
dictable manner, resulting in award-winning perfor-
mance in international diagnostic competitions [30].1

From a machine learning and EM perspective, as con-
sidered in this paper, it is hypothesized that the learn-
ing of ADAPT BNs may benefit from parameter shar-
ing. This is because there are several repeated BN
nodes and fragments in these BNs. In addition to pa-
rameter sharing, we study in this paper the impact on
EM of varying the number of hidden nodes, reflecting
di↵erent sensing capabilities.

Why are BNs and arithmetic circuits useful for elec-
trical power system diagnostics? First, power systems
exhibit multi-variate uncertainty, for example regard-
ing component and sensor health (are they working
or failing?) as well as noisy sensor readings. Sec-
ond, there is substantial local structure, as reflected
in an EPS schematic, that can be taken advantage
of when constructing a BN automatically or semi-
automatically [19,20,30]. Consequently, BN treewidth
is small enough for exact computation using junction
trees, variable elimination, or arithmetic circuits to be
feasible [19,30]. Third, we compile BNs into arithmetic
circuits [4, 5], which are fast and predictable in addi-
tion to being exact. These are all important benefits in
cyber-physical systems including electrical power sys-
tems.

The rest of this paper is structured as follows. In
Section 2, we introduce BNs, parameter learning for
incomplete data using EM, and related research. Sec-
tion 3 presents our main application area, electrical
power systems. In Section 4, we define the sharing con-
cept, discuss sharing in EM for BN parameter learn-
ing, and provide analytical results. In Section 5 we
present experimental results for parameter sharing in
BNs when using EM, emphasizing electrical power sys-
tem fault diagnosis using BNs. Finally, we conclude
and outline future research opportunities in Section 6.

2 BACKGROUND

This section presents preliminaries including notation
(see also Table 1).

2.1 BAYESIAN NETWORKS

Consider a BN � = (X,W ,✓), where X are discrete
nodes, W are edges, and ✓ are CPT parameters. Let
E ✓ X be evidence nodes, and e the evidence. A

1Further information can be found here: https://
sites.google.com/site/dxcompetition/.

Notation Explanation

X BN nodes
W BN edges
✓ BN CPTs
ˆ✓ estimated CPTs
✓⇤ true CPTs
O observable nodes
H hidden nodes
S (actually) shared nodes
P (potentially) shared nodes
U unshared nodes
Y set partition of X
TP number of wrong CPTs
E evidence nodes
R non-evidence nodes
t
min

min # of EM iterations
t
max

max # of EM iterations
t0 iteration # at EM convergence
✏ tolerance for EM
err(ˆ✓) error of ˆ✓ relative to ✓⇤

nA = |A| cardinality of the set A
` likelihood
`` log-likelihood
� = (X,W ,✓) Bayesian network (BN)
E(Z) expectation of r.v. Z
V (Z) variance of r.v. Z
r Pearson’s corr. coe↵.
✓ 2 [0, 1] CPT parameter

✓̂ 2 [0, 1] estimated CPT parameter
✓⇤ 2 [0, 1] true CPT parameter
� error bound for ✓

Table 1: Notation used in this paper.

BN factors a joint distribution Pr(X), enabling dif-
ferent probabilistic queries to be answered by e�cient
algorithms; they assume that nodes E are clamped to
values e. One query of interest is to compute a most
probable explanation (MPE) over the remaining nodes
R = X \ E, or MPE(e). Computation of marginals
(or beliefs) amounts to inferring the posterior probabil-
ities over one or more query nodes Q ✓ R, specifically
BEL(Q, e), where Q 2 Q.

In this paper, we focus on situations where ✓ needs
to be estimated but the BN structure (X and W ) is
known. Data is complete or incomplete; in other words
there may be hidden nodes H where H = X \O and
O are observed. A dataset is defined as (x1, . . . ,xm

)
with m samples (observations), where x

i

is a vector
of instantiations of nodes X in the complete data
case. When the data is complete, the BN parame-
ters ✓ are often estimated to maximize the data like-
lihood (MLE). In this paper, for a given dataset, a
variable X 2 X is either observable (X 2 O) or hid-
den (X 2 H); it is not hidden for just a strict subset
of the samples.2 Let H > 0. For each hidden node

2In other words, a variable that is completely hidden
in the training data is a latent variable. Consequently, its
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H 2 H there is then a “?” or “N/A” in each sam-
ple. Learning from incomplete data also relies on a
likelihood function, similar to the complete data case.
However, for incomplete data several properties of the
complete data likelihood function–such as unimodal-
ity, a closed-form representation, and decomposition
into a product form–are lost. As a consequence, the
computational issues associated with BN parameter
learning are more complex, as we now discuss.

2.2 TRADITIONAL EM

For the problem of optimizing such multi-dimensional,
highly non-linear, and multimodal functions, several
algorithms have been developed. They include EM,
our focus in this paper. EM performs a type of hill-
climbing in which an estimate in the form of an ex-
pected likelihood function ` is used in place of the true
likelihood `.

