

Using Bayesian Attack Detection Models to Drive Cyber Deception

James H. Jones, Jr.
Department of Electrical and Computer Engineering

George Mason University
Fairfax, VA 22030

Kathryn B. Laskey
Department of Systems Engineering and Operations Research

George Mason University
Fairfax, VA 22030

Abstract

We present a method to devise, execute, and
assess a cyber deception. The aim is to cause an
adversary to believe they are under a cyber
attack when in fact they are not. Cyber network
defense relies on human and computational
systems that can reason over multiple individual
evidentiary items to detect the presence of meta
events, i.e., cyber attacks. Many of these systems
aggregate and reason over alerts from Network-
based Intrusion Detection Systems (NIDS). Such
systems use byte patterns as attack signatures to
analyze network traffic and generate
corresponding alerts. Current aggregation and
reasoning tools use a variety of techniques to
model meta-events, among them Bayesian
Networks. However, the inputs to these models
are based on network traffic which is inherently
subject to manipulation. In this work, we
demonstrate a capability to remotely and
artificially trigger specific meta events in a
potentially unknown model. We use an existing
and known Bayesian Network based cyber attack
detection system to guide construction of
deceptive network packets. These network
packets are not actual attacks or exploits, but
rather contain selected features of attack traffic
embedded in benign content. We provide these
packets to a different cyber attack detection
system to gauge their generalizability and effect.
We combine the deception packets'
characteristics, the second system's response, and
external observables to propose a deception
model to assess the effectiveness of the
manufactured network traffic on our target. We
demonstrate the development and execution of a
specific deception, and we propose the
corresponding deception model.

Key words: Cyber Deception, Cyber Attack, Bayesian
Model, Deception Model, Intrusion Detection System

1. INTRODUCTION
Network-based Intrusion Detection Systems (NIDS) are
essentially granular sensors. Their measurements consist
of computer network traffic, sometimes at the packet
level, which matches signatures of known cyber attack
activity. For a typical network, the individual data points
are numerous and require aggregation, fusion, and context
to acquire meaning. This reasoning may be accomplished
through the use of cyber attack detection models, where
the NIDS data points represent evidence and specific
cyber attacks or classes of attacks represent hypotheses.
Modeling approaches, including Bayesian Networks, have
been applied in the past, are an active research area, and
are in use today in deployed systems.

The input to a NIDS sensor is network traffic, which is
inherently uncertain and subject to manipulation. Prior
research has exploited this fact to create large numbers of
false NIDS alerts to overwhelm or disable the backend
processing systems. In this work, we leverage knowledge
of the backend cyber attack models to craft network
traffic which manipulates the inputs and hence the outputs
of both known and unknown models. With a small
number of packets and no actual cyber attack, we are able
to create the false impression of an active attack.

In this work, we describe a general approach to network-
based offensive cyber deception, and we demonstrate an
implementation of such a deception. We use an existing
cyber attack detection model to guide the development of
deception traffic, which is then processed by a second and
distinct cyber attack detection model. Finally, we propose
a deception model to assess the effectiveness of the
deception on a target. Future work will expand and
automate the generation of deceptive network packets and
further develop the deception model.

60

2. RELATED WORK
Deception has been a staple of military doctrine for
thousands of years, and a key element of intelligence
agency activities since they took their modern form in
World War II. From Sun Tzu 2,500 years ago (Tzu,
2013), to Operation Mincemeat in 1943 (Montagu and
Joyce, 1954), to the fictional operation in the 2007 book
Body of Lies (Ignatius, 2007), one side has endeavored to
mislead the other through a variety of means and for a
variety of purposes. The seminal work of Whaley and
Bell (Whaley, 1982; Bell and Whaley, 1982; Bell and
Whaley, 1991), formalized and in some ways defended
deception as both necessary and possible to execute
without "self contamination".

