

16th International

Configuration Workshop

Proceedings of the

16th International Configuration Workshop

Edited by

Alexander Felfernig, Cipriano Forza, and Albert Haag

September 25-26, 2014

Novi Sad, Serbia

Organized by

Graz University of Technology

Institute for Software Technology

Inffeldgasse 16b/2

A-8010 Graz

Austria

Alexander Felfernig, Cipriano Forza, and Albert Haag, Editors

Proceedings of the 16th International Configuration Workshop

September 25-26, 2014, Novi Sad, Serbia

Chairs

Alexander Felfernig, Graz University of Technology

Cipriano Forza, University of Padua, Italy

Albert Haag, SAP, Germany

Program Committee

Michel Aldanondo, Toulouse University, Mines Albi, France

Claire Bagley, Oracle Corporation, USA

David Benavides, University of Seville, Spain

Andreas Falkner, Siemens AG, Austria

Gerhard Friedrich, University of Klagenfurt, Austria

Paul Grünbacher, Johannes Kepler University

Alois Haselböck, Siemens AG, Austria

Mikko Heiskala, Aalto University, Finland

Lothar Hotz, University of Hamburg, HiTeC, Germany

Arnaud Hubaux, University of Namur, Belgium

Lars Hvam, Technical University of Denmark, Denmark

Dietmar Jannach, University of Dortmund, Germany

Thorsten Krebs, encoway, Germany

Tomi Männistö, Aalto University, Finland

Iulia Nica, Graz University of Technology, Austria

Rick Rabiser, Johannes Kepler University, Austria

Florian Reinfrank, Graz University of Technology, Austria

Stefan Reiterer, Graz University of Technology, Austria

Markus Stumptner, University of South Australia, Australia

Juha Tiihonen, Aalto University, Finland

Elise Vareilles, Toulouse University, Mines Albi, France

Franz Wotawa, Graz University of Technology, Austria

Linda Zhang, IESEG Business School Paris, France

Markus Zanker, University of Klagenfurt, Austria

Organizational Support

Martin Stettinger, Graz University of Technology, Austria

Nikola Suzic, University of Novi Sad, Serbia and University of Padova, Italy

Preface

Configuration problems have always been subject of interest for the application and the

development of advanced Artificial Intelligence techniques. The selection of papers of

this year's workshop demonstrates the wide range of applicable AI techniques including

contributions on configuration knowledge representation, algorithms, theoretical

approaches, and real-world configuration problems & applications.

The workshop is of interest for both, researchers working in the various fields of

Artificial Intelligence as well as for industry representatives interested in the relation-

ship between configuration technology and the business problem behind configuration

and mass customization. It provides a forum for the exchange of ideas, evaluations, and

experiences especially related to the use of Artificial Intelligence techniques in the

configuration context.

As such, this year's Configuration Workshop again aims at providing a stimulating

environment for knowledge-exchange among academia and industry and thus building a

solid basis for further developments in the field.

Alexander Felfernig, Cipriano Forza, and Albert Haag

Contents

Knowledge Representation

Using Answer Set Programming for Feature Model Representation and Configuration

Varvana Myllärniemi , Juha Tiihonen, Mikko Raatikainen, and Alexander Felfernig

1

Integrating Distributed Configurations with RDFS and SPARQL

Gottfried Schenner, Stefan Bischof, Axel Polleres, and Simon Steyskal

9

Configuring Decision Tasks

Martin Stettinger, Alexander Felfernig, Michael Jeran, Gerald Ninaus,
Gerhard Leitner, and Stefan Reiterer

17

Algorithms

A backtrack-free process for deriving product family members

Homero M. Schneider

23

Optimization based framework for transforming automotive configurations for production planning

Tilak Raj Singh and Narayan Rangaraj

31

Testing Configuration Knowledge-Bases

Franz Wotawa and Ingo Pill

39

Systems

Calpinator: A Configuration Tool for Building Facades

Andres F. Barco, Elise Vareilles, Michel Aldanondo, and Paul Gaborit

47

Towards More Flexible Configuration Systems: Enabling Product Managers to Implement

Configuration Logic

Klaus Pilsl, Martin Enzelsberger, and Patrick Ecker

55

ReMax – A MaxSAT aided Product (Re-)Configurator

Rouven Walter and Wolfgang Küchlin

59

Configuration Design

Sales Configurator Information Systems Design Theory

Juha Tiihonen, Tomi Männistö, and Alexander Felfernig

67

Open Configuration: a New Approach to Product Customization

Linda L. Zhang, Xiaoyu Chen, Andreas Falkner, and Chengbin Chu

75

Towards an understanding of how the capabilities deployed by a Web-based sales configurator can

increase the benefits of possessing a mass-customized product

Chiara Grosso, Alessio Trentin, and Cipriano Forza

81

Towards Open Configuration

Alexander Felfernig, Martin Stettinger, Gerald Ninaus, Michael Jeran, Stefan Reiterer, Andreas
Falkner, Gerhard Leitner, and Juha Tiihonen

89

 Copyright © 2014 for the individual papers by the papers' authors. Copying permitted for private

and academic purposes. This volume is published and copyrighted by its editors.

Using Answer Set Programming for
Feature Model Representation and Configuration

Varvana Myllärniemi 1 and Juha Tiihonen1 and Mikko Raatikainen 1 and Alexander Felfernig2

Abstract. Feature models are a wide-spread approach used for ex-
pressing variability in software product lines. Answer set program-
ming (ASP) is nowadays an increasingly popular approach to config-
uration knowledge representation. In this paper, we study the similar-
ities between feature modeling and configuration knowledge repre-
sentation with ASP. We define the feature configuration problem uti-
lizing ASP, and show two different ways using an example of trans-
lating the basic feature modeling concepts embodied in the graphical
feature models into ASP programs. This way we want to emphasize
the role of ASP as a means to tackle the feature configuration prob-
lem.

1 Introduction

Features and feature models [11, 17, 18] have been proposed as a
means to represent the variability of a software system. Variability in
software is defined as the ability of a system to be efficiently ex-
tended, changed, customized or configured for use in a particular
context [27]. Correct and efficient management of variability is espe-
cially important for software product lines. A software product line
is a set of products that share a common, managed set of features,
a common architecture and a set of reusable assets, thus enabling
the preplanned production of products with slightly varying capabil-
ities [7, 10]. In fact, feature modeling has become the de facto means
to represent and reason about variability in software product lines
in academia [6]. Within software product lines, feature models can
be used for two purposes: to manage and reason about commonality
and variability at the domain engineering level, and to support the
derivation of valid products at the application engineering level.

Software product line variability, and consequently, feature mod-
els, can grow large and complex. Due to the combinatorial explosion,
analyzing feature models and finding a valid feature configuration is
infeasible to do manually with large-scale feature models [3]. Thus,
there is a need for automated analysis and reasoning of feature mod-
els [3]. However, it seems that current feature model analysis focuses
on the analysis of the variability, that is, analysis at the domain engi-
neering level, rather than on analysis of the derivation or configura-
tion task. Out of the feature analysis operations listed in [3], only a
few analyses are related to derivation: whether a given feature config-
uration is a valid product, and the operation to enumerate all possible
valid configurations [3]. The problem of feature configuration has
been studied to some extent, for example, for staged feature config-
uration [12] that elaborates several stages of making selections and
pruning the variability space. Within this paper, we are interested in

1 Aalto University, Finland, email: {firstname.lastname}@aalto.fi
2 TU Graz, Austria, email: alexander.felfernig@ist.tugraz.at

Figure 1. An illustration of how the research problem is addressed in this
paper. The languages used to capture each model are marked in parenthesis.

the simple configuration problem: given a set of requirements for a
product, what are the valid feature configurations?

In the field of mechanical and physical products, configuration has
a long and successful history as a basis for mass-customization, see,
e.g., [15]. The variability of the product is captured in a configuration
model that represents the taxonomy and compositional structure of a
product along with relevant constraints. The configuration task for
a configuration model results in a configuration, a specification of a
product individual [19, 30, 23] that meets the customer requirements.

As a supporting tooling, Answer Set Programming (ASP) is an
increasingly important formalism for the representation of configu-
ration models. Configuration is one of the first applications of ASP
solving; the requirements of configuration problems were taken into
account already in the development of the early ASP tool Smodels
[25]. On the one hand, ASP programs have been applied directly to
model configuration [24, 28] and reconfiguration [13, 24] problems
in research systems. On the other hand, another approach is to model
configuration models with a high-level language and to translate the
resulting model into a corresponding ASP program [31, 29].

The two disciplines of software product lines and configurable
products have similar goals and challenges in the variability man-
agement [16, 4]. A major goal of this paper is to show in an easily
accessible manner and through concrete examples how ASP can be
applied in the context of feature modeling. Previous work has de-
scribed these aspects on a higher level of abstraction. Therefore, our
research problem is to study the similarities between feature model-
ing and configuration knowledge representation with ASP. For this
purpose, the following research questions are set:

• RQ1: How can the feature configuration problem be stated

1

Figure 2. Example feature model slightly extended from [3].

through ASP?
• RQ2: What are the different ways to represent a feature model

diagram as an ASP program?
• RQ3: What are the synergies in the variability management be-

tween feature modeling and product configuration?

Figure 1 illustrates the strategy that this paper utilizes to answer
the research problem and questions. In particular, it shows how the
graphical feature diagrams are represented with textual languages,
and these textual languages are then automatically translated to ASP
programs. Since the same graphical feature model can be represented
both with the textual feature modeling language (Kumbang) as well
as with the product configuration language (PCML), it is possible
to compare and identify conceptual similarities and differences be-
tween software variability management and product configuration.
Moreover, the figure illustrates the strategy of utilizing intermediate
level languages: this omits the need to manually write ASP programs
directly, and consequently, any inherent cognitive difficulties.

The contributions of this paper are the following. Firstly, we adapt
the existing work [26] to define the feature configuration problem
based on answer sets and stable model semantics. Secondly, we show
how the basic concepts of feature models can be represented as ASP
programs utilizing a concrete running example. This enables the use
of existing ASP solvers to efficiently solve the feature configura-
tion problem. Thirdly, for translating the feature models to ASP pro-
grams, we utilize two existing intermediate level languages; these
languages enable the product line engineer to operate on domain-
specific modeling constructs. Since these two languages originate
from different paradigms, this highlights the conceptual similarities
between software product line engineering and product configura-
tion.

The remainder of this paper is organized as follows. Section 2 lays
out the background as a previous work. Section 3 defines the fea-
ture configuration task and problem with ASP. Section 4 shows how
graphical feature models can be represented as ASP programs by
translating them through a textual feature modeling language called
Kumbang (cf. Figure 1). Section 5 demonstrates that the same graphi-
cal feature model can be represented by Product Configuration Mod-
eling Language (PCML) and its translation to ASP. Section 6 dis-
cusses the similarities of the software variability and traditional prod-
uct configuration. Section 7 concludes.

