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Abstract 

We present a method to devise, execute, and 
assess a cyber deception. The aim is to cause an 
adversary to believe they are under a cyber 
attack when in fact they are not. Cyber network 
defense relies on human and computational 
systems that can reason over multiple individual 
evidentiary items to detect the presence of meta 
events, i.e., cyber attacks. Many of these systems 
aggregate and reason over alerts from Network-
based Intrusion Detection Systems (NIDS). Such 
systems use byte patterns as attack signatures to 
analyze network traffic and generate 
corresponding alerts. Current aggregation and 
reasoning tools use a variety of techniques to 
model meta-events, among them Bayesian 
Networks. However, the inputs to these models 
are based on network traffic which is inherently 
subject to manipulation. In this work, we 
demonstrate a capability to remotely and 
artificially trigger specific meta events in a 
potentially unknown model. We use an existing 
and known Bayesian Network based cyber attack 
detection system to guide construction of 
deceptive network packets. These network 
packets are not actual attacks or exploits, but 
rather contain selected features of attack traffic 
embedded in benign content. We provide these 
packets to a different cyber attack detection 
system to gauge their generalizability and effect. 
We combine the deception packets' 
characteristics, the second system's response, and 
external observables to propose a deception 
model to assess the effectiveness of the 
manufactured network traffic on our target. We 
demonstrate the development and execution of a 
specific deception, and we propose the 
corresponding deception model. 

Key words: Cyber Deception, Cyber Attack, Bayesian 
Model, Deception Model, Intrusion Detection System 

1. INTRODUCTION 
Network-based Intrusion Detection Systems (NIDS) are 
essentially granular sensors. Their measurements consist 
of computer network traffic, sometimes at the packet 
level, which matches signatures of known cyber attack 
activity. For a typical network, the individual data points 
are numerous and require aggregation, fusion, and context 
to acquire meaning. This reasoning may be accomplished 
through the use of cyber attack detection models, where 
the NIDS data points represent evidence and specific 
cyber attacks or classes of attacks represent hypotheses. 
Modeling approaches, including Bayesian Networks, have 
been applied in the past, are an active research area, and 
are in use today in deployed systems. 

The input to a NIDS sensor is network traffic, which is 
inherently uncertain and subject to manipulation. Prior 
research has exploited this fact to create large numbers of 
false NIDS alerts to overwhelm or disable the backend 
processing systems. In this work, we leverage knowledge 
of the backend cyber attack models to craft network 
traffic which manipulates the inputs and hence the outputs 
of both known and unknown models. With a small 
number of packets and no actual cyber attack, we are able 
to create the false impression of an active attack. 

In this work, we describe a general approach to network-
based offensive cyber deception, and we demonstrate an 
implementation of such a deception. We use an existing 
cyber attack detection model to guide the development of 
deception traffic, which is then processed by a second and 
distinct cyber attack detection model. Finally, we propose 
a deception model to assess the effectiveness of the 
deception on a target. Future work will expand and 
automate the generation of deceptive network packets and 
further develop the deception model. 
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2. RELATED WORK 
Deception has been a staple of military doctrine for 
thousands of years, and a key element of intelligence 
agency activities since they took their modern form in 
World War II. From Sun Tzu 2,500 years ago (Tzu, 
2013), to Operation Mincemeat in 1943 (Montagu and 
Joyce, 1954), to the fictional operation in the 2007 book 
Body of Lies (Ignatius, 2007), one side has endeavored to 
mislead the other through a variety of means and for a 
variety of purposes. The seminal work of Whaley and 
Bell (Whaley, 1982; Bell and Whaley, 1982; Bell and 
Whaley, 1991), formalized and in some ways defended 
deception as both necessary and possible to execute 
without "self contamination". 
 
