
Using Answer Set Programming for
Feature Model Representation and Configuration

Varvana Myllärniemi 1 and Juha Tiihonen1 and Mikko Raatikainen 1 and Alexander Felfernig2

Abstract. Feature models are a wide-spread approach used for ex-
pressing variability in software product lines. Answer set program-
ming (ASP) is nowadays an increasingly popular approach to config-
uration knowledge representation. In this paper, we study the similar-
ities between feature modeling and configuration knowledge repre-
sentation with ASP. We define the feature configuration problem uti-
lizing ASP, and show two different ways using an example of trans-
lating the basic feature modeling concepts embodied in the graphical
feature models into ASP programs. This way we want to emphasize
the role of ASP as a means to tackle the feature configuration prob-
lem.

1 Introduction

Features and feature models [11, 17, 18] have been proposed as a
means to represent the variability of a software system. Variability in
software is defined as the ability of a system to be efficiently ex-
tended, changed, customized or configured for use in a particular
context [27]. Correct and efficient management of variability is espe-
cially important for software product lines. A software product line
is a set of products that share a common, managed set of features,
a common architecture and a set of reusable assets, thus enabling
the preplanned production of products with slightly varying capabil-
ities [7, 10]. In fact, feature modeling has become the de facto means
to represent and reason about variability in software product lines
in academia [6]. Within software product lines, feature models can
be used for two purposes: to manage and reason about commonality
and variability at the domain engineering level, and to support the
derivation of valid products at the application engineering level.

Software product line variability, and consequently, feature mod-
els, can grow large and complex. Due to the combinatorial explosion,
analyzing feature models and finding a valid feature configuration is
infeasible to do manually with large-scale feature models [3]. Thus,
there is a need for automated analysis and reasoning of feature mod-
els [3]. However, it seems that current feature model analysis focuses
on the analysis of the variability, that is, analysis at the domain engi-
neering level, rather than on analysis of the derivation or configura-
tion task. Out of the feature analysis operations listed in [3], only a
few analyses are related to derivation: whether a given feature config-
uration is a valid product, and the operation to enumerate all possible
valid configurations [3]. The problem of feature configuration has
been studied to some extent, for example, for staged feature config-
uration [12] that elaborates several stages of making selections and
pruning the variability space. Within this paper, we are interested in

1 Aalto University, Finland, email: {firstname.lastname}@aalto.fi
2 TU Graz, Austria, email: alexander.felfernig@ist.tugraz.at

Figure 1. An illustration of how the research problem is addressed in this
paper. The languages used to capture each model are marked in parenthesis.

the simple configuration problem: given a set of requirements for a
product, what are the valid feature configurations?

In the field of mechanical and physical products, configuration has
a long and successful history as a basis for mass-customization, see,
e.g., [15]. The variability of the product is captured in a configuration
model that represents the taxonomy and compositional structure of a
product along with relevant constraints. The configuration task for
a configuration model results in a configuration, a specification of a
product individual [19, 30, 23] that meets the customer requirements.

As a supporting tooling, Answer Set Programming (ASP) is an
increasingly important formalism for the representation of configu-
ration models. Configuration is one of the first applications of ASP
solving; the requirements of configuration problems were taken into
account already in the development of the early ASP tool Smodels
[25]. On the one hand, ASP programs have been applied directly to
model configuration [24, 28] and reconfiguration [13, 24] problems
in research systems. On the other hand, another approach is to model
configuration models with a high-level language and to translate the
resulting model into a corresponding ASP program [31, 29].

The two disciplines of software product lines and configurable
products have similar goals and challenges in the variability man-
agement [16, 4]. A major goal of this paper is to show in an easily
accessible manner and through concrete examples how ASP can be
applied in the context of feature modeling. Previous work has de-
scribed these aspects on a higher level of abstraction. Therefore, our
research problem is to study the similarities between feature model-
ing and configuration knowledge representation with ASP. For this
purpose, the following research questions are set:

• RQ1: How can the feature configuration problem be stated

Figure 2. Example feature model slightly extended from [3].

through ASP?
• RQ2: What are the different ways to represent a feature model

diagram as an ASP program?
• RQ3: What are the synergies in the variability management be-

tween feature modeling and product configuration?

Figure 1 illustrates the strategy that this paper utilizes to answer
the research problem and questions. In particular, it shows how the
graphical feature diagrams are represented with textual languages,
and these textual languages are then automatically translated to ASP
programs. Since the same graphical feature model can be represented
both with the textual feature modeling language (Kumbang) as well
as with the product configuration language (PCML), it is possible
to compare and identify conceptual similarities and differences be-
tween software variability management and product configuration.
Moreover, the figure illustrates the strategy of utilizing intermediate
level languages: this omits the need to manually write ASP programs
directly, and consequently, any inherent cognitive difficulties.

The contributions of this paper are the following. Firstly, we adapt
the existing work [26] to define the feature configuration problem
based on answer sets and stable model semantics. Secondly, we show
how the basic concepts of feature models can be represented as ASP
programs utilizing a concrete running example. This enables the use
of existing ASP solvers to efficiently solve the feature configura-
tion problem. Thirdly, for translating the feature models to ASP pro-
grams, we utilize two existing intermediate level languages; these
languages enable the product line engineer to operate on domain-
specific modeling constructs. Since these two languages originate
from different paradigms, this highlights the conceptual similarities
between software product line engineering and product configura-
tion.

The remainder of this paper is organized as follows. Section 2 lays
out the background as a previous work. Section 3 defines the fea-
ture configuration task and problem with ASP. Section 4 shows how
graphical feature models can be represented as ASP programs by
translating them through a textual feature modeling language called
Kumbang (cf. Figure 1). Section 5 demonstrates that the same graphi-
cal feature model can be represented by Product Configuration Mod-
eling Language (PCML) and its translation to ASP. Section 6 dis-
cusses the similarities of the software variability and traditional prod-
uct configuration. Section 7 concludes.