2 Background
2.1 Feature modeling
A feature in a feature model can be seen as a characteristic of a sys-
tem that is visible to the end-user [17]. For example, for a software

Figure 3. An excerpt from the feature model in Figure 1 modelled with
cardinalities, following the notation used in [2].

product line for mobile phones, feature MP3 might represent the ca-
pability to listen to and store audio files in MP3 format (see Fig-
ure 2). Since features can be used to capture also technological or
implementation decisions [18], the definition of a feature has been
extended to be a system property that is relevant to some stakeholder
and is used to capture commonalities or discriminate among product
variants [11].

Given a set of features, a feature model represents the variability
and relations of those features. A feature model is represented as a hi-
erarchically arranged set of features that consists of relations between
a parent (or compound) feature and its child features (or subfeatures)
and cross-hierarchy constraints [3]. Typically, feature models are pre-
sented as graphical diagrams. An example feature model for mobile
phones is illustrated in Figure 2.

At least four basic relations between parent and child features can
be identified [3]. Firstly, a child feature can be mandatory in rela-
tion to its parent feature: the child feature must be included in all
products that include the parent feature. For example, feature Calls
is mandatory in relation to feature Mobile Phone (see Figure 2).
Secondly, a child feature can be optional in relation to its parent fea-
ture, for example, feature GPS can either be selected or left out for
all mobile phones. Thirdly, a set of child features can be alternative
in relation to their parent feature, which means that exactly one of
the child features must be selected when the parent feature is in the
product. As an example, exactly one of features Basic, Colour, and
High resolution must be present in the product that has feature
Screen. Fourthly, a set of child features can be in or relation to their
parent feature, which means that one or more of them are present in
the product that has the parent feature; this is exemplified by features
Camera and MP3 in Figure 2.

Additionally, there can be cross-hierarchy constraints. For ex-
ample, features GPS and Basic are mutually exclusive, which
means they cannot be in the same product, whereas feature High

resolution must always be included in a product that contains fea-
ture Camera. These constraints are presented as annotations in Fig-
ure 2.

Various feature models and extensions to basic feature models
have been proposed, as discussed in [3].

Firstly, there can be feature models with attributes [12, 5], as illus-
trated in Figure 2. Feature Storage has been characterized with at-
tribute that describes the size in gigabytes, with an enumerated value
range. Attributes are typically defined by stating a name and a spe-
cific range of values. Typically, a variation point that has a finite num-
ber of variants can be represented both as a set of features and as an
attribute in a feature.

Secondly, there can be feature models with cardinality [11, 12]. It
has been argued that cardinalities can be used to express similar rela-
tions as with basic feature relations. For example, Figure 3 illustrates

2

how a part of the model in Figure 2 is represented with cardinalities.
The usage of feature models varies from an informal documen-

tation or visualization to more rigorous usages enabling even auto-
mated analysis. Respectively, the research has matured from the early
notations [17] to various formalizations and analyses [3]. One pos-
sible usage of feature models is with configurable software product
lines [8]: a product can be derived without further development [8]
by configuring features, resulting in a model of a product individual.

2.2 Answer Set Programming
As summarized in [14], Answer Set Programming (ASP) has become
a popular approach to declarative problem solving. The attractiveness
of ASP stems from a combination of a rich and yet simple modeling
language and the availability of high-performance solvers. The roots
of ASP include knowledge representation, logic programming, (non-
monotonic) reasoning, databases, and Boolean constraint solving.

ASP makes it possible to express the problem as a theory consist-
ing of logic program rules with clear declarative semantics, and the
stable models, i.e., the answer sets of the theory correspond to the
solutions to the problem [25].

Programs that follow the Answer Set Programming paradigm are
a generalization of normal logic programs. A generalized and uni-
fied syntax of ASP programs called ASP-Core-2 has been defined
[9]. This input language has been adopted by many ASP solvers [1].
Optimality criteria, variables and built-in functions can be defined.
The syntax of ASP programs is close to Prolog, but the computation
method via model generation is different [14].

There are a number of ASP solvers available, see [33], that can
tackle a number of complex problems. The best ASP solvers per-
form well for a range of hard problems; see, for example, problems
and results of the Fourth Answer Set Programming Competition [1].
The competition tasks included 3 problems in complexity class P , 15
problems in NP , 3 problems Beyond-NP (

∑P
2), and 5 optimization

problems; the domains of the tasks include combinatorial, database,
diagnosis, graph, planning and scheduling problems. An example of
current, well performing set of tools is Potassco, the Potsdam Answer
Set Solving Collection[14], available from [22].

The authors of this paper have applied weight constraint rule lan-
guage (WCRL) that is almost a genuine subset of ASP-Core-2. The
languages ASP-Core-2 and WCRL are compatible enough so that the
concrete WCRL logic programs generated by our tools are valid in-
put to systems based on ASP-Core-2. This was verified with Clingo
version 4.3, available from [22]. Thus, when describing WCRL, we
actually describe a part of ASP-Core-2 that is sufficient for this pa-
per. We can do this in a slightly more intuitive yet compact way than
we could describe the full ASP-Core-2.

In the following, we describe the basic concepts of weight con-
straint rules focusing on the concepts needed in the rest of the paper.
Instead of explaining the concepts utilizing a running example, these
concepts are exemplified for Kumbang in Section 4 and for PCML in
Section 5. For further details and examples, please see [25, 9].

Cardinality constraints are used as the primary basic building
blocks of the product configuration rules. Cardinality constraints are
of the form

l{a1, . . . , an, not b1, . . . , not bm}u

where l and u are the lower and upper bounds of the constraint.
Basic atoms are the smallest lexical units, for example a, or b. A
literal is an atom b or a not-atom not b. A cardinality constraint
is satisfied by a set of atoms S if the number of those literals in

{a1, . . . , an, not b1, . . . , bm} that are satisfied by S is between the
bounds l and u.

A constraint rule is an expression of the form

C0 :- C1, . . . , Cn

where the body of the rule consists of a number of cardinality con-
straints Ci, and the head C0 cannot contain negated atoms. A pro-
gram P is then a set of constraint rules.

For product configuration, the following rules are often useful.
Firstly, in choice rules the number of satisfied atoms in the head must
be between l and u:

l{a1, . . . , an}u :- C1, . . . , Cn

Secondly, a rule with an empty head yields an integrity constraint
:- C1, . . . , Cn, that is, an unsatisfiable constraint that allows specify-
ing inconsistent situations where finding the answer is not possible.
Finally, a rule with an empty body is called a fact. For example, a
fact C0 states that C0 is always true.

Given a set of atoms S, a rule C0 :- C1, . . . , Cn is satisfied iff S
satisfies C0 whenever S satisfies each of C1, . . . , Cn. A program P
is satisfied by S if each rule in P is satisfied by S. A stable model or
answer set of a weight constraint rule program is defined as a set of
atoms that 1) satisfies the program (is a classical model of the pro-
gram) and 2) every atom in a stable model is justified (grounded) by
the rules in the program. For example, consider the logical formula
b∧ (b∧¬c→ a) that has three (classical) models {b, c}, {a, b} and
{a, b, c}. The answer set program

b. a :- b, not c.

has one stable model {a, b}. For the formalization of this definition,
refer to [25].

Variable-free ground weight constraint rules discussed up to now
become more practical by allowing the use of variables, function
symbols, and predicates. A rule with variables is treated as a short
hand for all its ground instantiations with respect to the Herbrand
universe of the program. Decidability is retained by allowing only
domain-restricted rules. Ignoring the details, each variable in a rule
must appear in a domain predicate which occurs positively in the
body of the rule. For example, p(X) :- q(X) over constants {a, b, c}
is an abbreviation of

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Given predicates and domains, rules with the so called conditional
literals are frequently applied in product configuration. For example,
a fact with predicate chair and domain predicate member states that
every board must have exactly one chair that must also be a member:

1 {chair(X) : member(X)} 1.

3 Feature Configuration Problem Utilizing ASP
Research question RQ1 identified the need to address the feature
configuration problem with ASP. In order to utilize ASP and existing
solvers (see Section 2.2), one needs to define the basic concepts of the
feature configuration problem. Figure 4 defines the feature configu-
ration problem. Here, we adapt the definition of [26] to the domain
of feature models in a straightforward manner. We describe each key
concept in the definition informally and through examples from the
domain of feature models. For further information about the config-
uration problem in more general terms, see [26].

3

Definition of the feature configuration task. Given
CM a feature configuration model CM translated to a set

of rules,
GF a set of ground facts representing the types in CM and

unique identifiers for the instances of types, and
R a set of rules R representing requirements,
is there a feature configuration C, that is,
a stable model of CM ∪ S, such that C satisfies R?

Figure 4. The definition of the feature configuration task adhering to [26].

Firstly, a feature configuration model CM in Figure 4 specifies the
entities, such as features; their properties, such as feature attributes;
and composition structure, i.e. the feature tree structure; and the rules
how the entities and their properties can be combined in a proper
manner for a valid product. More informally, a feature configuration
model represents the variability in the product line. For example, the
feature model in Figure 2 is represented as one configuration model
CM .

Within the definition in Figure 4, a distinction is made between
types in a configuration model and instances in a configuration.
Types in a configuration model define the properties of their indi-
viduals that can appear in a configuration. For example, in Figure 2,
feature type storage defines the different attributes and their values,
whereas feature instance storage in the actual product has a specific
value for the size, for example 16 GB.

Ground facts GF in Figure 4 describe the possible feature in-
stances and the attribute values of instances that can exist in a feature
configuration. For example, for the feature Storage in Figure 2, a
ground fact featStorage(i). indicates that feature instance with a
unique identifier i is of feature type Storage. Additionally, a ground
fact hasattr(i,attrsizeGB,16). tells that this instance has a
specific attribute value assignment to indicate 16GB storage.

The set of rules R define requirements thus having a different sta-
tus from the rules in the configuration model: these requirements rep-
resent the requirements that a specific product instance must satisfy.
In a valid product configuration, the requirements must be satisfied
by a configuration but cannot justify any elements in it. For a feature
configuration problem, the requirements are stated as features that
must be present in the configuration, or as attribute values that these
features have. For example, for Figure 2, one requirement could be
stated as hasattr(i,attrsizeGB,16)., meaning that there must
be 16 GB storage in the product.

A feature configuration C consists of a set of positive and negative
atoms. Positive atoms represent the feature instances and attribute
values that are in the configuration. Due to the characteristics of ASP
and stable models discussed in Section 2.2, the feature instances and
attribute values in the configuration C, that is, the positive atoms in
C, both satisfy the configuration model and its requirements, and are
justified by them. For example, among the atoms that would be in the
feature configuration for Figure 2, an atom in(i) indicates the in-
clusion of feature Storage. Further, if the storage is set to 16GB, an
atom hasattr(i,attrsizeGB,16) is true, while atoms represent-
ing other attribute values, such as hasattr(i,attrsizeGB,32),
are false.