Deception operations have naturally begun to include the
cyber domain, although the majority of this work has been
on the defensive side. Fred Cohen suggested a role for
deception in computer system defense in 1998 (Cohen,
1998) and simultaneously released his honeypot
implementation called The Deception Toolkit (Cohen,
1998). Honeypots are systems meant to draw in attackers
so they may be distracted and/or studied. The Deception
Toolkit was one of the first configurable and dynamic
honeypots, as opposed to prior honeypots which were
simply static vulnerable systems with additional
administrator control and visibility. Other honeypot
implementations have followed, and they remain a staple
of defensive cyber deception. Neil Rowe (2003)(2007),
his colleague Dorothy Denning (Yuill, Denning, and Feer,
2006), and students (Tan, 2003) at the Naval Postgraduate
School have been researching defensive cyber deception
for several years. Extending their early work identifying
key disruption points of an attack, they propose deception
by resource denial, where some key element of an active
attack vector is deceptively claimed to be unavailable.
Such an approach stalls the attacker while the activity can
be analyzed and risks mitigated. Other defensive cyber
deception approaches include masking a target's operating
system (Murphy, McDonald, and Mills, 2010), and
actively moving targets within an IP address and TCP
port space (Kewley, et al., 2001), later labeled "address
shuffling". Crouse’s (2012) comparison of the theoretical
performance of honeypots and address shuffling remains
one of the few rigorous comparisons of techniques. Until
recently, most defensive cyber deception involved
theoretical work or small proofs of concept. However, in
2011, Ragsdale both legitimized defensive cyber
deception and raised the bar when he introduced
DARPA’s Scalable Cyber Deception program (Ragsdale,
2011). The program aims to automatically redirect
potential intruders to tailorable decoy products and
infrastructures in real time and at an enterprise scale.

By comparison, offensive cyber deception has been
discussed only briefly in the literature, often as a
secondary consideration. For example, honeypots are
typically a defensive tool but may be used in an offensive

sense to provide disinformation to an adversary.
Similarly, deliberately triggering an adversary's network
defenses to overwhelm or disable equipment, software, or
operators was discussed openly in 2001 (Patton, Yurcik,
and Doss 2001) but proposed as cover for other attacks
rather than to effect a deception. A small number of
offensive cyber deception implementations have been
presented, such as the D3 (Decoy Document Distributor)
system to lure malicious insiders (Bowen, Hershkop,
Keromytis, and Stolfo, 2009) and the ADD (Attention
Deficit Disorder) tool to create artificial host-based
artifacts in memory to support a deception (Williams and
Torres, 2014). While offensive cyber warfare has entered
the public awareness with the exposure of activity based
on tools such as Stuxnet, Flame, and Shamoon, offensive
cyber deception remains the subject of limited open
research and discussion.

Our deception work focuses on aggregation and reasoning
tools applied to Network Intrusion Detection Systems
(NIDS). These reasoning tools emerged from the
inundation of alerts when NIDS sensors were first
deployed on enterprise networks. Such tools may simply
correlate and aggregate alerts or may model cyber attack
and attacker behavior to reason over large quantities of
individual evidentiary items and provide assessments of
attack presence for human operators to review. Such
reasoning models are abundant in the literature and in
operational environments, having become indispensable
to cyber defenders and remaining an active research area.
Initial work on correlating and aggregating NIDS alerts
appeared in 2001 (Valdes and Skinner, 2001). A few
years later, a body of research emerged which correlated
NIDS events with vulnerability scans to remove irrelevant
alerts, for example (Zhai, et al., 2004). More advanced
reasoning models emerged a few years later, attempting to
capture attack and attacker behavior using various
techniques. For example, Zomlot, Sundaramurthy, Luo,
Ou, and Rajagopalan (2011) applied Dempster-Shafer
theory to prioritize alerts, and Bayesian approaches
remain popular (Tylman, 2009; Hussein, Ali, and Kasiran,
2012; Ismail, Mohd and Marsono, 2014). Jones and
Beisel (2014) developed a Bayesian approach to
reasoning over custom NIDS alerts for novel attack
detection. A prototype of this approach, dubbed Storm,
was used as the base model in this work.

Our research builds on this rich body of prior work,
merging the basic precepts of deception, manipulation of
network traffic, and model-based reasoning into an
offensive cyber deception capability. We use existing
detection models to derive corresponding deception
models, demonstrating the ability to deceive an adversary
on their own turf and causing them to believe they are
under attack when in fact they are not. This capability
may be used offensively to create an asymmetry between
attackers generating small numbers of deception packets
and targets investigating multiple false leads, and

61

defensively to improve the sensitivity, specificity, and
deception recognition of existing cyber attack detection
tools.

3. BACKGROUND
Signature-based Network Intrusion Detection Systems
operate by matching network traffic to a library of
patterns derived from past attacks and known techniques.
Matches generate alerts, often one per packet, which are
saved and sent to a human operator for review. The basic
idea of intrusion detection is attributed to Anderson
(1980). Todd Heberlein introduced the idea of network-
based intrusion detection in 1990 (Heberlein, et al., 1990).
Only when processing capabilities caught up to network
bandwidth did the market take off in the late 1990s and
early 2000s. Unfortunately, early enterprise deployments
generated massive numbers of alerts, to the point that
human operators could not possibly process them all. Two
capabilities came out of this challenge: (1) correlation
between NIDS data and other enterprise sources, such as
vulnerability scanning data, e.g., see ArcSighti, and (2)
aggregators which model cyber attacks and use NIDS
alerts as individual evidentiary items, only alerting a
human when multiple aspects of an attack are detected,
e.g., see Hofmann and Sick (2011). As noted in Section 2,
many modeling approaches have been applied to the
aggregation and context problem for more than a decade,
and the area remains one of active research, e.g.,
Boukhtouta, et al (2013).