Specifically, we examine the EM approach to learn BN
parameters ✓ from incomplete data sets.3 The tradi-

tional EM algorithm, without sharing, initializes pa-
rameters to ✓(0). Then, EM alternates between an
E-step and an M-step. In the t-th E-step, using pa-
rameters ✓(t) and observables from the dataset, EM
generates the likelihood `(t) taking into account the
hidden nodes H. In the M-step, EM modifies the pa-
rameters to ✓(t+1) to maximize the data likelihood.
While |`(t) � `(t�1)| � ✏, where ✏ is a tolerance, EM
repeats from the E-step.

EM monotonically increases the likelihood function `
or the log-likelihood function ``, thus EM converges
to a point ✓̂ or a set of points (a region). Since ``
is bounded, EM is guaranteed to converge. Typically,
EM converges to a local maximum [37] at some itera-
tion t0, bounded as follows: tmax � t0 � tmin. Due to
the use of ✏ above, it is for practical implementations
of EM with restart more precise to discuss regions of
convergence, even when there is point-convergence in
theory.

One topic that has been discussed is the initialization
phase of the EM algorithm [8]. A second research
topic is stochastic variants of EM, typically known as
Stochastic EM [7,11]. Generally, Stochastic EM is con-
cerned with improving the computational e�ciency of
EM’s E-step. Several other methods for increasing the
e�cacy of the EM algorithm for BNs exist. These
include parameter constraints [1, 6, 25], parameter in-
equalities [26], exploiting domain knowledge [17, 24],
and parameter sharing [13,17,25,26].

true distribution is not identifiable.
3Using EM, learning from complete data is a special

case of learning from incomplete data.

When data is incomplete, the BN parameter estima-
tion problem is in general non-identifiable. There may
be several parameter estimates ✓̂1, ..., ✓̂m

that have
the same likelihood, given the dataset [36]. Thus, we
need to be careful when applying standard asymptotic
theory from statistics (which assumes identifiability)
and when interpreting a learned model. Section 4.2
introduces an error measure that provides some in-
sight regarding identifiability, since it measures dis-
tance from the true distribution ✓⇤.

3 ELECTRICAL POWER SYSTEMS

Electrical Power Systems (EPSs) are critical in today’s
society, for instance they are essential for the safe oper-
ation of aircraft and spacecraft. The terrestrial power
grid’s transition into a smart grid is also very impor-
tant, and the emergence of electrical power in hybrid
and all-electric cars is a striking trend in the automo-
tive industry.

ADAPT (Advanced Diagnostics and Prognostics
Testbed) is an EPS testbed developed at NASA [27].
Publicly available data from ADAPT is being used to
develop, evaluate, and mature diagnosis and progno-
sis algorithms. The EPS functions of ADAPT are as
follows. For power generation, it currently uses utility
power with battery chargers (there are also plans to
investigate solar power generation). For power stor-
age, ADAPT contains three sets of 24 VDC 100 Amp-
hr sealed lead acid batteries. Power distribution is
aided by electromechanical relays, and there are two
load banks with AC and DC outputs. For control and
monitoring there are two National Instruments com-
pact FieldPoint backplanes. Finally, there are sensors
of several types, including for: voltage, current, tem-
perature, light, and relay positions.

ADAPT has been used in di↵erent configurations and
represented in several fault detection and diagnosis
BNs [12,19–21,30–33], some of which are investigated
in this paper (see Table 2). Each ADAPT BN node
typically has two to five discrete states. BN nodes
represent, for instance: sensors (measuring, for exam-
ple, voltage or temperature); components (for example
batteries, loads, or relays); or system health of compo-
nents and sensors (broadly, they can be in “healthy”
or “faulty” states).

3.1 SHARED VERSUS UNSHARED

In BN instances where parameters are not shared, the
CPT for a node in the BN is treated as separate from
the other CPTs. The assumption is not always rea-
sonable, however. ADAPT BNs may benefit from
shared parameters, because there are typically several
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Figure 1: One of three similar sub-networks in the
mini-ADAPT BN. Under parameter sharing, the S

B

node is shared between the three sub-networks.

repeated nodes or fragments in these BNs [21, 30]. It
is reasonable to assume that “identical” power system
sensors and components will behave in similar ways.
More broadly, sub-networks of identical components
should function in a similar way to other “identical”
sub-networks in a power system, and such knowledge
can be the basis for parameter sharing.

For parameter sharing as investigated in this paper,
the CPTs of some nodes are assumed to be approxi-
mately equal to the CPTs of di↵erent nodes elsewhere
in the BN.4 Data for one set of nodes can be used else-
where in the BN if the corresponding nodes are shared
during EM learning. This is a case of parameter shar-
ing involving the global structure of the BN, where
di↵erent CPTs are shared, as opposed to parameter
sharing within a single CPT [13].

In some ADAPT BNs, one sub-network is essentially
duplicated three times, reflecting triple redundancy in
ADAPT’s power storage and distribution network [27].
Such a six-node sub-network from an ADAPT BN is
shown in Figure 1. This sub-network was, in this pa-
per, manually selected for further study of sharing due
to this duplication. The sub-network is part of the
mini-ADAPT BN used in experiments in Section 5.3.
In the mini-ADAPT sharing condition, only the node
S
B

was shared between all three BN fragments. Gen-
erally, we define shared nodes S and unshared nodes
U , with U = X \ S.

