Integrating Preferences into Service Requests
to Automate Service Usage*

Michael Klein! and Birgitta Konig-Ries?

! Institute for Program Structures and Data Organization, Universitit Karlsruhe,
76128 Karlsruhe, Germany, kleinm@ipd.uni-karlsruhe.de
2 Institute of Computer Science, Friedrich-Schiller-Universitit Jena, 07743 Jena,
Germany, koenig@informatik.uni-jena.de

1 Introduction

Today, web services are often used as a technology to integrate functionality of
different entities. However, one important potential of service oriented computing
is not exploited: the ability to form agile networks. Here, service requestors and
service providers are not fixedly tied together, rather, bindings to inefficient or
unavailable service providers are transparently replaced by bindings to more
appropriate providers at runtime. In such an architecture, the robustness and
efficiency would be increased dramatically.

The main reason why these networks are not a reality today is that current
technologies do not allow for automatic service selection and invocation; rather,
they require human interaction to decide on an appropriate service provider.
Obviously, this approach is not feasible in a system where service selection needs
to be carried out repeatedly at run time.

The most challenging prerequisite for automatic service description is an ap-
propriate service description language. This language needs to be able to capture
service offers and requests in sufficient detail to allow for automatic matchmak-
ing. In this paper, we argue that such a language needs to explicitly incorporate
user preferences into service requests.

2 Problems with the State of the Art

Many existing languages for service description use the same technique for de-
scribing requests and offers: the requesting application describes its desired func-
tionality by specifying an instance of the ” perfect” service. A generic matchmaker
compares this request to the published offer descriptions and calculates a simi-
larity as a value from the interval[0.0, 1.0] by using heuristical structural and/or
semantical similarity metrics. The service offer with the highest similarity is
invoked directly by the service requestor.

Much effort has been put into the development of intelligent similarity calcu-
lators. The most important approaches perform a comparison of the functional
parameters, perform a structural comparison of the description graphs, use logic
subsumption or use combined approaches [2-5].

* This work is partially funded by the Deutsche Forschungsgemeinschaft (DFG) within
SPP 1140. Some of the ideas in this paper have been published in [1].

Service Request : Service Offer :
presents | w_am a Service presents | can l?ook you allc|§e1
which books me a for Spider Man 2, this
| -Profile |_| -Booked | seat for Spider Man 2 | -Profile |_.| -Booked | saturd.ay at8:15 pm in
— effect — effect the Cinerama 6.

entity entity

:GinemaTicket |———— <= 8.00 :CinemaTicket

validFor validFor
2004-07-10 date 2004-07-10

spiderman? | g
:Movie visible

cinerama6:Cinema

spiderman2
:Movie

:SeatInShow :SeatinShow

visible

20:00 20:15
cinema time

hortonPlaza:Cinema

Fig. 1. Request description as perfect service (left) and offer description (right).

However, these approaches only work well, if offer and request description are
exactly equal, so the matcher returns 1.0, or obviously different, so the matcher
returns 0.0. However, in intermediate situations, in which the offer differs some-
what from the request, it becomes very difficult for the matcher to assign the
value from (0, 1) that is appropriate, i.e., that reflects the requestor’s perception
of the usefulness of the service offered.

An example shall illustrate this. The request on the left of Figure 1 is specified
as one single instance?, which represents the requestor’s ideal service. He wants to
invoke a service reserving a seat for Spiderman 2. He also gives some information
about his perfect reservation: It should be in the cinema Horton Plaza, at a given
date and time and the ticket’s price should be 8 Euro or less.

On the other hand, we have a service provider which offers a nearly matching
service offer (see Figure 1 (right)). He offers to book a ticket for Spiderman 2,
but differs in some of the requested attributes?. The matcher now has to decide:

— The requestor wanted 20:00 as starting time, but the offered service can only
reserve a ticket for 20:15. Is this still a match or only a 90% match?

— The requestor wanted the Horton Plaza cinema, but the offer is a about the
cinema Cinerama 6. Is this still ok because they are in the same city®?

— The requestor wanted a price below 8 Euro, but the offer didn’t mention the
price. Is this a matching value of 0.0, or should some other value be assigned?

— What is more important for the offerer: A good price, a good time, a near
cinema? The matcher has to decide whether to take the average of the indi-
vidual matching values, their minimum or another function.

As we can see, the main problem lies in the fact that the preferences of
the requestor are not clear as they are not explicitly specified anywhere. This
matchmaker has to either use general, domain- and user-independent deviation
heuristics or simply perform a very strict, conservative matching. Each of these

3 We use a graphical, UML-like notation of the description.

4 Realistically, the provider would offer a more generic service like the booking of
arbitrary movie tickets. Our approach can handle this by introducing variables [1].