For the base model in this project, we used an existing
cyber attack detection model previously developed by one
of the authors. The implementation of this model, called
Storm, uses network traffic observables and a Bayesian
Network reasoning model to detect a system compromise
resulting from known and novel cyber attacks. The
system ingests raw network traffic via a live network
connection or via traffic capture files in libpcapii format.
Individual packets and groups of packets are assessed
against signatures associated with cyber attack stages,
such as reconnaissance, exploitation, and backdoor access
(see Figure 1). Prior to ingest by the model, saturation and
time decay functions are applied to packets which match
signatures so that model output reflects the quantity and
timing of packets. Ingest and model updates occur in real
time as packets are received and processed. Packet
capture and signature matching is implemented in C++
using libpcap on a Linux (Ubuntu) system. Matching
packet processing, model management, and the user
interface are implemented in Java, and the Bayesian
Network is implemented with Unbbayesiii. Packets are
passed to the model via a TCP socket so that packet
processing and reasoning may be performed on different
systems, although we used a single server for our testing.

The Storm system reasons over indirect observables
resulting from the necessary and essentially unavoidable
steps necessary to effect a system compromise. This

underlying cyber attack process is shown in Figure 1
below, where a typical attack progress downward from
State 1 (S1) to State 7 (S7). Observables are created at
each state and transition. The existing Storm
implementation contains one or more observable
signatures for each of the six state transitions (T1-T6 in
the figure).

Figure 1: Cyber Attack Model

The reasoning model, shown in Figure 2, was derived
from expert knowledge and consists of 20 signature
evidence nodes (leaves labeled Tnn), three derived
evidence nodes (labeled Mn), two protocol aggregation
nodes (labeled Port80 and Port25), six transition
aggregation nodes (labeled Tn), and a root node (labeled
Compromise). Signature hits are processed and used to set
values for the Tnn and Mn nodes. As implemented, one
model is instantiated for each cyber attack target (unique
target IP address). Model instances are updated whenever
new evidence is received or a preconfigured amount of
time has passed, and the root node values are returned as
Probability of Compromise given Evidence, P(C|E), for
each target.

The theory behind the model, further explained by Jones
and Beisel (2014), is to recognize observables created
when a cyber attack transitions to a new state. For
example, when transitioning to the exploit stage, packets
with NOP instructions (machine code for "do nothing"

62

and used in buffer overflow type attacks) or shell code
elements (part of many exploit payloads) are often seen.
As such, the Storm signature rules for detecting
observables are not specific to particular attacks, but
rather represent effects common to actions associated
with cyber attack stages in general. Taken individually,
signature matches do not imply an attack. However, when
aggregated and combined in context by the reasoning
model, an accurate assessment of attack existence may be
produced. The system is able to detect novel attacks, since
signatures are based on generic cyber attack state
transitions instead of specific attack signatures.

Figure 2: Bayes Net Cyber Attack Detection Model

For most environments, network traffic is insecure and
untrusted. Most networks and systems carry and accept
traffic that may be both unencrypted and unauthenticated.
As such, nearly anyone can introduce traffic on an
arbitrary network or at least modify traffic destined for an
arbitrary network or system. While full arbitrary packet
creation, modification, and introduction is not generally
possible, the ability to at least minimally manipulate
packets destined for an arbitrary network or system is
inherent in the design and implementation of the Internet.
Packet manipulation is straightforward using available
tools like Scapyiv, requiring only knowledge of basic
object oriented concepts and an understanding of the
relevant network protocols.

It is the combination of an ability to manipulate network
traffic and models which use network traffic as
evidentiary inputs which we exploit in our work.

4. METHODOLOGY
Our goal for this project is to establish the viability of
manipulating an adversary's perception that they are the
target of a cyber attack when in fact they are not. We
begin by conducting a sensitivity analysis of a known
cyber attack detection model to identify candidate
influence points. We design, construct, and inject network
packets to trigger evidence at a subset of these influence
points. We construct a corresponding deception model to
assess the likelihood that our deception is effective. This
derivative deception model combines the impact of our
deception packets with other factors, such as the ease with
which a target may invalidate the deception packets, the
prevalence of alternative explanations for detection

system alarms, and external indicators of the target's
response activities. The impact of our deception packets is
estimated by their effect on an alternative cyber attack
detection system, in this case Snortv. See Figure 3 for an
overview of this process.

