
ReMax – A MaxSAT aided Product (Re-)Configurator
Rouven Walter and Wolfgang Küchlin1

Abstract. We introduce a product configurator with the ability of
optimal re-configuration built on MaxSAT as the background engine.
A product configurator supported by a SAT solver can provide an an-
swer at any time about which components are selectable and which
are not. But if a user wants to select a component which has already
been disabled, a purely SAT based configurator does not support a
guided re-configuration process. With MaxSAT we can compute the
minimal number of changes of component selections to enable the
desired component again. We implemented a product configurator
— called ReMax — using state-of-the-art MaxSAT algorithms. Be-
sides the demonstration of handmade examples, we also evaluate the
performance of our configurator on problem instances based on real
configuration data of the automotive industry.

1 Introduction

Using Propositional Logic encodings and SAT solving techniques to
answer the question whether a formula is satisfiable or not has a wide
range of applications [10]. The application of SAT solving for ver-
ification of automotive product documentation for inconsistencies,
e.g. within the bill-of-materials, has been pioneered by Küchlin and
Sinz [7].

In [16] we considered applications of MaxSAT in automotive con-
figuration. We mentioned the possible usage of re-configuration with
MaxSAT to make an invalid configuration valid again by keeping the
maximal number of the customer selections. Re-configuration is of
highly practical relevance [9]. For example, the after-sales business
in the automotive industry wants to extend, replace or remove com-
ponents with minimal effort while keeping the configuration valid.

In this paper, we extend this idea by considering product configu-
ration in general. We focus on product configuration based on fami-
lies of options, because this is the normal case when a user configures
a product. Within a family of options, the user must select exactly one
option out of a regular family or else may select at most one option
out of an optional family. With the focus on families, we can distin-
guish two solving approaches:

1. SAT Solving: With a SAT aided product configurator, we can val-
idate a configuration after each step of the configuration process.

2. MaxSAT Solving: With a MaxSAT aided product configurator,
we can compute an optimal solution for an invalid configuration,
such that a user has to make a minimal number of changes in the
current configuration to regain validity.

We identify different use cases. We describe them in detail and make
remarks about extensions or variants of them. We also show how a

1 Symbolic Computation Group, WSI Informatics, Universität Tübingen,
Germany, www-sr.informatik.uni-tuebingen.de, email:
{walterr,kuechlin}@informatik.uni-tuebingen.de

user process can look like using a MaxSAT aided product configura-
tor.

This paper is organized as follows. Section 2 introduces all rele-
vant mathematical definitions and notations needed for the later sec-
tions. In Section 3 we describe the basic concepts of SAT-based prod-
uct configuration. Section 4 shows use cases of SAT aided product
configuration. After that we describe use cases for MaxSAT aided
product configuration in detail in Section 5 and illustrate a possible
configuration process. Sections 6 and 7 describe the techniques we
used for our implementation and experimental results with bench-
marks based on industrial configuration instances. Section 8 de-
scribes related work and finally, Section 9 concludes this paper.

2 Preliminaries

We consider propositional formulas with the standard logical oper-
ators ¬,∧,∨,→,↔ over the set of Boolean variables X and with
the constants ⊥ and >, representing false and true, respectively. Let
vars(ϕ) be the set of variables of a formula ϕ. We call a formula
ϕ satisfiable, if there exists an assignment, a mapping from the set
of Boolean variables X to {0, 1}, under which the formula ϕ eval-
uates to 1. The evaluation procedure is assumed to be the standard
evaluation for propositional formulas. The Boolean values 0 and 1
are also referred to as false and true. If no such assignment exists,
we say the formula is unsatisfiable. The question whether a proposi-
tional formula is satisfiable or not is well-known as the satisfiability
(SAT) problem, which is NP-complete.

In most cases a SAT solver accepts only formulas in conjunctive
normal form (CNF). A formula in CNF is a conjunction of clauses,
where a clause is a disjunction of literals (variables or negated vari-
ables). Let var(l) be the variable of a literal l.

If a formula ϕ =
∧k

i=1

∨mi
j=1 li,j in CNF is unsatisfiable, we can

ask the question about the maximal number of clauses that can be
satisfied at the same time. This optimization variant of the SAT prob-
lem is called maximum satisfiability (MaxSAT) problem. The corre-
sponding question about the minimal number of unsatisfied clauses is
analogously called minimum unsatisfiabitlity (MinUNSAT) problem.
A solution to one of the two problems can be used to easily com-
pute the solution of the other one, because the following relationship
holds: k = MaxSAT(ϕ) + MinUNSAT(ϕ). It is worth noting that
a model of the optimum of the MaxSAT problem is also a model of
the optimum of the MinUNSAT problem and vice versa. In general,
there are several models for the optimum.