4It is unrealistic to assume that several engineered phys-
ical objects, even when it is desired that they are exactly
the same, in fact turn out to have exactly the same behav-
ior. A similar argument has been made for object-oriented
BNs [14], describing it as “violating the OO assumption.”
We thus say that CPTs are approximately equal rather
than equal. Under sharing, however, we are making the
simplifying assumption that shared CPTs are equal.

3.2 OBSERVABLE VERSUS HIDDEN

Consider a complex engineered system, such as an elec-
trical power system. After construction, but before
it is put into production, it is typically tested exten-
sively. The sensors used during testing lead to one set
of observation nodes in the BN, OT . The sensors used
during production lead to another set of observations
in the BN, OP . For reasons including cost, fewer sen-
sors are typically used during production than during
testing, thus we assume OP ✓ OT .

As an example, in Figure 1 we denote OP =
{C

B

, S} as production observation nodes, and OT =
{C

B

, S,H
B

, H
S

} as testing observation nodes.

In all our experiments, shared nodes are also hidden, or
S ✓ H. Typically, there are hidden nodes that are not
necessarily shared, or S ⇢ H. This is, for example,
the case for the mini-ADAPT BN as reflected in the
sub-network in Figure 1.

4 EM WITH SHARING

4.1 SHARING IN BAYESIAN NETWORKS

Consider a BN � = (X,W ,✓). A sharing set partition
for nodes X is a set partition Y of X with subsets
Y 1, ...,Y k

, with Y
i

✓ X and k � 1. For each Y
i

with k � i � 1 the nodes X 2 Y
i

share a CPT during
EM learning as discussed in Section 4.2. We assume
that the nodes in Y

i

have exactly the same number of
states. The same applies to their respective parents in
�, leading to each Y 2 Y

i

having the same number of
parent instantiations and exactly the same CPTs.

Traditional non-sharing is a special case of sharing in
the following way. We assign each BN node to a sep-
arate set partition such that for X = {X1, ..., Xn

} we
have Y 1, ...,Y n

with Y
i

= {X
i

}.

One key research goal is to better understand the be-
havior of EM as sharing nodes S and observable nodes
O vary. We examine three cases: complete data O

C

(no hidden nodes); a sensor-rich testing setting with
observationsO

T

; and a sensor-poor production setting
with observations O

P

. Understanding the impact of
varying observations O is important due to cost and
e↵ort associated with observation or sensing.

4.2 SHARING EM

Similar to traditional EM (see Section 2.2), the shar-
ing EM algorithm also takes as input a dataset and
estimates a vector of BN parameters ✓̂ by iteratively
improving `` until convergence. The main di↵erence
of sharing EM compared to traditional EM is that we
are now setting some nodes as shared S, according to
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Y . To arrive at the sharing EM algorithm from the
traditional EM algorithm, we modify the likelihood
function to introduce parameter sharing and combine
parameters (see also [13, 17]). When running sharing
EM, nodes X are treated as separate for the E-step.
There is a slightly modified M-step, using Y , to ag-
gregate the shared CPTs and parameters.5 This is the
use of aggregate su�cient statistics, which considers
su�cient statistics from more than one BN node [13].

Let ✓̂
i,j

be the j’th estimated probability parameter

for BN node X
i

2 X. We define error of ✓̂ for BN
(X,W , ✓̂) as the L2 distance from the true probability
distribution ✓⇤ from which data is sampled:

err(✓̂) =
X

i

sX

j

⇣
✓⇤
i,j

� ✓̂
i,j

⌘2

. (1)

This error is the summation of the Euclidean distance
between true and estimated CPT parameters, or the
L2 distance, providing an overall distance metric.

Why do we use Euclidean distance to measure error?
One could, after all, argue that this distance metric
is poor because it does not agree with likelihood. We
use Euclidean distance because we are interested not
only in the black box performance of the BN, but also
its validity and understandability to a human expert.6

This is important when an expert needs to evaluate,
validate, or refine a BN model, for example a BN for
an electrical power system.

4.3 EM’S BEHAVIOR UNDER SHARING

We now provide a simple analysis of certain aspects
of traditional EM (TEM) and sharing EM (SEM). For
simplicity, we only consider EM runs that converge
and exclude runs that time out.7

For a node X
i

2 X, TEM will converge to one among
potentially several convergence regions. Suppose that
the CPT of node X

i

has (X
i

) convergence regions.
Then the actual number of convergence regions (�

U

)
for a non-shared BN �

U

with nodes X = {X1, ..., Xn

}
is upper bounded by ̄(�

U

) as follows:

(�
U

)  ̄(�
U

) =
nY

i=1

(X
i

). (2)

5For the relevant LibDAI source code, please see
here: https://github.com/erikreed/HadoopBNEM/blob/
master/src/emalg.cpp#L167. In words, it is a modifi-
cation on the collection of su�cient statistics during the
maximization step.

6We assume that (1) is better than likelihood in this
regard, if the original BN was manually constructed. The
BNs experimented with in Section 5 were manually con-
structed, for example.

7In practice, runs that time out are very rare with the
parameter settings we use in experiments.