Consequently, the feature configuration C in the definition above
is both consistent and complete. Informally, a consistent feature con-
figuration is such that no rules of the configuration model are vio-
lated. A complete feature configuration is such that all the necessary

selections have been made.
An ASP solver can be used to find consistent and complete config-

urations that meet a set of given requirements, given that such config-
urations exist. Therefore, the configuration problem definition above
and its ASP solution can be used to support both domain and ap-
plication engineering activities. At the domain engineering level, it
can be checked whether the given feature configuration model CM
doesn’t have any consistent and complete configurations, which im-
plies a self-contradictory model. At the application engineering level,
the configuration task can support the finding of consistent and com-
plete configurations, potentially even specifying the requirements R
in an iterative manner.

For supporting the user in the configuration task, deducing the con-
sequences of requirements is based on computing an approximation
of the set of configurations satisfying the requirements that are valid
but not necessarily all consequences are found. Intuitively, the con-
sequences contain a set of facts that must hold for the configurations
satisfying the requirements, a set of facts that cannot be true for the
given requirements, and a set of unknown facts.

From the practical point of view, a product line engineer needs
to capture the product line features and their commonality and vari-
ability into a configuration model CM . There are two options for
this representation. The first option is to represent the informal fea-
ture model, for example, the visual notation in Figure 2, directly as
an ASP program. However, this kind of a modeling task requires
skills in logic programming, which may not be the case with an av-
erage product line engineer. The second option is to capture the fea-
ture model with a machine-processable, but human-readable textual
language that utilizes directly the concepts known to a product line
engineer, and then automatically translate the resulting middle-level
model to an ASP program. This translation to ASP also gives the
semantics to the middle-level representation language, as well as en-
ables the use of existing ASP solvers for the configuration task. As is
illustrated in Figure 1, this paper takes the latter approach.

In the following, we discuss how feature models can be repre-
sented as ASP programs, and consequently, how to represent the con-
figuration model CM .

4 Representing Feature Models as ASP Programs
through Textual Feature modeling Language

Section 3 presented the feature configuration problem utilizing ASP
programs and identified the need to represent a given feature model
as an ASP program. In the following, we show how the graphical
feature model in Figure 2 and the basic feature modeling concepts
can be represented as ASP programs. This is done in two phases,
as illustrated in Figure 1: firstly, Section 4.1 shows how the feature
model is represented as a textual model in Kumbang, and thereafter
Section 4.2 shows how the textual model in Kumbang is translated to
WCRL automatically with the Kumbang tool set [20]. Thus, for the
purpose of this paper, we utilize WCRL as an example language to
construct ASP programs (see also Section 2.2).

4.1 Representing the Feature Model in Kumbang
In order to enable the feature configuration with ASP, the feature
model in Figure 2 needs to be represented in a form that is both un-
derstandable to a product line engineer, and can be unambiguously
translated to an ASP program. For this purpose, we utilize Kum-
bang language [2], which is a modeling language and an ontology for
modeling variability in software product line architectures from the

4

Forfamel model mobilephone
root feature MobilePhone

feature type MobilePhone {
contains
Calls calls;
GPS gps[0-1];
Screen screen;
Media media[0-1];
Storage storage;

}
feature type Calls {}
feature type GPS {
constraints not has_instances(Basic);

}
feature type Screen {

contains (Basic,Colour,HighResolution) type;
}
feature type Basic {}
feature type Colour {}
feature type HighResolution {}
feature type Media {

contains (Camera,MP3) apps[1-2] {different};
}
feature type Camera {

constraints has_instances(HighResolution);
}
feature type MP3 {}
feature type Storage {

attributes Size sizeGB;
constraints
(has_instances(Camera) and has_instances(MP3))
=> value(sizeGB) > 16;

}
attribute type Size = { 8, 16, 32, 64 }

Figure 5. Feature model from Figure 2 represented with the Kumbang
language.

feature and component points of view. Kumbang is built on the prod-
uct configuration concepts [26], on feature modeling approaches, and
on the Koala architecture modeling language [32]. Kumbang is also
supported by a set of tools that enable modeling and configuration
tasks [20].

Figure 5 illustrates how the feature model in Figure 2 is repre-
sented with Kumbang language. In the following, we discuss the
main characteristics and differences to the notation used in Figure 2.

Firstly, to adhere to the definition of the feature configuration task
in Figure 4, Kumbang differentiates between a configuration model
and a configuration. Variability in features is modelled explicitly in a
configuration model (illustrated in Figure 5), whereas in a configura-
tion, all variability has been resolved. The elements in a configuration
model are referred to as types (for example, feature type Storage in
Figure 5), while the elements in a configuration are referred to as
instances. In contrast, traditional feature modeling notations do not
usually make the conceptual distinction between feature types and
instances. However, this may cause some difficulties in situations in
which the definition of the features needs to be distinct from the fea-
ture compositional hierarchy. For example, if features need to be re-
ferred to in several places in the hierarchy (c.f., [12]), additional con-
structs, such as feature cloning or references may be needed. Thus, it
seems that the distinction between types and instances allows more
expressiveness in the model as such.

Secondly, traditional feature modeling uses a number of compo-
sitional relations between features, such as mandatory, optional, and
alternative. As illustrated in Figure 3, the multitude of these rela-
tions can be expressed with one relation: cardinality. In order to de-
fine such relations in the configuration model, the cardinality needs
a placeholder in the textual notation: such a placeholder in Kumbang
is called a part definition. For example, the part definition Media

media[0-1] in feature type MobilePhone states that Media is an
optional feature i.e. has a cardinality from zero to one. Part defini-
tions can be more complex: For example, part definition apps in
type feature Media has two possible types of which one or two need
to be in a configuration, and if two are selected, they need to be dif-

% Definitions of feature types
featureType(featMobilePhone). featureType(featCalls).
featureType(featGPS). featureType(featScreen).
featureType(featColour). featureType(featBasic).
featureType(featHighResolution).
featureType(featMedia). featureType(featMP3).
featureType(featCamera). featureType(featStorage).

% Root feature MobilePhone
froot(X) :- featMobilePhone(X).
% The feature root is always in the configuration
1 { in(F) : froot(F) } 1.

% Some example part definitions (not all shown)
1{haspart(X1,X2,partDeftype):ppart(X1,X2,partDeftype,I)}1
:- featScreen(X1), in(X1).
1{haspart(X1,X2,partDefapps):ppart(X1,X2,partDefapps,I)}2
:- featMedia(X1), in(X1).

% Attribute definition for feature Storage
1 {hasattr(X,attrDefsizeGB,V):attrSize(V)} 1
:- in(X), featStorage(X).

% Definition of attribute value type Size
attrSize(8). attrSize(16). attrSize(32). attrSize(64).

% Constraint "Camera requires HighResolution"
% Other constraints omitted
constr5(X) :- in(X0),featHighResolution(X0),featCamera(X).
cf(5,X) :- featCamera(X), in(X), not constr5(X).
cff :- cf(5,X), featCamera(X).

% Possible feature instances in the configuration
% are enumerated with unique identifiers and
% corresponding possible parts are defined.
featMobilePhone(i0).
featCalls(i1). ppart(i0,i1,partDefcalls,1).
featGPS(i2). ppart(i0,i2,partDefgps,1).
featScreen(i3). ppart(i0,i3,partDefscreen,1).
featBasic(i4). ppart(i3,i4,partDeftype,1).
featColour(i5). ppart(i3,i5,partDeftype,1).
featHighResolution(i6). ppart(i3,i6,partDeftype,1).
featMedia(i7). ppart(i0,i7,partDefmedia,1).
featCamera(i8). ppart(i7,i8,partDefapps,1).
featMP3(i9). ppart(i7,i9,partDefapps,1).
featStorage(i10). ppart(i0,i10,partDefstorage,1).

% A feature instance is in the configuration
% if it is both actual and possible part of something
in(X2) :- haspart(X1, X2, N), ppart(X1, X2, N, I).

Figure 6. The Kumbang representation of Figure 2 (Figure 5) translated to
WCRL (some parts omitted and revised for clarity).

ferent. The use of part definitions with cardinalities is also advocated
in [26].

Thirdly, the constraints in Figure 2 need to be captured in an unam-
biguously defined, textual representation. In Figure 5, each constraint
is defined in exactly one feature type, utilizing the existing constraint
language [2] that supports logical expressions through, e.g., equiva-
lence, implication, universal quantifiers, and references to the com-
positional hierarchy.

4.2 Representing the Kumbang Model in WCRL

Figure 6 illustrates how the feature model in Figure 5 is translated to
WCRL. The translation has been performed automatically with the
Kumbang tool set [20] and revised and organized for clarity.

Firstly, each feature type in the configuration model must be de-
fined: for example, fact featureType(featMobilePhone). states
that object constant featMobilePhone represents a feature type.
Similarly, the attribute value types are defined, for example, fact
attrSize(8). states that attribute value type named Size has 8
as one possible value.

Secondly, the root of the model must be defined. Rule

1{in(F) : froot(F)}1.

states that if feature type F is the root, a valid configuration must
have exactly one feature instance selected (in(F)) that is instantiated
from the root type, defined using predicate froot.

5

Thirdly, the compositional structure of the features must be de-
fined. For each part definition, a rule with the following format is
added:

n{haspart(X1, X2, P) : ppart(X1, X2, P, I)}m :- F (X1), in(X1).

where F and P are replaced with feature and part names, and n,m
replaced with the lower and upper bounds of the cardinality. Predi-
cate haspart is used to indicate that a feature instance is instantiated
as a part in the configuration, whereas predicate ppart is merely stat-
ing the possible parts. Together, these predicates justify the inclusion
of a feature instance through composition:

in(X2) :- haspart(X1, X2, N), ppart(X1, X2, N, I).

Fourthly, attribute definitions are captured with the following rule:

1{hasattr(X,Ad, V) : Av(V)}1 :- in(X), F (X).

where Ad is replaced with the name of the attribute definition, Av

with the name of the attribute value type, and F with the name of the
defining feature type.

Finally, the configuration model must also define the identifiers
for each feature instance. This enables, for example, to state require-
ments R about the features that must be present in the configuration
(see Figure 4). In Figure 6, the feature instances are given identi-
fiers by enumerating all possible instances in the configuration, for
example, fact featMobilePhone(i0). gives identifier i0 to fea-
ture MobilePhone. Additionally, the identifiers are used to state the
possible compositional relations between the instances with the pred-
icate ppart. Using these identifiers, it is possible to state the require-
ments about the feature instances that must be in the configuration,
for example, in(i8). requires that feature Camera must be present
in the configuration.