The MaxSAT problem can be extended in different ways: (i) we
can assign a non-negative integer weight to each clause (denoted with
(C,w) for a clause C and a weight w) and ask for the maximum
sum of weights of satisfied clauses, which is known as the Weighted
MaxSAT problem, (ii) we can split the clauses in hard and soft clauses
and ask for the maximum number of satisfied soft clauses while sat-

isfying all hard clauses, which is known as the Partial MaxSAT prob-
lem, and finally (iii) we can combine both specifications, which is
known as the Weighted Partial MaxSAT problem. The mentioned re-
lationship above between the MaxSAT and MinUNSAT problem also
holds for all MaxSAT variants.

Given a set of Boolean variables F = {M1, ...,Mn} and the re-
striction that exactly one variable has to be satisfied,

∑n
i=1 Mi = 1,

we call the set F a regular family and the elements members of
the family. For example, given a set of Boolean variables E =
{E1,E2,E3} representing the selectable engines of a car. An engine
is chosen if and only if the corresponding variable is set to true. A
car has exactly one engine, which makes the set E a family.

Given a family F = {M1, ...,Mn} with the restriction that
at most one variable has to be true, we call the set F an op-
tional family. For example, given a set of Boolean variables AC =
{AC1,AC2,AC3,AC4} representing the selectable air conditioners
of a car. An air conditioner is an optional feature in a car, but there
can be at most one air conditioner. This makes the set AC an optional
family.

The restrictions of a regular family or an optional family are spe-
cial cases of cardinality constraints, which restrict the number of
satisified variables of a set of Boolean variables to be {≤, <,=, >
,≥} a non-negative integer k. The restriction for a regular family
can be encoded in CNF with the following two formulas, while an
optional family can be encoded by using only the second formula:

1. At least one satisfied variable:
∨n

i=1 Mi

2. At most one satisfied variable:
∧n

i=1

∧n
j=i+1(¬Mi ∨ ¬Mj)

The given encodings for the two special cases = 1 and ≤ 1 are very
simple and require only O

(
n2
)

clauses without adding new auxil-
iary variables. There are also encodings using auxiliary variables in
exchange for a fewer number of clauses [14].

Since we consider only regular and optional family types, more
general cardinality constraints than the above-mentioned special
cases are not necessary and thus not considered in this paper. In the
context of automotive configuration, we usually deal with rules and
families of certain model series. For example, the number of seats
is fixed and therefore we do not need to handle a family of seats
where we would need a cardinality constraint to restrict the selection
of seats between two and four.

3 Product Configuration Concepts for
SAT-Configuration

In this section, we describe the basic concept of SAT-based product
configuration. We concentrate on rules in Propositional Logic, be-
cause in our main application context of automotive configuration
we always deal with this type of rules. Along with the set of rules
we consider families, which results in the following definition for
product configuration:

Definition 1. (Product Configuration Instance2) A product configu-
ration instance is a triple (R,F ,S):

• SetR = {ϕ1, . . . , ϕk}, where ϕi is a propositional formula.
• Set F = {F1, . . . ,Fm}, where Fi is a family.
• Mapping S :

⋃m
i=1 vars(Fi)→ {no, yes} × (N≥0 ∪ {∞}).

2 In the configuration literature a product configuration instance is a solution
for a configuration problem, whereas we refer to the term as a description
of a product configuration problem.

The following relation holds between rules and families:⋃
R∈R

vars(R) ⊆
⋃

F∈F
F.

The rules R describe the relationship among the family members
of the different families. They determine the possible valid combi-
nations. The set F contains all optional and regular families. The
mapping S represents the selections and deselections of the family
members in respect of a priority. For simplicity reasons we will only
use the term selections to refer to both selections and deselections.
There are three main cases for a member s:

1. S(s) = (c, 0) with c ∈ {no, yes}:
The user made no decision about the member (priority 0).

2. S(s) = (c, p) with c ∈ {no, yes} and p ∈ N≥1:
The user made a selection (priority greater zero).

3. S(s) = (c,∞) with c ∈ {no, yes}:
The user made an indispensable (hard) selection (infinity priority).

We abbreviate the mapping S for a member s as follows: For a posi-
tive selection we write a positive literal s and for a negative selection
we write the negative literal ¬s. We can then write a single tuple
(s, p) with p ∈ N≥0 ∪ {∞} and describe the mapping S as a set of
tuples. For simplicity reasons we leave each member s with priority
0 out of S in the given examples of this paper.

The set S of selections can be seen as a partial assignment
given by the user of the product configurator and can be divided
in two disjoint sets of positive and negative selections: Pos(S) :=
{(s, p) | (s, p) ∈ S and s is a positive literal} and Neg(S) :=
{(s, p) | (s, p) ∈ S and s is a negative literal}.

The priority of a selected member is only relevant when it comes
to the question of re-configuration. Then the priorities represent the
users preferences.

Example 1. We consider a product configuration instance
(R,F ,S), whereR and F describe components of a computer sys-
tem and dependencies among them. Table 1 shows the families and
Table 2 shows the rules. Let S = ∅, which means a user has not
made selections so far.