2 Background
2.1 Feature modeling
A feature in a feature model can be seen as a characteristic of a sys-
tem that is visible to the end-user [17]. For example, for a software

Figure 3. An excerpt from the feature model in Figure 1 modelled with
cardinalities, following the notation used in [2].

product line for mobile phones, feature MP3 might represent the ca-
pability to listen to and store audio files in MP3 format (see Fig-
ure 2). Since features can be used to capture also technological or
implementation decisions [18], the definition of a feature has been
extended to be a system property that is relevant to some stakeholder
and is used to capture commonalities or discriminate among product
variants [11].

Given a set of features, a feature model represents the variability
and relations of those features. A feature model is represented as a hi-
erarchically arranged set of features that consists of relations between
a parent (or compound) feature and its child features (or subfeatures)
and cross-hierarchy constraints [3]. Typically, feature models are pre-
sented as graphical diagrams. An example feature model for mobile
phones is illustrated in Figure 2.

At least four basic relations between parent and child features can
be identified [3]. Firstly, a child feature can be mandatory in rela-
tion to its parent feature: the child feature must be included in all
products that include the parent feature. For example, feature Calls
is mandatory in relation to feature Mobile Phone (see Figure 2).
Secondly, a child feature can be optional in relation to its parent fea-
ture, for example, feature GPS can either be selected or left out for
all mobile phones. Thirdly, a set of child features can be alternative
in relation to their parent feature, which means that exactly one of
the child features must be selected when the parent feature is in the
product. As an example, exactly one of features Basic, Colour, and
High resolution must be present in the product that has feature
Screen. Fourthly, a set of child features can be in or relation to their
parent feature, which means that one or more of them are present in
the product that has the parent feature; this is exemplified by features
Camera and MP3 in Figure 2.

Additionally, there can be cross-hierarchy constraints. For ex-
ample, features GPS and Basic are mutually exclusive, which
means they cannot be in the same product, whereas feature High

resolution must always be included in a product that contains fea-
ture Camera. These constraints are presented as annotations in Fig-
ure 2.

Various feature models and extensions to basic feature models
have been proposed, as discussed in [3].

Firstly, there can be feature models with attributes [12, 5], as illus-
trated in Figure 2. Feature Storage has been characterized with at-
tribute that describes the size in gigabytes, with an enumerated value
range. Attributes are typically defined by stating a name and a spe-
cific range of values. Typically, a variation point that has a finite num-
ber of variants can be represented both as a set of features and as an
attribute in a feature.

Secondly, there can be feature models with cardinality [11, 12]. It
has been argued that cardinalities can be used to express similar rela-
tions as with basic feature relations. For example, Figure 3 illustrates

2

afelfern
Schreibmaschinentext

afelfern
Schreibmaschinentext

afelfern
Schreibmaschinentext

afelfern
Schreibmaschinentext

afelfern
Schreibmaschinentext

how a part of the model in Figure 2 is represented with cardinalities.
The usage of feature models varies from an informal documen-

tation or visualization to more rigorous usages enabling even auto-
mated analysis. Respectively, the research has matured from the early
notations [17] to various formalizations and analyses [3]. One pos-
sible usage of feature models is with configurable software product
lines [8]: a product can be derived without further development [8]
by configuring features, resulting in a model of a product individual.

2.2 Answer Set Programming
As summarized in [14], Answer Set Programming (ASP) has become
a popular approach to declarative problem solving. The attractiveness
of ASP stems from a combination of a rich and yet simple modeling
language and the availability of high-performance solvers. The roots
of ASP include knowledge representation, logic programming, (non-
monotonic) reasoning, databases, and Boolean constraint solving.

ASP makes it possible to express the problem as a theory consist-
ing of logic program rules with clear declarative semantics, and the
stable models, i.e., the answer sets of the theory correspond to the
solutions to the problem [25].

Programs that follow the Answer Set Programming paradigm are
a generalization of normal logic programs. A generalized and uni-
fied syntax of ASP programs called ASP-Core-2 has been defined
[9]. This input language has been adopted by many ASP solvers [1].
Optimality criteria, variables and built-in functions can be defined.
The syntax of ASP programs is close to Prolog, but the computation
method via model generation is different [14].

There are a number of ASP solvers available, see [33], that can
tackle a number of complex problems. The best ASP solvers per-
form well for a range of hard problems; see, for example, problems
and results of the Fourth Answer Set Programming Competition [1].
The competition tasks included 3 problems in complexity class P , 15
problems in NP , 3 problems Beyond-NP (

∑P
2), and 5 optimization

problems; the domains of the tasks include combinatorial, database,
diagnosis, graph, planning and scheduling problems. An example of
current, well performing set of tools is Potassco, the Potsdam Answer
Set Solving Collection[14], available from [22].

The authors of this paper have applied weight constraint rule lan-
guage (WCRL) that is almost a genuine subset of ASP-Core-2. The
languages ASP-Core-2 and WCRL are compatible enough so that the
concrete WCRL logic programs generated by our tools are valid in-
put to systems based on ASP-Core-2. This was verified with Clingo
version 4.3, available from [22]. Thus, when describing WCRL, we
actually describe a part of ASP-Core-2 that is sufficient for this pa-
per. We can do this in a slightly more intuitive yet compact way than
we could describe the full ASP-Core-2.

In the following, we describe the basic concepts of weight con-
straint rules focusing on the concepts needed in the rest of the paper.
Instead of explaining the concepts utilizing a running example, these
concepts are exemplified for Kumbang in Section 4 and for PCML in
Section 5. For further details and examples, please see [25, 9].

Cardinality constraints are used as the primary basic building
blocks of the product configuration rules. Cardinality constraints are
of the form

l{a1, . . . , an, not b1, . . . , not bm}u

where l and u are the lower and upper bounds of the constraint.
Basic atoms are the smallest lexical units, for example a, or b. A
literal is an atom b or a not-atom not b. A cardinality constraint
is satisfied by a set of atoms S if the number of those literals in

{a1, . . . , an, not b1, . . . , bm} that are satisfied by S is between the
bounds l and u.

