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Abstract. Reducing energy consumption of residential and com-
mercial buildings is a major challenge nowadays. One of the strate-
gies to achieve a significant reduction lies on building renovation.
On this regard, a project targeting the industrialization of high per-
formance thermal renovation for apartment buildings is been exe-
cuted. The renovation is based on an external envelop composed by
rectangular wood-made panels that cover the whole building. Two
concurrent configuration tasks within the project have been identi-
fied: The configuration of each one of the panels w.r.t. to the facade
and the configuration of the entire facade using a set of these pan-
els. We focus our efforts on the development of a decision support
system for the configuration of panels and facades. In this paper we
introduce Calpinator, a Java-based configuration tool which is the
heart of the decision support system for the project. The tool uses
the notion of Constraint Satisfaction Problems as underlying model
and implements a smart greedy-recursive algorithm to find a feasible
configuration. In this communication we present the tool’s design, its
features and its implemented algorithm. We use a real-world scenario
to illustrate the kind of facades the system can deal with.

1 INTRODUCTION

Energy consumption of residential and commercial buildings is con-
stantly growing and currently it exceeds industry and transport sec-
tors. It represents more than a third of the energy consumption in
developed countries: 44% in France2, 37% in Europe [19], 36% in
North America [7] and 31% in Japan [5]. The increase in population,
the enthusiasm for new technologies and the improvement of living
comfort combined with the domestic habits creates an energy de-
mand of buildings that will continue to increase in the coming years.
Therefore, reducing energy consumption of buildings is now a prior-
ity in national and international levels.

According to Falcon et al. [8] one of the strategies to achieve a
significant reduction lies on thermal building renovation. However,
old methods involving by hand configuration, human scheduling and
craft assembly, are expensive both in time and costs (bill of materi-
als). It is therefore essential to assist this massive renovation of build-
ings with decision support systems [13].

Our work is part of project called CRIBA (for its acronym in
French of Construction and Renovation in Industrialized Wood Steel)
[8]. This project focuses on the industrialization of energetic renova-
tion for residential buildings. The challenge, very ambitious, is to
have a building energetic performance under 25kWh/m2/year af-
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ter the renovation. To do this, the building is completely covered with
a new envelope composed of rectangular panels that are prefabricated
in factories. The core of our work lies on the two concurrent config-
uration tasks that have been identified: To configure each one of the
panels w.r.t. to the facade and to configure the entire facade using
a set of these panels [23, 24]. We focus our efforts on the develop-
ment of a decision support system for the configuration of panels and
facades.

In this paper we introduce Calpinator, a Java-based configuration
tool which is the heart of the decision support system for the CRIBA
project. The tool uses the notion of Constraint Satisfaction Problems
as underlying model and implements a smart greedy-recursive algo-
rithm to find one feasible configuration of panels and facades. In this
communication we present the tool’s design, its features and briefly
describe the implemented algorithm. It is worth noting that the algo-
rithm, whose details can be fond in [2], is not part of the contribution
of the present work. Instead, we focus our efforts on the implemen-
tation of the algorithm.

1.1 Related work
Layout synthesis, also known as space planning, techniques have
been used within different contexts and scenarios. For instance, find-
ing solutions for room configurations [25], apartment layouts [15]
and activities within a business office [12]. Also, some tools have
been implemented using different approaches, here we name a few
of them. For example, in [22] Shikder et al. present a prototype for
the interactive layout synthesis of apartment buildings including de-
sign information and an iterative design process. In [4] is introduced
WRIGHT, a constraint-based layout generation system that exploits
disjunctions of constraints to manage the possibilities on positioning
two-dimensional objects in a two-dimensional space. Another sys-
tem, LOOS [9], is able to configure spaces using rectangles that can
not be overlaped but that may have holes. It uses test rules applied by
steps to the rectangles in order to reach a good configuration based on
its orientation and relation with other rectangles. The same authors
have developed SEED [11]: A system based on LOOS used for early
stages on architectural design. A comparison between WRIGHT and
LOOS can be found in [10]. The system HeGel [1] (for Heuristic
Generation of Layouts) is yet another space planning tool that simu-
lates human design based on experimental cases. Finally, Medjdoub
et al. presents in [17] the system ARCHiPLAN which integrates ge-
ometrical and topological constraints to apartment layout planning.