Family Type Members
M (Mainboard) regular M1,M2,M3,M4

V (Videocard) regular V1,V2,V3,V4,V5

C (CPU) regular C1,C2,C3,C4

P (Power Supply) regular P1,P2

CD (CD-Device) optional CD1,CD2,CD3

CR (Card-Reader) optional CR1,CR2

Table 1: Families F of the computer system

Rules
M1 → ((V1 ∨V2 ∨V4) ∧ (C1 ∨ C3) ∧ P1 ∧ ¬CD1)
M2 → ((V2 ∨V5) ∧ (C2 ∨ C3) ∧ (P1 ∨ P2) ∧ ¬CD1)
M3 → ((V3 ∨V4) ∧ (C2 ∨ C3 ∨ C4) ∧ P1)
M4 → ((V1 ∨V2) ∧ (C1 ∨ C4) ∧ P1 ∧ ¬CD2)

C1 → ((V2 ∨V3) ∧ P2)
C2 → (V4 ∨V5)
C3 → (V3 ∨V4)

Table 2: Configuration rulesR of the computer system

We will now define the criteria of a valid configuration:

Definition 2. (Valid Configuration) A product configuration instance
is called a valid configuration if the following formula is satisfiable:∧

R∈R

R ∧
∧
F∈F

CC(F) ∧
∧

(s,p)∈S,p6=0

s

Where CC(F) are the appropriate cardinality constraints of a family
(described in the preliminaries).

If a configuration instance is valid, the corresponding (partial)
variable assignment (also called model or configuration solution) is
of interest, because the variable assignment describes which mem-
bers are chosen and which are not.

A configuration solution is in general not complete, e.g. when the
selections S made by a user contain selections with priority 0.

After defining the basic product configuration concepts, we will
go into more detail in the next section by describing which use cases
of a SAT aided product configurator exist and finally by showing an
iterative process of SAT aided product configuration.

4 SAT aided Product Configuration
With SAT solving a product configurator can validate a user’s se-
lection and also compute the selectable members for the remaining
families. The overall plan is quite simple: Each selection of an op-
tion results in a true valuation of that option. Regular families result
in propagations of the value false to the remaining options, after one
family member has been selected. Given a partial valuation, it is easy
to compute by SAT solving which of the remaining options can still
be selected, and which must be set to true or false, respectively, as a
consequence of previous selections.

We describe these use cases in detail in the following subsections
and afterwards consolidate them in an iterative user process.

4.1 Use Case: Validation & completion of a
(partial) selection

Given a product configuration instance (R,F ,S), we can validate
the selections with a SAT solver by checking the formula of Def-
inition 2 for satisfiability. Algorithm 1 shows the procedure. Only
selections with a priority 6= 0 are taken into account for the valida-
tion.

Algorithm 1: Validation & completion of a (partial) selection
Input: (R,F ,S)
Output: (result,model), where result is true if the (partial)

selection is valid, otherwise false and model is a
complete variable assignment

return SAT

(∧
R∈R

CNF(R) ∧
∧

F∈F
CC(F) ∧

∧
(s,p)∈S,p 6=0

s

)

Because most SAT solvers take CNF as input, we write CNF(R)
to indicate the transformation of an arbitrary rule to its CNF rep-
resentation. In practice we use a polynomial formula transforma-
tion [15, 12] to get an equisatisfiable formula to avoid the potentially
exponential blow-up that occurs when using the distributive law.

If the configuration instance is valid, the algorithm also returns
a complete variable assignment. This complete variable assignment
gives an example which selections have to be made to complete the
given configuration instance. In general, the given model is not uniqe
and there exist several models.

Example 2. We reconsider the computer system configuration Ex-
ample 1. In the following two selection examples, we do not use pri-
orities because we just want to check the validity of the selections.

1. S = {M1,V4} leads to a valid configuration, which can be com-
pleted to {M1,V4,C3,P1,CD3,CR2}.

2. S = {M1,C1} leads to an invalid configuration, because M1

requires P1 and C1 requires P2, but due to the family constraints,
both cannot be selected at the same time.

4.2 Use Case: Computation of selectable members

During the configuration process a user would like to know which
of the remaining family members are still selectable, i.e. which se-
lections lead to a valid configuration. We can compute the selectable
members by validating the (partial) selections with a SAT solver. Al-
gorithm 2 shows the procedure. We iteratively make one SAT call for
each member and check if selecting this member is valid.

Algorithm 2: Computation of selectable members
Input: (R,F ,S)
Output: Mapping V from

(⋃
F∈F F

)
to {no, yes} indicating

whether a member is selectable or not
V ← Initialize mapping
foreach m ∈

⋃
F∈F F do

if

SAT

(∧
R∈R

CNF(R) ∧
∧

F∈F
CC(F) ∧

∧
(s,p)∈S,p 6=0

s ∧m

)
then

V ← (m, yes)
else

V ← (m, no)

return V

After the computation of selectable members, the SAT aided prod-
uct configurator can display the result to the user (i.e. by disabling all
non-selectable members). Then the user knows about the selectable
members.

Remarks:

1. In the special case S = ∅, in which no selection has been made by
the user so far, the computation of the selectable members implic-
itly brings up members which can never be part of a valid config-
uration (redundant members) and members which have to be part
of each valid configuration (forced members).