A constraint rule is an expression of the form

C0 :- C1, . . . , Cn

where the body of the rule consists of a number of cardinality con-
straints Ci, and the head C0 cannot contain negated atoms. A pro-
gram P is then a set of constraint rules.

For product configuration, the following rules are often useful.
Firstly, in choice rules the number of satisfied atoms in the head must
be between l and u:

l{a1, . . . , an}u :- C1, . . . , Cn

Secondly, a rule with an empty head yields an integrity constraint
:- C1, . . . , Cn, that is, an unsatisfiable constraint that allows specify-
ing inconsistent situations where finding the answer is not possible.
Finally, a rule with an empty body is called a fact. For example, a
fact C0 states that C0 is always true.

Given a set of atoms S, a rule C0 :- C1, . . . , Cn is satisfied iff S
satisfies C0 whenever S satisfies each of C1, . . . , Cn. A program P
is satisfied by S if each rule in P is satisfied by S. A stable model or
answer set of a weight constraint rule program is defined as a set of
atoms that 1) satisfies the program (is a classical model of the pro-
gram) and 2) every atom in a stable model is justified (grounded) by
the rules in the program. For example, consider the logical formula
b∧ (b∧¬c→ a) that has three (classical) models {b, c}, {a, b} and
{a, b, c}. The answer set program

b. a :- b, not c.

has one stable model {a, b}. For the formalization of this definition,
refer to [25].

Variable-free ground weight constraint rules discussed up to now
become more practical by allowing the use of variables, function
symbols, and predicates. A rule with variables is treated as a short
hand for all its ground instantiations with respect to the Herbrand
universe of the program. Decidability is retained by allowing only
domain-restricted rules. Ignoring the details, each variable in a rule
must appear in a domain predicate which occurs positively in the
body of the rule. For example, p(X) :- q(X) over constants {a, b, c}
is an abbreviation of

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Given predicates and domains, rules with the so called conditional
literals are frequently applied in product configuration. For example,
a fact with predicate chair and domain predicate member states that
every board must have exactly one chair that must also be a member:

1 {chair(X) : member(X)} 1.

3 Feature Configuration Problem Utilizing ASP
Research question RQ1 identified the need to address the feature
configuration problem with ASP. In order to utilize ASP and existing
solvers (see Section 2.2), one needs to define the basic concepts of the
feature configuration problem. Figure 4 defines the feature configu-
ration problem. Here, we adapt the definition of [26] to the domain
of feature models in a straightforward manner. We describe each key
concept in the definition informally and through examples from the
domain of feature models. For further information about the config-
uration problem in more general terms, see [26].

3

Definition of the feature configuration task. Given
CM a feature configuration model CM translated to a set

of rules,
GF a set of ground facts representing the types in CM and

unique identifiers for the instances of types, and
R a set of rules R representing requirements,
is there a feature configuration C, that is,
a stable model of CM ∪ S, such that C satisfies R?

Figure 4. The definition of the feature configuration task adhering to [26].

Firstly, a feature configuration model CM in Figure 4 specifies the
entities, such as features; their properties, such as feature attributes;
and composition structure, i.e. the feature tree structure; and the rules
how the entities and their properties can be combined in a proper
manner for a valid product. More informally, a feature configuration
model represents the variability in the product line. For example, the
feature model in Figure 2 is represented as one configuration model
CM .

Within the definition in Figure 4, a distinction is made between
types in a configuration model and instances in a configuration.
Types in a configuration model define the properties of their indi-
viduals that can appear in a configuration. For example, in Figure 2,
feature type storage defines the different attributes and their values,
whereas feature instance storage in the actual product has a specific
value for the size, for example 16 GB.

Ground facts GF in Figure 4 describe the possible feature in-
stances and the attribute values of instances that can exist in a feature
configuration. For example, for the feature Storage in Figure 2, a
ground fact featStorage(i). indicates that feature instance with a
unique identifier i is of feature type Storage. Additionally, a ground
fact hasattr(i,attrsizeGB,16). tells that this instance has a
specific attribute value assignment to indicate 16GB storage.

The set of rules R define requirements thus having a different sta-
tus from the rules in the configuration model: these requirements rep-
resent the requirements that a specific product instance must satisfy.
In a valid product configuration, the requirements must be satisfied
by a configuration but cannot justify any elements in it. For a feature
configuration problem, the requirements are stated as features that
must be present in the configuration, or as attribute values that these
features have. For example, for Figure 2, one requirement could be
stated as hasattr(i,attrsizeGB,16)., meaning that there must
be 16 GB storage in the product.

A feature configuration C consists of a set of positive and negative
atoms. Positive atoms represent the feature instances and attribute
values that are in the configuration. Due to the characteristics of ASP
and stable models discussed in Section 2.2, the feature instances and
attribute values in the configuration C, that is, the positive atoms in
C, both satisfy the configuration model and its requirements, and are
justified by them. For example, among the atoms that would be in the
feature configuration for Figure 2, an atom in(i) indicates the in-
clusion of feature Storage. Further, if the storage is set to 16GB, an
atom hasattr(i,attrsizeGB,16) is true, while atoms represent-
ing other attribute values, such as hasattr(i,attrsizeGB,32),
are false.

Consequently, the feature configuration C in the definition above
is both consistent and complete. Informally, a consistent feature con-
figuration is such that no rules of the configuration model are vio-
lated. A complete feature configuration is such that all the necessary

selections have been made.
An ASP solver can be used to find consistent and complete config-

urations that meet a set of given requirements, given that such config-
urations exist. Therefore, the configuration problem definition above
and its ASP solution can be used to support both domain and ap-
plication engineering activities. At the domain engineering level, it
can be checked whether the given feature configuration model CM
doesn’t have any consistent and complete configurations, which im-
plies a self-contradictory model. At the application engineering level,
the configuration task can support the finding of consistent and com-
plete configurations, potentially even specifying the requirements R
in an iterative manner.