Deception operations have naturally begun to include the 
cyber domain, although the majority of this work has been 
on the defensive side. Fred Cohen suggested a role for 
deception in computer system defense in 1998 (Cohen, 
1998) and simultaneously released his honeypot 
implementation called The Deception Toolkit (Cohen, 
1998). Honeypots are systems meant to draw in attackers 
so they may be distracted and/or studied. The Deception 
Toolkit was one of the first configurable and dynamic 
honeypots, as opposed to prior honeypots which were 
simply static vulnerable systems with additional 
administrator control and visibility. Other honeypot 
implementations have followed, and they remain a staple 
of defensive cyber deception. Neil Rowe (2003)(2007), 
his colleague Dorothy Denning (Yuill, Denning, and Feer, 
2006), and students (Tan, 2003) at the Naval Postgraduate 
School have been researching defensive cyber deception 
for several years. Extending their early work identifying 
key disruption points of an attack, they propose deception 
by resource denial, where some key element of an active 
attack vector is deceptively claimed to be unavailable. 
Such an approach stalls the attacker while the activity can 
be analyzed and risks mitigated. Other defensive cyber 
deception approaches include masking a target's operating 
system (Murphy, McDonald, and Mills, 2010), and 
actively moving targets within an IP address and TCP 
port space (Kewley, et al., 2001), later labeled "address 
shuffling". Crouse’s (2012) comparison of the theoretical 
performance of honeypots and address shuffling remains 
one of the few rigorous comparisons of techniques. Until 
recently, most defensive cyber deception involved 
theoretical work or small proofs of concept. However, in 
2011, Ragsdale both legitimized defensive cyber 
deception and raised the bar when he introduced 
DARPA’s  Scalable Cyber Deception program (Ragsdale, 
2011). The program aims to automatically redirect 
potential intruders to tailorable decoy products and 
infrastructures in real time and at an enterprise scale.  
 
By comparison, offensive cyber deception has been 
discussed only briefly in the literature, often as a 
secondary consideration. For example, honeypots are 
typically a defensive tool but may be used in an offensive 

sense to provide disinformation to an adversary. 
Similarly, deliberately triggering an adversary's network 
defenses to overwhelm or disable equipment, software, or 
operators was discussed openly in 2001 (Patton, Yurcik, 
and Doss 2001) but proposed as cover for other attacks 
rather than to effect a deception. A small number of 
offensive cyber deception implementations have been 
presented, such as the D3 (Decoy Document Distributor) 
system to lure malicious insiders (Bowen, Hershkop, 
Keromytis, and Stolfo, 2009) and the ADD (Attention 
Deficit Disorder) tool to create artificial host-based 
artifacts in memory to support a deception (Williams and 
Torres, 2014). While offensive cyber warfare has entered 
the public awareness with the exposure of activity based 
on tools such as Stuxnet, Flame, and Shamoon, offensive 
cyber deception remains the subject of limited open 
research and discussion. 
 
Our deception work focuses on aggregation and reasoning 
tools applied to Network Intrusion Detection Systems 
(NIDS). These reasoning tools emerged from the 
inundation of alerts when NIDS sensors were first 
deployed on enterprise networks. Such tools may simply 
correlate and aggregate alerts or may model cyber attack 
and attacker behavior to reason over large quantities of 
individual evidentiary items and provide assessments of 
attack presence for human operators to review. Such 
reasoning models are abundant in the literature and in 
operational environments, having become indispensable 
to cyber defenders and remaining an active research area. 
Initial work on correlating and aggregating NIDS alerts 
appeared in 2001 (Valdes and Skinner, 2001). A few 
years later, a body of research emerged which correlated 
NIDS events with vulnerability scans to remove irrelevant 
alerts, for example (Zhai, et al., 2004). More advanced 
reasoning models emerged a few years later, attempting to 
capture attack and attacker behavior using various 
techniques. For example, Zomlot, Sundaramurthy, Luo, 
Ou, and Rajagopalan (2011) applied Dempster-Shafer 
theory to prioritize alerts, and Bayesian approaches 
remain popular (Tylman, 2009; Hussein, Ali, and Kasiran, 
2012; Ismail, Mohd and Marsono, 2014). Jones and 
Beisel (2014) developed a Bayesian approach to 
reasoning over custom NIDS alerts for novel attack 
detection. A prototype of this approach, dubbed Storm, 
was used as the base model in this work. 
 