5 Representing Feature Models as ASP Programs
through Product Configuration modeling
Language

In this Section, the example feature model of Figure 2 is represented
with a configuration modeling language designed to model the vari-
ability of physical products. We also exemplify the corresponding
ASP presentation.

5.1 Representing the Feature Model in PCML
For illustrating the application of a configuration modeling language,
we apply PCML, Product Configuration Modeling Language [21].
PCML is used by the WeCoTin configurator [29] as the language for
representing configuration models. PCML is object-oriented, declar-
ative and has formal implementation-independent semantics.

The main concepts of PCML are feature types, their compositional
structure, attributes, and constraints. Feature types define the sub-
features (parts) and attributes of their individuals that can appear in
a configuration. In a configuration, subfeatures (parts) of a feature
individual are realized with feature individuals. The realizing feature
individual(s) “fill the role” created by the subfeature definition. If
the cardinality includes 0, an empty realization is possible. A con-
figuration is a non-empty tree of feature individuals and individuals
representing attribute values. In addition, the compositional structure
is explicitly presented.

The main modeling mechanism of this example is the composi-
tional structure. Feature type Mobile Phone t in 7 serves as the root

configuration model MyProduct
feature Mobile_Phone_t
subfeature Screen_p allowed features

Basic_t, Colour_t, High_resolution_t
cardinality 1

subfeature Calls_p
allowed features Calls_t cardinality 1

subfeature GPS_p
allowed features GPS_t cardinality 0 to 1

subfeature Media_p
allowed features Media_t cardinality 0 to 1

subfeature Storage_p
allowed features Storage_t cardinality 1

constraint GPS_excludes_Basic not ((present(
GPS_p)) and (Screen_p individual of Basic_t))

feature Basic_t
feature Colour_t
feature High_resolution_t
feature Media_t
subfeature Camera

allowed features Camera_t cardinality 0 to 1
subfeature MP3

allowed features MP3_t cardinality 0 to 1
constraint Camera_requires_High_resolution

(present(Camera)) implies
($config.Screen_p individual of High_resolution_t)
constraint Media_requires_Camera_or_MP3

(present(Camera)) or (present (MP3))
constraint Camera_and_Mp3_require_min_32GB

((present(Camera)) and (present(MP3))) implies
($config.Storage_p.Size_GB >= 32)

feature Camera_t
feature MP3_t
feature GPS_t
feature Calls_t
feature Storage_t
attribute Size_GB value type integer

constrained by $ in list(8,16,32,64)
configuration feature Mobile_Phone_t

Figure 7. The feature model of Figure 2 represented with PCML.

of the compositional structure ’configuration type’, see Figure 7. An
individual of the type serves as the root of the configuration.

Feature type Mobile Phone t defines it’s compositional structure
through a set of subfeature definitions. A subfeature definition speci-
fies a subfeature name, a non-empty set of possible subfeature types
(allowed types for brevity) and a cardinality indicating the valid num-
ber of subfeatures. Note that the example of Figure 7 applies a nam-
ing convention where the names of feature types end with t and
names of subfeatures (parts) with p.

A mandatory subfeature is represented by specifying cardinality
1 and by specifying exactly one allowed type. An example is the
mandatory feature Calls p. An optional subfeature is modeled with
a subfeature definition whose cardinality is 0 to 1, e.g. the feature
GPS p. Alternative features are modeled with cardinality 1 and more
than one allowed type. E.g., feature Screen p. Or-subfeatures are
not directly supported by PCML, because with large cardinalities in-
dividuals of the same type would be allowed. Therefore for model-
ing Media t, further subfeatures were defined and a constraint added
that enforces the presence of at least one subfeature.

The only attribute of the example is Storage t defining an enu-
merated integer attribute Size GB.

5.2 Representing the PCML Model in WCRL
Figure 8 shows a partial WCRL/ASP representation of the example
feature model. When studying the WCRL/ASP presentation of Fig-
ure 8, it is visible that early versions of PCML and WeCoTin applied
terminology where feature types were called component types and
subfeatures were called parts.

Figure 8 shows the corresponding WCRL presentation (partial).
The comments explain the predicates. For a more complete explana-
tion, see [29].

Figure 9 shows one of the 52 answer sets. It represents a feature
configuration with Colour, Calls, Storage, Storage size=16 GB.

6

% if an individual C2 is as part of C1 -> in(C2)
in(C2) :- pa(C1,T,C2,Pn), ppa(T,C1,C2,Pn).
% exclusive parthood: same individual cannot
% be a part of several whole individuals
:- 2{pa(C1,T,C2,Pn):ppa(T,C1,C2,Pn)}, compT_Feature(C2).
%transitivity of is-a hierachy
isa(X,Z):- isa(X,Y), isa (Y,Z),

compTDom(X), compTDom(Y), compTDom(Z).
% reflexivity of is-a
isa(X,X):- compTDom(X).

%Example types
% Screen_t is a component type and a subtype of ’Feature’
compTDom(compT_Feature).
%Screen types are direct subtypes of ’Feature’
compTDom(compT_Basic_t).
compT_Feature(C) :- compT_Basic_t(C).
isa(compT_Basic_t,compT_Feature).
compTDom(compT_Colour_t).
compT_Feature(C) :- compT_Colour_t(C).
isa(compT_Colour_t,compT_Feature).
compTDom(compT_High_resolution_t).
compT_Feature(C) :- compT_High_resolution_t(C).
isa(compT_High_resolution_t,compT_Feature).
% Storage_t
compTDom(compT_StoraStorage_t).
compT_Feature(C) :- compT_Storage_t(C).
isa(compT_Storage_t,compT_Feature).
% attribute Size_GB of Storage_t
1{prop_Storage_t_Size_GB(X,compT_Storage_t,Y):prSpec(Y)}1

:- in(X),compT_Storage_t(X).
prSpec(8).
prSpec(16).
prSpec(32).
prSpec(64).

%part name Screen_p
pan(part_Screen_p).
%cardinality 1
1{pa(C1,compT_Mobile_Phone_t,C2,part_Screen_p):

ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p)}1 :-
in(C1),compT_Mobile_Phone_t(C1).

% assignment of possible part individuals of allowed
% types for part screen_p with helper predicate for.
% The automated translation makes such an allocation
% for symmetry breaking, which this example
% does not need
ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p) :-
compT_Mobile_Phone_t(C1),compT_Basic_t(C2),
for(compT_Mobile_Phone_t,C1,C2,part_Screen_p).

ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p) :-
compT_Mobile_Phone_t(C1),compT_Colour_t(C2),
for(compT_Mobile_Phone_t,C1,C2,part_Screen_p).

ppa(compT_Mobile_Phone_t,C1,C2,part_Screen_p) :-
compT_Mobile_Phone_t(C1),compT_High_resolution_t(C2),
for(compT_Mobile_Phone_t,C1,C2,part_Screen_p).

% Constraint compilation omitted for brevity.
% it is performed by subexpression.

Figure 8. PCML representation of Figure 2 (Figure 7) translated to WCRL
(some parts omitted for brevity).

6 Discussion
In this paper, we showed two ways to represent feature models as
ASP programs by utilizing existing textual modeling languages de-
signed for feature modeling and product configuration modeling. The
use of an intermediate, textual language between the graphical fea-
ture models and logic programs is not that common: it seems typ-
ical that graphical feature diagrams are directly translated, e.g., to
propositional logic [3], rather than utilizing an intermediate textual
language.

in(ind_compT_Colour_t_1)
pa(ind_compT_Mobile_Phone_t_1,compT_Mobile_Phone_t,

ind_compT_Colour_t_1,part_Screen_p)
in(ind_compT_Calls_t_1)
pa(ind_compT_Mobile_Phone_t_1,compT_Mobile_Phone_t,

ind_compT_Calls_t_1,part_Calls_p)
in(ind_compT_Storage_t_1)
pa(ind_compT_Mobile_Phone_t_1,compT_Mobile_Phone_t,

ind_compT_Storage_t_1,part_Storage_p)
in(ind_compT_Mobile_Phone_t_1)
prop_Storage_t_Size_GB(ind_compT_Storage_t_1,

compT_Storage_t,16)

Figure 9. An answer set representing a feature configuration with
Colour, Calls, Storage, Storage size GB=16. Ground atoms were
derived from the WCRL of Figure 8. Long atoms are split into two lines.

The benefit of using such intermediate languages and models is
that they may be more approachable to product line engineers: they
utilize modeling concepts that more or less directly correspond to
the concepts used to represent software variability. Such intermediate
languages can serve a multitude of purposes: they can be represented
graphically and modelled with the aid of graphical tools; they can be
created or edited directly if need arises; and they can be automatically
translated to ASP programs.

Another option would have been to directly represent or encode
the entities and relations in feature models as ASP programs. The
benefit of writing directly ASP programs is that the resulting ASP
programs most probably are more compact and directly human-
readable. The drawback is that logic programming even in the form
of ASP programs might be challenging for a product line engineer
not trained in computational logic programming.

For simplicity, our representation in this paper covered some basic
concepts of feature models. Nevertheless, the languages discussed
in Sections 4 and 5 cover much richer sets of modeling constructs.
For example, the capability to represent feature inheritance was not
utilized in the examples. Similarly, the literature contains numerous
proposed extensions of feature models. Some of them are included in
our conceptualizations and corresponding tools (e.g. attributes, cardi-
nalities) while some are not. In any case, a detailed discussion about
the needed modeling concepts is a future work item.

By mapping the feature modeling notation to both Kumbang and
PCML, we demonstrated that both approaches, one tailored for fea-
ture modeling and one for product configuration, can be utilized for
modeling software variability. A specific addition to the traditional
feature modeling concepts done in this paper is to differentiate be-
tween feature instances and feature types. This dichotomy, however,
parallels with domain and application engineering in software prod-
uct families and is, therefore, quite natural for software variability
although it has not been applied explicitly in feature modeling.

The product configuration community has applied configuration
modeling and configuration techniques in full scale production use
for decades. It may be that some modeling constructs and approaches
related to managing variability could be carried over to describe and
analyze feature models. In such a case, existing analyses and respec-
tive tools could be readily utilized.

However, the derivation of product lines is not just about configu-
ration: feature models are applicable to a wide range of settings, not
just to configurable software product lines. Because of this, the tools
intended for product configuration do not necessarily support all the
relevant activities in the application engineering phase of software
product lines.

In general, due to the availability of a variety of different effi-
cient ASP solvers, it seems beneficial to represent feature models
as ASP programs. Despite the fact that the theoretical computational
complexity inherent in the feature configuration problem is NP-hard,
the current ASP solvers are efficient in calculating the stable models
even for programs that represent real-life feature models. We believe
that it is more important to find and utilize real problems in testing
scalability instead of generated random problems. Consequently, we
have configured real problems interactively, without no noticeable
delay: see the configuration model with slightly less than 500 varia-
tion points [29] and the configuration model with dozens of different
types [2] as examples.