For supporting the user in the configuration task, deducing the con-
sequences of requirements is based on computing an approximation
of the set of configurations satisfying the requirements that are valid
but not necessarily all consequences are found. Intuitively, the con-
sequences contain a set of facts that must hold for the configurations
satisfying the requirements, a set of facts that cannot be true for the
given requirements, and a set of unknown facts.

From the practical point of view, a product line engineer needs
to capture the product line features and their commonality and vari-
ability into a configuration model CM . There are two options for
this representation. The first option is to represent the informal fea-
ture model, for example, the visual notation in Figure 2, directly as
an ASP program. However, this kind of a modeling task requires
skills in logic programming, which may not be the case with an av-
erage product line engineer. The second option is to capture the fea-
ture model with a machine-processable, but human-readable textual
language that utilizes directly the concepts known to a product line
engineer, and then automatically translate the resulting middle-level
model to an ASP program. This translation to ASP also gives the
semantics to the middle-level representation language, as well as en-
ables the use of existing ASP solvers for the configuration task. As is
illustrated in Figure 1, this paper takes the latter approach.

In the following, we discuss how feature models can be repre-
sented as ASP programs, and consequently, how to represent the con-
figuration model CM .

4 Representing Feature Models as ASP Programs
through Textual Feature modeling Language

Section 3 presented the feature configuration problem utilizing ASP
programs and identified the need to represent a given feature model
as an ASP program. In the following, we show how the graphical
feature model in Figure 2 and the basic feature modeling concepts
can be represented as ASP programs. This is done in two phases,
as illustrated in Figure 1: firstly, Section 4.1 shows how the feature
model is represented as a textual model in Kumbang, and thereafter
Section 4.2 shows how the textual model in Kumbang is translated to
WCRL automatically with the Kumbang tool set [20]. Thus, for the
purpose of this paper, we utilize WCRL as an example language to
construct ASP programs (see also Section 2.2).

4.1 Representing the Feature Model in Kumbang
In order to enable the feature configuration with ASP, the feature
model in Figure 2 needs to be represented in a form that is both un-
derstandable to a product line engineer, and can be unambiguously
translated to an ASP program. For this purpose, we utilize Kum-
bang language [2], which is a modeling language and an ontology for
modeling variability in software product line architectures from the

4

Forfamel model mobilephone
root feature MobilePhone

feature type MobilePhone {
contains
Calls calls;
GPS gps[0-1];
Screen screen;
Media media[0-1];
Storage storage;

}
feature type Calls {}
feature type GPS {
constraints not has_instances(Basic);

}
feature type Screen {

contains (Basic,Colour,HighResolution) type;
}
feature type Basic {}
feature type Colour {}
feature type HighResolution {}
feature type Media {

contains (Camera,MP3) apps[1-2] {different};
}
feature type Camera {

constraints has_instances(HighResolution);
}
feature type MP3 {}
feature type Storage {

attributes Size sizeGB;
constraints
(has_instances(Camera) and has_instances(MP3))
=> value(sizeGB) > 16;

}
attribute type Size = { 8, 16, 32, 64 }

Figure 5. Feature model from Figure 2 represented with the Kumbang
language.

feature and component points of view. Kumbang is built on the prod-
uct configuration concepts [26], on feature modeling approaches, and
on the Koala architecture modeling language [32]. Kumbang is also
supported by a set of tools that enable modeling and configuration
tasks [20].

Figure 5 illustrates how the feature model in Figure 2 is repre-
sented with Kumbang language. In the following, we discuss the
main characteristics and differences to the notation used in Figure 2.

Firstly, to adhere to the definition of the feature configuration task
in Figure 4, Kumbang differentiates between a configuration model
and a configuration. Variability in features is modelled explicitly in a
configuration model (illustrated in Figure 5), whereas in a configura-
tion, all variability has been resolved. The elements in a configuration
model are referred to as types (for example, feature type Storage in
Figure 5), while the elements in a configuration are referred to as
instances. In contrast, traditional feature modeling notations do not
usually make the conceptual distinction between feature types and
instances. However, this may cause some difficulties in situations in
which the definition of the features needs to be distinct from the fea-
ture compositional hierarchy. For example, if features need to be re-
ferred to in several places in the hierarchy (c.f., [12]), additional con-
structs, such as feature cloning or references may be needed. Thus, it
seems that the distinction between types and instances allows more
expressiveness in the model as such.

Secondly, traditional feature modeling uses a number of compo-
sitional relations between features, such as mandatory, optional, and
alternative. As illustrated in Figure 3, the multitude of these rela-
tions can be expressed with one relation: cardinality. In order to de-
fine such relations in the configuration model, the cardinality needs
a placeholder in the textual notation: such a placeholder in Kumbang
is called a part definition. For example, the part definition Media

media[0-1] in feature type MobilePhone states that Media is an
optional feature i.e. has a cardinality from zero to one. Part defini-
tions can be more complex: For example, part definition apps in
type feature Media has two possible types of which one or two need
to be in a configuration, and if two are selected, they need to be dif-

% Definitions of feature types
featureType(featMobilePhone). featureType(featCalls).
featureType(featGPS). featureType(featScreen).
featureType(featColour). featureType(featBasic).
featureType(featHighResolution).
featureType(featMedia). featureType(featMP3).
featureType(featCamera). featureType(featStorage).

% Root feature MobilePhone
froot(X) :- featMobilePhone(X).
% The feature root is always in the configuration
1 { in(F) : froot(F) } 1.

% Some example part definitions (not all shown)
1{haspart(X1,X2,partDeftype):ppart(X1,X2,partDeftype,I)}1
:- featScreen(X1), in(X1).
1{haspart(X1,X2,partDefapps):ppart(X1,X2,partDefapps,I)}2
:- featMedia(X1), in(X1).