2 PROBLEM CONTEXT
In order to achieve the CRIBA project goals and ensure the seal-
ing of the building, each facade of the renovated building must be



completely covered by rectangular configurable panels, i.e., it is nec-
essary a configuration of panels to cover the facade. Configuration is
the task of designing a given product (here facades) from predefined
generic components (here panels) [14, 21]. Components, which are
described in terms of its functions, characteristic and prices, are usu-
ally arranged in a catalog. Customized solutions, are built from the
combination of this catalog components and users requirements and
preferences.

In our context, a configuration solution for a facade layout is there-
fore finding a spatial positioning of panels that covers the whole
facade front, without overlapping nor holes. Keep in mind that,
whereas components (i.e., panels) in our catalog have well-defined
geometric shapes, dimensions and relations, their number is not
known in advance.

2.1 Layout elements
The following elements are part of the renovation. We include the
description of facades because its composing elements are important
in the accurate configuration of panels.

• Facades: A facade is represented by a 2D coordinate plane, with
origin of coordinates (0,0) as the bottom-left corner of the facade,
containing rectangular zones defining:

– Perimeter of facade to renovate with its dimensions (height and
width).

– Frames (windows and doors) with their dimensions (height and
width) positioned in the reference plane.

– Supporting areas (place to fix panels), with their permissible
load, positioned in the reference plane.

– Zones labeled as “out of configuration” which are areas that
can not be covered by configured panels and therefore require
specific panels design.

• Rectangular panels (shown in Figure 1): Panels are rectangular,
of varying dimensions (from 1 to 45.5m2) and may include dif-
ferent equipment (joinery, solar modules, etc.). These panels are
designed one at a time, when the definition of the layout config-
uration has been done, and manufactured in the factory prior to
shipment and installation on the building site.

Figure 1. Prefabricated rectangular panels

2.2 Configuration process
The renovation process follows a series of steps going form the build-
ing site through the elaboration of panels and ending in its assembly
[23]. At each level, a series of descriptive questions are asked to the
user. Each answer has a potential impact on the permissible dimen-
sions of panels. For example, the inaccessibility of a given facade
may limit the dimensions of panels and therefore the surface covered
by each one of them.

Once the descriptions of the site, building and facade are com-
pleted, the layout configuration of each facade can begin. Facades
must wear a set of panels that must be the greatest as possible while
respecting the architectural constraints, supporting areas, manufac-
turing and accessibility limitations. A rectangular panel is well con-
figured if it meets the following conditions:

C1 It should cover the greatest possible area given the accessibility
and the geometric position of frames.

C2 It can be installed in facade and supported by one or more sup-
porting areas.

C3 It does not overlap with any other panel.
C4 It does not block the definition and configuration of the rest of

the facade.

2.3 Configuration example
Consider the facade to renovate in literal (a) of Figure 2. The horizon-
tal and vertical lines represent the places in which we are allowed to
attach panels, i.e., the supporting areas. They correspond to various
possible locations for the fasteners supporting the weight of panels.
In this article, we assume that these places are capable of supporting
a large enough weight to not constrain the surface of the panels.

Figure 2. Well and ill-configured facades
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Fasteners consist of two parts: One fixed directly onto the facade
(wall bracket) and one installed on the panel at the factory. On the
facades, the fasteners are positioned in the center of the supporting
areas. At the level of the panels, brackets are fixed to the lower edge
of the panels at equidistant (from 0.9 to 4 meters) from each other:
These minimum and maximum distances allow to better distribute
the weight of supported panels. A wall bracket can support a single
panel (if it is on the perimeter of the panel) or two panels (if it is at
the junction between two consecutive panels).

Small rectangles present on the facade to renovate in Figure 2 lit-
eral (a), correspond to the locations of frames (doors and windows).

Two areas of the facade are considered “out of configuration”: The
gable and the bottom part before the first horizontal supporting area.
Two specific panels will be designed, one triangular for the gable and
a square one for the specific building foot.

