
Exploring Incremental Reasoning Approaches
Based on Module Extraction

Liudmila Reyes-Alvarez1, Danny Molina-Morales1, Yusniel Hidalgo-Delgado2,
Maŕıa del Mar Roldán-Garćıa3, José F. Aldana-Montes3

1 Centro de Informática Industrial (CEDIN), University of Informatics Sciences,
Havana, Cuba

2 Facultad 3, University of Informatics Sciences, Havana, Cuba
3 Departamento de Lenguajes y Ciencias de la Computación, University of Malaga,

Málaga, España
lreyes@uci.cu, dmmorales@xetid.cu, yhdelgado@uci.cu, {mmar,

jfam}@lcc.uma.es

Abstract. This paper explores the use of module extraction for incre-
mental reasoning of knowledge bases (KB) based on description logics
(DLs). The main objective is to evaluate the different approaches that
incrementally solve logical inference problems (tasks or services) based
on modularization process in order to identify different strategies for
implementing this process in future incremental reasoning algorithms.
Three algorithms were found that use an incremental approach to solve
the logical inference task of classification based on module extraction
of which two are implemented and tested in this paper. The evaluation
results show how the incremental reasoning based on modularization en-
hances the reasoning efficiency due to a modification in DLs-based KB,
because this update affects only a small number of components in the
KB structure.

Keywords: Module Extraction, Incremental Reasoning, Classification,
Knowledge Base, Description Logic

1 Introduction and Motivation

During the evolution of the Semantic Web from 2001 until now new techniques
and paradigms for knowledge representation have been proposed which con-
tribute to integration and resource location. These resources are discovered and
used not only by humans but also by computer systems. The Semantic Web fa-
cilitates the elemental organization around which a knowledge base (KB) can be
created. In the literature in the area of computing, ontology terms and KB tend
to be gathered together erroneously. In [1] we found a clear conceptual difference
between ontology and KB as the author says:

“ A shared ontology need only describe a vocabulary for talking about a do-
main, whereas a knowledge base may include the knowledge needed to solve a
problem or answer arbitrary queries about a domain.” [1]

2

A description logic (DL)-based KB is formed by two components described
in Figure 1: 1) a vocabulary or terminology defined to represent the knowledge
described in languages such as RDFS and OWL (this is known in the literature
as Tbox) and, 2) assertions or statements about specific individuals in terms of
defined vocabulary are described using RDF triples (this is known in the litera-
ture as Abox). Currently there are reasoners [2], [3] that solve logical inference
tasks soundly and completely. The most important logical inference problem
that is resolved in the KB is Consistency Checking, which is used to verify that
the built knowledge model is consistent. Another very important inference mech-
anism is Subsumption of Concepts, which gives the user the possibility to find
all sub-concepts for a given concept or to verify whether a certain concept is a
sub-concept of another. This account with another inference service as Classifi-
cation, than is to determine the appropriate location to a new concept defined
in a hierarchy of concepts linked by subsumption relations. It can also be used
for other inference services such as: Logical Implication and Instance checking,
among others. However, the updating of a DL-based KB (i.e., addition or dele-
tion of new knowledge) which can be very common in the Abox is not common
in the Tbox, because the terminology defined does not change frequently over
time, unless a terminological evolution in the represented domain occurs. In the
Abox, the represented knowledge is more transitory because it is composed by
clear concepts that make up the Tbox, therefore it is modified more frequently
over time.

Fig. 1. Components of a DL-based KB on the Semantic Web.

Several researchers have studied, analyzed and compared the multiple seman-
tic reasoners that exist today (e.g., [2]and [3]) achieving results which point
to the need to define reasoning algorithms to infer knowledge on DLs-based
KBs and, the absence of reasoners for efficiently solving the logical inference
problems given a small modification in the DLs-based KBs. This is because the
reasoners repeat all the steps of the reasoning process from scratch each time
a change/update is made in the represented knowledge, that makes up the DL-

3

based KB, inefficient aspect, taking into account that the change brings with it
two main conditions:

Condition 1. Always before the update there needs to be a reasoned version of
the KB.

Condition 2. Normally, a small updating of the KB does not affect all the
elements of its structure.