Our research builds on this rich body of prior work, 
merging the basic precepts of deception, manipulation of 
network traffic, and model-based reasoning into an 
offensive cyber deception capability. We use existing 
detection models to derive corresponding deception 
models, demonstrating the ability to deceive an adversary 
on their own turf and causing them to believe they are 
under attack when in fact they are not. This capability 
may be used offensively to create an asymmetry between 
attackers generating small numbers of deception packets 
and targets investigating multiple false leads, and 
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defensively to improve the sensitivity, specificity, and 
deception recognition of existing cyber attack detection 
tools. 

3. BACKGROUND 
Signature-based Network Intrusion Detection Systems 
operate by matching network traffic to a library of 
patterns derived from past attacks and known techniques. 
Matches generate alerts, often one per packet, which are 
saved and sent to a human operator for review. The basic 
idea of intrusion detection is attributed to Anderson 
(1980). Todd Heberlein introduced the idea of network-
based intrusion detection in 1990 (Heberlein, et al., 1990). 
Only when processing capabilities caught up to network 
bandwidth did the market take off in the late 1990s and 
early 2000s. Unfortunately, early enterprise deployments 
generated massive numbers of alerts, to the point that 
human operators could not possibly process them all. Two 
capabilities came out of this challenge: (1) correlation 
between NIDS data and other enterprise sources, such as 
vulnerability scanning data, e.g., see ArcSighti, and (2) 
aggregators which model cyber attacks and use NIDS 
alerts as individual evidentiary items, only alerting a 
human when multiple aspects of an attack are detected, 
e.g., see Hofmann and Sick (2011). As noted in Section 2, 
many modeling approaches have been applied to the 
aggregation and context problem for more than a decade, 
and the area remains one of active research, e.g., 
Boukhtouta, et al (2013). 

For the base model in this project, we used an existing 
cyber attack detection model previously developed by one 
of the authors. The implementation of this model, called 
Storm, uses network traffic observables and a Bayesian 
Network reasoning model to detect a system compromise 
resulting from known and novel cyber attacks. The 
system ingests raw network traffic via a live network 
connection or via traffic capture files in libpcapii format. 
Individual packets and groups of packets are assessed 
against signatures associated with cyber attack stages, 
such as reconnaissance, exploitation, and backdoor access 
(see Figure 1). Prior to ingest by the model, saturation and 
time decay functions are applied to packets which match 
signatures so that model output reflects the quantity and 
timing of packets. Ingest and model updates occur in real 
time as packets are received and processed. Packet 
capture and signature matching is implemented in C++ 
using libpcap on a Linux (Ubuntu) system. Matching 
packet processing, model management, and the user 
interface are implemented in Java, and the Bayesian 
Network is implemented with Unbbayesiii. Packets are 
passed to the model via a TCP socket so that packet 
processing and reasoning may be performed on different 
systems, although we used a single server for our testing. 
 
The Storm system reasons over indirect observables 
resulting from the necessary and essentially unavoidable 
steps necessary to effect a system compromise. This 

underlying cyber attack process is shown in Figure 1 
below, where a typical attack progress downward from 
State 1 (S1) to State 7 (S7). Observables are created at 
each state and transition. The existing Storm 
implementation contains one or more observable 
signatures for each of the six state transitions (T1-T6 in 
the figure). 

 
Figure 1: Cyber Attack Model  

 
 
The reasoning model, shown in Figure 2, was derived 
from expert knowledge and consists of 20 signature 
evidence nodes (leaves labeled Tnn), three derived 
evidence nodes (labeled Mn), two protocol aggregation 
nodes (labeled Port80 and Port25), six transition 
aggregation nodes (labeled Tn), and a root node (labeled 
Compromise). Signature hits are processed and used to set 
values for the Tnn and Mn nodes. As implemented, one 
model is instantiated for each cyber attack target (unique 
target IP address). Model instances are updated whenever 
new evidence is received or a preconfigured amount of 
time has passed, and the root node values are returned as 
Probability of Compromise given Evidence, P(C|E), for 
each target. 
 