Figure 2 literal (b) presents a facade with three ill-configured pan-
els: Due to the impossibility to place another panel north to the al-
ready placed panel P1, because there are no supporting areas at the
corners of panel P2 and because panel P3 partially overlaps a frame.
None of these configurations are valid. Facades in literals (c), (d) and
(e) of Figure 2 present layout configurations where all panels meet
the four conditions. From these, the facade (e) is preferred over the
other two because it uses less panels.

3 UNDERLYING MODEL
Following the CSP model, we have identified 6 constraint variables,
presented in Table 1, that allow us to represent the core of the layout
configuration for a given facade: The spatial positioning of panels.
Recall that a CSP problem is described in terms of a tuple 〈V,D, C〉,
where V is a set of variables, D is a collection of potential values
associated for each variable, also known as domains, and C is a set
of relations over those variables, referred to as constraints [18].

Table 1. 6 variables used in the Calpinator implementation.

Variable Description Domain

(px0,py0) Origin (bottom-left) x0 ∈ [0, wfac], y0 ∈ [0, hfac]
of panel p

(px1,py1) End (top-right) x1 ∈ [0, wfac], y1 ∈ [0, hfac]
of panel p

wp Width of panel p [0.9, 13.5]
hp Height of panel p [0.9, 13.5]

The algorithm implemented in the tool uses the following param-
eters to set domains and to link variables: Width of facade (wfac),
height of facade (hfac), environmental property (efac), for each
frame f its origin point (fx0,fy0) and its end point (fx1,fy1) and, a col-
lection of horizontal and vertical supporting areas each one of them
with its origin point (sax0,say0) and its dimensions (saw,sah).

In what follows we briefly describe five of the six constraints that
are part of the model and that are constraints in the Calpinator tool,
more details about the model can be found in [2]. The sixth con-
straint, dealing with weight restrictions, is not presented because it is
not yet included in the implementation.

Environmental The width wp and height hp of panels may be con-
strained because accessibility difficulties to the facade (e.g. trees,
water sources, high voltage lines, etc), transportation issues (e.g.
only small trucks available) or even climatological aspects (e.g.
wind speed more than a given threshold).

Dimension Considering the panels suppliers and panel fabrication
specifications, the width wp and height hp of each panel is in the
range [0.9, 13.5]. However, this is actually a combination of val-
ues. In other words, it is possible to configure a panel with dimen-
sions 0.9 × 13.5, 3 × 8.4 or 13.5 × 0.9, but it is not possible to
configure one with dimensions 13.5× 13.5, this is due to fabrica-
tion and transportation constraints.

Area A correct facade configuration is one in which the whole fa-
cade area is covered by prefabricated panels. Thus, a constraint
forcing the sum of panel areas (wp× hp) to be equal to the facade
area (wfac× hfac) is needed.

Non-Overlap In addition, we must ensure that the panels do not
overlap so we can have a valid configuration. Thus, for each pair
of panels p and q we apply the non-overlap constraint (also known
as ndiff in different CSP tools).

Panel vs. Frames We adjust the width or height of a given panel if
there exists a frame near to it. Either the panel overlaps the frame
or the panel is right, left, up or down of the frame. In any case,
due to the internal structure of the panel, borders of frames and
borders of panels must be separated by a minimum distance given
as input.

4 CALPINATOR: A FACADE CONFIGURATOR
Using the aforementioned model, we have developed two algorithms
for solving the problem of facades configuration. The first algo-
rithm is an attempt to find one layout configuration in a greedy fash-
ion (more information can be found in [2]). The second algorithm
uses global constraints and a constraint engine to find all possible
panel configurations for covering the facades (more information can
be found in [3]). In the current state of development of our tool,
however, only the greedy-recursive algorithm has been implemented
(Section 4.2). The constraint-based solution is planned for forthcom-
ing releases of the tool and will, probably, use the constraint solver
Choco [20] version 3 as underlying engine.

The result of our work is a Java-based tool that we call Calpinator3.
It allows the user to input a building specification with an undefined
number of facades and throws a solution for each of the facades if
there is any. An intuitive view of the process is available by means
of a friendly graphical user interface. In this Section we present the
internal design of Calpinator, its implemented algorithm, the input
and output formats, and the current options for customization.