The solution to this problem is known in the literature as incremental rea-
soning. Researchers have attempted to provide a solution for the aforementioned
problem but only using one of the two conditions. It restricts the solution to only
a small part of the problem. A first approach is to adapt the algorithms defined
for reasoning in the Semantic Web and treat them as static DL-based KB [4].
Another approach establishes improved stream reasoning techniques [5], [6],
[7], [8]. Finally, the volume of data that is expected to be stored in our KB
is very large. Therefore, neither of these techniques by themselves help us to
completely solve the problem to ensure scalability of reasoning. Much research
is needed in this area, although the results obtained in some cases based on
materialization or modularization methods are encouraging and provide a basis
for future work.

From among the methods that have been used to solve a part of the afore-
mentioned problem based on the second condition, we find the modularization
of KB. This is responsible for separating the KB into small portions. This is
obviously because it is easier to apply reasoning tasks on small portions of the
KB than its whole. Therefore, incremental reasoning of KBs is particulary rele-
vant when exploring investigations based on modularization. Taking into account
that each correction made in the KB, affects only a part of its structure, where
module extraction plays a relevant role.

In this paper we analyze the semantics of DL reasoning mechanisms based on
the modularization process with the goal of making it easier to identify the points
at which researchers can contribute to the practical development of the Semantic
Web. Therefore, this paper describes an evaluation of proposed algorithms to
solve the Classification logical inference problem based on module extraction
during the reasoning process following an incremental approach. The document
is organized as follows: Section 2 introduces incremental reasoning algorithms.
Section 3 explains the workflow followed to test the algorithms. Section 4 displays
the evaluation results. Finally, Section 5 presents the conclusions and direction
of future research.

2 Incremental Reasoning Algorithms

After completing a review of the state of the art in KB reasoning procedures that
support incremental reasoning based on module extraction (or modularization),
were studied and identified. We found only three reasoning processes based on
modularization [4],[9], [10],[11]. These procedures solve the inference problem
of Classification by following an incremental approach based on module extrac-

4

tion. These algorithms follow different extraction philosophies but all resolve the
Incremental Classification problem.

The three algorithms that have been studied are: 1)incremental classification
for ontologies in the SROIQ language [9], [10], 2) incremental classification for
ontologies in the EL+ language [11], [10] and, 3) incremental classification by
the Pellet reasoner[4]. When we looked at the implementation conditions of the
incremental classification algorithm for ontologies in the EL+ language [11], [10],
we found that in order for it to be implemented it is necessary to modify the
internal structure at reasoner, which limits its use by user. We have therefore
decided not to implement this algorithm for its evaluation in the work presented
here.

For a clearer understanding of the algorithms tested the reader needs to be
aware of the following definitions: semantic location and signature.

A signature is any subset S of R
⊎
C
⊎
I. The signing of an axiom α is the

set Sig(α) of atomic roles R, atomic concepts C, and individuals I that occur in
α. Ontology signature Ont is set Sig(Ont) for symbols that occur in Ont.[9],[10]

Semantic Location: Let S be a signature. It is said that an interpretation
I is local for S if for each atomic concept A/∈S and each atomic role R that
does not belong to S, it has AI=RI=ø. A SROIQ axiom α is semantically local
for a signature S if I|=α for all I that is local for S. A SROIQ ontology Ont
are local for S if each axiom in Ont is local to S.[9],[10]

2.1 Module Extraction and Incremental Classification for SROIQ

The modularization algorithm proposed by Bernardo Cuenca and his colleagues
[9], [10] is based on the definitions specified in the fourth section of his paper
[10]. It was applied to ontologies described through the SROIQ language for
the knowledge representation. The algorithm is implemented given an ontology
in the SROIQ language and a signature. Internally this algorithm uses a local
sub-routine (α, S) to check whether an axiom α is semantically local in S.
This obtains as output, a module that belongs to the ontology for the given
signature. These modules contain the axioms that are not semantically local for
the signature.