2. The performance of Algorithm 2 can be improved. If a family al-
ready contains a positively selected member, then we know that
all remaining members are not selectable anymore due to the fam-
ily constraints. We just have to check families with no positively
selected member.
The performance can be improved further. We use an incremental
and decremental SAT solver, which allows us to load all rules,
family constraints and selections first and check each member m
by adding and removing the unit clause m from the SAT solver.
We do not have to load the invariant constraints repeatedly for
each check.

Example 3. We compute the selectable members for our computer
system configuration (see Example 1):

1. S = ∅: Table 3 shows the remaining selectable members.

Family Selectable Memb. Non-Selectable Memb.
M (Mainboard) M1,M2,M3,M4

V (Videocard) V1,V2,V3,V4,V5

C (CPU) C2,C3,C4 C1

P (Power Supply) P1,P2

CD (CD-Device) CD1,CD2,CD3

CR (Card-Reader) CR1,CR2

Table 3: Selectable members for an empty selection

2. S = {M1,V4}: Table 4 shows the remaining selectable members.

Family Selectable Memb. Non-Selectable Memb.
C (CPU) C3 C1,C2,C4

P (Power Supply) P1 P2

CD (CD-Device) CD2,CD3 CD1

CR (Card-Reader) CR1,CR2

Table 4: Result of the selectable members computation

4.3 SAT aided configuration process

Figure 1 illustrates a possible SAT aided configuration process in-
volving both Use Cases 4.1 and 4.2. After the user has made one or
multiple selections, the SAT solver validates the current configura-
tion. This results in two cases:

1. Valid configuration: In the case of a valid configuration, the user
can continue selecting members. Additionally, to guide the user
we can compute the selectable members for the current configura-
tion. After new selections, the process iterates.

2. Invalid configuration: In the case of an invalid configuration, the
user has to take back one or more of the previously made selec-
tions. The user can validate each backtracking step again until a
valid configuration state is reached.

User

 1. Select SAT Solver 2. Encode

 3a. UNSAT

Verify &
Complete

Selectable
Members

3b. SAT

 4. Feedback

Configuration

Figure 1. SAT aided configuration process

Remark: If a given complete example model l1 ∧ . . . ∧ ln in the
SAT case does not satisfy the demands of the user, she can exclude
this model by adding the hard clause ¬l1 ∨ . . . ∨ ¬ln. Then an-
other complete model will be produced if one exists, otherwise we
encounter the UNSAT case.

In a SAT aided product configuration process described above, the
user is left to herself when it comes to the question which selec-
tions should be undone to regain a valid configuration. Perhaps the
user made a selection of a highly desired member, which she does
not want to take back. Now the user has to try different configu-
ration changes by herself and a guidance is missing which one to
choose. This is the point where MaxSAT aided product configura-
tion can help. We will describe re-configuration use cases in detail in
the following section.

5 MaxSAT aided Product (Re-)Configuration

In this section we describe how re-configuration can be done with
partial (weighted) MaxSAT as a background engine. We show two
basic use cases, describe possible variations of them and finally inte-
grate the re-configuration step into our iteractive user process.

5.1 Use Case: Re-configuration of the selections

During the configuration process we may reach a state where we have
an invalid configuration. The cause of the conflict can be one or both
of the following:

1. The selections S conflict with the rulesR.
2. The selections S conflict with the family constraints.

We have to re-configure either the rules or the selections to re-
gain validity. For now we consider all rules as hard limitations that
we can not soften, which is the common case. We will discuss re-
configuration of rules later in Section 5.4.

Considering the rules as a hard restrictions, the question arises,
how many of the selections can be kept maximally to reach a valid
configuration. Remember, a user may have done multiple selections
at once without validating the current configuration and without con-
sidering the selectable members. Therefore, removing only the last
selection does not lead to a valid configuration again in general. Also
the last selection could be of infinity priority, so it is no option for
the user to remove the last selection.

To answer the question we set the selections as soft unit clauses
and re-configure the selections with a partial MaxSAT solver. The
following encoding represents our requirements:

Hard :=
⋃

R∈R

CNF(R) ∪
⋃
F∈F

CC(F) ∪
⋃

(s,p)∈S,p=∞

{s}

Soft :=
⋃

(s,p)∈S,p 6=0,p 6=∞

{s}

Selections with priority∞ are also considered as indispensable and
will be encoded as hard unit clauses. Only dispensable selections will
be re-configured. Algorithm 3 shows the re-configuration procedure.

With the resulting model, we can give the user an example of a
complete selection which requires a minimal number of changes in
order to regain a valid configuration compared to the original selec-
tions. Or, the other way round, the model gives an example about
how to keep the maximal number of selections.