It is worth mentioning that currently the user is suppose to be an ar-
chitect, the building owner or a third-party contractor that is in charge
of mapping the building data into the appropriated input format. Nev-
ertheless, the goal, in a different stage of the project, is to automate
the renovation process in every possible way. Thus, one of the part-
ners in the CRIBA project is working on the automatic generation of
the input for the configurator. In essence, they will use drones with
pattern and image recognition to obtain most 4 of the facade related
information.

4.1 Design
Calpinator has a very basic and modular design. The main charac-
teristic of Calpinator is the implementation of a greedy algorithm for

3 The name Calpinator is the combination of the French word calpinage,
which means layout, and the word configurator. https://bitbucket.
org/anfelbar/calpinageprototype/wiki/Home

4 Some aspects can not be managed by drones. This is the case of the sup-
porting areas maximum load, which is data that is recorded by the building
constructors.
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finding panels and facades configuration. Besides, we have enhanced
the tool with an intuitive graphical user interface and provide a stan-
dard storage format (JSON) to allow a transparent communication
with other software. Figure 3 presents the internal design of calpina-
tor at first glance.

Figure 3. Calpinator internal design.

Let us explain further the execution and interaction between ob-
jects in the figure. Initially, the user inputs its building profile speci-
fication as a JSON file (Step 1). As expected, if the input file is not
well formed, an exception is thrown (Step 2a). Alternatively, the sys-
tem creates a data base (Step 2b) that stores all objects of the build-
ing, i.e., facades, frames, etc. Once the parsing is done, it informs the
control it can enable the solving process (Step 3). The first task of the
Control (Step 4) is to send the Painter object to draw the facades and
its elements. Afterwards, (Step 5) the user may customize the solving
process as explained in Section 4.4. If no user-parameters are given,
Calpinator uses the default options (see Section 4.4). Next, when the
user asks for the solution (Step 6), the Control calls the Solver (Step
7) which executes the greedy-recursive algorithm presented in Sec-
tion 4.2. If a solution is found, the Control tells the Painter (Step 8),
by user’s demand, to draw one panel of the solution at a time. Finally,
the user may save the solution to another JSON file (Steps 9-10).

Take into account that each time the user opens a new building
profile, the data base with the profile objects is re-instantiated. This is
done in order to avoid conflicts between elements of different build-
ing profiles.

4.2 Algorithm internals
Using the elements description in Section 3, we have developed an
algorithm that solves the layout configuration in a greedy fashion
[2]. This means that the algorithm makes local decisions for posi-
tioning panels following a well-known approach in layout synthesis
field called constructive [12, 16]. Such decision making process is
opposite to previous works where a search space is explored using
backtracking search (see [6, 25] for instance). The implemented al-
gorithm exploits recursion, simulating backtracking, when position-
ing a panel is not possible due to constraint conflicts. In what follows,
we present the algorithm which an adaptation of the original one pre-
sented by the authors in [2]. The difference between this algorithm
and the original one resides in the non-implementation of the weight
constraint (postponed for further releases of the tool).

Step 1-: It begins by retrieving an available origin point and finding
an end point given the heuristic for panel orientation. At this
point, consistent with dimensions upper bounds, the panel
is as big as possible.

Step 2-: It proceeds by generating a new valid point by means of
solving conflicts between panels and frames. If dimensions
of the panel violate dimensions constraints then it fails at
positioning the panel.

Step 3-: It checks whether it is possible to install it using an hori-
zontal or vertical supporting areas.

Step 4-: To install the panel, either in an horizontal or a vertical sup-
porting area, it checks if the corners of the panel match sup-
porting areas. This ensures that the panel can be installed as
well as panels above it and at its right.

Step 5-: In the case it is not possible given the absence of support-
ing areas, it reduces the dimensions of the panel until the
corners are matched with supporting areas.

Step 6-: Finally, if the panel is well positioned, it proceeds by com-
puting new origin points and adding the next panel recur-
sively.

Step 7-: If the next panel can not be placed, dimensions for current
panel are reduced and another check is run. Otherwise we
have found a solution so add it to the solution list and return.