The aforementioned algorithm is used for solving the logical inference prob-
lem of classification following an incremental approach. Given an ontology Ont1
and a change 4Ont1 = (4-Ont1, 4+Ont1), which consists of the axioms
set that is removed and added to Ont1. The algorithm computes partial sub-
sumptions v2 for the ontology resulting Ont2= (Ont1\4-Ont)

⋃
4+Ont1 by

reusing the subsumption relation v1 as calculated in Ont1. In order to perform
this operation, the algorithm internally keeps modules Ont1A and Ont2A for
each atomic concept A and modules Ont1> and Ont2> for the empty signature.
The algorithm consists of the following phases:
Phase 1: Processing of new symbols.

Ont1A modules and partial order subsumption v1 for Ont1A is extended
for all atomic concepts D recently introduced. D module (about which no infor-
mation has been given yet) is equivalent to the empty signature module Ont1>.

5

Thus, there are: Ont1D=Ont1>, Ont1|=DvB if and only if Ont1|=>vB,
Ont1|=AvD if and only if Ont1|=Av⊥.
Phase 2: Identification of affected modules.

The sets M- and M+ containing the A∈CN>(Ont1) for the corresponding
modules must be modified by removing and/or adding axioms. If α is removed
from Ont1 and not local (Sig(Ont1A)) then α must be removed from Ont1A.
If α is added to Ont1 and is not local (Sig(Ont1A)). Then Ont1A needs to
extend at least α.
Phase 3: Calculation of new modules and subsumptions.

The affected modules that have been found in the previous phase are re-
extracted and the others are copied. Then each subsumption AvB, using Propo-
sition 1 in Section 4.1 of the paper presented in [10], or recalculates the module
against Ont2A or a reused one from Ont1.

2.2 Module Extraction and Incremental Classification by the Pellet
Reasoner

The algorithm for module extraction in the Pellet semantic reasoner is imple-
mented virtually three times.

The first implementation extracts the imports closure module of an ontology
Ont given by the determined signature S. The modules contain axioms ed with
signature elements that describe how they relate to each other. The reasoner has
a method for closing the imports and returns the ontologies set 4Ont related
with the current ontology that contains axioms relevant to the given signature.

The second implementation for the module extraction implemented virtually,
receives as input parameters, an ontologies set 4Ont, which contains the origi-
nal ontology imports closure, a signature S and a variable that defines the mod-
ule type ModuleType . It has already implemented subroutines Extract−Top−
Module (axioms, S) and Remove−Bot−Module (axioms, S), which extract
the axioms set that is relevant to the given signature calling the third algorithm
implemented virtually: Remove−Module (axioms, S, LocationType) accord-
ing to the module type the variable ClassLocation is created. The algorithm
returns the closing imports module, which is closely related to the given S sig-
nature.

There are four module types supported: 1) lower module TOP has subclasses
of signature elements, 2) upper module BOTTOM contains super-classes of
signature elements, 3) top of the lower module BOTTOM−OF−TOP to ex-
tract the top module of lower module and, 4) lower half of the upper module
TOP−OF− BOTTOM to extract the lower module of the upper module.

The third virtual implementation for the module extraction receives as pa-
rameters: an axioms set, a signature S, and a ClassLocation variable, to create
a ModuleExtractor class instance which is defined in the reasoners′ sources.
Once all the axioms have been added to the Extractor−Module instance, it
invokes another method of Extractor−Module(S), which receives only a sig-
nature S. This method Extractor−Module(S) belongs the ModuleExtractor
class. The method returns an axioms set that is related to the given signature.

6

The incremental classification strategy proposed by Pellet does the following:
for all modules that are affected, collects all the axioms and classifies all at once.
This allows the exploitation of current classification optimizations. In addition
it leverages the classification carried out earlier which is in the cache of the
reasoner. The following describes in detail each step of the algorithm.

Phase 1: Collects the entities whose modules are affected. Collects enti-
ties affected by the addition of axioms and, collects entities affected by deletion
of axioms.

Phase 2: Creates an ontology for all axioms of all affected modules.

Phase 3: Loads the removed module in a new instance of the reasoner.

Phase 4: Classifies the module. It builds a class hierarchy for the new in-
stance of the reasoner created in phase three which loads the module that was
removed. It creates a set of empty classes. For each entity in the entity set, which
contains the affected modules, if the entity is an instance of a class then it adds
the entity as a class, the whole class created in the previous line. Finally, the
class hierarchy of the cache of the reasoner is updated with the new changes.