Figure 3: Process Overview

The deception model output, P(Successful Deception) is
envisioned to be a dynamic value computed in real time
as deception packets are delivered to a target and external
observables are collected. As the deception operation
unfolds and feedback from external observables is
incorporated, additional existing deception packets may
be injected, or influence points may be examined for
additional deception packet development.

Our base detection model is a Bayesian Network (Figure
2) from a test implementation of the Storm cyber attack
detection system. A single node sensitivity to findings
analysis (from Netica) is summarized in Table 1 for the
20 evidence input nodes. We reviewed this output and the
descriptions of each signature to select those which (a)
would have high impact on Storm's probability of
compromise based on the sensitivity analysis, (b) could be
reasonably developed into a deception packet or packets,
and (c) could be general enough to be detected by a
target's cyber attack detection system, i.e., not Storm. In
Table 1, the eight non-gray rows are those that were
selected for deception packet development (signatures
T5a, T6a, T6b, T6d, T4a, T4b, T1e, and T1f).

63

Table 1: Storm model sensitivity analysis

Signature Mutual
Info

Variance
of Beliefs

T5a 0.03305 0.0011763
T6e 0.02719 0.0008344
T6a 0.02719 0.0008344
T6b 0.02719 0.0008344
T6d 0.02719 0.0008344
T6c 0.02719 0.0008344
T6f 0.02719 0.0008344
T4a 0.01701 0.0004315
T4b 0.01701 0.0004315
T3b 0.01658 0.0003618
T3c 0.00702 0.0001202
T3a 0.00259 0.0000372
T1a 0.00002 0.0000002
T1b 0.00002 0.0000002
T1e 0.00002 0.0000002
T1c 0.00002 0.0000002
T1d 0.00002 0.0000002
T1f 0.00002 0.0000002
T2a 0.00001 0.0000002
T2b 0.00001 0.0000002

Our test environment consisted of a Storm
implementation running on Ubuntu 11.10 and a packet
manipulation host running BackTrack5vi. We captured
normal network traffic in a test environment and
processed the traffic through the Storm system to confirm
that no attacks were detected. Storm, like most NIDS
implementations, has the ability to ingest live network
traffic as well as network traffic capture files without loss
of accuracy or fidelity. Traffic was captured using the
open source Wiresharkvii tool, saved as a pcap file, then
ingested by Storm. We labeled this original packet
capture file "clean" and used it as the basis for our
subsequent packet manipulations.

We used Scapy on the BackTrack5 instance to craft
deception packets. Scapy is an open source Python based
packet crafting and editing tool. Packets may be loaded
from a pcap file, then manipulated in an environment
similar to a Python command shell and written out to a
pcap file. Scapy supports creation and modification of any
packet field down to the byte level and to include the raw
creation and editing of packet data. To create our
deception packets, we made minor modifications to

packets from the clean set. By minimizing changes, we
produced packets that maintained most of the clean
session characteristics and so would not be blocked by a
firewall or other packet screening device. Also, packets
were modified only to the extent necessary to trigger the
desired signature, so the modified packets do not contain
any actual attacks. The modified packets and associated
unmodified session packets, such as session establishment
via the TCP 3-way handshake, were exported to a
separate pcap file so they could be ingested by the Storm
and Snort systems in a controlled manner.

The eight signatures selected for deception and the related
deception packets are summarized in Table 2.

Table 2: Signatures and deception packets

Signature T1e
Description: After 3-way handshake, DstPort=80,

payload≠<ASCII>
Explanation: Abnormal traffic to web server (usually

expect GET or POST with ASCII data)
Deception packet: Inserted non-ASCII (hex > 7F) at

beginning of payload for existing HTTP session
Signature T1f

Description: After 3-way handshake, DstPort=25,
payload≠<ASCII>

Explanation: Abnormal traffic to a mail server
(normally we expect plaintext commands)

Deception packet: Edited HTTP session to use server
port 25; inserted non-ASCII (hex > 7F) at
beginning of payload

Signature T4a
Description: Client to server traffic containing 20+

repeated ASCII characters
Explanation: Buffer overflows often use a long string

of ASCII characters to overflow the input buffer
Deception packet: Inserted 43 "d" (hex 64) characters

at the beginning of existing HTTP session payload
Signature T4b

Description: Client payload contains 20+ identical and
consecutive NOP instruction byte patterns

Explanation: A "NOP sled" is a common technique
used in buffer overflow exploits; the sled consists
of multiple NOP (No Operation) instructions to
ensure that the real instructions fall in the desired
range