The theory behind the model, further explained by Jones 
and Beisel (2014), is to recognize observables created 
when a cyber attack transitions to a new state. For 
example, when transitioning to the exploit stage, packets 
with NOP instructions (machine code for "do nothing" 
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and used in buffer overflow type attacks) or shell code 
elements (part of many exploit payloads) are often seen. 
As such, the Storm signature rules for detecting 
observables are not specific to particular attacks, but 
rather represent effects common to actions associated 
with cyber attack stages in general. Taken individually, 
signature matches do not imply an attack. However, when 
aggregated and combined in context by the reasoning 
model, an accurate assessment of attack existence may be 
produced. The system is able to detect novel attacks, since 
signatures are based on generic cyber attack state 
transitions instead of specific attack signatures. 

 
Figure 2: Bayes Net Cyber Attack Detection Model  

 
For most environments, network traffic is insecure and 
untrusted. Most networks and systems carry and accept 
traffic that may be both unencrypted and unauthenticated. 
As such, nearly anyone can introduce traffic on an 
arbitrary network or at least modify traffic destined for an 
arbitrary network or system. While full arbitrary packet 
creation, modification, and introduction is not generally 
possible, the ability to at least minimally manipulate 
packets destined for an arbitrary network or system is 
inherent in the design and implementation of the Internet. 
Packet manipulation is straightforward using available 
tools like Scapyiv, requiring only knowledge of basic 
object oriented concepts and an understanding of the 
relevant network protocols. 

It is the combination of an ability to manipulate network 
traffic and models which use network traffic as 
evidentiary inputs which we exploit in our work. 

4. METHODOLOGY 
Our goal for this project is to establish the viability of 
manipulating an adversary's perception that they are the 
target of a cyber attack when in fact they are not. We 
begin by conducting a sensitivity analysis of a known 
cyber attack detection model to identify candidate 
influence points. We design, construct, and inject network 
packets to trigger evidence at a subset of these influence 
points. We construct a corresponding deception model to 
assess the likelihood that our deception is effective. This 
derivative deception model combines the impact of our 
deception packets with other factors, such as the ease with 
which a target may invalidate the deception packets, the 
prevalence of alternative explanations for detection 

system alarms, and external indicators of the target's 
response activities. The impact of our deception packets is 
estimated by their effect on an alternative cyber attack 
detection system, in this case Snortv. See Figure 3 for an 
overview of this process. 

 
 

Figure 3: Process Overview  
 
The deception model output, P(Successful Deception) is 
envisioned to be a dynamic value computed in real time 
as deception packets are delivered to a target and external 
observables are collected. As the deception operation 
unfolds and feedback from external observables is 
incorporated, additional existing deception packets may 
be injected, or influence points may be examined for 
additional deception packet development. 
 
Our base detection model is a Bayesian Network (Figure 
2) from a test implementation of the Storm cyber attack 
detection system. A single node sensitivity to findings 
analysis (from Netica) is summarized in Table 1 for the 
20 evidence input nodes. We reviewed this output and the 
descriptions of each signature to select those which (a) 
would have high impact on Storm's probability of 
compromise based on the sensitivity analysis, (b) could be 
reasonably developed into a deception packet or packets, 
and (c) could be general enough to be detected by a 
target's cyber attack detection system, i.e., not Storm. In 
Table 1, the eight non-gray rows are those that were 
selected for deception packet development (signatures 
T5a, T6a, T6b, T6d, T4a, T4b, T1e, and T1f). 
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Table 1: Storm model sensitivity analysis 

Signature Mutual 
Info 

Variance 
of Beliefs 

T5a 0.03305 0.0011763 
T6e 0.02719 0.0008344 
T6a 0.02719 0.0008344 
T6b 0.02719 0.0008344 
T6d 0.02719 0.0008344 
T6c 0.02719 0.0008344 
T6f 0.02719 0.0008344 
T4a 0.01701 0.0004315 
T4b 0.01701 0.0004315 
T3b 0.01658 0.0003618 
T3c 0.00702 0.0001202 
T3a 0.00259 0.0000372 
T1a 0.00002 0.0000002 
T1b 0.00002 0.0000002 
T1e 0.00002 0.0000002 
T1c 0.00002 0.0000002 
T1d 0.00002 0.0000002 
T1f 0.00002 0.0000002 
T2a 0.00001 0.0000002 
T2b 0.00001 0.0000002 