Algorithm 3: Re-Configuration of a (partial) selection
Input: (R,F ,S)
Output: (optimum,model), where optimum is the minimal

number of changes to regain a valid configuration and
model is a model for the optimum

Hard← ∅
Soft← ∅
foreach R ∈ R do

Hard← Hard ∪ CNF(R)

foreach F ∈ F do
Hard← Hard ∪ CC(F)

foreach (s, p) ∈ S ∧ p 6= 0 do
if p =∞ then

Hard← Hard ∪ {s}
else

Soft← Soft ∪ {s}

(optimum,model)← PartialMinUNSAT(Hard, Soft)
return (optimum,model)

Remark: As desribed before we use a transformation like Tseitin
or Plaisted-Greenbaum instead of CNF(R) in practice. Even though
the Tseitin and Plaisted-Greenbaum transformations are only equi-
satisfiable, this is not an issue for MaxSAT when converting for-
mulas into hard clauses. Since the Tseitin and Plaisted-Greenbaum
transformations share the same models on the original variables, one
can easily verify that the search space between the converted and the
original instance remains the same.

Extensions: The described use case can be extended as follows:

1. User constraints: A user can add additional constraints consid-
ered as hard clauses.
If, e.g., mainboard M1 is selected, the user definitely wants video
card V2 to be selected. But if mainboard M2 is selected, the user
definitely wants video card V5 to be selected. Then we add the
rules (M1 → V2) ∧ (M2 → V5) as constraints to the rulesR.

2. Focus on selection: For each family an option “choose one of the
selected” can be offered to add a constraint such that only positive
selected members within a family will be considered during the
re-configuration computation.
E.g. if a user focuses on mainboards M1,M3,M4, a hard clause
(M1 ∨M3 ∨M4) will be added to the rulesR.

Example 4. We continue our canonical Example 1: Table 5 shows
multiple selections of members within families and a result model
re-configuration. For all selections shown we choose priority 1, that
means no selection in this example is an indispensable one.

Family Focus Selections Results
M No (M1, 1), (M2, 1), (¬M3, 1) M4

V Yes (V1, 1), (V2, 1) V1

C No (C2, 1), (C3, 1) C4

P No P1

CD No (¬CD1,∞) CD3

CR No CR2

Table 5: Users selections and results

Result: We have to make 5 changes minimally to regain a valid
configuration. Without the focus set for the video cards family V , we

would have to make 4 changes minimally, e.g. by choosing M2, V5,
C2, P1, CD3, CR2.

5.2 Use Case: Re-Configuration of the selections
with priorities

In the previous use case we treated all soft clauses as equivalent. A
user may prefer one member over the other, which results in prior-
ization of the selected members. We can handle priorities with Par-
tial Weighted MaxSAT solving. The encoding for this use case is
basically the same as before, but now we bring priorities into play.
Algorithm 4 shows the complete computation procedure.

Algorithm 4: Re-Configuration of a (partial) selection with pri-
orities

Input: (R,F ,S)
Output: (optimum,model), where optimum is the minimal

number of priority points to change to regain a valid
configuration and model is a model for the optimum

Hard← ∅
Soft← ∅
foreach R ∈ R do

Hard← Hard ∪ CNF(R)

foreach F ∈ F do
Hard← Hard ∪ CC(F)

foreach (s, p) ∈ S ∧ p 6= 0 do
if p =∞ then

Hard← Hard ∪ {s}
else

Soft← Soft ∪ {(s, p)}

(optimum,model)←
PartialWeightedMinUNSAT(Hard, Soft)
return (optimum,model)

Extension: All extensions presented in Subsection 5 carry over to
this use case.

Example 5. We reconsider our re-configuration Example 4 and add
a priority of 2 for member V2. Table 6 shows our selections with the
corresponding weights in parentheses and the results.

Family Focus Selections Results
M No (M1, 1), (M2, 1), (¬M3, 1) M4

V Yes (V1, 1), (V2, 2) V2

C No (C2, 1), (C3, 1) C4

P No P1

CD No (¬CD1,∞) CD3

CR No CR2

Table 6: Users selections with priorities and results

Result: We have to change 5 priority points minimally to regain a
valid configuration. If we would still be choosing member V1 instead
of member V2 we would have to change 6 priority points, because of
the higher priority of V2.

5.3 A MaxSAT aided re-configuration process
We reconsider the process of Figure 1 in Step 3a. UNSAT where the
user gets the feedback that her current selections lead to an invalid

configuration. With a SAT solver only, the user has to try by herself
which selections have to be undone to regain a valid configuration.
But now, we can help the user at this point by using re-configuration
with MaxSAT. Figure 2 illustrates both Use Cases 5.1 and 5.2 em-
bedded in a product configuration process using MaxSAT.

User

1. Re-configurate
MaxSAT
Solver

 2. Encode

 3a. No solution

Optimum
+

Example
Model

3b. Solution

 4. Feedback

Invalid Configuration

Figure 2. MaxSAT aided configuration process

After the user gets the feedback UNSAT, she can start a re-
configuration of her current selections. This results in two cases:

1. No solution: If the indispensable selections (with priority∞) col-
lide with the rules or the family constraints, then there is no solu-
tion. In this case, the user has to weaken some of the indispensable
selections in order to make a re-configuration possible. The user
can use high priorities to weaken the desired members to ensure
they will be preferred over other selections.