% Attribute definition for feature Storage
1 {hasattr(X,attrDefsizeGB,V):attrSize(V)} 1
:- in(X), featStorage(X).

% Definition of attribute value type Size
attrSize(8). attrSize(16). attrSize(32). attrSize(64).

% Constraint "Camera requires HighResolution"
% Other constraints omitted
constr5(X) :- in(X0),featHighResolution(X0),featCamera(X).
cf(5,X) :- featCamera(X), in(X), not constr5(X).
cff :- cf(5,X), featCamera(X).

% Possible feature instances in the configuration
% are enumerated with unique identifiers and
% corresponding possible parts are defined.
featMobilePhone(i0).
featCalls(i1). ppart(i0,i1,partDefcalls,1).
featGPS(i2). ppart(i0,i2,partDefgps,1).
featScreen(i3). ppart(i0,i3,partDefscreen,1).
featBasic(i4). ppart(i3,i4,partDeftype,1).
featColour(i5). ppart(i3,i5,partDeftype,1).
featHighResolution(i6). ppart(i3,i6,partDeftype,1).
featMedia(i7). ppart(i0,i7,partDefmedia,1).
featCamera(i8). ppart(i7,i8,partDefapps,1).
featMP3(i9). ppart(i7,i9,partDefapps,1).
featStorage(i10). ppart(i0,i10,partDefstorage,1).

% A feature instance is in the configuration
% if it is both actual and possible part of something
in(X2) :- haspart(X1, X2, N), ppart(X1, X2, N, I).

Figure 6. The Kumbang representation of Figure 2 (Figure 5) translated to
WCRL (some parts omitted and revised for clarity).

ferent. The use of part definitions with cardinalities is also advocated
in [26].

Thirdly, the constraints in Figure 2 need to be captured in an unam-
biguously defined, textual representation. In Figure 5, each constraint
is defined in exactly one feature type, utilizing the existing constraint
language [2] that supports logical expressions through, e.g., equiva-
lence, implication, universal quantifiers, and references to the com-
positional hierarchy.

4.2 Representing the Kumbang Model in WCRL

Figure 6 illustrates how the feature model in Figure 5 is translated to
WCRL. The translation has been performed automatically with the
Kumbang tool set [20] and revised and organized for clarity.

Firstly, each feature type in the configuration model must be de-
fined: for example, fact featureType(featMobilePhone). states
that object constant featMobilePhone represents a feature type.
Similarly, the attribute value types are defined, for example, fact
attrSize(8). states that attribute value type named Size has 8
as one possible value.

Secondly, the root of the model must be defined. Rule

1{in(F) : froot(F)}1.

states that if feature type F is the root, a valid configuration must
have exactly one feature instance selected (in(F)) that is instantiated
from the root type, defined using predicate froot.

5

Thirdly, the compositional structure of the features must be de-
fined. For each part definition, a rule with the following format is
added:

n{haspart(X1, X2, P) : ppart(X1, X2, P, I)}m :- F (X1), in(X1).

where F and P are replaced with feature and part names, and n,m
replaced with the lower and upper bounds of the cardinality. Predi-
cate haspart is used to indicate that a feature instance is instantiated
as a part in the configuration, whereas predicate ppart is merely stat-
ing the possible parts. Together, these predicates justify the inclusion
of a feature instance through composition:

in(X2) :- haspart(X1, X2, N), ppart(X1, X2, N, I).

Fourthly, attribute definitions are captured with the following rule:

1{hasattr(X,Ad, V) : Av(V)}1 :- in(X), F (X).

where Ad is replaced with the name of the attribute definition, Av

with the name of the attribute value type, and F with the name of the
defining feature type.

Finally, the configuration model must also define the identifiers
for each feature instance. This enables, for example, to state require-
ments R about the features that must be present in the configuration
(see Figure 4). In Figure 6, the feature instances are given identi-
fiers by enumerating all possible instances in the configuration, for
example, fact featMobilePhone(i0). gives identifier i0 to fea-
ture MobilePhone. Additionally, the identifiers are used to state the
possible compositional relations between the instances with the pred-
icate ppart. Using these identifiers, it is possible to state the require-
ments about the feature instances that must be in the configuration,
for example, in(i8). requires that feature Camera must be present
in the configuration.

5 Representing Feature Models as ASP Programs
through Product Configuration modeling
Language

In this Section, the example feature model of Figure 2 is represented
with a configuration modeling language designed to model the vari-
ability of physical products. We also exemplify the corresponding
ASP presentation.

5.1 Representing the Feature Model in PCML
For illustrating the application of a configuration modeling language,
we apply PCML, Product Configuration Modeling Language [21].
PCML is used by the WeCoTin configurator [29] as the language for
representing configuration models. PCML is object-oriented, declar-
ative and has formal implementation-independent semantics.

The main concepts of PCML are feature types, their compositional
structure, attributes, and constraints. Feature types define the sub-
features (parts) and attributes of their individuals that can appear in
a configuration. In a configuration, subfeatures (parts) of a feature
individual are realized with feature individuals. The realizing feature
individual(s) “fill the role” created by the subfeature definition. If
the cardinality includes 0, an empty realization is possible. A con-
figuration is a non-empty tree of feature individuals and individuals
representing attribute values. In addition, the compositional structure
is explicitly presented.