 
 
Our test environment consisted of a Storm 
implementation running on Ubuntu 11.10 and a packet 
manipulation host running BackTrack5vi. We captured 
normal network traffic in a test environment and 
processed the traffic through the Storm system to confirm 
that no attacks were detected. Storm, like most NIDS 
implementations, has the ability to ingest live network 
traffic as well as network traffic capture files without loss 
of accuracy or fidelity. Traffic was captured using the 
open source Wiresharkvii tool, saved as a pcap file, then 
ingested by Storm. We labeled this original packet 
capture file "clean" and used it as the basis for our 
subsequent packet manipulations. 
 
We used Scapy on the BackTrack5 instance to craft 
deception packets. Scapy is an open source Python based 
packet crafting and editing tool. Packets may be loaded 
from a pcap file, then manipulated in an environment 
similar to a Python command shell and written out to a 
pcap file. Scapy supports creation and modification of any 
packet field down to the byte level and to include the raw 
creation and editing of packet data. To create our 
deception packets, we made minor modifications to 

packets from the clean set. By minimizing changes, we 
produced packets that maintained most of the clean 
session characteristics and so would not be blocked by a 
firewall or other packet screening device. Also, packets 
were modified only to the extent necessary to trigger the 
desired signature, so the modified packets do not contain 
any actual attacks. The modified packets and associated 
unmodified session packets, such as session establishment 
via the TCP 3-way handshake, were exported to a 
separate pcap file so they could be ingested by the Storm 
and Snort systems in a controlled manner. 
 
The eight signatures selected for deception and the related 
deception packets are summarized in Table 2. 
 

Table 2: Signatures and deception packets 

Signature T1e 
Description: After 3-way handshake, DstPort=80, 

payload≠<ASCII>   
Explanation: Abnormal traffic to web server (usually 

expect GET or POST with ASCII data) 
Deception packet: Inserted non-ASCII (hex > 7F) at 

beginning of payload for existing HTTP session 
Signature T1f 

Description: After 3-way handshake, DstPort=25, 
payload≠<ASCII>   

Explanation: Abnormal traffic to a mail server 
(normally we expect plaintext commands) 

Deception packet: Edited HTTP session to use server 
port 25; inserted non-ASCII (hex > 7F) at 
beginning of payload 

Signature T4a 
Description: Client to server traffic containing 20+ 

repeated ASCII characters  
Explanation: Buffer overflows often use a long string 

of ASCII characters to overflow the input buffer 
Deception packet: Inserted 43 "d" (hex 64) characters 

at the beginning of existing HTTP session payload 
Signature T4b 

Description: Client payload contains 20+ identical and 
consecutive NOP instruction byte patterns  

Explanation: A "NOP sled" is a common technique 
used in buffer overflow exploits; the sled consists 
of multiple NOP (No Operation) instructions to 
ensure that the real instructions fall in the desired 
range 

Deception packet: Inserted 24 hex 90 (known NOP 
code) characters at the beginning of existing HTTP 
session payload 
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Signature T5a 
Description: Client  to  server  traffic  if  port≠23  and  first  

100 bytes of payload contains "rm", "rmdir", "rd", 
"del", "erase"  

Explanation: File or directory removal activity 
Deception packet: Inserted "rm " (hex 726D20) 

characters at the beginning of existing HTTP 
session payload 

Signature T6a 
Description: First two bytes of client to server 

payload="MZ"  
Explanation: COM, DLL, DRV, EXE, PIF, QTS, 

QTX, or SYS file transfer for use in a backdoor 
Deception packet: Inserted "MZ" (hex 4D5A) and 

filename "exe" characters at the beginning of 
existing HTTP session payload 

Signature T6b 
Description: New Port opened on server; ignore first 

500 packets after startup 
Explanation: Traffic from a port not previously seen 

might indicate the opening of a new back door 
Deception packet: Edited HTTP session to use server 

port 25 (ingested after first 500 packets) 
Signature T6d 

Description: Unencrypted traffic on encrypted port  
Explanation: Traffic on encrypted sockets (HTTPS, 

SMTP with SSL, Secure Shell, etc.) should be 
encrypted once the session is established. 