2. Solution: If the indispensable selections can be satisfied, then
there exists a solution with an optimum for the prioritized selec-
tions. In this case, the user will be told about the optimum, i.e.
about the number of minimal changes to regain a valid configura-
tion. Also, an example model with the optimum will be given to
the user.

Remark: Similiar to the SAT aided configuration process the fol-
lowing holds: If the given complete example model l1 ∧ . . . ∧ ln in
the solution case does not satisfy the demands of the user, she can
exclude this model by adding the hard clause ¬l1 ∨ . . . ∨ ¬ln. Then
another model with the same optimum will be produced, if one ex-
ists. If there is no other model with the same optimum, the next best
optimum under the new conditions will be computed with an exam-
ple model.

In case there is no solution and a user just do not want to weaken
her selections with priority∞, we can consider weakening the rules.
In the next section, we will describe this possibility in detail.

5.4 Use Case: Re-configuration of rules

It is possible that the selections a user made have no solution when
trying to re-configure them. Assuming the rules themselves are not
contradictory, then the cause for no solution are too many selections
with priority∞. There are two cases which can occur or both at the
same time:

1. Violation of the family constraints: If a user selects more than
one member of a family with infinity priority, the family con-
straints are violated.

2. Violation of rules: If a user does not violate the family con-
straints, then the selected members with priority infinity are in
collision with the rules.

The first case can be handled by a product configurator by simply
not allowing to choose more than one member with priority infinity
or giving the user a warning message when doing so.

In the second case, if the user is not willing to soften her selections,
we can not re-configure the selections w.r.t. the rules. But when we
have a closer look at the rules, there may be some rules, which we
can soften, e.g. when a rule is not a physical or technical restric-
tion, but only exists for marketing or similiar purposes. A company
may be willing to violate or change some of these rules to build the
product. Knowing the miminum number of rule changes in order to
permit a desired vehicle configuration can help in managing the set
of marketing rules.

For this use case, we extend Definition 1 by an additional mapping
SR : R → (N≥0 ∪ {∞}), which represents the priorities of the
rules a user made. After softening some of the rules this way we can
re-configure the rules by maximizing the number of satisfied rules,
respectively violating only a minimal number of rules. Algorithm 5
shows this procedure more formally.

Algorithm 5: Re-Configuration of rules
Input: (R,F ,S)
Output: (optimum,model), where optimum is the minimal

number of changes to regain a valid configuration and
model is a model for the optimum

Hard← S
Soft← S
foreach F ∈ F do

Hard← Hard ∪ CC(F)

foreach R ∈ R ∧ SR(R) 6= 0 do
if p =∞ then

Hard← Hard ∪ CNF(R)
else

Hard← Hard ∪ CNF(bR → R)
Soft← Soft ∪ {bR}

foreach (s, p) ∈ S ∧ p 6= 0 do
if p =∞ then

Hard← Hard ∪ {s}
else

Soft← Soft ∪ {s}

(optimum,model)← PartialMinUNSAT(Hard, Soft)
return (optimum,model)

Since a rule R is an arbitrary formula, we can not just convert
R to its CNF and add the resulting clauses as soft clauses. In gen-
eral, some of these clauses will be satisfied and some not. Instead we
want to maximize the number of rules. In other words, we are facing
a group MaxSAT problem [2, 6], where each CNF(R) is a group of
clauses. The goal of group MaxSAT is to satisfy the maximum num-
ber of groups. A group is satisfied if all clauses within the group are
satisfied.

The group MaxSAT problem can be reduced to a partial MaxSAT
problem as follows: For each non-indispensable rule R we introduce
a new variable bR and add the hard clauses CNF(bR → R). Addi-

tionally we add a unit soft clause {bR} for each new variable. Each
satisfied variable bR implies the whole group of clauses in CNF(R)
to be satisfied. Therefore, satisfying a maximal number of the newly
introduced variables satisfies a maximal number of the corresponding
formulas. On the other hand, with the help of the newly introduced
variables, we can identify, from the resulting model, which formu-
las are satisfied and show this result to the user. For a more detailed
explanation, see [2, 6].

Extension: Of course, rules can also have different priorities and
we can extend this use case by assigning priorities to rules and selec-
tions to compute the maximal sum of priority points. This extension
can be realized analogously as described for Use Case 5.2, thus we
will not describe it explicitly.

6 Implementation techniques

We implemented the above SAT-based and MaxSAT-based use cases
in one product configurator — called ReMax — on top of our uni-
form logic framework, which we use for commercial applications
within the context of automotive configuration. Our SAT solver pro-
vides an incremental and decremental interface. We maintain two
versions (Java and .NET) and decided to implement ReMax using
.NET 4.0 with C# along with the WPF Framework for the GUI.
We implemented state-of-the-art partial (weighted) MaxSAT solvers
Fu&Malik, PM2 and WPM1 on top of our SAT solver [5, 1].

Figure 3. Screenshot of ReMax with open “Families” tab

Figure 3 shows an example screenshot from the ReMax GUI with
the “Families” tab opened.