The main modeling mechanism of this example is the composi-
tional structure. Feature type Mobile Phone t in 7 serves as the root

configuration model MyProduct
feature Mobile_Phone_t
subfeature Screen_p allowed features

Basic_t, Colour_t, High_resolution_t
cardinality 1

subfeature Calls_p
allowed features Calls_t cardinality 1

subfeature GPS_p
allowed features GPS_t cardinality 0 to 1

subfeature Media_p
allowed features Media_t cardinality 0 to 1

subfeature Storage_p
allowed features Storage_t cardinality 1

constraint GPS_excludes_Basic not ((present(
GPS_p)) and (Screen_p individual of Basic_t))

feature Basic_t
feature Colour_t
feature High_resolution_t
feature Media_t
subfeature Camera

allowed features Camera_t cardinality 0 to 1
subfeature MP3

allowed features MP3_t cardinality 0 to 1
constraint Camera_requires_High_resolution

(present(Camera)) implies
($config.Screen_p individual of High_resolution_t)
constraint Media_requires_Camera_or_MP3

(present(Camera)) or (present (MP3))
constraint Camera_and_Mp3_require_min_32GB

((present(Camera)) and (present(MP3))) implies
($config.Storage_p.Size_GB >= 32)

feature Camera_t
feature MP3_t
feature GPS_t
feature Calls_t
feature Storage_t
attribute Size_GB value type integer

constrained by $ in list(8,16,32,64)
configuration feature Mobile_Phone_t

Figure 7. The feature model of Figure 2 represented with PCML.

of the compositional structure ’configuration type’, see Figure 7. An
individual of the type serves as the root of the configuration.

Feature type Mobile Phone t defines it’s compositional structure
through a set of subfeature definitions. A subfeature definition speci-
fies a subfeature name, a non-empty set of possible subfeature types
(allowed types for brevity) and a cardinality indicating the valid num-
ber of subfeatures. Note that the example of Figure 7 applies a nam-
ing convention where the names of feature types end with t and
names of subfeatures (parts) with p.

A mandatory subfeature is represented by specifying cardinality
1 and by specifying exactly one allowed type. An example is the
mandatory feature Calls p. An optional subfeature is modeled with
a subfeature definition whose cardinality is 0 to 1, e.g. the feature
GPS p. Alternative features are modeled with cardinality 1 and more
than one allowed type. E.g., feature Screen p. Or-subfeatures are
not directly supported by PCML, because with large cardinalities in-
dividuals of the same type would be allowed. Therefore for model-
ing Media t, further subfeatures were defined and a constraint added
that enforces the presence of at least one subfeature.

The only attribute of the example is Storage t defining an enu-
merated integer attribute Size GB.

5.2 Representing the PCML Model in WCRL
Figure 8 shows a partial WCRL/ASP representation of the example
feature model. When studying the WCRL/ASP presentation of Fig-
ure 8, it is visible that early versions of PCML and WeCoTin applied
terminology where feature types were called component types and
subfeatures were called parts.

Figure 8 shows the corresponding WCRL presentation (partial).
The comments explain the predicates. For a more complete explana-
tion, see [29].

Figure 9 shows one of the 52 answer sets. It represents a feature
configuration with Colour, Calls, Storage, Storage size=16 GB.

6

% if an individual C2 is as part of C1 -> in(C2)
in(C2) :- pa(C1,T,C2,Pn), ppa(T,C1,C2,Pn).
% exclusive parthood: same individual cannot
% be a part of several whole individuals
:- 2{pa(C1,T,C2,Pn):ppa(T,C1,C2,Pn)}, compT_Feature(C2).
%transitivity of is-a hierachy
isa(X,Z):- isa(X,Y), isa (Y,Z),

compTDom(X), compTDom(Y), compTDom(Z).
% reflexivity of is-a
isa(X,X):- compTDom(X).

%Example types
% Screen_t is a component type and a subtype of ’Feature’
compTDom(compT_Feature).
%Screen types are direct subtypes of ’Feature’
compTDom(compT_Basic_t).
compT_Feature(C) :- compT_Basic_t(C).
isa(compT_Basic_t,compT_Feature).
compTDom(compT_Colour_t).
compT_Feature(C) :- compT_Colour_t(C).
isa(compT_Colour_t,compT_Feature).
compTDom(compT_High_resolution_t).
compT_Feature(C) :- compT_High_resolution_t(C).
isa(compT_High_resolution_t,compT_Feature).
% Storage_t
compTDom(compT_StoraStorage_t).
compT_Feature(C) :- compT_Storage_t(C).
isa(compT_Storage_t,compT_Feature).
% attribute Size_GB of Storage_t
1{prop_Storage_t_Size_GB(X,compT_Storage_t,Y):prSpec(Y)}1

:- in(X),compT_Storage_t(X).
prSpec(8).
prSpec(16).
prSpec(32).
prSpec(64).

%part name Screen_p
pan(part_Screen_p).
%cardinality 1
1{pa(C1,compT_Mobile_Phone_t,C2,part_Screen_p):

ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p)}1 :-
in(C1),compT_Mobile_Phone_t(C1).

% assignment of possible part individuals of allowed
% types for part screen_p with helper predicate for.
% The automated translation makes such an allocation
% for symmetry breaking, which this example
% does not need
ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p) :-
compT_Mobile_Phone_t(C1),compT_Basic_t(C2),
for(compT_Mobile_Phone_t,C1,C2,part_Screen_p).

ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p) :-
compT_Mobile_Phone_t(C1),compT_Colour_t(C2),
for(compT_Mobile_Phone_t,C1,C2,part_Screen_p).

ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p) :-
compT_Mobile_Phone_t(C1),compT_High_resolution_t(C2),
for(compT_Mobile_Phone_t,C1,C2,part_Screen_p).

% Constraint compilation omitted for brevity.
% it is performed by subexpression.

Figure 8. PCML representation of Figure 2 (Figure 7) translated to WCRL
(some parts omitted for brevity).