Deception packet: Inserted ASCII text in an 
established SSH session 

 
Manual creation of the deception packets required a 
moderate amount of effort. When crafting deception 
packets, care must be taken to use carrier traffic which 
will be passed by a firewall or similar network security 
gateway while still triggering the desired signature. 
Flexibility in carrier traffic is signature dependent. For 
example, some signatures have offset or port 
dependencies like requiring the traffic to be, or not to be, 
on port 80 (HTTP), while others are more flexible. Future 
work will develop an automated deception packet creation 
capability. 
 
We began by identifying a candidate session for packet 
modification. For example, we could start with an existing 
HTTP or HTTPS session and alter packet payload, or we 
might also alter TCP ports. Payload modification required 
adjustments to the TCP checksum, IP checksum, and IP 
length values as well. To create a deception packet set, we 
loaded the clean pcap file in scapy, made the desired 
packet modifications, and wrote the resulting packet set to 
a new pcap file. We then used Wireshark to confirm our 
modifications and to extract and save only the session of 
interest as a distinct pcap file. We confirmed our 

deception packets by processing them with Storm, and 
later Snort, in a controlled environment. 
 
We tested single occurrences of each signature separately 
and in a subset of possible combinations. For each 
individual signature and for selected combinations, we 
also tested the effects of 10 and 20 signature instances. 
Finally, for selected signatures, we measured the effect of 
multiple occurrences for values 1, ..., 25. For all tests, we 
reset the Storm model, loaded the desired pcap file, and 
recorded the resulting P(C|E). 
 
We then processed each of the deception pcap files (one 
per signature) with Snort, separately and in combinations 
and repetitions. 

5. EXPERIMENTAL RESULTS 
Each signature pcap file was processed by Storm in 
quantities of 1, 10, and 20 hits. Storm was reset after each 
run, that is, reset after a run of one T1e hit, then reset after 
a run of 10 T1e hits, then reset after a run of 20 T1e hits, 
etc. Results are recorded in Table 3. 

Table 3: Single signature impact on P(C|E) with repetition 

Signature Qty=1 Qty=10 Qty=20 

ID 
Short 
Description P(C|E) P(C|E) P(C|E) 

T1e HTTPload!=ASCII 0.00 0.01 0.03 

T1f SMTPload!=ASCII 0.00 0.01 0.03 

T4a Repeated ASCII 0.01 0.05 0.16 

T4b Repeated NOPs 0.01 0.05 0.15 

T5a Cleanup cmds 0.02 0.09 0.27 

T6a Executable load 0.02 0.08 0.22 

T6b New server port 0.02 0.08 0.22 

T6d Unencrypted SSL 0.02 0.08 0.22 
 
The relationships between the quantity of signature hits 
and P(C|E) in each row indicate that setting the Bayesian 
Network findings is not a simple True/False assignment. 
To confirm this behavior, we recorded the effect on 
P(C|E) of 1, 2, ..., 25 signature hits for signatures T5a and 
T6a. These results are graphed in Figures 4a and 4b. The 
curves and apparent inflection points of the graphs 
indicate that the signature hits are subject to a ramping up 
requirement at low quantities and a saturation adjustment 
at high quantities. This is in fact implemented by a pre-
processing step in the Storm system and is not actually a 
part of the Bayesian Network component of Storm. 
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Figure 4a: T5a signature hit effect for n = 1..25 

 

Figure 4b: T6a signature hit effect for n = 1..25 

We constructed 11 combinations of signature hits at 
selected quantities and tested each combination. The 
results are shown in Tables 4a and 4b below (split for 
readability). 
 
The results indicate that the desired effect was achieved in 
two ways: (1) single hits across a wide range of signatures 
(e.g., tests D, E, and F), and (2) repeated hits on selected 
signatures (e.g., tests H and K). Assuming a threshold of 
P(C|E) > 0.75 for alerting, meta-event alerts could be 
generated with as few as five packets spread across five 
signatures as in test F, or 40 packets spread across only 
two different signatures as in test K. 
 