The tricky part of this algorithm is the time it takes to create a new instance
of the reasoner, once it has created this instance, from scratch it then starts the
classification task for the knowledge base of that instance, also from scratch,
which in this case would be all affected modules identified in the previous lines.
This may considerably delay the reasoner′s response time.

3 Workflow to Run Evaluations

We have implemented a workflow to develop and test the algorithms. The work-
flow consists of six phases.

Phase 1. Creating the infrastructure to enable the assessment of reasoning al-
gorithms based on modularization. The infrastructure created consists of three
parts: 1) selecting the Netbeans framework to implement and test the algorithms,
2) importing the project created from the OWL API libraries dedicated to man-
aging ontologies in the Pellet semantic reasoner for successful implementation
and, 3) identifying the non-functional requirements of the machine where the
algorithms′ assessments will run.

Phase 2. Through out Phase 1 the biomedical ontologies are loaded into the
NetBeans from a local web server. Element allows us to work with the ontologies
to modify and access these through the source code in the framework.

Phase 3. After completion of Phase 2 the implementation of the module extrac-
tion algorithms for the incremental Classification an ontology is done. These are
the module extraction algorithm and the incremental classification for SROIQ
ontologies [10] [9] and, the module extraction algorithm and incremental classi-
fication utilized by the Pellet reasoner in version 2.3.0 [4].

Phase 4. The tests are executed upon the completion of Phase 3 on biomedical
ontologies such as Gene Ontology, NCI-Thesaurus and Galen. First, the correct
implementation of the algorithms is checked. Second, the response times between

7

Fig. 2. Ontologies have been increasing in size and complexity over the years.

the algorithms and the necessary computational memory cost are compared,
which are the parameters measured in this study.

Phase 5. Then, the algorithms implementation of incremental classification [9]
[10] [4](which are described in Section 2) based on any of the modularization
processes implemented in Phase 3, is performed after the successful completion
of Phase 4.

Phase 6. After Phase 5, the incremental classification algorithm based on the
modularization processes described in Section 2 are tested. We check the response
times and the cost of the computer memory required, which are the variables of
interest for this study.

The biomedical ontologies (e.g., Gene Ontology, NCI Thesaurus) that have
been used to run the evaluation have increased in size and complexity over the
years (see Figure 2). Hence, the axioms number, roles and individuals that the
algorithms had were smaller than when they were first implemented and tested
by the original authors.

4 Evaluation Results

The following aspects should be taken into account when comparing the re-
sults obtained by the original authors with those obtained with the implemen-
tation carried out in this paper: 1) biomedical ontologies were 40% smaller than
their current size which has undergone a considerable increase and, 2) the non-
functional requirements where the original algorithms were implemented perform
better now. Although in both cases the results are satisfactory, our implemen-
tation execution time is slightly higher.

The evaluations are performed through the Pellet semantic reasoner (version
2.3.0) based on OWL DL, which implements a procedure based on Tableaux. The
evaluation of the procedures described in the second section did not change the
reasoner internally. Moroever we used the OWL API of the Pellet reasoner via
the NetBeans framework that implements the algorithms in the Java language.
The evaluations were done on a computer with the following features: operative

8

system is Windows 7 32-bit, RAM memory is 1.0 GB, the processor is Intel Dual
Core 3.00 GHZ and hard disk capacity is 80 GB.

For the evaluations a well-know ontologies set is selected as we show in Table
1. In this table we provide basic information about the ontologies to be evaluated,
that include the language in which they are expressed, the atomic concepts
number and axioms that contained. First we show the evaluation results of the

Table 1. Ontologies information to assess.

Ontology DL Language Atomic Concept Axioms

Galen ALEH+ 23141 62179

Gene Ontology AL+ 20465 89370

NCI Thesaurus ALE 27652 422953

module extraction procedures and then the results of the incremental reasoning
algorithms, both described in Section 2. Tables 2 y 3 provide information on the
results of the evaluation such as: ontology that we evaluated, signature for the
module extraction, number of axioms in the module, module extraction time
and finally, in the last column of the table we show that the number of modules
extracted in this case is one, because it was done manually.