6 Discussion
In this paper, we showed two ways to represent feature models as
ASP programs by utilizing existing textual modeling languages de-
signed for feature modeling and product configuration modeling. The
use of an intermediate, textual language between the graphical fea-
ture models and logic programs is not that common: it seems typ-
ical that graphical feature diagrams are directly translated, e.g., to
propositional logic [3], rather than utilizing an intermediate textual
language.

in(ind_compT_Colour_t_1)
pa(ind_compT_Mobile_Phone_t_1,compT_Mobile_Phone_t,

ind_compT_Colour_t_1,part_Screen_p)
in(ind_compT_Calls_t_1)
pa(ind_compT_Mobile_Phone_t_1,compT_Mobile_Phone_t,

ind_compT_Calls_t_1,part_Calls_p)
in(ind_compT_Storage_t_1)
pa(ind_compT_Mobile_Phone_t_1,compT_Mobile_Phone_t,

ind_compT_Storage_t_1,part_Storage_p)
in(ind_compT_Mobile_Phone_t_1)
prop_Storage_t_Size_GB(ind_compT_Storage_t_1,

compT_Storage_t,16)

Figure 9. An answer set representing a feature configuration with
Colour, Calls, Storage, Storage size GB=16. Ground atoms were
derived from the WCRL of Figure 8. Long atoms are split into two lines.

The benefit of using such intermediate languages and models is
that they may be more approachable to product line engineers: they
utilize modeling concepts that more or less directly correspond to
the concepts used to represent software variability. Such intermediate
languages can serve a multitude of purposes: they can be represented
graphically and modelled with the aid of graphical tools; they can be
created or edited directly if need arises; and they can be automatically
translated to ASP programs.

Another option would have been to directly represent or encode
the entities and relations in feature models as ASP programs. The
benefit of writing directly ASP programs is that the resulting ASP
programs most probably are more compact and directly human-
readable. The drawback is that logic programming even in the form
of ASP programs might be challenging for a product line engineer
not trained in computational logic programming.

For simplicity, our representation in this paper covered some basic
concepts of feature models. Nevertheless, the languages discussed
in Sections 4 and 5 cover much richer sets of modeling constructs.
For example, the capability to represent feature inheritance was not
utilized in the examples. Similarly, the literature contains numerous
proposed extensions of feature models. Some of them are included in
our conceptualizations and corresponding tools (e.g. attributes, cardi-
nalities) while some are not. In any case, a detailed discussion about
the needed modeling concepts is a future work item.

By mapping the feature modeling notation to both Kumbang and
PCML, we demonstrated that both approaches, one tailored for fea-
ture modeling and one for product configuration, can be utilized for
modeling software variability. A specific addition to the traditional
feature modeling concepts done in this paper is to differentiate be-
tween feature instances and feature types. This dichotomy, however,
parallels with domain and application engineering in software prod-
uct families and is, therefore, quite natural for software variability
although it has not been applied explicitly in feature modeling.

The product configuration community has applied configuration
modeling and configuration techniques in full scale production use
for decades. It may be that some modeling constructs and approaches
related to managing variability could be carried over to describe and
analyze feature models. In such a case, existing analyses and respec-
tive tools could be readily utilized.

However, the derivation of product lines is not just about configu-
ration: feature models are applicable to a wide range of settings, not
just to configurable software product lines. Because of this, the tools
intended for product configuration do not necessarily support all the
relevant activities in the application engineering phase of software
product lines.

In general, due to the availability of a variety of different effi-
cient ASP solvers, it seems beneficial to represent feature models
as ASP programs. Despite the fact that the theoretical computational
complexity inherent in the feature configuration problem is NP-hard,
the current ASP solvers are efficient in calculating the stable models
even for programs that represent real-life feature models. We believe
that it is more important to find and utilize real problems in testing
scalability instead of generated random problems. Consequently, we
have configured real problems interactively, without no noticeable
delay: see the configuration model with slightly less than 500 varia-
tion points [29] and the configuration model with dozens of different
types [2] as examples.

7

7 Conclusions
This study shows how feature models can be represented as ASP
programs by means of two different mappings of a graphical feature
diagram through intermediate languages. The representation of fea-
ture models as ASP programs enables utilizing existing inference en-
gines that are efficient for practical problems. Moreover, the mapping
shows significant similarities between feature modeling and prod-
uct configuration, in particular demonstrating how a feature model
diagram can be presented using a product configuration language.
This is one concrete step towards better unification between these
two similar disciplines of research.

Acknowledgment
We acknowledge the financial support of TEKES as part of the Need
4 Speed (N4S) program of DIGILE and the Austrian Research Pro-
motion Agency (Casa Vecchia, 825889).

REFERENCES
[1] Fourth (open) answer set programming competition - 2013.

https://www.mat.unical.it/aspcomp2013, 2013. retrieved 2014-05-05.
[2] Timo Asikainen, Tomi Männistö, and Timo Soininen, ‘Kumbang: A do-

main ontology for modelling variability in software product families’,
Advanced engineering informatics journal, 21(1), (2007).

[3] D. Benavides, S. Segura, and A. Ruiz-Cortes, ‘Automated analysis of
feature models 20 years later: A literature review’, Information Systems,
35, 615–636, (2010).

[4] David Benavides, Alexander Felfernig, JosA. Galindo, and Florian Re-
infrank, ‘Automated analysis in feature modelling and product configu-
ration’, in Safe and Secure Software Reuse, eds., John Favaro and Maur-
izio Morisio, volume 7925 of Lecture Notes in Computer Science, 160–
175, Springer Berlin Heidelberg, (2013).

[5] David Benavides, Pablo Trinidad Martı́n-Arroyo, and Antonio Ruiz
Cortés, ‘Automated reasoning on feature models’, in International Con-
ference on Advanced Information Systems Engineering, (2005).

[6] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, ‘A study
of variability models and languages in the systems software domain’,
Software Engineering, IEEE Transactions on, 39(12), 1611–1640, (Dec
2013).

[7] Jan Bosch, Design and Use of Software Architectures: Adapting and
Evolving a Product-Line Approach, Addison-Wesley, 2000.

[8] Jan Bosch, ‘Maturity and evolution in software product lines: Ap-
proaches, artefacts and organization’, in Proc. of Software Product Line
Conference, (2002).