Due to the sharing, SEM intuitively has fewer con-
vergence regions than TEM. This is due to SEM’s
slightly modified M-step that aggregates the shared
CPTs and parameters. Consider a BN �

S

with ex-
actly the same nodes and edges as �

U

, but with shar-
ing, specifically with sharing set partitions Y 1, ...,Y k

and k < n. Without loss of generality, assume that
X

i

2 Y
i

. Then the actual number of convergence re-
gions (�

S

) is upper bounded by ̄(�
S

) as follows:

(�
S

)  ̄(�
S

) =
kY

i=1

(X
i

), (3)

assuming that the (X
i

) convergence regions used for
X

i

in (2) carry over to Y
i

.

A special case of (3) is when there exists exactly one
Y 0 2 Y such that |Y 0| � 2 while for any Z 2 Y \Y 0 we
have |Z| = 1. The experiments performed in Section 5
are all for this special case. Specifically, but without
loss of generality, let Y

i

= {X
i

} for 1  i < k and
Y

k

= {X
k

, ..., X
n

} with nS = n� k+1 (i.e., S = Y
k

has nS sharing nodes). It is illustrative to consider the
ratio:

̄(�
U

)

̄(�
S

)
=

Q
n

i=1 (Xi

)
Q

k

i=1 (Xi

)
=

nY

i=k+1

(X
i

). (4)

Here, we assume that X
i

has (X
i

) convergence re-
gions in both �

U

and �
S

and take into account that
for shared nodes Y

k

= S, CPTs are tied together.

The simple analysis above suggests a non-trivial im-
pact of sharing, given the multiplicative e↵ect of the
(X

i

)’s for k+1  i  n in (4). However, since upper
bounds are the focus in this analysis, only a partial
and conservative picture is painted. The experiments
in Section 5—see for example Figure 3, Figure 5, and
Figure 6—provide further details.

4.4 ANALYSIS OF ERROR

We now consider the number of erroneous CPTs as
estimated by SEM when sharing is varied. Clearly, a
CPT parameter is continuous and its EM estimate is
extremely unlikely to be equal to the original param-
eter. Thus we consider here a discrete variable, based
on forming an interval in the one-parameter case. Gen-
erally, let a discrete BN nodeX 2 X have k states such
that x

i

2 {x1, ..., xk

}. Consider ✓
xi|z = Pr(X = x

i

|
Z = z) for a parent instantiation z. We now have an
original CPT parameter ✓

i

2 {✓
x1|z, ..., ✓xk�1|z} and

its EM estimate ✓̂
i

2 {✓̂
x1|z, ..., ✓̂xk�1|z}. Let us jointly

consider the original CPT parameter ✓⇤
i

and its esti-
mate ✓̂

i

. If ✓̂
i

2 [✓⇤
i

��
i

, ✓⇤
i

+�
i

] we count ✓̂
i

as correct,
and say ✓̂

i

= ✓⇤
i

; else it is incorrect or wrong, and we
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say ✓̂
i

6= ✓⇤
i

. This analysis clearly carries over to mul-
tiple CPT parameters, parent instantiations, and BN
nodes. This shows how we go from a continuous (esti-
mated CPT parameters ✓̂) to a discrete value (number
of wrong or incorrect CPT estimates), where the latter
is used in this analysis.

Suppose that up to nP nodes can be shared. Further
suppose that nS nodes are actually shared while nU

nodes are unshared, with nU + nS = nP . Let TP

be a random variable representing the total number
of wrong or incorrect CPTs, TS the total for shared
nodes, and TU the total for unshared nodes. Clearly,
we have TP = TS +TU .

Let us first consider the expectation E(TP ). Due to
linearity, we have E(TP ) = E(TS) + E(TU ). In the
non-shared case, assume for simplicity that errors are
iid and follow a Bernoulli distribution, with probability
p of error and (1 � p) = q of no error.8 This gives
E(TU ) = nUp, using the fact that a sum of Bernoulli
random variables follows a Binomial distribution.9

In the shared case, all shared nodes either have an
incorrect CPT ✓̂ 6= ✓⇤ or the correct CPT ✓̂ = ✓⇤.
Assuming again probabilities p of error10 and (1�p) =
q of no error, and by using the definition of expectation
of Binomials we obtain E(TS) = nSp.

Substituting into E(TP ) we get

E(TP ) = nUp+ nSp = nP p. (5)

Let us next consider the variance V (TP ). While vari-
ance in general is not linear, we assume linearity for
simplicity, and obtain

V (TP ) = V (TU ) + V (TS). (6)

In the non-shared case we have again a Binomial dis-
tribution, with well-known variance

V (TU ) = nUp(1� p). (7)

In the shared case we use the definition of variance,
put p1 = (1 � p), p2 = p, and µ = nSp, and obtain
after some simple manipulations:

V (TS) =
2X

i=1

p
i

(X
i

� µ)2 = n2
Sp(1� p), (8)

8This is a simplification, since our use of the Bernoulli
assumes that each CPT is either “correct” or “incorrect.”
When learned from data, the estimated parameters are
clearly almost never exactly correct, but close to or far
from their respective original values.

9If X is Binomial with parameters n and p, it is well-
known that the expected value is E(X) = np.