4.3 Profiles and solutions

In order to use Calpinator, the user must know how to input the infor-
mation and how to retrieve solutions. In this section we present the
formats used by the tool.

4.3.1 Input

At the current state of development, Calpinator tool receives as in-
put a building description that we call a profile. A building profile
is, in essence, a table with alphanumeric values describing each of
the facades in the building. In order to input this data into the tool,
we have adopted a well-known format called JSON which is a com-
position of entries in the form key:value. This decision is attractive
given that many formats (such as excel sheets and XML files) can be
mapped to JSON files and vice versa. For instance, a simple excel
sheet can be easily mapped into a JSON file using the open source
program Mr. Data Converter5. Support for other formats, such as ex-
cel sheets and XML files, will be provided in forthcoming versions
of the tool.

In order to avoid ambiguity, Calpinator is able to read only a par-
ticular set of values stored in a JSON file. The JSON input file for
Calpinator is described in what follows.

• type: This key represents the type of element described by the
entry. Allowed values are: ‘facade’ which informs that there is
a new facade in the building: ‘floor end’ which is an horizontal
supporting area: ‘cross wall’ which is a vertical supporting area:
‘crossing’ which describes the place in which an horizontal and
vertical supporting areas meet: ‘window’ a new window in the fa-
cade: ‘door’ a new door in the facade and: ‘out’ a zone out of con-
figuration. There can be any number of elements in the building
profile. Furthermore, elements do not follow any particular order
inside the JSON file.

5 The program is available online at http://shancarter.github.
io/mr-data-converter/
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• id: Each element is associated with an unique alphanumeric value
that distinguishes the element from any other.

• ref: Each element, except from facades, belongs to another ele-
ment. The key ‘ref’ is an alphanumeric value referring to the ele-
ment that the current element belongs to.

• x: Origin coordinate in x-axis.
• z: Origin coordinate in z-axis.
• width: Width of the element (in meters).
• height: Height of the element (in meters).

It is worth mentioning that Calpinator makes a distinction of all
elements in a building profile. To do so, it uses the element identifier
and the reference the element belongs to. Simply stated, all elements
in a given facade must have different identifiers. However, elements
of different facades may have the same identifiers provided they have
different references. A given element will be part of the facade refer-
enced by the field ‘ref’ regardless the ‘id’ value of the element.

Given that most users are used to excel sheets, we present an in-
put example using an excel table and show its corresponding JSON
translation. Table 2 presents a building with one facade, one window,
one door, one zone out of configuration and three different support-
ing areas. Table 3 shows the corresponding translation into JSON.

Table 2. Building profile example using excel sheet.

type id ref x z width height
facade fac1 0 0 18,95 10,64
floor end 1 fac1 0,16 0 18,79 0,16
cross wall 1 fac1 0 0 0,16 10,64
crossing 1 fac1 0 0 0,16 0,16
window 1 fac1 0,92 1,11 1,4 1,3
door 1 fac1 9,69 0,16 0,8 2,25
out 1 fac1 5,88 0 2 2

Table 3. Building profile example using JSON format.

[
{’type’:’facade’, ’id’:fac1, ’ref’:’’, ’x’:0, ’z’:0,

’width’:18.95,’height’:10.64},
{’type’:’floor end’,’id’:1,’ref’:’fac1’,’x’:0.16,’z’:0,

’width’:18.79,’height’:0.16},
{’type’:’cross wall’,’id’:1,’ref’:’fac1’, ’x’:0, ’z’:0,

’width’:0.16,’height’:10.64},
{’type’:’crossing’,’id’:1,’ref’:’fac1’, ’x’:0, ’z’:0,

’width’:0.16,’height’:0.16},
{’type’:’window’,’id’:1,’ref’:’fac1’,’x’:0.92,’z’:1.11,

’width’:1.4,’height’:1.3},
{’type’:’door’,’id’:1,’ref’:’fac1’, ’x’:9.69, ’z’:0.16,

’width’:0.8,’height’:2.25},
{’type’:’out’,’id’:1, ’ref’:’fac1’, ’x’:5.88, ’z’:0,

’width’:2,’height’:2}
]

Recall that this is the first version of the Calpinator tool and thus
the input data is limited to that used by the greedy-recursive algo-
rithm. In consequence, important data as the y-coordinate (for a 3D
model), facade adjacency and facade inclination have been currently
left out of the configurator’s input. Forthcoming developments will
take into account these values but will have, necessarily, to be imple-
mented with other versions or algorithms of that presented in Section
4.2.