Deception packet: Inserted 24 hex 90 (known NOP
code) characters at the beginning of existing HTTP
session payload

64

Signature T5a
Description: Client to server traffic if port≠23 and first

100 bytes of payload contains "rm", "rmdir", "rd",
"del", "erase"

Explanation: File or directory removal activity
Deception packet: Inserted "rm " (hex 726D20)

characters at the beginning of existing HTTP
session payload

Signature T6a
Description: First two bytes of client to server

payload="MZ"
Explanation: COM, DLL, DRV, EXE, PIF, QTS,

QTX, or SYS file transfer for use in a backdoor
Deception packet: Inserted "MZ" (hex 4D5A) and

filename "exe" characters at the beginning of
existing HTTP session payload

Signature T6b
Description: New Port opened on server; ignore first

500 packets after startup
Explanation: Traffic from a port not previously seen

might indicate the opening of a new back door
Deception packet: Edited HTTP session to use server

port 25 (ingested after first 500 packets)
Signature T6d

Description: Unencrypted traffic on encrypted port
Explanation: Traffic on encrypted sockets (HTTPS,

SMTP with SSL, Secure Shell, etc.) should be
encrypted once the session is established.

Deception packet: Inserted ASCII text in an
established SSH session

Manual creation of the deception packets required a
moderate amount of effort. When crafting deception
packets, care must be taken to use carrier traffic which
will be passed by a firewall or similar network security
gateway while still triggering the desired signature.
Flexibility in carrier traffic is signature dependent. For
example, some signatures have offset or port
dependencies like requiring the traffic to be, or not to be,
on port 80 (HTTP), while others are more flexible. Future
work will develop an automated deception packet creation
capability.

We began by identifying a candidate session for packet
modification. For example, we could start with an existing
HTTP or HTTPS session and alter packet payload, or we
might also alter TCP ports. Payload modification required
adjustments to the TCP checksum, IP checksum, and IP
length values as well. To create a deception packet set, we
loaded the clean pcap file in scapy, made the desired
packet modifications, and wrote the resulting packet set to
a new pcap file. We then used Wireshark to confirm our
modifications and to extract and save only the session of
interest as a distinct pcap file. We confirmed our

deception packets by processing them with Storm, and
later Snort, in a controlled environment.

We tested single occurrences of each signature separately
and in a subset of possible combinations. For each
individual signature and for selected combinations, we
also tested the effects of 10 and 20 signature instances.
Finally, for selected signatures, we measured the effect of
multiple occurrences for values 1, ..., 25. For all tests, we
reset the Storm model, loaded the desired pcap file, and
recorded the resulting P(C|E).

We then processed each of the deception pcap files (one
per signature) with Snort, separately and in combinations
and repetitions.

5. EXPERIMENTAL RESULTS
Each signature pcap file was processed by Storm in
quantities of 1, 10, and 20 hits. Storm was reset after each
run, that is, reset after a run of one T1e hit, then reset after
a run of 10 T1e hits, then reset after a run of 20 T1e hits,
etc. Results are recorded in Table 3.

Table 3: Single signature impact on P(C|E) with repetition

Signature Qty=1 Qty=10 Qty=20

ID
Short
Description P(C|E) P(C|E) P(C|E)

T1e HTTPload!=ASCII 0.00 0.01 0.03

T1f SMTPload!=ASCII 0.00 0.01 0.03

T4a Repeated ASCII 0.01 0.05 0.16

T4b Repeated NOPs 0.01 0.05 0.15

T5a Cleanup cmds 0.02 0.09 0.27

T6a Executable load 0.02 0.08 0.22

T6b New server port 0.02 0.08 0.22

T6d Unencrypted SSL 0.02 0.08 0.22

The relationships between the quantity of signature hits
and P(C|E) in each row indicate that setting the Bayesian
Network findings is not a simple True/False assignment.
To confirm this behavior, we recorded the effect on
P(C|E) of 1, 2, ..., 25 signature hits for signatures T5a and
T6a. These results are graphed in Figures 4a and 4b. The
curves and apparent inflection points of the graphs
indicate that the signature hits are subject to a ramping up
requirement at low quantities and a saturation adjustment
at high quantities. This is in fact implemented by a pre-
processing step in the Storm system and is not actually a
part of the Bayesian Network component of Storm.

65

Figure 4a: T5a signature hit effect for n = 1..25

Figure 4b: T6a signature hit effect for n = 1..25

We constructed 11 combinations of signature hits at
selected quantities and tested each combination. The
results are shown in Tables 4a and 4b below (split for
readability).