7

7 Conclusions
This study shows how feature models can be represented as ASP
programs by means of two different mappings of a graphical feature
diagram through intermediate languages. The representation of fea-
ture models as ASP programs enables utilizing existing inference en-
gines that are efficient for practical problems. Moreover, the mapping
shows significant similarities between feature modeling and prod-
uct configuration, in particular demonstrating how a feature model
diagram can be presented using a product configuration language.
This is one concrete step towards better unification between these
two similar disciplines of research.

Acknowledgment
We acknowledge the financial support of TEKES as part of the Need
4 Speed (N4S) program of DIGILE and the Austrian Research Pro-
motion Agency (Casa Vecchia, 825889).

REFERENCES
[1] Fourth (open) answer set programming competition - 2013.

https://www.mat.unical.it/aspcomp2013, 2013. retrieved 2014-05-05.
[2] Timo Asikainen, Tomi Männistö, and Timo Soininen, ‘Kumbang: A do-

main ontology for modelling variability in software product families’,
Advanced engineering informatics journal, 21(1), (2007).

[3] D. Benavides, S. Segura, and A. Ruiz-Cortes, ‘Automated analysis of
feature models 20 years later: A literature review’, Information Systems,
35, 615–636, (2010).

[4] David Benavides, Alexander Felfernig, JosA. Galindo, and Florian Re-
infrank, ‘Automated analysis in feature modelling and product configu-
ration’, in Safe and Secure Software Reuse, eds., John Favaro and Maur-
izio Morisio, volume 7925 of Lecture Notes in Computer Science, 160–
175, Springer Berlin Heidelberg, (2013).

[5] David Benavides, Pablo Trinidad Martı́n-Arroyo, and Antonio Ruiz
Cortés, ‘Automated reasoning on feature models’, in International Con-
ference on Advanced Information Systems Engineering, (2005).

[6] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, ‘A study
of variability models and languages in the systems software domain’,
Software Engineering, IEEE Transactions on, 39(12), 1611–1640, (Dec
2013).

[7] Jan Bosch, Design and Use of Software Architectures: Adapting and
Evolving a Product-Line Approach, Addison-Wesley, 2000.

[8] Jan Bosch, ‘Maturity and evolution in software product lines: Ap-
proaches, artefacts and organization’, in Proc. of Software Product Line
Conference, (2002).

[9] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovam-
battista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola
Leone, Francesco Ricca, and Torsten Schaub. ASP-Core-2: In-
put language format (v.2.03b). ASP Standardization Work-
ing Group, https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-
2.03b.pdf, 2012. retrieved 2014-05-05.

[10] Paul Clements and Linda Northrop, Software Product Lines—Practices
and Patterns, Addison-Wesley, 2001.

[11] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker, ‘For-
malizing cardinality-based feature models and their specialization’,
Softw. Proc. Improv. Pract., 10(1), 7–29, (2005).

[12] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker, ‘Staged
configuration through specialization and multilevel configuration of
feature models’, Software Process: Improvement and Practice, 10(2),
143–169, (2005).

[13] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(Re)configuration using Answer Set Programming’, in 22nd In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2011),
Workshop on Configuration, eds., Kostyantyn Shchekotykhin, Markus
Zanker, and Dietmar Jannach, pp. 17–25, (2011).

[14] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Os-
trowski, Torsten Schaub, and Marius Schneider, ‘Potassco: The pots-
dam answer set solving collection’, AI Communications, 24(2), 107–
124, (2011).

[15] L. Hotz, A. Felfernig, A. Günter, and J. Tiihonen, ‘A Short His-
tory of Configuration Technologies’, in Knowledge-based Configura-
tion – From Research to Business Cases, eds., A. Felfernig, L. Hotz,
C. Bagley, and J. Tiihonen, chapter 2, 9–19, Morgan Kaufmann Pub-
lishers, (2013).

[16] Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta,
Tomi Mnnist, Krzysztof Czarnecki, Patrick Heymans, Tien Nguyen,
and Markus Zanker, ‘Unifying software and product configuration: A
research roadmap’, in Proceedings of the workshop on configuration
(confws12), (2012).

[17] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson,
‘Feature-oriented domain analysis (foda) feasibility study’, Technical
Report CMU/SEI-90-TR-21, ADA 235785, Software Engineering In-
stitute, (1990).

[18] K.C. Kang, Jaejoon Lee, and P. Donohoe, ‘Feature-oriented product
line engineering’, IEEE Software, 19(4), 58–65, (2002).

[19] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuration
Tasks’, in 11th International Joint Conference on Artificial Intelligence
(IJCAI-89), volume 2, pp. 1395–1401, Detroit, Michigan, USA, (1989).

[20] Varvana Myllärniemi, Mikko Raatikainen, and Tomi Männistö, ‘Kum-
bang tools’, in Software Product Line Conference, volume 2, pp. 135–
136, (2007).

[21] Hannu Peltonen, Juha Tiihonen, and Andreas Anderson. Configura-
tor tool concepts and model definition language. Unpublished work-
ing document of Helsinki University of Technology, Software Business
and Engineering Institute, Product Data Management Group, Espoo,
Finland, 2001.

[22] Potassco. Potassco, the Potsdam Answer Set Solving Collection, bun-
dles tools for answer set programming developed at the university
of potsdamanswer set programming. SourceForge project http:
//potassco.sourceforge.net/. Accessed 2014-05-06.

[23] Daniel Sabin and Reiner Weigel, ‘Product Configuration Frameworks -
A Survey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

[24] Gottfried Schenner, Andreas Falkner, Anna Ryabokon, and Gerhard
Friedrich, ‘Solving object-oriented configuration scenarios with asp’,
in 15 th International Configuration Workshop, eds., Michel Aldanondo
and Andreas Falkner, pp. 55–62, (2013).

[25] Patrik Simons, Ilkka Niemelä, and Timo Soininen, ‘Extending and im-
plementing the stable model semantics’, Artificial Intelligence, 138,
181–234, (2002).

[26] Timo Soininen, Ilkka Niemelä, Juha Tiihonen, and Reijo Sulo-
nen, ‘Representing Configuration Knowledge with Weight Constraint
Rules’, in 1st International Workshop on Answer Set Programming:
Towards Efficient and Scalable Knowledge (AAAI Technical Report
SS-01-01), eds., Alessandro Provetti and Tran Cao Son, pp. 195–201,
(2001).

[27] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch, ‘A taxononomy of
variability realization techniques’, Software—Practice and Experience,
35(8), 705–754, (2005).

[28] Tommi Syrjänen, ‘Including diagnostic information in configuration
models’, in First International Conference on Computational Logic
(CL 2000), eds., John Lloyd, Veronica Dahl, Ulrich Furbach, Man-
fred Kerber, Kung-Kiu Lau, Catuscia Palamidessi, Luı́sMoniz Pereira,
Yehoshua Sagiv, and Peter J. Stuckey, volume LNCS 1861, pp. 837–
851. Springer, (2000).

[29] Juha Tiihonen, Mikko Heiskala, Andreas Anderson, and Timo Soini-
nen, ‘Wecotin–a practical logic-based sales configurator’, AI Commu-
nications, 26(1), 99–131, (2013).

[30] Juha Tiihonen and Timo Soininen, ‘Product Configurators - Infor-
mation System Support for Configurable Products’, Technical Report
TKO-B137, Helsinki University of Technology, Laboratory of Infor-
mation Processing Science, (1997). also publsihed in: Increasing Sales
Productivity through the Use of Information Technology during the
Sales Visit, Hewson Consulting Group.

[31] Juha Tiihonen, Timo Soininen, Ilkka Niemelä, and Reijo Sulonen, ‘A
practical tool for mass-customising configurable products’, in Proceed-
ings of the 14th International Conference on Engineering Design, eds.,
A.Folkeson, K. Gralén, M. Norell, and U. Sellgren, pp. CDROM, paper
number 1290, 10 pp., (August 19-21, 2003 2003).

[32] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff
Magee, ‘The Koala component model for consumer electronics soft-
ware’, Computer, 33(3), 78–85, (March 2000).

[33] Wikipedia. Answer set programming. http://en.wikipedia.
org/wiki/Answer_set_programming. Accessed 2014-05-06.

8

Integrating Distributed Configurations
with RDFS and SPARQL

Gottfried Schenner1 and Stefan Bischof1 and Axel Polleres2 and Simon Steyskal1,2

Abstract. Large interconnected technical systems (e.g. railway net-
works, power grid, computer networks) are typically configured with
the help of multiple configurators, which store their configurations
in separate databases based on heterogeneous domain models (on-
tologies). In practice users often want to ask queries over several
distributed configurations. In order to reason over these distributed
configurations in a uniform manner a mechanism for ontology align-
ment and data integration is required. In this paper we describe our
experience with using standard Semantic Web technologies (RDFS
and SPARQL) for data integration and reasoning.

1 INTRODUCTION
Product configuration [9] is the task of assembling a system from
predefined components satisfying the customer requirements. Large
technical systems are typically configured with the help of multiple
configuration tools. These configurators are often specific to a tech-
nology or vendor and therefore use heterogeneous domain models
(ontologies).

For large interconnected systems (e.g. railway networks, power
grid) the configuration of the overall system may be stored across
separate databases, each database containing only the information for
a sub-system.

The domain models and databases of these configurators are a
valuable source of information about the deployed system. But there
must be a way to access the information in an uniform and integrated
manner in order to exploit this.

Figure 1: Data integration approach

1 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria
{gottfried.schenner|bischof.stefan}@siemens.com

2 Vienna University of Economics & Business, 1020 Vienna, Austria
{axel.polleres|simon.steyskal}@wu.ac.at

Figure 1 shows a typical scenario from the railway domain. The
individual stations of a network are built by different vendors (A, B,
C). Vendors A and B use proprietary configurators (A, B) and store
the configurations of these stations in separate projects. Vendor C does
not use a configurator, therefore there is no (digital) data available to
integrate.

In the railway scenario the railway company owning the railway
network wants to obtain information about the whole network in a
vendor-independent way. To achieve this, some form of ontology and
data integration is necessary. We can identify three steps: (i) create
a vendor-independent ontology, (ii) map or align the vendor-specific
ontologies or schemas to the vendor-independent ontology, and (iii)
provide the vendor-specific data in terms of the vendor-independent
ontology.

This paper investigates, how to use standard Semantic Web tech-
nologies (RDFS, SPARQL and OWL) for data integration. Our ap-
proach uses SPARQL CONSTRUCT queries to generate a linked
system view of the distributed configurations as depicted in Figure 2.
This system view can then (i) be queried in a uniform manner, (ii)
be checked for contraint violations taking all relevant configurations
into account and (iii) be used for reasoning and general consistency
checks (cf. Figure 3).