4.3.2 Output

The output of a configuration is another JSON file containing the
information of each one of the panels. Additionally, the output con-
tains all information concerning frames inside panels. In short, each

frame (e.g., window or door) covered by a panel has a relative posi-
tion w.r.t. the origin of the panel. This is necessary for the fabrication
of the panel. i.e., each panel must be fabricated with the correspond-
ing holes for frames. Thus, for each panel or frame the output specify:
type: Type of element(‘panel’ or ‘frame’), id: Panel or frame identi-
fier, ref: Facade id or panel id that the element belongs to, x: Origin
x-coordinate (relative to facade origin or the panel origin), z: Origin
z-coordinate (relative to facade origin or the panel origin), width:
Width of the element, height: Height of the element.

4.3.3 Facades with no solution

Calpinator tool allows for any kind of facade to be used as input.
Nonetheless, it is not the case that any facade has a valid configura-
tion given the constraints in our model or given the user preferences.
For instance, literal (a) in Figure 4 does no have supporting areas
in necessary places (no supporting areas at meter 15). Or perhaps,
a given facade has no possible configuration because there is not
enough distance between frames and supporting areas which is the
case of literal (b) in Figure 4. Lastly, a facade may not be configured
with Calpinator because an ill definition of zones out of configura-
tion, as presented in literal (c) of Figure 4: No supporting areas at the
top of the zone. As a workaround, the user should extend the zone
out of configuration until the next horizontal supporting area. In the
figure, the doted square shows the result of extending the zone.

Figure 4. Three facades with no solution.

4.4 Parameterization

In its current state, our configurator is customizable in two ways. On
the first hand, the user may choose an heuristic that defines a pref-
erence in the orientation of panels. On the other hand, the user may
change the lower and/or upper bound for panel dimensions. As a con-
sequence of such parameterization, the tool finds different solutions
for the same facade. Nevertheless, as the implemented algorithm is
deterministic, any given customization will result in the same config-
uration for a given input.

4.4.1 Orientation heuristic

When we talk about orientation we refer to relation between width
and height which have an impact on the internal structure of the
panel. In essence, if the width of the panel is bigger than its height,
we consider the panel as horizontally oriented. Conversely, if the
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panel height is bigger than its width, we consider it as vertically ori-
ented. The user, for instance, may prefer to use horizontal panels in
its facade. Calpinator will try then to put each panel horizontally, i.e.,
wp ∈ [0.9, 13.5]∧hp ∈ [0.9, 3.5] (see the constraint Dimensions in
Section 3). If a given panel can not be placed in the preferred ori-
entation due to constraints conflicts, calpinator tries to place it using
the other orientation. At the model level we consider the heuristic as
a soft constraint, i.e., it can be violated without causing failure. This
is why we do not include soft constraints in the core of our model.

4.4.2 Dimensions range

Recall that given the environmental aspects of the facades, the dimen-
sions for panels may be reduced to a given interval. In addition, the
user may, optionally, further constrain the dimensions for all panels
in the facade according to its preferences. This is done by changing
the lower and upper bound of the panel dimensions. As expected, the
tool will respect the consistency between environmental constraints
and the user preference. For instance, if the environmental properties
constrain the width of a panel to be in the interval [0.9, 8] and the
user preferred upper bound is 9.5, the tool will set the upper bound
in 8. This is due to the monotonic properties of CSPs. For this cus-
tomization the tool presents three options:

• Manually: The user may change either the lower bound, the upper
bound or both values.