10The error probabilities of TS and TU are assumed to
be the same as a simplifying assumption.

and by substituting (7) and (8) into (6) we get

V (TP ) = p(1� p)((nP � nS) + n2
S). (9)

In words, (9) tells us that as the number nS of shared
nodes increases at the expense of the number of un-
shared nodes nU , variance due to non-shared nodes de-
creases linearly, but variance due to sharing increases
quadratically. The net e↵ect shown in (9) is that vari-
ance V (TP ) of the error increases with the number of
shared nodes, according to our analysis above. Ex-
pectation, on the other hand, remains constant (5)
regardless of how many nodes are shared. These ana-
lytical results have empirical counterparts as discussed
in Section 5, see for example the error sub-plot at the
bottom of Figure 2.

5 EXPERIMENTS

We now report on EM experiments for several di↵er-
ent BNs, using varying degrees of sharing. We also
vary the number of hidden nodes and dataset size. We
used ✏ = 1e�3 as an EM convergence criterion, mean-
ing that EM stopped at iteration t0 when the ``-score
changed by a value  ✏ between iterations t0�1 and t0

for tmax � t0 � tmin. In these experiments, tmax = 100
and tmin = 3.

5.1 METHODS AND DATA

Bayesian networks. Table 2 presents BNs used in
the experiments.11 Except for the BN Pigs, these BNs
all represent (parts of) the ADAPT electrical power
system (see Section 3). The BN Pigs has the largest
number of nodes that can be shared (nP = 296), com-
prising 67% of the entire BN. The largest BN used,
in terms of node count, edges, and total CPT size, is
ADAPT T2.

Datasets. Data for EM learning of parameters for
these BNs were generated using forward sampling.12

Each sample in a dataset is a vector x (see Section 2.1).
The larger BNs were tested with increasing numbers
of samples ranging from 25 to 400, while mini-ADAPT
was tested with 25 to 2000 samples.

Sharing. Each BN has a di↵erent number of param-
eters that can be shared, where a set of nodes Y

i

2
11ADAPT BNs can be found here: http://works.

bepress.com/ole_mengshoel/.
12Our experiments are limited in that we are only learn-

ing the parameters of BNs, using data generated from those
BNs. Clearly, in most applications, data is not generated
from a BN and the true distribution does not conform ex-
actly to some BN structure. However, our analytical and
experimental investigation of error would not have been
possible without this simplifying assumption.
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NAME |X| |P | |W | CPT

ADAPT T1 120 26 136 1504
ADAPT T2 671 107 789 13281
ADAPT P1 172 33 224 4182
ADAPT P2 494 99 602 10973
mini-ADAPT 18 3 15 108
Pigs 441 296 592 8427

Table 2: Bayesian networks used in experiments. The
|P | column presents the number of potentially shared
nodes, with actually shared nodes S ✓ P . The CPT
column denotes the total number of parameters in the
conditional probability tables.

Y with equal CPTs are deemed sharable. In most
cases, there were multiple sets of nodes Y 1, ..., Y

k

with |Y
i

| � 2 for k � i � 1. When multiple sets were
available, the largest set was selected for experimenta-
tion, as shown in Section 5.2’s pseudo-code.

Metrics. After an EM trial converged to an estimate
✓̂, we collected the following three metrics:

1. number of iterations t0 needed to converge to ✓̂,

2. log-likelihood `` of ✓̂, and

3. error: distance between ✓̂ and the original ✓⇤ (see
(1) for the definition).

To provide reliable statistics on mean and standard
deviation, many randomly initialized EM trials were
run.

Software. Among the available software implementa-
tions of the EM algorithm for BNs, we have based our
work on LibDAI [23].13 LibDAI uses factor graphs for
its internal representation of BNs, and has several BN
inference algorithms implemented. During EM, the
exact junction tree inference algorithm [16] was used,
since it has performed well previously [19].

5.2 VARYING NUMBER OF SHARED
NODES

Here we investigate how varying the number of shared
nodes impacts EM. A set of hidden nodes H was cre-
ated for each BN by selecting

H = argmax
Y i2Y

|Y
i

|,

where Y is a sharing set partition for BN nodes X
(see Section 4.1). In other words, each experimental
BN had its largest set of shareable nodes hidden, giv-
ing nH = 12 nodes for ADAPT T1, nH = 66 nodes
for ADAPT T2, nH = 32 nodes for ADAPT P1, and
nH = 145 nodes for Pigs.

13www.libdai.org

The following gradual sharing method is used to vary
sharing. Given a fixed set of hidden nodes H and an
initially empty set of shared nodes S:

1. Randomly add �nS � 1 hidden nodes that are
not yet shared to the set of shared nodes S. Since
we only have a single sharing set, this means mov-
ing �nS nodes from the set H \ S to the set S.

2. Performm sharing EM trials in this configuration,
and record the three metrics for each trial.

3. Repeat until all hidden nodes are shared; that is,
S = H.

Using the gradual sharing method above, BN nodes
were picked as hidden and then gradually shared.
When increasing the number of shared nodes, the new
set of shared nodes was a superset of the previous set,
and a certain number of EM trials was performed for
each set.