Figure 2: Integrating configurations with SPARQL CONSTRUCT
queries into a linked system view.

The remainder of this paper is structured as follows: Chapter 2
discusses the preliminaries of this paper, especially the used Semantic
Web technologies. Chapter 3 introduces the working example of this
paper, Chapter 4 shows how to derive an integrated view of the system
from the individual configurator specific databases, in Chapter 5 we

9

Figure 3: Using a linked system view for querying and reasoning over
distributed configurations.

discuss, how to reason about the overall system with SPARQL queries
and we discuss related work in Chapter 6. Finally, we conclude our
paper in Chapter 7.

2 PRELIMINARIES
The proposed approach builds heavily on Semantic Web standards
and technologies. Instance data is represented as RDF triples, domain
models are mapped to domain dependent ontologies/vocabularies and
queries are formulated in SPARQL.

2.1 Data representation with RDF

Figure 4: A simple RDF triple.

The Resource Description Framework (RDF) [15] is a framework
for describing and representing information about resources and is
both human-readable and machine-processable. These abilities offer
the possibility to easily exchange information in a lightweight manner
among different applications.

In RDF every resource is identified by its URI and represented
as subject - predicate - object triples, where subjects and
predicates are URIs and objects can either be literals (strings, integers,
. . .) or URIs as shown in Figure 4. Additionally, subjects or objects
can be defined as blank nodes, these blank nodes do not have a
corresponding URI and are mainly used to describe special types of
resources without explicitly naming them. For example the concept
mother could be represented as a female person having at least one
child.

2.2 Querying with SPARQL
SPARQL Protocol And RDF Query Language (SPARQL) [14] is the
standard query language for RDF, which has become a W3C Rec-
ommendation in version 1.1 in 2013. Its syntax is highly influenced
by the previous introduced RDF serialization format Turtle [1] and
SQL [4] a query language for relational data3.

Besides basic query operations such as union of queries, filtering,
sorting and ordering of results as well as optional query parts, ver-
sion 1.1 extended SPARQL’s portfolio by aggregate functions (SUM,
AVG, MIN, MAX, COUNT,. . .), the possibility to use subqueries,
perform update actions via SPARQL Update and several other heavily
requested missing features [23].

Furthermore, it is possible to create entirely new RDF graphs based
on the variable bindings constituted in graph patterns which are
matched against one or more input graphs, using SPARQL CON-
STRUCT queries. Using such CONSTRUCT queries offers the pos-
sibility to easily define transformations between two or more RDF
graphs/ontologies, which serves as a basic building block for the
present paper.

2.3 Semantic heterogeneity
In order to be able to integrate two or more ontologies into one in-
tegrated knowledge base, it is mandatory to define correspondences
between the elements of those ontologies to reduce semantic hetero-
geneity among the integrated ontologies [8].

The problem of semantic heterogeneity can be caused by several
facts, e.g. that different ontologies model the same domain in dif-
ferent levels of precision or use different terms for the same con-
cepts [26] (e.g. a concept Computer is equivalent to another concept
Device). Such “simple” differences can be detected by most of the
current state-of-the-art ontology matching systems like YAM++ [21]
or LogMap [18]. However more complex heterogeneities (e.g. a con-
cept Subnet is equivalent to the union of the concepts Computer and
Switch; or a property hasPort, which links a Computer to its Port,
is equivalent to an attribute ownsPort, which contains the respective
port as string representation) are not only more difficult to detect but
also not supported by the majority of ontology matching tools [13,27],
although a few approaches to tackle those problems exist [5, 6, 26]. A
slightly different approach was followed by [24], where the authors
propose a framework which defines executable semantic mappings
between ontologies based on SWRL [16] rules and string similarity.

Nevertheless, based on the absence of ontology matching tools
which are capable of detecting such complex correspondences, we
assume the presence of already known correspondences between
entities of the ontologies for our integration scenario.

3 WORKING EXAMPLE
As working example4 a fictitious computer network is used and rep-
resented as UML class diagrams. Figure 5 shows the customer view
(system view) of the network.

The following additional constraints hold for the system view:

• In the computer network every computer has a unique address
• A computer can be part of 1-2 subnets
• A computer is part of exactly one project

3 All listings within this paper are serialized in Turtle syntax.
4 The example ontologies and queries are available upon request from the first

author.

10

Figure 5: System Ontology

• A project is some arbitrary subdivision of the whole network (e.g.
building)

• A subnet can be part of multiple projects

In the example there are 2 vendors (A and B), each providing their
own configurator. A project can be configured either with configurator
A or configurator B. In both cases there is one configurator database
for every project. None of the domain models contains the concept of
a subnet as found in the system view.

Figure 6a shows the domain model of configurator A. In the domain
model of configurator A computers are called devices. Internal devices
are the devices configured in the current project. External devices
are devices of other projects that are directly connected to a internal
device. These are needed to configure the network cards of the internal
device.

Figure 7a shows the domain model of configurator B. Vendor B
realizes the computer network with switches. Computers can have
1 or 2 ports, which must be connected to a port of an switch. The
attribute external is set to ’true’ for elements that are external to the
current project.

3.1 Converting object-oriented models to
ontologies

Although using Description Logics for configuration has a long his-
tory [10, 20, 28] in our experience large scale industrial configurators
mostly use some form of UML-like object-oriented formalisms. For
this paper we use the approach for converting object-oriented data
models and their instance data into RDF/OWL shown in Table 1. Be-
cause of the clear correspondance between UML class diagrams and
OWL ontologies we depict ontologies also as UML class diagrams.

This conversion captures the bare minimum that is required for our
data integration approach. See [29] for a more elaborate approach for
representing product configurator knowledge bases in OWL.

Listing 1 shows a fragment of the class model of Figure 6a and the
instance data of Figure 6b in RDF & OWL5.

Listing 1: Ontology A with instance data
object model
ontoA:Device rdf:type owl:Class .

ontoA:InternalDevice rdf:type owl:Class ;
rdfs:subClassOf ontoA:Device .

ontoA:Device_address rdf:type

5 For the sake of simplicity, we omitted owl:DatatypeProperty and respec-
tive project definitions.

Table 1: Convert object-oriented data models to ontologies

UML RDF/OWL

class C URI(C) rdf:type owl:Class .
C1 extends C URI(C1) rdfs:subClassOf URI(C) .
attribute A URI(A) rdf:type owl:DatatypeProperty ,

owl:FunctionalProperty ; rdfs:domain URI(C);
rdfs:range TYPE(A) .

assoc A(C1,C2) URI(A) rdf:type owl:ObjectProperty; rdfs:range
URI(C1); rdfs:domain URI(C2) .

object O of class C URI(O) rdf:type URI(C) .
attributevalue A URI(O) URI(A) VALUE(A) .
for every tuple(O1,O2)
in assoc A

URI(O1) URI(A) URI(O2).

owl:DatatypeProperty ,
owl:FunctionalProperty ;

rdfs:domain ontoA:Device ;
rdfs:range xsd:unsignedInt .

ontoA:Device_slot1Connected rdf:type
owl:ObjectProperty ;

rdfs:range ontoA:Device ;
rdfs:domain ontoA:Device .

instance data
ontoA:A1 rdf:type ontoA:InternalDevice ;

ontoA:Device_address "1"^^xsd:unsignedInt ;
ontoA:Device_slot1Connected

ontoA:A2 , ontoA:A3 ;
ontoA:Device_slot2Connected

ontoA:B3 , ontoA:B4 .

ontoA:A3 rdf:type ontoA:InternalDevice ;
ontoA:Device_address "3"^^xsd:unsignedInt ;
ontoA:Device_slot1Connected

ontoA:A1 , ontoA:A2 .

ontoA:B1 rdf:type ontoA:ExternalDevice ;
ontoA:Device_address "4"^^xsd:unsignedInt ;
ontoA:Device_slot1Connected

ontoA:B2 , ontoA:A1 .

ontoA:B2 rdf:type ontoA:ExternalDevice ;
ontoA:Device_address "5"^^xsd:unsignedInt ;
ontoA:Device_slot1Connected

ontoA:B1 , ontoA:A1 .

3.2 Unique Name Assumption and Closed World
Assumption

When converting the instance data of a configurator to RDF an iden-
tifier (URI) for every object must be generated. Most product con-
figurators impose the Unique Name Assumption, i.e. objects with
different object-ID refer to different objects of the domain. In the
example above we therefore know that ontoA:A1 and ontoA:A2 refer
to different Devices.

RDF/OWL does not impose the Unique Name Assumption. This
is a desirable feature when reasoning about linked data. If one wants
to integrate instance data from different sources using heterogeneous
ontologies, these ontologies will often refer to the same entity under
different URIs. The same can happen, when we integrate multiple
interconnected configurations into one configuration.

Figures 6b and 7b show the configurations of two projects (A and
B). Although every computer/device is only represented once in each
configuration, some computers/device are known in both projects

11

(a) Ontology A (b) Instance data of Project A

Figure 6: Ontology and instance data of Project A (Ontology A)

(a) Ontology B (b) Instance data of Project B

Figure 7: Ontology and instance data of Project B (Ontology B)

i.e. the ExternalDevice ontoA:B1 and the Computer ontoB:B1 are
referring to the same real world object under different URIs.

As a pragmatic solution for the Unique Name Assumption for this
paper all URIs are treated as different, unless explicitly stated by
owl:sameAs.

Similar considerations apply to the Closed World Assumption. In
a configurator database one assumes that all components relevant
to the current context are known. For instance in our example all
the computers in the current project are known and one can use the
Closed World Assumption to conclude that there are no other internal
computers. The same applies to external computers that are directly
connected to a internal computer. But we cannot apply the Closed
World Assumption to the whole computer network, since we have
no information about how many projects and computers there are in
total.

4 DATA INTEGRATION WITH SPARQL
We followed an approach proposed in [7] which motivates the use
of SPARQL CONSTRUCT queries to perform data integration (i.e.
based on known correspondences between ontologies, we are able to
translate their instance data to be conform with the structure of the
integrated ontology).

4.1 Creation of the system view
As a first step in our data integration approach a system view of the
configurator specific instance data is created. This system view reflects
the view of the owner of the configured system and is completely
self contained i.e. does not contain any URIs of the domain specific
ontologies. To derive the system view from the proprietary configura-
tor data we use SPARQL CONSTRUCT queries. Figure 6b shows a
configuration of configurator A, Figure 7b shows a configuration of
configurator B. The projects of the two configurations are connected
via the subnet containing A1(C1), B1(C4) and B2(C5).

4.1.1 Creating instances

To map an instance of the source ontology to a new instance of the
target ontology we can either generate a new URI in the namespace
of the target ontology or use blank nodes.

The following example (cf. Listing 2) creates a computer in the
system ontology for every device of the source ontology A by creating
a new unique URI using a unique identifier of the target object (in this
case the attribute address).