• Random: The system chooses a random value for the upper
bound. This constraints only one dimensions, the width for hori-
zontal orientation and the height for vertical orientation. Note that
the random strategy is applied for each panel in the facade. Thus,
it is likely that most of the panels have different dimensions. This
is interesting because, on the one hand, each time the user runs
the algorithm it will find a different configuration of panels. On
the other hand, it is more likely that the algorithm finds a valid
configuration because it will try new values until exhaustion.

• Square: Try square panels only, i.e., constraints the upper both of
vertical and horizontal orientation to be in the range of [0.9, 3.5]

Keep in mind that a given facade may have no configuration solu-
tion given its properties. Thus, constraining dimensions may reduce
the number of chances to find one feasible facade configuration.

5 USING CALPINATOR
In this section we present a brief description of how Calpinator works
in practice using some examples in real-world scenarios. As Calpina-
tor is implemented in Java, the user needs to count with an updated
version of the Java Virtual Machine. In addition, several dependen-
cies are necessary in order to run the application. The libraries6 used
by the tool are Oracle Commons libraries (beanutils, collections, io,
lang and logging) and Maven libraries (ezmorph and json-lib).

After launching the application, the user opens a JSON file spec-
ifying a building profile with any number of facades and elements
(see Section 4.3.1). Then, all facades inside the building profiles
are shown in the application, each facade in one tab. For instance,
a building with two facades will be visualized as presented in the
Initial State of Figure 5.

6 For simplicity, these libraries are included in the distribution of Calpina-
tor. Recall that these libraries are free software but each may have its
own License agreement. Calpinator is distributed under General Public
License version 3 and can be fount at https://bitbucket.org/
anfelbar/calpinageprototype/wiki/Home

(Initial State) (State 1) (State 2)

(State 3) (State 4) (State 5)

(State 6) (State 7) (State 8)

Figure 5. View of the configuration evolution.

Next, a customization may be done by changing the panels di-
mensions and choosing an heuristic as explained in Section 4.4. Af-
terwards, selecting the solve entry in the menu bar, the tool will
try to find one feasible configuration for the facade in the current
selected tab. For instance, Figure 5 presents a configuration solu-
tion for a facade with wfac equals 12.59 meters and height equals
10.907. The customization for this facade is horizontal panels with
maximum width of 13.5 meters for each panel. Each of the states in
the figure presents different views reached by making left click on
the canvas of Calpinator. Additionally, if the user wants to go back
and see a partial configuration he may do so by using the right click
on the canvas. Ultimately, the tool allows to save the configuration
solutions by choosing save in the menu bar. Note that only those
solved facades will be saved in the output. Given that this is work in
progress and that the greedy algorithm is a deterministic one, the tool
will only find one solution (if there exist) that satisfies the four condi-
tions presented in Section 2.2. In consequence, the potentially many
solutions for the facade layout are not found by Calpinator and thus
no heuristic or criteria for choosing the best one is necessary. On-
going investigation is looking into the possibility of finding different
solutions by combining the greedy approach and search trees.

5.1 Examples

In this section we present some examples with different panel orien-
tation and panel dimensions. The illustrated facades are part of the
working site La Pince in the commune Saint Paul-lès-Dax in the de-
partment of Landes, France. Each of the columns of Figure 6 presents
one facade of La Pince. The original facades, i.e., its frames, doors
and supporting areas, are presented in literals (1a) and (2a).

Literals (1b) and (1c) in Figure 6, for the facade on the left, show
configurations thrown by Calpinator using horizontal panels, with 3
meters as width upper bound for literal (1b) and 9.5 meters for literal
(1c). Next, in literal (1d) and (1e) we present the configurations of
the same facade using vertical orientation, with 6 meters as height
upper bound for literal (1d) and 13.5 meters for literal (1e).

Conversely, the right column of Figure 6 presents some configura-
tion configurations for the facade in literal (2a). The first two config-
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(1a) (2a)

(1b) (2b)

(1c) (2c)

(1d) (2d)

(1e) (2e)

Figure 6. La Pince facade 1 (right) and facade 2 (left).

urations present an horizontal orientation of panels and width upper
bound of 8 and 13.5 meters for literals (2b) and (2c), respectively.
Finally, in literals (2d) and (2e) of Figure 6 we present the configu-
rations with vertical panels and height upper bound of 8 meters and
13.5 meters, respectively.