Table 2. Evaluation of the Module Extraction for the SROIQ language.

Ontology Signature # Axioms Extraction
time (sec-
onds)

Modules

Galen Heart Liver BloodPressure 40 174 1

Gene Ontology GO−0043234 GO−0042946
part−of

3 360 1

NCI Thesaurus Findings−and−Disorders−Kind In-
flammation Epilepsy

19 270 1

Table 3. Evaluation of the Module Extraction by the Pellet Reasoner.

Ontology Signature # Axioms Extraction
time (sec-
onds)

Modules

Galen Heart Liver BloodPressure 65 199 1

Gene Ontology GO−0043234 GO−0042946
part−of

154 450 1

NCI Thesaurus Findings−and−Disorders−Kind In-
flammation Epilepsy

38 280 1

9

In Tables 2 and 3 we show that there is a remarkable difference in the axioms
affected given the same signature and the same ontology as inputs. This is given
for the difference in the performance of both algorithms, that has nothing to do
with each other, are totally different. The modularization procedures proposed
by Bernardo and his collaborators [10] works on the axioms of the ontology di-
rectly, while the proposed modularization by Pellet works with ontology imports
(the ontology is divided into smaller ontologies and then analyzes each ontology
individually) to build the module.

Then, incremental classification procedures are evaluated. Tables 4 and 5
provide basic information about the ontology to which each procedure is applied.
Column 1 indicates the ontology evaluated. Column 2 indicates the number of
axioms that are removed and added to the ontology for the evaluation n=1,2,4.
Column 3 shows number of the affected modules. We can see that for large
ontologies only a very small number of modules are affected by the given update.
The values obtained are correlated with the percentage of positive subsumption
relations in the ontology. Column 4 shows the time (in seconds) taken to locate,
remove and re-classify the affected modules. Column 5 shows the total time for
the union of the affected modules. The aim of the assessments is to simulate the

Table 4. Incremental Classification for the SROIQ Language. Time in seconds.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Ontology n # Modules affected Modules Re-classification Time

Galen 1 1114 50 260

Galen 2 988 63 170

Galen 4 662 57 197

Gene Ontology 1 425 40 390

Gene Ontology 2 358 30 400

Gene Ontology 4 793 40 320

NCI Thesaurus 1 125 93 480

NCI Thesaurus 2 94 85 392

NCI Thesaurus 4 287 73 510

ontologies′ evolution process when n axioms are modified (each of these changes
can be seen as a simultaneous removal and/or addition of an axiom).

5 Conclusions and Direction of Future Research

This approach succeeds in creating an infrastructure to evaluate incremental
reasoning algorithms that do not modify the internal structure of a semantic
reasoner. When we compare the results achieved by the original authors and
our implementation, we conclude that the implementation carried out in this
paper is correct. Given the size parameters of the ontologies and non-functional
requirements which were assessed, we can easily see that the original authors

10

Table 5. Incremental Classification by the Pellet Reasoner. Time in seconds.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Ontology n # Modules affected Modules Re-classification Time

Galen 1 253 67 294

Galen 2 192 71 197

Galen 4 83 72 240

Gene Ontology 1 236 68 392

Gene Ontology 2 479 46 420

Gene Ontology 4 247 90 370

NCI Thesaurus 1 354 110 490

NCI Thesaurus 2 215 99 397

NCI Thesaurus 4 193 86 560

had higher performing computers than ourselves and the ontologies at that time
were smaller (see Figure 2).

We therefore reach the following conclusions:

First, in the incremental classification algorithm for SROIQ ontologies [10],
the reasoner is used only as a “ black box” to answer queries of subsumption.
This prevents any modification to the reasoners internal structure which in turn
means that any reasoner based on OWL (and its derivatives) can be used.

Second, the virtual algorithms of modules extraction used by the Pellet se-
mantic reasoner [4] can be very complex when reasoning tasks are applied to
large ontologies. As a consequence of this hundreds of imports closure can be
generated. After obtaining these imports (which are generated only in the orig-
inal ontology), the algorithms analyze all the axioms contained within them.