We processed the same eight pcap deception files with 
Snort. Six of the eight files triggered Snort alerts, as 
summarized below in Table 5. 
 
Snort Priority 1 are the most severe, Priority 3 the least. 
The name, classification, and priority of each signature 
are assigned by the signature author. A base Snort install 
contains signatures contributed by the Snort developers 
and the open source community. 
 
Our deception packets produced five Priority 1 alerts, one 
Priority 2 alert, and one Priority 3 alert. Two deception 

packets (pcap files for T5a and T6b) did not trigger any 
Snort alerts. 

Table 4a: Effect of signature combinations on P(C|E) 

Signature Test 
ID A B C D E F 

T1c     1  
T1e     1  
T4a  1 1 1 1 1 
T4b  1 1 1 1  
T5a    1 1 1 
T6a 1  1 1 1 1 
T6b 1  1 1 1 1 
T6d 1  1 1 1 1 

       
P(C|E) 0.10 0.02 0.46 0.86 0.89 0.79 

Table 4b: Effect of signature combinations on P(C|E) 

Signature Test 
ID G H I J K 

T1c      
T1e      
T4a 1 10 10   
T4b      
T5a 1 10 10 10 20 
T6a 1 10  10 20 
T6b      
T6d      

      
P(C|E) 0.37 0.93 0.58 0.72 0.78 

 
In a default configuration, and without any subsequent 
aggregation or alert thresholds, Snort alerts are explicitly 
linear, meaning that combination and repetition testing 
produced the obvious results. For example, running any 
one pcap file N times produces N alerts. Similarly, 
running the files in combination produced the expected 
total of alerts, e.g., running the entire set 10 times 
produced 70 Snort alerts.  
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Table 5: Snort alerts from deception packets 

File Snort Alerts 

T5a None 

T6a 
Lotus Notes .exe script source download attempt 

[Classification: Web Application Attack] 
[Priority: 1] 

T6b None 

T6d 

Protocol mismatch 
[Priority: 3]  

EXPLOIT ssh CRC32 overflow /bin/sh 
[Classification: Executable code was detected] 

[Priority: 1] 

T4a 
MailSecurity Management Host Overflow Attempt 

[Classification: Attempted Admin Privilege Gain] 
[Priority: 1] 

T4b 
SHELLCODE x86 NOOP 

[Classification: Executable code was detected] 
[Priority: 1] 

T1e 
apache chunked enc mem corrupt exploit attempt 
[Classification: access to potentially vuln web app] 

[Priority: 2] 

T1f 
x86 windows MailMax overflow 

[Classification: Attempted Admin Privilege Gain] 
[Priority: 1] 

 

6. DECEPTION MODEL 
A sample deception model is shown in Figure 5. The 
model consists of three key parts: (A) the deception 
packets, (B) external observables indicating a successful 
deception, and (C) external observables indicating an 
unsuccessful deception. 

Each deception packet, area A in the figure, is assessed 
for alternative explanations. For example, a byte string 
that we embed in a JPEG image file may generate a NIDS 
alert for an unrelated attack, but upon examination will be 
discounted as a chance occurrence and hence a false 
alarm. Strong alternative explanations suggest that the 
target might not interpret the packet as part of an attack 
and so would weaken the packet node's intended effect on 
the Successful Deception node. Similarly, each deception 
packet is assessed for how difficult it will be for a target 
to invalidate the packet. Again using the example of a 
byte string embedded in a JPEG image file, if the 
triggered NIDS alert is an exploit of image viewers, then 
the packet will be difficult to invalidate. A difficult-to-
invalidate packet will have a strong positive influence on 
the Successful Deception node via the intended effect 
node. 

Processing the original eight deception packets (pcap 
files) with Snort provides additional parameters for the 
model. The number, priority, and relevance of Snort alerts 

are used to build the Conditional Probability Table of the 
Deception Success node. 