5.2.1 One Network

For ADAPT T2, m = 200 samples were generated and
nH = 66 nodes were hidden. We used, in the gradual
sharing method, �nS = 4 from nS = 2 to nS = 66
(every hidden node was eventually set as shared).

Figure 2: The number of iterations (top), log-
likelihood or `` (middle), and error (bottom) for a
varying number of shared nodes nS (along the x-axis)
for the BN ADAPT T2. Here, nH = 66 nodes are hid-
den. Shared nodes are a random subset of the hidden
nodes, so nS  nH .
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ADAPT T1
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 -0.937 -0.135 0.997 0.882 -0.068 0.888
50 -0.983 -0.765 0.992 0.941 0.383 0.988

100 -0.825 0.702 0.494 0.941 0.786 0.985
200 0.544 0.926 -0.352 0.892 0.517 0.939
400 0.810 0.814 -0.206 0.963 0.863 0.908

ADAPT T2
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 0.585 0.852 0.749 0.842 0.276 0.997
50 0.811 0.709 0.377 0.764 0.332 0.981

100 0.772 0.722 -0.465 0.855 -0.387 0.992
200 0.837 0.693 -0.668 0.788 -0.141 0.989
400 0.935 0.677 -0.680 0.784 -0.0951 0.987

ADAPT P1
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 -0.769 -0.0818 -0.926 0.278 -0.107 0.774
50 -0.864 -0.0549 -0.939 0.218 -0.331 0.188

100 -0.741 0.436 -0.871 0.678 -0.458 0.457
200 -0.768 0.408 -0.879 0.677 -0.196 0.700
400 -0.665 0.560 -0.862 0.681 0.00444 0.653

PIGS
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 0.954 0.763 0.970 0.614 0.965 0.887
50 0.966 0.956 0.137 0.908 0.740 0.869

100 -0.922 -0.0167 -0.994 -0.800 -0.893 0.343
200 -0.827 -0.394 -0.985 -0.746 -0.577 0.0157
400 -0.884 -0.680 -0.942 -0.699 -0.339 0.285

Table 3: Values for Pearson’s r for the correlation be-
tween the number of shared nodes and statistics for
these metrics: number of iterations, log-likelihood (``),
and error. r(µ) defines the correlation between num-
ber of shared nodes and the mean of the metric, while
r(�) defines the correlation for the standard deviation.

Figure 2 summarizes the results from this experiment.
Here, nS is varied along the x-axis while the y-axis
shows statistics for di↵erent metrics in each of the
three sub-plots. For example, in the top plot of Fig-
ure 2, each marker is the mean number of iterations
(µ), and the error bar is +/- one standard deviation
(�). The main trends14 in this figure are: parameter
sharing increased the mean number of iterations re-
quired for EM and slowly decreased the mean ``. In-
creasing the number of shared nodes resulted in a cor-
responding increase in standard deviation for the num-
ber of iterations, ``, and error of the BN ADAPT T2.
For standard deviation of error, this is in line with our
analysis in Section 4.4.

5.2.2 Multiple Networks

We now investigate how varying the number of shared
nodes impacts EM for several BNs, specifically the cor-
relation between the number of parameters shared and
the mean µ and standard deviation � for our three
metrics. To measure correlation, we use Pearson’s

14We say “main trends” because the curves for the met-
rics mean number of iterations and `` are in fact reversing
their respective trends and dropping close to the maximum
of 66 shared nodes.

sample correlation coe�cient r:

r(X,Y ) =

mP
i=1

(x
i

� x̄)(y
i

� ȳ)

(m� 1)s
x

s
y

, (10)

where x̄ and ȳ are the sample means of two random
variables X and Y , and s

x

and s
y

are the sample stan-
dard deviations of X and Y respectively. Here, (10)
measures the correlation between m samples from X
and Y .15

The number of samples, m, refers to the number of
(X,Y ) sharing samples we have for this correlation
analysis (and not the number of samples used to learn
BN parameters). In all these experiments, we do a trial
for a number of shared nodes, giving several (X,Y )
pairs. Consequently, each number of shared nodes
tested would be an X, and the metric measured would
be a Y . For example, if we use nS 2 {2, 4, 6, 8, 10}
shared nodes, then m = 5.

We now tie r(X,Y ) in (10) to the r(µ) and r(�) used in
Table 3. In Table 3, µ and � show the mean and stan-
dard deviation, respectively, for a metric. Thus, r(µ)
is the correlation of the number of shared nodes and
the mean likelihood of a metric, while r(�) is the corre-
lation of the number of shared nodes and the standard
deviation of likelihood of a metric.

Figure 2 helps in understanding exactly what is being
correlated, as µ and � for all three metrics are shown
for the BN ADAPT T2. In the top plot, r(µ) is the
correlation between the number of shared nodes (x-
axis) and the mean number of iterations (y-axis). In
other words, the mean y

i

= µ
i

is for a batch of 50 trials
of EM. The mean ȳ used in Pearson’s r is, in this case,
a mean of means, namely the mean over 50-EM-trials-
means over di↵erent numbers of shared nodes.