Third, the evaluation results suggest that the incremental reasoning approach
based on modules extraction is especially useful in large ontologies with DL basic
languages, such as EL + and AL.

Summarizing, both procedures are accurate in the extraction of modules and
do not produce errors, such as: removing an empty module, the paralyzation of
its subroutines, and the data returned at an inaccurate time. However, the su-
periority of the incremental classification procedure for ontologies in the SROIQ
language is clear in terms of response times and the main memory usage we see
in the evaluations.

Future research will consist of developing a model of incremental reasoning
on instance assertions based on module extraction and materialization using non
SQL databases. The algorithms of the model will be tested using the infrastruc-
ture that has been created. This model will be implemented and tested in the
DBOWL reasoner [12], developed by the KHAOS group at the University of
Malaga. It is a true complement to current OWL reasoners and it is very im-
portant because it is able to support ontologies with much bigger Aboxes than
traditional systems based on description logic and satisfiability. This is espe-
cially significant for some applications, such as life sciences, where particularly
large ontologies are used. The DBOWL evaluation results described in [13] will

11

enable the prediction of the behavior and trend of logical inference services that
are solved by Abox reasoning in a DL-based KB. However, although DBOWL is
a non-materialized approximation because the reasoning is implemented using
SQL views, it is able to deal with all types of namespaces, to know when a class
is non-satisfiable and to check the ontology consistency in this case.

Acknowledgements

This work is partially supported by the Spanish MEC Grant (TIN2008-04844,
TIN2011-25840) and by the Andalusian Regional Government Grant (P07-TIC-
02978, P11-TIC-7529).

References

1. Gruber, T.R., et al.: A translation approach to portable ontology specifications.
Knowledge acquisition 5(2) (1993) 199–220

2. Mishra, R.B., Kumar, S.: Semantic web reasoners and languages. Artificial Intel-
ligence Review 35(4) (2011) 339–368

3. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for
large ontologies in the owl 2 el profile. Semantic Web 2(2) (2011) 71–87

4. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-
dl reasoner. Web Semantics: science, services and agents on the World Wide Web
5(2) (2007) 51–53

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: The Semantic Web:
Research and Applications. Springer (2010) 1–15

6. Barbieri, D., Braga, D., Ceri, S., Valle, E.D., Huang, Y., Tresp, V., Rettinger, A.,
Wermser, H.: Deductive and inductive stream reasoning for semantic social media
analytics. Intelligent Systems, IEEE 25(6) (2010) 32–41

7. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for
event processing and stream reasoning. In: Proceedings of the 20th international
conference on World wide web, ACM (2011) 635–644

8. Barbieri, D.F., Braga, D., Ceri, S., VALLE, E.D., Grossniklaus, M.: C-sparql: a
continuous query language for rdf data streams. International Journal of Semantic
Computing 4(01) (2010) 3–25

9. Grau, B.C., Halaschek-Wiener, C., Kazakov, Y.: History matters: Incremental
ontology reasoning using modules. In: The Semantic Web. Springer (2007) 183–
196

10. Grau, B.C., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incremental
classification of description logics ontologies. Journal of Automated Reasoning
44(4) (2010) 337–369

11. Suntisrivaraporn, B.: Module extraction and incremental classification: A prag-
matic approach for el + ontologies. In: The Semantic Web: Research and Appli-
cations. Springer (2008) 230–244

12. Roldan-Garcia, M.M., Aldana-Montes, J.F.: Dbowl: Towards a scalable and persis-
tent owl reasoner. In: Internet and Web Applications and Services, 2008. ICIW’08.
Third International Conference on, IEEE (2008) 174–179

12

13. Roldan-Garcia, M.M., Aldana-Montes, J.F.: Evaluating dbowl: A non-
materializing owl reasoner based on relational database technology. In: OWL
Reasoner Evaluation Workshop (ORE 2012). (2012)

	Exploring Incremental Reasoning Approaches Based on Module Extraction
	Introduction and Motivation
	Incremental Reasoning Algorithms
	Module Extraction and Incremental Classification for SROIQ
	Module Extraction and Incremental Classification by the Pellet Reasoner

	Workflow to Run Evaluations
	Evaluation Results
	Conclusions and Direction of Future Research