 
 

Figure 5: Bayes Net Cyber Deception Model 
 

Area B in the graphic contains three nodes representing 
external observables which could indicate a successful 
deception. The "apparent target" and "apparent attacker" 
are the endpoints of the deception packets. As noted 
elsewhere, these systems may not send or receive any of 
the observed traffic, but they will be endpoints from a 
network monitor's point of view. If a target blocks the 
apparent target or attacker, or takes the apparent target 
off-line, then the deception is likely working. Similarly, if 
the target system operators probe the apparent attacker, 
then the deception is likely working. 
 
Area C in the graphic contains two nodes for external 
observables which may indicate that the deception is not 
working. If the apparent target's response or processing 
time slows down, this may indicate that the target has 
added monitoring capabilities in order to trace the source 
of the deception, although this could also indicate 
monitoring in response to a perceived successful 
deception. The other node in area C is the worst case 
scenario. Although none of the deception packet contents 
are directly traceable to the actual perpetrators of the 
deception, probing of the perpetrators systems, especially 
from the target of the deception, might indicate that the 
deception has failed and the target suspects the true 
source of the deception. 
 
The model of Figure 5 is a work in progress at the time of 
this writing. Preliminary values for the conditional 
probability tables have been developed but not yet tested 
or refined. Our work suggests that such a deception model 
may be developed for other domains where we have some 
control over the inputs to the base model. Our process in 
Figure 3 may be generalized by replacing "packets" with 
"evidence", since packets are simply our mechanism for 
affecting an evidentiary input node. Generally, a derived 
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deception model consists of the nodes that we directly 
influence, their estimated effect on the target's model, and 
external observables. 

7. CONCLUSIONS AND FUTURE WORK 
We demonstrated the ability to construct network packets 
which will look similar to normal network traffic, pass 
through a typical Firewall, trigger specific attack element 
signatures, and have a controlled impact on a back-end 
cyber attack detection reasoning model. Further, we 
proposed a derived deception model to dynamically 
assess the effectiveness of the cyber deception activities, 
and we suggested how such a deception model might be 
constructed for other domains. In support of cyber 
defense, our work also supports the testing and 
development of more accurate reasoning models and 
research geared towards detecting deception. 
 
An apparent limitation of our work is a requirement to 
know the signatures which trip alerts and are fed to the 
back end reasoning model. However, this is not 
necessarily true. While these signatures may be known, as 
in the case of systems leveraging open source tools like 
Snort, it is also true that a system designed to detect 
specific attacks or attacks of a certain class will use 
similar signatures. The common requirement to derive a 
discriminatory signature that is as short as possible results 
in different entities independently producing similar 
signatures. We have observed this effect in the NIDS 
domain, where commercial and open source tools have 
similar signature sets for many attacks. Similarly, we 
observe this effect in the antivirus and malware detection 
industry, where different vendors and open source 
providers frequently generate similar signatures 
independently. The implication is that we could develop 
probable signatures for specific attacks or behaviors, then 
develop deception packets to trip these signatures with a 
reasonable expectation of successfully affecting a target 
system using unknown signatures. We partially 
demonstrated this by processing our Storm-derived 
packets with Snort. 
 
As noted above, we assert that the use of pcap files is 
equivalent for our purposes to live network traffic capture 
and processing. However, it is true that in most live 
network scenarios we will not be able to put both sides of 
a TCP session on the wire as we did in this work. Rather, 
we will have to establish a live session with a target 
computer and modify subsequent session packets in real 
time, or we will have to intercept and modify packets 
between a target and some other system. This is an 
implementation issue vs. a question of validity, as the 
results presented here hold regardless of how the 
deceptive packets are introduced. 
 

Future work will focus on automated deception packet 
creation, development of delivery mechanisms, and the 
derived deception model. We created our packets 
manually based on a review of the target signature and 
several iterations of trial and error. Our next step is to 
create deception packets directly from signature 
descriptions. For example, given a Snort signature file, we 
could craft multiple deception packets in an automated 
fashion. A related effort will explore the automation of 
delivery mechanisms, for example establishing TCP 
sessions with an internal host and delivering deception 
packets and injection of deception material into an 
existing network traffic stream. Author Jones recently led 
a project to develop a hardware-based inline packet 
rewriting tool which could be used for such a purpose. 
Finally, we will continue the development and 
generalization of deriving deception models from 
detection models. 
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