
Agent-based Mediation in Semantic Web Service Framework

Renato de Freitas Bulcão Neto1, Yathiraj Bhat Udupi2, and Steve Battle3

1 University of S̃ao Paulo, S̃ao Carlos SP 13560-970, Brazil,
rbulcao@icmc.usp.br

2 North Carolina State University, Raleigh NC 27695, USA,
ybudupi@csc.ncsu.edu

3 Hewlett Packard Laboratories, Bristol BS34 8QZ, UK
steve.battle@hp.com

Abstract. In a semantic web service scenario clients and services should inter-
operate by allowing a service to be delivered via different protocols and data
formats. This paper describes a novel solution to protocol and data mediation
through a goal-driven, agent-mediated interaction with web services described
by OWL-S ontologies. Our contributions include: (i) an OWL-S compiler which
mediates between two OWL-S service description interfaces and outputs a script
containing a set of executable Nuin plans, and (ii) an agent-based mediator built
upon Nuin framework that executes these plans in a event-driven fashion.

1 Introduction

There is a need for richer knowledge-based product and service descriptions to enhance
the existing business interactions over the Internet. Current approaches to web-service
description (e.g. WSDL) are strongly tied to the message syntax and protocol. This pa-
per describes how we enrich the current web-services model with semantic support for
goal-driven, agent-mediated interaction with web-services described by OWL-S ontolo-
gies [1]. We present a case study about a software product marketplace for vendors who
lack a comprehensive sales infrastructure. A service request made using SOAP-based
interactions with the web service enables the client to place an order. In the existing ap-
plication hard-coded java applets enable the user to communicate with the web-service.
For a user with a browser it is simpler to have a web-friendly, resource-oriented inter-
action [2]. The information in the client request is encoded in the request URL query
string. This is unlike posting an explicit request message. This poses a mediation prob-
lem, where we need to enable clients and services to interoperate by allowing a service
to be delivered via different protocols and data formats. There are two perspectives on
the mediation problem, first is protocol mediation: how do we describe one service in
terms of another and ensure that it achieves the same goals. The second is data me-
diation: how do we achieve independence from the syntax of the specific messages
allowing us to map from one message format to another.

Our approach is set out in theweb service modelling framework (WSMF)[3] and it
caters to the main objectives of WSMF. It supports rich, declarative service descriptions,
which separates the design of the service functionality from its delivery and provides
for a framework in which those descriptions are used. Mediation is achieved within



an agent-based framework moving from the syntactic domain of messages into a rep-
resentational framework based on semantic web technologies (RDF and OWL). This
agent-based mediator assists the client in achieving specific goals, which seen as key to
identifying the tasks and actions to be performed by the service.

Contribution. Our first contribution is the development of an OWL-S compiler which
mediates between two different OWL-S service descriptions derived from therequester
(the client), and theservice providerinterface and outputs an executable Nuin script [4].
Nuin is an agent-framework with emphasis on the building of Semantic Web agents.
Our second contribution is the development of the agent-based mediator built upon the
Nuin framework that executes the script generated from the compiler in an event-driven
fashion. These approaches to solving the mediation problem help us overcome the main
barriers toe-business process automation.

2 Agent-Based Mediation

This section describes agent-based mediation and event-driven plans, and is demon-
strated by an example scenario.

2.1 The Agent Framework in the BDI Architecture

The agent framework which animates the WSMF can be described in terms of abelief-
desire-intention(BDI) architecture [4]. Various elements of the conceptual architecture
are mapped into agent beliefs, desires and intentions.Beliefscorrespond to the back-
ground knowledge of the agent held in its knowledge base (updated with message con-
tent at run-time) and its accompanying ontology.Desiresinclude information about the
client goals, comprising of the information in the service request which is based on
the OWL-S profile (including important service parameters). Theintent of the user is
conveyed to the agent through individual requests at the user interface. This way the
agent translates the desires and intents of the user into tasks and actions at the provider
interface.

The agent executes the various Nuin plans that perform the required protocol and
data mediation. These plans coordinate activities across the various plug-in compo-
nents that support communication with the client and the service provider. Figure 1(a)
describes the agent architecture. Theweb plug-inof the agent mediator functions as an
adapter between a web server and the agent, lifting HTTP requests into RDF and map-
ping responses back into HTML. Theservice plug-inof the agent acts as an adapter to
an invocation client for the SOAP web services. Alift moduleprovides an interpretation
of the message content and a translation to or from a common representational form,
RDF model, based on XML schema [5]. A request message gets dropped from RDF
into XML and conversely responses are lifted from XML back into RDF.