6 CONCLUDING REMARKS
Controlling energy consumption in buildings is one of the major
challenges of the 21th century. Reducing energy consumption in
buildings is now focused on the renovation of existing buildings. To
achieve renovation goals set by the French Government in 2009 and
2013, it is essential to assist massive renovation with technological

tools and industrial methods rather than artisanal ones.
We presented in this paper a tool dedicated to the definition of lay-

out configuration for building facades. The novelty of the tool lies on
the implementation of a greedy-recursive algorithm that takes into
account the many constraints inherited by facades in order to find
a feasible configuration of panels. This work falls under the project
CRIBA which aims to industrialize the renovation from the outside
of buildings of residential housing in order to achieve an energy per-
formance close to 25kWh/m2/year.

We have presented our first problem of layout configuration de-
scribing the specifics details related to the insulation of facades out-
side. In a second step, we have brefly described the knowledge model
supporting this configuration problem based on constraints. The set
of constraints was formalized by CSP in [2]. These formalize both
manufacturing constraints and transportation, but also constraints re-
lating to the geometry and structure of building and the internal struc-
ture of rectangular panels. The first version of the layout configura-
tion tool incorporating all of these constraints is then presented and
illustrated on an example from the pilot project site. The solutions
proposed by our algorithm are all consistent with the constraints of
the layout problem.

However, not the algorithm nor the tool take into account aesthet-
ics preferences of users (e.g. architects’ preferences). To avoid the
generation of non-compliant solutions, additional “business” knowl-
edge should be added to the (constraint) knowledge model. They are
mainly related to the building after aesthetic renovation, such as an
alignment constraint of connection joints between panels.

6.1 Future work

We acknowledge that our work is still in its infancy. Different efforts
in crucial aspects will improve results in the model, algorithms and
the tool. On this regard, the following objectives are strategic direc-
tions within the project.

a. Implement the constraint-based algorithm introduced in [3] is a
priority. The algorithm is conceived to throw all possible panel
configurations for the facade. This goal includes finding a con-
straint solver with appropriated filtering and search capabilities.

b. Improve greedy-algorithm with pre-processing and post-
processing capabilities. Intuitively, a human configuration takes
advantages of the facade dimensions and positions of frames
to find a solution. Thus, it is adequated to add new constraints
consequence of previous structural analysis of the facade.

c. Add more variables, hence constraints, to the model and improve
or create new algorithms. For instance, there exists a constraint
for fasteners and panel’s edges distances which is important for
the panel’s stability. Also, there are some constraints over incli-
nation of the facade, or the building itself, and panels positions.
These and other relations will increase both the detail and the
complexity of the problem, but are mandatory steps for the indus-
trialization of the renovation.

d. Implement in Calpinator tool the weight constraint. The weight
constraint to be implemented involves a new constraint variable,
faiload: Maximum weight load of fastener which is in the range
of [0, 500] kilograms. The constraint is is defined as follows.

Weight Constraint A given fastener in a supporting area is
defined by its coordinates and its maximum weight load.
Let ATPi be the panels attached to the fastener fai and let
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computeWeight(p) be a function7 that returns the weight of
panel p. Constraint over panels weight is defined by

|ATPi|∑
j=1

computeWeight(ATPi[j]) ≤ faiload

This constraint is not implemented yet because we have not ex-
tracted and validated knowledge on how to distribute the panel’s
weight in the supporting areas. Up-to-now, we know that half of
the panel’s weight have an impact on a supporting area if there
is only one fastener interacting between the panel and the sup-
porting area. Otherwise all the panel’s weight will be supported
in area. Figure 7 shows some examples of this knowledge.

Figure 7. Distribution of weight in supporting areas.

e. Finally, a big challenge is to model and implement the concur-
rent renovation of multiple-adjacent facades. This particular sce-
nario introduce different problems. Consider, for instance, a ver-
tical supporting area at the right edge of a facade which is, in fact,
the first vertical supporting area in the next facade. A given con-
figuration has to take into account the weight in both facades over
the same supporting area. Another issue is the angle between two
adjacent facades and its implications for the width of panels.
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