One advantage of using that approach is that for every instance
only one URI will be created in the instance data and the order of

12

Figure 8: Equivalence relations of subnets derived from Ontology A

Figure 9: Instance data of Project A and Project B (System Ontology)

executing the CONSTRUCT queries does not matter.

Listing 2: Instance creation with new URI
CONSTRUCT {

?computer rdf:type ontoSys:Computer.
?computer ontoSys:Computer_address ?address.

}
WHERE{

?device ontoA:Device_address ?address.
BIND(URI(CONCAT(URISYS ,STR(? address)))

AS ?computer)
}

If in contrast blank nodes are used, every CONSTRUCT query
generates a new blank node for a source object. Therefore we use
blank nodes only, when it is not possible or inconvenient to create a
unique URI for an instance. In our example, since there is no identifier
for projects in the source ontology, new projects can be created with
the CONSTRUCT query shown in Listing 3.

Listing 3: Instance creation with blank node
CONSTRUCT {

_:p rdf:type ontoSys:Project .
_:p ontoSys:origin ?project .

}
WHERE{

?project rdf:type ontoA:Project .
}

By using the special object-property ontoSys:origin, we can
keep track what led to the construction of the blank node. This infor-
mation can then reused in subsequent CONSTRUCT queries.

4.1.2 Complex mapping

Sometimes it is more to convenient to use multiple URIs for the same
instance, especially if there is no explicit representation of the concept
of the object in the source ontology. These multiple URIs will then be
related using owl:sameAs.

In our example the concept of a subnet is not directly represented
in ontology A. To create the subnets for instance data of ontology A a
more complex query is necessary as depicted in Listing 4.

Listing 4: Creating subnets from instance data
C = abbreviation for URI of Computer
SIRI = abbreviation for URI of subnets
CONSTRUCT {

?sub1 ontoSys:Subnet_computers ?c1 .
?sub2 ontoSys:Subnet_computers ?c2 .
?sub1 rdf:type ontoSys:Subnet .
?sub2 rdf:type ontoSys:Subnet .
?sub1 owl:sameAs ?sub2 .

}
WHERE {

{ ?d1 ontoA:Device_slot1Connected ?d2 .
?d1 ontoA:Device_address ?a1 .
BIND(CONCAT(STR(?a1),"_1") AS ?sid1)

} UNION {
?d1 ontoA:Device_slot2Connected ?d2 .
?d1 ontoA:Device_address ?a1 .
BIND(CONCAT(STR(?a1),"_2") AS ?sid1) . }

{ ?d2 ontoA:Device_slot1Connected ?d1 .
?d2 ontoA:Device_address ?a2 .
BIND(CONCAT(STR(?a2),"_1") AS ?sid2)

} UNION {
?d2 ontoA:Device_slot2Connected ?d1 .
?d2 ontoA:Device_address ?a2 .
BIND(CONCAT(STR(?a2),"_2") AS ?sid2) . }

BIND(URI(CONCAT(C,STR(?a1))) AS ?c1)
BIND(URI(CONCAT(C,STR(?a2))) AS ?c2)
BIND(URI(CONCAT(SIRI ,STR(?sid1))) AS ?sub1)
BIND(URI(CONCAT(SIRI ,STR(?sid2))) AS ?sub2)

}

5 USING THE INTEGRATED MODEL
The data of the different systems is available and expressed in terms of
a common ontology. We can now access the data in a uniform manner
and perform different kinds of operations. This section presents two
classes of use cases, namely posing queries over the whole system
and checking constraints concerning several systems.

13

5.1 Queries
After the data-integration the former heterogeneous data can now
be queried in a uniform manner using only concepts of the system
ontology.

Listing 5: Example Quering the system model
return all the addresses used in project
SELECT ?p ?address
WHERE {
?p ontoSys:Project_computers ?c .
?c ontoSys:Computer_address ?address .

}

5.2 Checking constraints
If one wants to query information specific to a domain ontology, this
data is still accessible via the ontoSys:origin link. One use case for
using the ontoSys:origin property, is to detect inconsistencies in
the source data. For example if a subnet is part of two projects, for
every computer in that subnet, there must be two representations in the
source ontologies (In one of these projects the computer is external).
The following query checks this property.

Listing 6: Checking constraints
SELECT ?c ?o
WHERE {
?project ontoSys:Project_computers ?c .
?sub ontoSys:Subnet_computers ?c .
?sub ((owl:sameAs |^owl:sameAs)*) ?other .
?project2 ontoSys:Project_subnets ?other .
FILTER (? project !=? project2)
{

?c ontoSys:origin ?o .
} MINUS {

?c ontoSys:origin ?o1 .
?c ontoSys:origin ?o2 .
FILTER (?o1!=?o2)

}
}

So far we checked the integrity of the instance data by writ-
ing special SPARQL queries. Whenever these queries are not
empty a constraint violation is detected. Alternatively SPARQL
CONSTRUCT queries can be used to derive a special property
ontoSys:constraintviolation and record the reason for the in-
consistencies.

Listing 7: Constraint violations
CONSTRUCT {

_:cv ontoSys:constraintviolation ?c .
_:cv ontoSys:description

"inconsistent data" .
}
...

5.3 Special treatment of owl:sameAs
As discussed in Chapter 3.2 OWL does not impose the unique name
assumpion (UNA). Therefore it is common to have different names
(URIs) refer to the same real-world object. In that case they can be
linked via owl:sameAs. SPARQL is unaware of the special seman-
tics of owl:sameAs. This can be a problem, especially when using
counting aggregates, since one usually wants to count the number
of real-objects and not the number of URIs referring to it. Take for
example a query counting the number of subnets. Our construction

of subnet-URIs creates a URI for every connected port of a com-
puter (Figure 8). A naive SPARQL query would count all distinct
URIs that refer to the same subnet (ontoSys : S11, ontoSys : S22,
ontoSys : S31) i.e. resulting in 3 instead of the expected answer 1.
To fix this, one has to choose one representative for every element
equivalence class induced by owl:sameAs and count the number of
representatives. In our approach this is done by choosing the lexico-
graphically smallest element.

Listing 8: Example counting predicates
query without special treatment of sameAs
SELECT (COUNT(DISTINCT ?subnet) AS ?numberofsubnets)
WHERE {

?subnet a ontoSys:Subnet .
}
result: numberofsubnets = 6

query with special sameas treatment
chooses the lexicographic first element
as representation of the equivalence class
SELECT (COUNT(DISTINCT ?first) AS ?numberofsubnets)
WHERE {

?subnet a ontoSys:Subnet .
first subquery
{ SELECT ?subnet ?first

WHERE {
?subnet ((owl:sameAs |^owl:sameAs)*) ?first .

OPTIONAL {
?notfirst ((owl:sameAs |^owl:sameAs)*) ?first .
FILTER (STR(? notfirst) < STR(?first))}
FILTER (!BOUND(? notfirst))}

}
}
result: numberofsubset = 2

An alternative approach would be to replace all cliques of the RDF-
graph linked by owl:sameAs with a new unique URI. We did not
consider that because it requires a proprietary implementation and by
replacing URIs, one loses information about the source of information.
For instance, if the instance data of two different configurators refer
to the same real-world object but have conflicting data-values for that
object, both values and their sources must be communicated to the
end-user.

6 RELATED WORK
In order to successfully perform data or information integration using
Semantic Web technologies two main issues have to be addressed,
namely:

Ontology Mapping Tackling the difficulties of Ontology Mapping
(i.e. defining alignments between ontologies) extensive studies have
been taken out over the last couple of years [2, 11, 12, 19], mainly
focusing on resolving heterogeneity among different ontologies or
data sources by detecting similarities amongst them.

Ontology Integration Two main approaches can be identified for
integrating different ontologies [22], (i) define an upper ontology
which contains general concepts and properties for those in the
underlying more specific ones and define mappings between them
and (ii) define alignments directly between underlying ontologies
and use query rewriting for query support [3, 25].

With its W3C Recommendation for version 1.1 in 2013 [14], in-
troducing e.g. UPDATE queries and a revised entailment regime,
SPARQL has become more feasible to be used within information
integration scenarios and not only as query language for RDF data.

14

Our approach can be used for data integration of distributed config-
urations and for reasoning about the consistency of the integrated sys-
tem. It can not be used to solve (distributed) configuration problems.
For a CSP-based approach on how to solve distributed configuration
problems see [17].

7 CONCLUSIONS
When we started out writing this paper, we were looking for a
lightweight approach for data integration for distribute configurations
using standard Semantic Web technologies.

In the present paper we show that using solely SPARQL and RDFS
is sufficient for an approach that relies only on standards and makes
it easy to introduce new concepts and individuals on the fly using
SPARQL queries. This is especially important for practical use cases,
where it is unpredictable which information a customer will request
about the configured system.

We tested our approach with real-world data. On a standard
Windows-7 laptop with 8 GB using the SPARQL-API of JENA 2.11.1
a large database (>50000 instances) can be integrated in less than 5
minutes resulting in a RDF-graph with more than 500000 triples.

We also considered using OWL reasoners but could not find a
solver-independent way of creating new individuals. Nevertheless, for
future work we plan to look into using richer OWL ontologies, which
would offer the possibility to use configurator specific concepts such
as part-subpart, resource, (hardware-)component etc.

As can be seen in the example SPARQL queries in this paper, some
queries (especially the ones that take into account owl:sameAs prop-
erties), are only understandable for a SPARQL expert. One approach
for making queries more accessible for a SPARQL beginner would be
to hide the special treatment of owl:sameAs from the inexperienced
user by using query rewriting.

ACKNOWLEDGEMENTS
Stefan Bischof and Simon Steyskal have been partially funded by
the Vienna Science and Technology Fund (WWTF) through project
ICT12-015.

Simon Steyskal has been partially funded by ZIT, the Technology
Agency of the City of Vienna (Austria), in the programme ZIT13 plus,
within the project COSIMO (Collaborative Configuration Systems
Integration and Modeling) under grant number 967327.

REFERENCES
[1] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin

Carothers. Turtle – Terse RDF Triple Language. W3C Candidate
Recommendation, February 2013. http://www.w3.org/TR/2013/
CR-turtle-20130219/.

[2] Namyoun Choi, Il-Yeol Song, and Hyoil Han, ‘A survey on ontology
mapping’, ACM Sigmod Record, 35(3), 34–41, (2006).

[3] Gianluca Correndo, Manuel Salvadores, Ian Millard, Hugh Glaser, and
Nigel Shadbolt, ‘Sparql query rewriting for implementing data integra-
tion over linked data’, in Proceedings of the 2010 EDBT/ICDT Work-
shops, p. 4. ACM, (2010).

[4] Chris J Date and Hugh Darwen, SQL. Der Standard.: SQL/92 mit den
Erweiterungen CLI und PSM., Pearson Deutschland GmbH, 1998.