The results indicate that the desired effect was achieved in
two ways: (1) single hits across a wide range of signatures
(e.g., tests D, E, and F), and (2) repeated hits on selected
signatures (e.g., tests H and K). Assuming a threshold of
P(C|E) > 0.75 for alerting, meta-event alerts could be
generated with as few as five packets spread across five
signatures as in test F, or 40 packets spread across only
two different signatures as in test K.

We processed the same eight pcap deception files with
Snort. Six of the eight files triggered Snort alerts, as
summarized below in Table 5.

Snort Priority 1 are the most severe, Priority 3 the least.
The name, classification, and priority of each signature
are assigned by the signature author. A base Snort install
contains signatures contributed by the Snort developers
and the open source community.

Our deception packets produced five Priority 1 alerts, one
Priority 2 alert, and one Priority 3 alert. Two deception

packets (pcap files for T5a and T6b) did not trigger any
Snort alerts.

Table 4a: Effect of signature combinations on P(C|E)

Signature Test
ID A B C D E F

T1c 1
T1e 1
T4a 1 1 1 1 1
T4b 1 1 1 1
T5a 1 1 1
T6a 1 1 1 1 1
T6b 1 1 1 1 1
T6d 1 1 1 1 1

P(C|E) 0.10 0.02 0.46 0.86 0.89 0.79

Table 4b: Effect of signature combinations on P(C|E)

Signature Test
ID G H I J K

T1c
T1e
T4a 1 10 10
T4b
T5a 1 10 10 10 20
T6a 1 10 10 20
T6b
T6d

P(C|E) 0.37 0.93 0.58 0.72 0.78

In a default configuration, and without any subsequent
aggregation or alert thresholds, Snort alerts are explicitly
linear, meaning that combination and repetition testing
produced the obvious results. For example, running any
one pcap file N times produces N alerts. Similarly,
running the files in combination produced the expected
total of alerts, e.g., running the entire set 10 times
produced 70 Snort alerts.

66

Table 5: Snort alerts from deception packets

File Snort Alerts

T5a None

T6a
Lotus Notes .exe script source download attempt

[Classification: Web Application Attack]
[Priority: 1]

T6b None

T6d

Protocol mismatch
[Priority: 3]

EXPLOIT ssh CRC32 overflow /bin/sh
[Classification: Executable code was detected]

[Priority: 1]

T4a
MailSecurity Management Host Overflow Attempt

[Classification: Attempted Admin Privilege Gain]
[Priority: 1]

T4b
SHELLCODE x86 NOOP

[Classification: Executable code was detected]
[Priority: 1]

T1e
apache chunked enc mem corrupt exploit attempt
[Classification: access to potentially vuln web app]

[Priority: 2]

T1f
x86 windows MailMax overflow

[Classification: Attempted Admin Privilege Gain]
[Priority: 1]

6. DECEPTION MODEL
A sample deception model is shown in Figure 5. The
model consists of three key parts: (A) the deception
packets, (B) external observables indicating a successful
deception, and (C) external observables indicating an
unsuccessful deception.

Each deception packet, area A in the figure, is assessed
for alternative explanations. For example, a byte string
that we embed in a JPEG image file may generate a NIDS
alert for an unrelated attack, but upon examination will be
discounted as a chance occurrence and hence a false
alarm. Strong alternative explanations suggest that the
target might not interpret the packet as part of an attack
and so would weaken the packet node's intended effect on
the Successful Deception node. Similarly, each deception
packet is assessed for how difficult it will be for a target
to invalidate the packet. Again using the example of a
byte string embedded in a JPEG image file, if the
triggered NIDS alert is an exploit of image viewers, then
the packet will be difficult to invalidate. A difficult-to-
invalidate packet will have a strong positive influence on
the Successful Deception node via the intended effect
node.

Processing the original eight deception packets (pcap
files) with Snort provides additional parameters for the
model. The number, priority, and relevance of Snort alerts

are used to build the Conditional Probability Table of the
Deception Success node.

Figure 5: Bayes Net Cyber Deception Model

Area B in the graphic contains three nodes representing
external observables which could indicate a successful
deception. The "apparent target" and "apparent attacker"
are the endpoints of the deception packets. As noted
elsewhere, these systems may not send or receive any of
the observed traffic, but they will be endpoints from a
network monitor's point of view. If a target blocks the
apparent target or attacker, or takes the apparent target
off-line, then the deception is likely working. Similarly, if
the target system operators probe the apparent attacker,
then the deception is likely working.

Area C in the graphic contains two nodes for external
observables which may indicate that the deception is not
working. If the apparent target's response or processing
time slows down, this may indicate that the target has
added monitoring capabilities in order to trace the source
of the deception, although this could also indicate
monitoring in response to a perceived successful
deception. The other node in area C is the worst case
scenario. Although none of the deception packet contents
are directly traceable to the actual perpetrators of the
deception, probing of the perpetrators systems, especially
from the target of the deception, might indicate that the
deception has failed and the target suspects the true
source of the deception.