[9] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovam-
battista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola
Leone, Francesco Ricca, and Torsten Schaub. ASP-Core-2: In-
put language format (v.2.03b). ASP Standardization Work-
ing Group, https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-
2.03b.pdf, 2012. retrieved 2014-05-05.

[10] Paul Clements and Linda Northrop, Software Product Lines—Practices
and Patterns, Addison-Wesley, 2001.

[11] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker, ‘For-
malizing cardinality-based feature models and their specialization’,
Softw. Proc. Improv. Pract., 10(1), 7–29, (2005).

[12] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker, ‘Staged
configuration through specialization and multilevel configuration of
feature models’, Software Process: Improvement and Practice, 10(2),
143–169, (2005).

[13] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(Re)configuration using Answer Set Programming’, in 22nd In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2011),
Workshop on Configuration, eds., Kostyantyn Shchekotykhin, Markus
Zanker, and Dietmar Jannach, pp. 17–25, (2011).

[14] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Os-
trowski, Torsten Schaub, and Marius Schneider, ‘Potassco: The pots-
dam answer set solving collection’, AI Communications, 24(2), 107–
124, (2011).

[15] L. Hotz, A. Felfernig, A. Günter, and J. Tiihonen, ‘A Short His-
tory of Configuration Technologies’, in Knowledge-based Configura-
tion – From Research to Business Cases, eds., A. Felfernig, L. Hotz,
C. Bagley, and J. Tiihonen, chapter 2, 9–19, Morgan Kaufmann Pub-
lishers, (2013).

[16] Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta,
Tomi Mnnist, Krzysztof Czarnecki, Patrick Heymans, Tien Nguyen,
and Markus Zanker, ‘Unifying software and product configuration: A
research roadmap’, in Proceedings of the workshop on configuration
(confws12), (2012).

[17] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson,
‘Feature-oriented domain analysis (foda) feasibility study’, Technical
Report CMU/SEI-90-TR-21, ADA 235785, Software Engineering In-
stitute, (1990).

[18] K.C. Kang, Jaejoon Lee, and P. Donohoe, ‘Feature-oriented product
line engineering’, IEEE Software, 19(4), 58–65, (2002).

[19] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuration
Tasks’, in 11th International Joint Conference on Artificial Intelligence
(IJCAI-89), volume 2, pp. 1395–1401, Detroit, Michigan, USA, (1989).

[20] Varvana Myllärniemi, Mikko Raatikainen, and Tomi Männistö, ‘Kum-
bang tools’, in Software Product Line Conference, volume 2, pp. 135–
136, (2007).

[21] Hannu Peltonen, Juha Tiihonen, and Andreas Anderson. Configura-
tor tool concepts and model definition language. Unpublished work-
ing document of Helsinki University of Technology, Software Business
and Engineering Institute, Product Data Management Group, Espoo,
Finland, 2001.

[22] Potassco. Potassco, the Potsdam Answer Set Solving Collection, bun-
dles tools for answer set programming developed at the university
of potsdamanswer set programming. SourceForge project http:
//potassco.sourceforge.net/. Accessed 2014-05-06.

[23] Daniel Sabin and Reiner Weigel, ‘Product Configuration Frameworks -
A Survey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

[24] Gottfried Schenner, Andreas Falkner, Anna Ryabokon, and Gerhard
Friedrich, ‘Solving object-oriented configuration scenarios with asp’,
in 15 th International Configuration Workshop, eds., Michel Aldanondo
and Andreas Falkner, pp. 55–62, (2013).

[25] Patrik Simons, Ilkka Niemelä, and Timo Soininen, ‘Extending and im-
plementing the stable model semantics’, Artificial Intelligence, 138,
181–234, (2002).

[26] Timo Soininen, Ilkka Niemelä, Juha Tiihonen, and Reijo Sulo-
nen, ‘Representing Configuration Knowledge with Weight Constraint
Rules’, in 1st International Workshop on Answer Set Programming:
Towards Efficient and Scalable Knowledge (AAAI Technical Report
SS-01-01), eds., Alessandro Provetti and Tran Cao Son, pp. 195–201,
(2001).

[27] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch, ‘A taxononomy of
variability realization techniques’, Software—Practice and Experience,
35(8), 705–754, (2005).

[28] Tommi Syrjänen, ‘Including diagnostic information in configuration
models’, in First International Conference on Computational Logic
(CL 2000), eds., John Lloyd, Veronica Dahl, Ulrich Furbach, Man-
fred Kerber, Kung-Kiu Lau, Catuscia Palamidessi, Luı́sMoniz Pereira,
Yehoshua Sagiv, and Peter J. Stuckey, volume LNCS 1861, pp. 837–
851. Springer, (2000).

[29] Juha Tiihonen, Mikko Heiskala, Andreas Anderson, and Timo Soini-
nen, ‘Wecotin–a practical logic-based sales configurator’, AI Commu-
nications, 26(1), 99–131, (2013).

[30] Juha Tiihonen and Timo Soininen, ‘Product Configurators - Infor-
mation System Support for Configurable Products’, Technical Report
TKO-B137, Helsinki University of Technology, Laboratory of Infor-
mation Processing Science, (1997). also publsihed in: Increasing Sales
Productivity through the Use of Information Technology during the
Sales Visit, Hewson Consulting Group.

[31] Juha Tiihonen, Timo Soininen, Ilkka Niemelä, and Reijo Sulonen, ‘A
practical tool for mass-customising configurable products’, in Proceed-
ings of the 14th International Conference on Engineering Design, eds.,
A.Folkeson, K. Gralén, M. Norell, and U. Sellgren, pp. CDROM, paper
number 1290, 10 pp., (August 19-21, 2003 2003).

[32] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff
Magee, ‘The Koala component model for consumer electronics soft-
ware’, Computer, 33(3), 78–85, (March 2000).

[33] Wikipedia. Answer set programming. http://en.wikipedia.
org/wiki/Answer_set_programming. Accessed 2014-05-06.

8