7 Experimental Results

Table 7 show statistics about the real configuration data from two
different German car manufacturers, called M01 and M02, which we
used for our benchmarks. Car manufacturer M01 uses arbitrary for-
mulas as rules, whereas M02 uses clauses as rules.

Rules Families
Problem Quantity #Variables Quantity Avg. size
M01_01 2074 1772 34 34,294
M01_02 2430 2087 41 39,293
M01_03 1137 880 30 18,233
M02_01 11627 996 188 6,282
M02_02 4465 612 174 5,321

Table 7: Statistics about car manufacturer problems

For the following benchmarks we used two partial weighted
MaxSAT solvers, which are based on the following principles:

1. WPM1: An unsat core-guided approach with iterative SAT calls.
In each iteration a new blocking variable will be added to each
soft clause within the unsat core [1].

2. msu4: An unsat core-guided approach with iterative SAT calls us-
ing a reduced number of blocking variables [11].

We implemented WPM1 on top of our own SAT solver while msu4
is an external solver3.

Our environment for the benchmarks has the following hardware
and software settings. Processor: Intel Core i7-3520M, 2,90 GHz;
Main memory: 8 GB. WPM1, based on .NET 4.0, runs under Win-
dows 7 while msu4 runs under Ubuntu 12.04.

For Use Case 5.2 we created three categories as follows: Out of
30%, 50% and 70% of the families one member is selected randomly
with a random priority between 1 and 10. The rules have infinity
priority. In general, this leads to an invalid configuration because the
rules are violated. For each category we created 10 instances.

Table 8 shows the results for each category as average time in sec-
onds. The abbreviation “exc.” means that the time limit of 30 minutes
was exceeded. As we can see, msu4 performs very well in all cate-
gories with reasonable times from less than one second up to about
25 seconds. Our solver WPM1 also has reasonable times from about
2 seconds up to about 28 seconds, but exeeds the time limit in two
categories for the instance M02_01.

30% 50% 70%
Problem WPM1 msu4 WPM1 msu4 WPM1 msu4
M01_01 7,34 0,66 12,70 1,08 15,59 1,84
M01_02 8,59 0,74 16,48 1,32 27,44 2,96
M01_03 2,10 0,33 4,10 0,45 5,80 0,85
M02_01 20,99 2,16 exc. 5,91 exc. 24,45
M02_02 3,90 0,48 9,60 1,56 13,01 4,77

Table 8: Results of Use Case 5.2 scenario

For Use Case 5.4 we created three categories as follows: Out of
30%, 50% and 70% of the families one member is selected randomly
with infinity priority, which leads to an invalid configuration in gen-
eral because the rules are violated. But this time, we assign all rules
a priority of 1. For each category we created 10 instances.

Table 9 shows the results for each category as average time in sec-
onds. As we can see, both solvers can handle all instances in each
category in reasonable time. While WPM1 takes from about 3 sec-
onds up to about 72 seconds, the external solver msu4 takes from less
than one second up to about 9 seconds in the worst case.

3 http://logos.ucd.ie/web/doku.php?id=msuncore

30% 50% 70%
Problem WPM1 msu4 WPM1 msu4 WPM1 msu4
M01_01 9,35 2,39 16,19 3,93 20,63 4,35
M01_02 12,86 2,80 19,32 5,47 27,82 4,82
M01_03 2,54 0,78 5,71 1,45 6,76 1,74
M02_01 18,40 4,43 41,16 8,33 71,29 8,55
M02_02 5,13 0,49 9,88 1,04 16,32 1,48

Table 9: Results of Use Case 5.4 scenario

8 Related Work
Another approach for re-configuration uses answer set programming
(ASP) on a decidable fragment of first-order logic [4]. Hence the
used language is more expressive. With the growing performance of
SAT solvers in the last decade, SAT solving in turn has been used to
solve problem instances of ASP [8].

An algorithm for computing minimal diagnoses using a conflict
detection algorithm is introduced in [13]. A minimal subset ∆ of
constraints is called a diagnosis if the original constraints without ∆
are consistent. Although this approach is described for constraints
of first-order sentences, the technqiues can be generalized to a wide
range of other logics.

The indicated idea above is further improved in [3], where an al-
gorithm — called FastDiag — is introduced which computes a pre-
ferred minimal diagnosis while improving performance.

We did not consider works dealing with explanations like MUS
(Minimal Unsatisifable Subset) iteration. When using MUS iteration
for re-configuration, a user not only has to manually solve each con-
flict, but also will not necessarily solve the conflicts in an optimal
manner, i.e. only changing a minimal number of selections.

9 Conclusion
We described product configuration for propositional logic based rule
sets which are widely used in the automotive industry. We showed
applications of SAT solving by two use cases. Furthermore, we
showed use cases of how MaxSAT can be used for product configu-
ration when it comes to an invalid configuration. With MaxSAT we
are able to re-configure an invalid configuration in an optimal way,
i.e. we can compute the minimal number of necessary changes. We
embedded both scenarios in configuration processes showing how a
user can be guided during the configuration process.