The model of Figure 5 is a work in progress at the time of
this writing. Preliminary values for the conditional
probability tables have been developed but not yet tested
or refined. Our work suggests that such a deception model
may be developed for other domains where we have some
control over the inputs to the base model. Our process in
Figure 3 may be generalized by replacing "packets" with
"evidence", since packets are simply our mechanism for
affecting an evidentiary input node. Generally, a derived

67

deception model consists of the nodes that we directly
influence, their estimated effect on the target's model, and
external observables.

7. CONCLUSIONS AND FUTURE WORK
We demonstrated the ability to construct network packets
which will look similar to normal network traffic, pass
through a typical Firewall, trigger specific attack element
signatures, and have a controlled impact on a back-end
cyber attack detection reasoning model. Further, we
proposed a derived deception model to dynamically
assess the effectiveness of the cyber deception activities,
and we suggested how such a deception model might be
constructed for other domains. In support of cyber
defense, our work also supports the testing and
development of more accurate reasoning models and
research geared towards detecting deception.

An apparent limitation of our work is a requirement to
know the signatures which trip alerts and are fed to the
back end reasoning model. However, this is not
necessarily true. While these signatures may be known, as
in the case of systems leveraging open source tools like
Snort, it is also true that a system designed to detect
specific attacks or attacks of a certain class will use
similar signatures. The common requirement to derive a
discriminatory signature that is as short as possible results
in different entities independently producing similar
signatures. We have observed this effect in the NIDS
domain, where commercial and open source tools have
similar signature sets for many attacks. Similarly, we
observe this effect in the antivirus and malware detection
industry, where different vendors and open source
providers frequently generate similar signatures
independently. The implication is that we could develop
probable signatures for specific attacks or behaviors, then
develop deception packets to trip these signatures with a
reasonable expectation of successfully affecting a target
system using unknown signatures. We partially
demonstrated this by processing our Storm-derived
packets with Snort.

As noted above, we assert that the use of pcap files is
equivalent for our purposes to live network traffic capture
and processing. However, it is true that in most live
network scenarios we will not be able to put both sides of
a TCP session on the wire as we did in this work. Rather,
we will have to establish a live session with a target
computer and modify subsequent session packets in real
time, or we will have to intercept and modify packets
between a target and some other system. This is an
implementation issue vs. a question of validity, as the
results presented here hold regardless of how the
deceptive packets are introduced.

Future work will focus on automated deception packet
creation, development of delivery mechanisms, and the
derived deception model. We created our packets
manually based on a review of the target signature and
several iterations of trial and error. Our next step is to
create deception packets directly from signature
descriptions. For example, given a Snort signature file, we
could craft multiple deception packets in an automated
fashion. A related effort will explore the automation of
delivery mechanisms, for example establishing TCP
sessions with an internal host and delivering deception
packets and injection of deception material into an
existing network traffic stream. Author Jones recently led
a project to develop a hardware-based inline packet
rewriting tool which could be used for such a purpose.
Finally, we will continue the development and
generalization of deriving deception models from
detection models.

References
Anderson, J. P. (1980). Computer security threat
monitoring and surveillance (Vol. 17). Technical report,
James P. Anderson Company, Fort Washington,
Pennsylvania.

Bell, J. B., & Whaley, B. (1982). Cheating: deception in
war & magic, games & sports, sex & religion, business &
con games, politics & espionage, art & science. St
Martin's Press.

Bell, J. B., & Whaley, B. (1991). Cheating and deception.
Transaction Publishers.

Boukhtouta, A., Lakhdari, N. E., Mokhov, S. A., &
Debbabi, M. (2013). Towards fingerprinting malicious
traffic. Procedia Computer Science, 19, 548-555.

Bowen, B. M., Hershkop, S., Keromytis, A. D., & Stolfo,
S. J. (2009). Baiting inside attackers using decoy
documents (pp. 51-70). Springer Berlin Heidelberg.

Cohen, F. (1998). A note on the role of deception in
information protection. Computers & Security, 17(6),
483-506.

Cohen, F. (1998). The deception toolkit. Risks Digest, 19.

Crouse, M. B. (2012). Performance Analysis of Cyber
Deception Using Probabilistic Models (Master's Thesis,
Wake Forest University).

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee,
B., Wood, J., & Wolber, D. (1990, May). A network
security monitor. In Research in Security and Privacy,
1990. Proceedings., 1990 IEEE Computer Society
Symposium on (pp. 296-304). IEEE.