Table 3 summarizes the experimental results for four
BNs. In this table, a positive correlation implies that
parameter sharing increased the corresponding metric
statistic. For example, the highest correlation between
number of shared nodes and mean likelihood is for
ADAPT T1 at 25 samples, where r(µ) = 0.997. This
suggests that increasing the number of shared nodes
was highly correlated with an increase in the likelihood
of EM. Negative coe�cients show that increasing the
number of shared nodes resulted in a decrease of the
corresponding metric statistic.

A prominent trend in Table 3 is the consistently pos-
itive correlation between the number of shared nodes

15In this case, X is the independent variable, specifically
the number of shared nodes. We treat the metric Y as a
function of X. When X is highly correlated with Y , this
is expressed in r through extreme (positive or negative)
correlation values.
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NO SHARING
Observable Error Likelihood Iterations

µ � µ � µ �

OC 16.325 (-) -3.047e4 (-) (-) (-)
OP 48.38 3.74 -2.009e4 43.94 16.39 4.98
OT 33.25 7.45 -2.492e4 1190 8.65 1.99

SHARING
Observable Error Likelihood Iterations

µ � µ � µ �

OC 16.323 (-) -3.047e4 (-) (-) (-)
OP 48.56 3.92 -2.010e4 62.87 15.98 4.95
OT 34.12 14.3 -2.629e4 2630 6.59 2.48

Table 4: Comparison of No Sharing (top) versus Shar-
ing (bottom) for di↵erent observable node sets O

C

,
O

P

, and O
T

during 600 EM trials for mini-ADAPT.

nS and the standard deviation of error, r(�), for all 4
BNs. This is in line with the analytical result involving
nS in (9).

The number of samples was shown to have a signifi-
cant impact on these correlations. The Pigs network
showed a highly correlated increase in the mean num-
ber of iterations for 25 and 50 samples. However, for
100, 200, and 400 samples there was a decrease in the
mean number of iterations. The opposite behavior is
observed in ADAPT T1, where fewer samples resulted
in better performance for parameter sharing (reducing
the mean number of iterations), while for 200 and 400
samples we found that parameter sharing increased the
mean number of iterations. Further experimentation
and analysis may improve the understanding of the in-
teraction between sharing and the number of samples.

5.3 CONVERGENCE REGIONS

5.3.1 Small Bayesian Networks

First, we will show how sharing influences EM parame-
ter interactions for the mini-ADAPT BN shown in Fig-
ure 1 and demonstrate how shared parameters jointly
converge.

Earlier we introduced O
P

as observable nodes in a
production system and O

T

as observable nodes in a
testing system. Complementing O

P

, hidden nodes are
H

P

= {H
B

, H
S

, V
B

, S
B

}. Complementing O
T

, hid-
den nodes are H

T

= {V
B

, S
B

}. When a node is hid-
den, the EM algorithm will converge to one among its
potentially many convergence regions. For O

P

, EM
had much less observed data to work with than for O

T

(see Figure 1). For O
P

, the health breaker node H
B

was, for instance, not observed or even connected to
any nodes that were observed. In contrast, O

T

was de-
signed to allow better observation of the components’
behaviors, and H

B

2 O
T

. From mini-ADAPT, 500
samples were generated. Depending on the observable
set used, either nH = |H

T

| = 2 or nH = |H
P

| = 4
nodes were hidden, and 600 random EM trials were

(a) OP – No Sharing (b) OP – Sharing

(c) OT – No Sharing (d) OT – Sharing

Figure 3: The progress of di↵erent random EM trials
for the mini-ADAPT BN. Both the degree of sharing
(No Sharing versus Sharing) and the number of ob-
servables nodes (O

P

versus O
T

) are varied.

executed with and without sharing.

Table 4 shows results, in terms of means µ and stan-
dard deviations �, for these EM trials. For O

P

, with
nH = 4, the means µ of the metrics error, likeli-
hood, and number of iterations showed minor di↵er-
ences when parameter sharing was introduced. The
largest change due to sharing was an increase in �
of likelihood. For O

T

, where nH = 2, di↵erences were
greater. The µ of likelihood for sharing was lower with
over a 2x increase in �. The µ for error demonstrated
only a minor change, but nearly a 2x increase in �.
This is consistent with our analysis in Section 4.4.

Figure 3a and Figure 3c show how log-likelihood or ``
(x-axis) and error (y-axis) changed during 15 EM tri-
als for O

P

and O
T

respectively. These EM trials were
selected randomly among the trials reported on in Ta-
ble 4. Parameter sharing is introduced in Figure 3b
and Figure 3d. For O

P

, the progress of the EM trials
is similar for sharing (Figure 3b) and non-sharing (Fig-
ure 3a), although for a few trials in the sharing condi-
tion the error is more extreme (and mostly smaller!).
This is also displayed in Table 4, where the di↵erence
in number of iterations, error, and likelihood was mi-
nor (relative to O

T

). On the other hand, there is a
clear di↵erence in the regions of convergence for O

T

when parameter sharing is introduced, consistent with
the analysis in Section 4.3. Figure 3d shows how the
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(a) OP – No Sharing (b) OP – Sharing

(c) OT – No Sharing (d) OT – Sharing

Figure 4: Four 20-bin histograms, for mini-ADAPT,
of the error values of 600 randomly initialized EM tri-
als at convergence. Both the degree of sharing (No
Sharing versus Sharing) and the number of observables
nodes (O

P

versus O
T

) are varied.