® This information could be provided in the underlying ontology.

a) offers request b) offers

Py '

request generates
Generic Matcher (preference- - —— —— > Personal
Matcher

containing)

' '

biased matching values from [0,1] unbiased matching values from [0,1]

Fig. 2. Generic vs. personal matcher.

approaches leads to a biased matching process, i.e. the result of the match de-
pends on the matchmaker used. Thus, the requestor typically will not blindly
rely on its result but will want to choose one of the proposed services manually.
Thus, automatic service invocation is prevented.

3 Approach: Preference Integration

As shown in Section 2, only an unbiased matching process could be accepted
within an automatic service usage process. Such an unbiased matcher can only
become a reality, if the service request contains enough information for the
matcher to decide in deviation cases. This means, that the service request has
to include the client’s preferences.

Figure 2 illustrates this idea. We have to overcome the approach of a generic,
all-purpose matcher (left side). Such a matcher is biased. It is not able to calcu-
late reasonable matching results for service descriptions from arbitrary applica-
tion domains that can be used to automatically choose an appropriate service for
the requestor. Instead, we need preference-containing request descriptions that
can be used to generate a highly specialized, personal matcher (right side). Such
a matcher would be unbiased so that the requestor would agree to automatically
invoke the best matching service.

To achieve this goal, we propose to express requests as fuzzy declarative
sets of suitable services rather than as one specific instance representing the
perfect service. The degree of membership of a service offer to the fuzzy set
described in the service request expresses the requestor’s preference for this offer
and also its matching value. Requests are build up by using a limited set of well-
defined constructors, which leads to structured and computationally feasible
service requests. Consider as an example the request shown in Figure 3. Here,
sets are depicted as rectangles with a small cross line in the left upper corner.

Again, the requestor is looking for a ticket for Spiderman 2. In her request, she
specifies that she is not willing to see another movie or to see the movie on an-
other than the specified date. However, she is willing to accept a slightly later or
earlier time than her preferred starting time (expressed by the ~==[15min]20:00
condition for the time property of SeatInShow) and is also willing to attend a
show in a theater close to the one that is her first choice (expressed by the
similarity function near. Here, either a predefined function from the ontology

[servee_|

presents

y Profile }—-}/ Booked ‘
effect

entity

Double
price

Ve -
CinemaTicket |—@— ..,

validFor

Date

date,
Movie SeatinShow 2004 -07-10
. visible (date, time’2,
==spiderman2 ”Z;,{e,a": VEZ,E) W
lcmema Time
Cinema ~==[15min] 20:00
near(hortonPlazg

Fig. 3. Preference-containing request.

can be used or the user specifies her own function). While she would prefer
not to pay more than 8 Euros, offers that do not specify a price should also
be considered as possible matches (based on the real world experience of the
user that cinema tickets seldom cost more than eight Euros). This is expressed
by the missing strategy assume fulfilled, which is depicted by the circle. The
connecting strategy min(cinema,visible,date,time”2) expresses how the in-
dividual matching values should be combined. Here, the requestor has stated
that the result has to be calculated by minimizing the results from the single
conditions where the time attribute is emphasized by the exponent 2. As a result,
this is a conjunctive connection. Given all this information, it is straightforward
to generate a personalized matcher that will be able to determine exactly how
well a service offer fulfills the requestor’s needs [6].

Our service description language, DIANE Service Description (DSD) [1,7],
offers the means to express such requests. DSD and the corresponding matcher
have been implemented.

References

1. Klein, M., Ko6nig-Ries, B.: Combining query and preference - an approach to fully
automatize dynamic service binding. In: Short paper at IEEE International Con-
ference on Web Services (ICWS 2004), San Diego, CA, USA (2004)

2. Paolucci, M., Kawmura, T., Payne, T., Sycara, K.: Semantic matching of web
services capabilities. In: Proc. of the Semantic Web Conf., Sardinia, Italy (2002)

3. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A semantic web approach to
service description for matchmaking of services. In: Proc. of the Intl. Semantic Web
Working Symposium (SWWS), Stanford, CA, USA (2001)

4. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. In: Proc. of the Intl. WWW Conference, Budapest, Hungary (2003)

5. Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems 5 (2002) 173-203

6. Klein, M., Konig-Ries, B.: Coupled signature and specification matching for auto-
matic service binding. In: Proc. of ECOWS 2004, Erfurt, Germany (2004)

7. Klein, M., Konig-Ries, B., Miissig, M.: What is needed for semantic service descrip-
tions? Intl. Journal on Web and Grid Services (2005). Submitted for publication.