We presented an implementation of a product configurator — Re-
Max — supporting all of the described use cases using state-of-the-
art SAT and MaxSAT solving techniques. From real automotive con-
figuration data from two different German premium car manufactur-
ers we created synthetic product configuration benchmarks for the
presented use cases. Besides our own MaxSAT solver we used the
external solver msu4 to measure and compare the performance. As
our experimental results show, we can re-configure those problem in-
stances in reasonable time. Since some problem instances could be
solved within a few seconds, our product configurator could be used
as an interactive tool in these cases. Other problem instances took
over a minute in the worst case, but is still more than adequate for
a responsive batch service. While this may seem long, we were told
that the manual configuration of an order without tool support by a
trial and error process may well take on the order of half an hour.

We do not claim that our approach is currently fit for use as
a consumer configurator. However, many business units of a car
manufacturer, such as engineering or after sales are in need of a

(re-)configurator that feeds directly off the engineering product doc-
umentation. E.g., many test prototypes must be built before start of
production with a varying set of options.

Expert users sometimes need some complete car configurations
which cover all valid combinations of a subset of options, e.g. for
testing purposes. With a SAT based (re-)configurator, an expert user
can start the configuration from the desired options instead of te-
diously following the given configuration process in a usual sales
configurator. At any time, the user can ask the configurator for “any
completion” or, using MaxSAT, for a “minimal completion” of the
partial configuration to a complete configuration.

REFERENCES
[1] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, ‘Solving

(weighted) partial MaxSAT through satisfiability testing’, in Theory
and Applications of Satisfiability Testing - SAT 2009, ed., Oliver Kull-
mann, volume 5584 of Lecture Notes in Computer Science, 427–440,
Springer Berlin Heidelberg, (2009).

[2] Josep Argelich and Felip Many, ‘Exact Max-SAT solvers for over-
constrained problems.’, Journal of Heuristics, 12(4–5), 375–392,
(September 2006).

[3] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 26(1), 53 – 62, (2012).

[4] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(re)configuration using answer set programming’, in IJCAI-11
Configuration Workshop Proceedings, eds., Kostyantyn Shcheko-
tykhin, Dietmar Jannach, and Markus Zanker, pp. 17–24, Barcelona,
Spain, (July 2011).

[5] Zhaohui Fu and Sharad Malik, ‘On solving the partial MAX-SAT prob-
lem’, in Theory and Applications of Satisfiability Testing—SAT 2006,
eds., Armin Biere and Carla P. Gomes, volume 4121 of Lecture Notes
in Computer Science, 252–265, Springer Berlin Heidelberg, (2006).

[6] Federico Heras, Antnio Morgado, and Joo Marques-Silva, ‘An empir-
ical study of encodings for group MaxSAT’, in Canadian Conference
on AI, eds., Leila Kosseim and Diana Inkpen, volume 7310 of Lecture
Notes in Computer Science, pp. 85–96. Springer, (2012).

[7] Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency assertions
for automotive product data management’, Journal of Automated Rea-
soning, 24(1–2), 145–163, (2000).

[8] Fangzhen Lin and Yuting Zhao, ‘ASSAT: Computing answer sets of a
logic program by SAT solvers.’, Artifical Intelligence, 157(1–2), 115–
137, (August 2004).

[9] Peter Manhart, ‘Reconfiguration – a problem in search of solutions’, in
IJCAI-05 Configuration Workshop Proceedings, eds., Dietmar Jannach
and Alexander Felfernig, pp. 64–67, Edinburgh, Scotland, (July 2005).

[10] João Marques-Silva, ‘Practical applications of boolean satisfiability’, in
Discrete Event Systems, 2008. WODES 2008. 9th International Work-
shop on, 74–80, IEEE, (2008).

[11] João Marques-Silva and Jordi Planes, ‘Algorithms for maximum satis-
fiability using unsatisfiable cores’, in Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’08, pp. 408–413. IEEE,
(2008).

[12] David A. Plaisted and Steven Greenbaum, ‘A structure-preserving
clause form translation’, Journal of Symbolic Computation, 2(3), 293–
304, (September 1986).

[13] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32(1), 57 – 95, (April 1987).

[14] Carsten Sinz, ‘Towards an optimal CNF encoding of boolean
cardinality constraints’, in Principles and Practice of Constraint
Programming—CP 2005, ed., Peter van Beek, Lecture Notes in Com-
puter Science, 827–831, Springer Berlin Heidelberg, (2005).

[15] G. S. Tseitin, ‘On the complexity of derivations in the propositional cal-
culus’, Studies in Constructive Mathematics and Mathematical Logic,
Part II, 115–125, (1968).

[16] Rouven Walter, Christoph Zengler, and Wolfgang Küchlin, ‘Applica-
tions of MaxSAT in automotive configuration’, in Proceedings of the
15th International Configuration Workshop, eds., Michel Aldanondo
and Andreas Falkner, pp. 21–28, Vienna, Austria, (August 2013).