68

Hofmann, A., & Sick, B. (2011). Online intrusion alert
aggregation with generative data stream modeling.
Dependable and Secure Computing, IEEE Transactions
on, 8(2), 282-294.

Hussein, S. M., Ali, F. H. M., & Kasiran, Z. (2012, May).
Evaluation effectiveness of hybrid IDs using snort with
naive Bayes to detect attacks. In Digital Information and
Communication Technology and it's Applications
(DICTAP), 2012 Second International Conference on (pp.
256-260). IEEE.

Ignatius, D. (2007). Body of Lies. WW Norton &
Company.

Ismail, I., Mohd Nor, S., & Marsono, M. N. (2014).
Stateless Malware Packet Detection by Incorporating
Naive Bayes with Known Malware Signatures. Applied
Computational Intelligence and Soft Computing, 2014.

Jones, J. and Beisel, C. (2014) Extraction and Reasoning
over Network Data to Detect Novel Cyber Attacks.
National Cybersecurity Institute Journal. Volume 1,
Number 1.

Kewley, D., Fink, R., Lowry, J., & Dean, M. (2001).
Dynamic approaches to thwart adversary intelligence
gathering. In DARPA Information Survivability
Conference & Exposition II, 2001. DISCEX'01.
Proceedings (Vol. 1, pp. 176-185). IEEE.

Montagu, E., & Joyce, P. (1954). The man who never
was. Lippincott.

Murphy, S. B., McDonald, J. T., & Mills, R. F. (2010).
An Application of Deception in Cyberspace: Operating
System Obfuscation1. In Proceedings of the 5th
International Conference on Information Warfare and
Security (ICIW 2010) (pp. 241-249).

Patton, S., Yurcik, W., & Doss, D. (2001). An Achilles’
heel in signature-based IDS: Squealing false positives in
SNORT. Proceedings of RAID 2001.

Ragsdale, D. (2011). Scalable Cyber Deception. Defense
Advanced Research Projects Agency, Arlington, Virginia,
Information Innovation Office.

Rowe, N. C. (2003, June). Counterplanning deceptions to
foil cyber-attack plans. In Information Assurance
Workshop, 2003. IEEE Systems, Man and Cybernetics
Society (pp. 203-210). IEEE.

Rowe, N. (2007, March). Planning cost-effective
deceptive resource denial in defense to cyber-attacks. In
Proceedings of the 2nd International Conference on

Information Warfare & Security (p. 177). Academic
Conferences Limited.

Tan, K. L. G. (2003). Confronting cyberterrorism with
cyber deception (Doctoral dissertation, Monterey,
California. Naval Postgraduate School).

Tylman, W. (2009) Detecting Computer Intrusions with
Bayesian Networks. Intelligent Data Engineering and
Automated Learning - IDEAL 2009. Lecture Notes in
Computer Science Volume 5788, 2009, pp 82-91.

Tzu, S. (2013). The art of war. Orange Publishing.

Valdes, A., & Skinner, K. (2001, January). Probabilistic
alert correlation. In Recent Advances in Intrusion
Detection (pp. 54-68). Springer Berlin Heidelberg.

Whaley, B. (1982). Toward a general theory of deception.
The Journal of Strategic Studies, 5(1), 178-192.

Williams, J., & Torres, A. (2014). ADD - Complicating
Memory Forensics Through Memory Disarray. Presented
at ShmooCon 2014 and archived at
https://archive.org/details/ShmooCon2014_ADD_Compli
cating_Memory_Forensics_Through_Memory_Disarray.
Retrieved June 8, 2014.

Yuill, J., Denning, D. E., & Feer, F. (2006). Using
deception to hide things from hackers: Processes,
principles, and techniques. North Carolina State
University at Raleigh, Department of Computer Science.

Zhai, Y., Ning, P., Iyer, P., & Reeves, D. S. (2004,
December). Reasoning about complementary intrusion
evidence. In Computer Security Applications Conference,
2004. 20th Annual (pp. 39-48). IEEE.

Zomlot, L., Sundaramurthy, S. C., Luo, K., Ou, X., &
Rajagopalan, S. R. (2011, October). Prioritizing intrusion
analysis using Dempster-Shafer theory. In Proceedings of
the 4th ACM workshop on Security and artificial
intelligence (pp. 59-70). ACM.

i http://www.hp.com/go/ArcSight
ii http://sourceforge.net/projects/libpcap/
iii http://sourceforge.net/projects/unbbayes/
iv http://www.secdev.org/projects/scapy/
v http://www.snort.org/
vi http://www.backtrack-linux.org/downloads/
vii http://www.wireshark.org/

69