2.2 Protocol Mediation by Process Planning with the OWL-S Compiler

Compilation is an off-line process that generates the Nuin plans required to mediate
between the requester and the provider interfaces, and is performed by the OWL-S
compiler. Both interfaces include OWL-S service descriptions including descriptions
of inputs, outputs, preconditions, unconditional effects, service parameters, etc. The



����

����	
����

��
����
����������
�����

�����

����������

�	
�����
�

������

	����
��

����
�����

�
��

�����������

�����������������

�����������

����������������������������

�����������������

�����������

����������������� 	������������
	������������

�� ����!���������
���

�����������������!�

�� ����!���������
���

�����������������!� ��!�������������
���

�����������������!�

��!�������������
���

�����������������!�
"��������

���������
!���

"��������

���������
!���

�

�!
����


�!
��� �
�!���

�
�!���

��
�����������

��!����

#��
�����!����$

����������

#��!
����!����$

����������

#%!
�!������!����$

����������

#��!
����!����$

��������������

#��!
����!����$

������������


� 

&
'

&�'

�����	��

�
�����

()*(������

!��!�!�+ ��,


&!' &"'

&#' &$'

Fig. 1. (a) Agent mediation architecture. (b) An example of event-driven intent invocation.

service descriptions at both interfaces need not have a one-to-one mapping between
them. Where the immediate effects of actions at the two interfaces do not correspond
exactly, we define composite processes that have the required combined effect. Also, an
abstract business process modelrepresents the abstract view of the provider interface.
This model is imported by the concrete processes of the two interfaces. The primitive
parts of the abstract process are of typeOWL-S SimpleProcessallowing us to describe
a business process independently of its realization.

The OWL-S compiler reads the above descriptions and outputs a set of executable
Nuin plans. The compiled output is modular in that each plan corresponds to an atomic,
composite or simple process. Each atomic process corresponds to an invocation or re-
ceipt of a message (that may require a response). Each composite process corresponds
to a breakdown of the plan into smaller tasks. Nuin supports backtracking enabling us
to back out of a plan where the preconditions do not hold. Simple processes realized in
different ways at the two interfaces, create the bridge necessary for protocol mediation.
They are the point where the agent recognises the user intent and then forms its own
intent to act.

2.3 Data Mediation using Mapping Rules

The agent-based mediator equipped with aRules plug-inperforms data mediation,
which realizes the mapping between the incoming and outgoing message content and
their common ontological conceptualizations. Mapping rules are applied to the con-
tent stored in the knowledge base representing previously received and lifted message
content. The rules plug-in is based on the Jena rules engine and the mapping rules are
expressed in the Jena rules language [6].



2.4 Event-driven Intent Invocation

The agent plans are designed to allow for event-driven triggering of plans. At the re-
quester interface, the web plug-in extracts the query parameters and raises an event that
signals the receipt of the message. The event triggers a plan corresponding to an atomic
process which, in effect, recognises the event as a user action. In turn the atomic pro-
cess plan signals the user action with another event. This event may trigger composite
process plans that recognise more complex actions. At the point where the occurrence,
or recognition, of a process on the user-side corresponds to an equivalent process avail-
able on the provider-side, the agent can form the intent to act. Once the invocation of
a process against the provider has completed it it necessary to complete the user-side
action by returning the appropriate HTTP response. This is viewed as a continuation of
the action that raised the original event.

Figure 1(b) describes a scenario of the invocation of an atomic process at the reques-
ter-side interface being translated to a composite process with its component atomic
processes in the provider-side interface. The user simply wants to add an item to his
shopping basket; toAddToOrder. Step (1) is an event that alerts the agent to the user
action to add an item to the order. It will include an input that identifies the required
product. We see that theAddToOrdersimple process is realized in different ways on
the requester and provider sides. They are processes with equivalent effects. At step (2)
the agent forms its own intent toAddToOrderat the provider interface. This happens
to be a composite process plan, invoked from the simple process plan. This invokes the
individual atomic process plansaddLineToOrderand getOrderSummaryin steps (3)
and (4) respectively. Note that given the intention toAddToOrderin step (2) we drive
the process in a top-down way. However, prior to recognising an intention we drive the
process from the bottom-up.

3 Conclusion

This paper described an agent-based solution to protocol and data mediation following
the major objectives set out by the WSMF: services, mediation, ontology, and goals.
We have shown how OWL-S service descriptions may be used within an agent-based
framework to support this ontology-based mediation.

References

[1] OWL-S Coalition. OWL-S 1.0 Release. At http://www.daml.org/services/owl-s/1.0/, 2003.
[2] R. T. Fielding.Architectural Styles and the Design of Network-based Software Architectures.
PhD dissertation, University of California, Irvine, USA, 2000.
[3] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.
At http://informatik.uibk.ac.at/users/c70385/wese/, 2002.
[4] I. Dickinson and M. Wooldridge. Towards Practical Reasoning Agents for the Semantic Web.
In International Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 827–
834, Melbourne, Australia, 2003.
[5] S. Battle. Round-tripping between XML and RDF. InInternational Semantic Web Conference,
At http://iswc2004.semanticweb.org/posters/PID-BRRGVFRE-1090254811.pdf, 2004.
[6] HP Labs Semantic Web Team. Jena Semantic Web Framework. At http://jena.sourceforge.net/,
2003.