EM trials typically followed a path heading to optima
far above or far below the mean error, with two of the
EM trials plotted converging in the middle region of
the error.

Histograms for the 600 EM trials used in Table 4 are
shown in Figure 4. The 20-bin histograms show error
err(✓̂) at convergence. TheO

P

andO
T

sets are shown
without parameter sharing in Figure 4a and Figure 4c,
respectively. Parameter sharing is introduced in Fig-
ure 4b and Figure 4d. There is an increased � of error
due to parameter sharing for O

T

. When comparing
Figure 4c (No Sharing) and Figure 4d (Sharing), we
notice di↵erent regions of error for EM convergence
due to sharing. Figure 4c appears to show four main
error regions, with the middle two being greatest in
frequency, while Figure 4d appears to show three re-
gions of error, with the outer two being most frequent.
The outer two regions in Figure 4d are further apart
than their non-sharing counterparts, showing that pa-
rameter sharing yielded a larger range of error for O

T

,
see Section 4.4.

5.3.2 Large Bayesian Networks

Next, large BNs are used to investigate the e↵ects of
parameter sharing, using a varying number of shared
nodes. The larger ADAPT networks and Pigs were run
with 50 EM trials16 for each configuration of observ-

16The decrease in number of EM trials performed rela-
tive to mini-ADAPT was due to the substantial increase in

(a) No Sharing (b) Sharing

Figure 5: The progress of 15 random EM trials for
ADAPT T2. The No Sharing condition (a) shows
more locally optimal convergence regions than Shar-
ing (b), where there appears to be only four locally
optimal convergence regions.

(a) No Sharing (b) Sharing

Figure 6: The progress of random EM trials for
ADAPT P1. While the number of EM trials is the
same for both conditions, the No Sharing condition
(a) clearly shows more local optima than Sharing (b).

able nodes, number of samples, and number of shared
nodes. Some of the results are reported here.

Figure 5a shows results for ADAPT T2 without pa-
rameter sharing during 15 EM trials using nH = 66
hidden nodes and 200 samples. Figure 5b shows a
substantial change in error when the nH = 66 hidden
nodes were shared. The range of the error for EM is
much larger in Figure 5b, while the upper and lower
error curves have a symmetric quality. Four regions
for the converged error are visible in Figure 5b, with
the inner two terminating at a lower `` than the outer
two. The lowest error region of Figure 5b is also lower
than the lowest error of Figure 5a, while retaining a
similar ``.

Figure 6 uses a smaller ADAPT BN, containing 172
nodes instead of 671 nodes (see Table 2). Here, nH =
33 nodes were hidden and 200 samples were used. In
several respects, the results are similar to those ob-
tained for ADAPT T2 and mini-ADAPT. However,

CPU time required (days to weeks).
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Figure 6a shows that EM terminates on di↵erent like-
lihoods, which is not observed in Figure 5a. The error
also appears to generally fluctuate more in Figure 6a,
whereas the error changes the most during later it-
erations in Figure 5a. Figure 6b applies parameter
sharing to the nH = 33 hidden nodes. A symmetric
e↵ect is visible between high and low error, reflect-
ing the analysis in Section 4. Of the 15 trials shown
in Figure 6b, two attained `` > �1.2e�4, while the
rest converged at `` ⇡ �1.21e�4. Additionally, the
``s of these two trials were greater than any of the
non-sharing ``s shown in Figure 6a.

6 CONCLUSION

Bayesian networks have proven themselves as very
suitable for electrical power system diagnostics [19,20,
30–33]. By compiling Bayesian networks to arithmetic
circuits [4,5], a broad range of discrete and continuous
faults can be handled in a computationally e�cient
and predictable manner. This approach has resulted
in award-winning performance on public data from
ADAPT, an electrical power system at NASA [30].

The goal of this paper is to investigate the e↵ect, on
EM’s behavior, of parameter sharing in Bayesian net-
works. We emphasize electrical power systems as an
application, and in particular examine EM for ADAPT
Bayesian networks. In these networks, there is consid-
erable opportunity for parameter sharing.

Our results suggest complex interactions between
varying degrees of parameter sharing, varying number
of hidden nodes, and di↵erent dataset sizes when it
comes to impact on EM performance, specifically like-
lihood, error, and the number of iterations required for
convergence. One main point, which we investigated
both analytically and empirically, is how parameter
sharing impacts the error associated with EM’s pa-
rameter estimates. In particular, we have found an-
alytically that the error variance increases with the
number of shared parameters. Experiments with sev-
eral BNs, mostly for fault diagnosis of electrical power
systems, are in line with the analysis. The good news
here is that there is, in the sharing case, smaller error
some of the time.

Further theoretical research to better understand pa-
rameter sharing is required. Since parameter sharing
was demonstrated to perform poorly in certain cases,
further investigations appear promising. Parameter
sharing sometimes reduced the number of EM itera-
tions required for parameter learning, while at other
times the number of EM iterations increases. Improv-
ing the understanding of the joint impact of parameter
sharing and the number of samples on the number of
EM iterations would be useful, for example. Finally, it

would be interesting to investigate the connection to
object-oriented and relational BNs in future work.
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