[5] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and
Pedro Domingos, ‘imap: discovering complex semantic matches be-
tween database schemas’, in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pp. 383–394. ACM,
(2004).

[6] AnHai Doan and Alon Y Halevy, ‘Semantic integration research in the
database community: A brief survey’, AI magazine, 26(1), 83, (2005).

[7] Jérôme Euzenat, Axel Polleres, and François Scharffe, ‘Processing on-
tology alignments with sparql’, in Complex, Intelligent and Software
Intensive Systems, 2008. CISIS 2008. International Conference on, pp.
913–917. IEEE, (2008).

[8] Jérôme Euzenat, Pavel Shvaiko, et al., Ontology matching, volume 18,
Springer, 2007.

[9] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Elsevier Science,
2014.

[10] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus
Stumptner, and Markus Zanker, ‘Configuration knowledge represen-
tations for semantic web applications’, AI EDAM, 17(1), 31–50, (2003).

[11] Chiara Ghidini and Luciano Serafini, ‘Mapping properties of heteroge-
neous ontologies’, in Artificial Intelligence: Methodology, Systems, and
Applications, 181–193, Springer, (2008).

[12] Chiara Ghidini, Luciano Serafini, and Sergio Tessaris, ‘On relating
heterogeneous elements from different ontologies’, in Modeling and
Using Context, 234–247, Springer, (2007).

[13] Bernardo Cuenca Grau, Zlatan Dragisic, Kai Eckert, Jérôme Euzenat,
Alfio Ferrara, Roger Granada, Valentina Ivanova, Ernesto Jiménez-Ruiz,
Andreas Oskar Kempf, Patrick Lambrix, et al., ‘Results of the ontology
alignment evaluation initiative 2013’, in Proc. 8th ISWC workshop on
ontology matching (OM), pp. 61–100, (2013).

[14] Steve Harris and Andy Seaborne, ‘Sparql 1.1 query language’, W3C
Reccomendation, 14, (2013).

[15] Patrick Hayes and Brian McBride. Rdf semantics. W3C Recommenda-
tion, February 2004. http://www.w3.org/TR/rdf-mt/.

[16] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, Mike Dean, et al., ‘Swrl: A semantic web rule language
combining owl and ruleml’, W3C Member submission, 21, 79, (2004).

[17] Dietmar Jannach and Markus Zanker, ‘Modeling and solving distributed
configuration problems: A csp-based approach’, Knowledge and Data
Engineering, IEEE Transactions on, (99), 1–1, (2011).

[18] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau, ‘Logmap: Logic-
based and scalable ontology matching’, in The Semantic Web–ISWC
2011, 273–288, Springer, (2011).

[19] Yannis Kalfoglou and Marco Schorlemmer, ‘Ontology mapping: the
state of the art’, The knowledge engineering review, 18(01), 1–31,
(2003).

[20] Deborah L. McGuinness and Jon R. Wright, ‘An industrial strength de-
scription logics-based configurator platform’, IEEE Intelligent Systems,
13(4), 69–77, (July 1998).

[21] DuyHoa Ngo and Zohra Bellahsene, ‘Yam++: a multi-strategy based
approach for ontology matching task’, in Knowledge Engineering and
Knowledge Management, 421–425, Springer, (2012).

[22] Natalya F Noy, ‘Semantic integration: a survey of ontology-based ap-
proaches’, ACM Sigmod Record, 33(4), 65–70, (2004).

[23] Axel Polleres, ‘Sparql1. 1: New features and friends (owl2, rif)’, in Web
Reasoning and Rule Systems, 23–26, Springer, (2010).

[24] Han Qin, Dejing Dou, and Paea LePendu, ‘Discovering executable
semantic mappings between ontologies’, in On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, 832–
849, Springer, (2007).

[25] Bastian Quilitz and Ulf Leser, ‘Querying distributed rdf data sources
with sparql’, in The Semantic Web: Research and Applications, 524–538,
Springer, (2008).

[26] Dominique Ritze, Christian Meilicke, O Sváb-Zamazal, and Heiner
Stuckenschmidt, ‘A pattern-based ontology matching approach for de-
tecting complex correspondences’, in ISWC Workshop on Ontology
Matching, Chantilly (VA US), pp. 25–36. Citeseer, (2009).

[27] Pavel Shvaiko and Jérôme Euzenat, ‘Ontology matching: state of the
art and future challenges’, Knowledge and Data Engineering, IEEE
Transactions on, 25(1), 158–176, (2013).

[28] Timo Soininen, Juha Tiihonen, Tomi Männistö, and Reijo Sulonen,
‘Towards a general ontology of configuration’, Artif. Intell. Eng. Des.
Anal. Manuf., 12(4), 357–372, (September 1998).

[29] Dong Yang, Rui Miao, Hongwei Wu, and Yiting Zhou, ‘Product config-
uration knowledge modeling using ontology web language’, Expert Syst.
Appl., 36(3), 4399–4411, (April 2009).

15

http://www.w3.org/TR/2013/CR-turtle-20130219/
http://www.w3.org/TR/2013/CR-turtle-20130219/
http://www.w3.org/TR/rdf-mt/

16

Configuring Decision Tasks
Martin Stettinger1 and Alexander Felfernig1 and Michael Jeran1 and Gerald Ninaus 1

and Gerhard Leitner 2 and Stefan Reiterer 3

Abstract. In most cases, decision tasks are individual and different
decision tasks require different combinations of features. Features
can be, for instance, special preference visibilities during the deci-
sion process or specific heuristics that support the recommendation
of decisions. To find the right features for a decision task it is essen-
tial to offer a corresponding configuration functionality. In this paper
we illustrate how the design of a decision task can be represented as
a configuration problem. The underlying configuration knowledge is
already integrated in a tool called CHOICLA.

1 Introduction
Decisions have to be taken in different situations - for example a
decision about the destination for the next holidays or a decision
about which restaurant to choose for a dinner with friends. Decision
scenarios can differ from each other in terms of their process design.
Some decision scenarios rely on a preselected decision heuristic
that defines the criteria for taking the decision, for example, a group
decides to use majority voting for deciding about the next restaurant
visit. Furthermore, the visibility of the preferences of other users
is an important feature that can be configured by the creator of a
decision task.

In this paper we show how the design of decision tasks (the
underlying process) can be defined as a configuration problem. The
major advantage of this approach is that making the process design
of decision tasks configurable introduces the flexibility that is needed
due to the heterogenity of decision problems. This way we are able
to build a model that is flexible with regard to the implementation
(generation) of problem-specific decision applications. The knowl-
edge representations introduced in the following are included in the
CHOICLA decision support environment (see www.choicla.com).

The remainder of this paper is organized as follows. In the
next section (Section 2) we discuss features that are essential to the
design of a decision task. In Section 3 we introduce dependencies
that exist between features. In Section 4 we provide insights into
group recommendation approaches integrated in the CHOICLA

environment. We then discuss related and future work and thereafter
conclude the paper.

2 Configuring a decision task
In the following we discuss different features that are relevant
when designing (configuring) a decision task. On a formal level,

1 Graz, University of Technology, Austria, email:
firstname.lastname@ist.tugraz.at

2 Alpen Adria University, Austria, email: gerhard.leitner@aau.at
3 SelectionArts Intelligent Decision Technologies GmbH, Austria, email:

s.reiterer@selectionarts.com

we represent a decision task configuration problem as a constraint
satisfaction problem [12] and [5] (CSP – see Definition 1).

Definition 1 (Constraint Satisfaction Problem). A CSP con-
sists of (1) a set of finite-domain variables X = {x1, x2, ..., xn}
and (2) a set of constraints C = {c1, c2, ..., cm}. For each variable
xi out of X there exists a finite set Di (domain of the variable)
of possible assignments. Possible variable assignments can be
limited via constraints. A complete assignment (every variable has a
corresponding value) which is consistent with the constraints in C is
denoted as a solution for a CSP.

For the purpose of better understandability we use a feature
model notation to express variability properties of decision tasks.
A feature model (FM) represents a set of possible features and
relationships between them. Features are arranged hierarchically
which is basically a tree structure with one root feature [2]. Within
this tree structure the nodes are the features and the edges are the
relationships (constraints). A more detailed discussion of different
feature model representations can be found in [1], [2] and [3].

Six different types of constraints (relationships) are typically
used for the construction of feature models ([1], [2]): mandatory,
optional, alternative, or, requires and excludes. Feature models
are representing configurable products which can be formalized
in the form of a CSP. A feature f is included if the value is set
to 1 - otherwise it is said to be excluded. We will exemplify this
formalization on the basis of feature model depicted in Figure 1.
Figure 1 shows a fragment of the CHOICLA feature model 4.
The CSP representation of the feature model depicted in Figure 1 is
the following:

V = {f1, f2, ..., f21}

dom(f1) = dom(f2) = ... = dom(f21) = {0, 1}

c1 :f1 ↔ f2

c2 :f1 ↔ f3

c3 :f1 ↔ f4

c4 :f1 ↔ f5

c5 :f6 → f1

c6 :(f7 ↔ (¬f8 ∧ f3)) ∧ (f8 ↔ (¬f7 ∧ f3))

c7 :(f9 ↔ (¬f10 ∧ ¬f11 ∧ f4)) ∧ (f10 ↔ (¬f9 ∧ ¬f11 ∧ f4))

∧ (f11 ↔ (¬f9 ∧ ¬f10 ∧ f4))

4 A more in-depth discussion of the CHOICLA decision support environment
can be found in [18].

17

Figure 1. Fragment of the CHOICLA feature model. In this model, fi are used as abbreviation for the individual features, for example, f1 is the short notation
for feature Decision Task (Application).

c8 :(f12 ↔ (¬f13 ∧ f5)) ∧ (f13 ↔ (¬f12 ∧ f5))

c9 :f14 ↔ f10

c10 :f15 → f10

c11 :f16 ↔ f10

c12 :f17 → f10

c13 :f18 → f10

c14 :f14 → f15

c15 :f16 → f17

c16 :f16 → f18

c17 :¬(f16 ∧ f12)

c18 :(f19 ↔ (¬f20 ∧ ¬f21 ∧ f15)) ∧ (f20 ↔ (¬f19 ∧ ¬f21 ∧ f15))

∧ (f21 ↔ (¬f19 ∧ ¬f20 ∧ f15))

We will now discuss different basic properties of decision task
configuration problems. In this context we explain the individual
features and constraints depicted in Figure 1.

Basic properties. Each decision task is characterized by a
name, a corresponding description, and a picture that represents
the decision task (summarized in the feature Basic Properties for
simplification purposes).

Management of alternatives. There are different possibilities
to support alternative management within the scope of a decision
task. First, only the creator of a decision task is allowed to add
alternatives – this could be the case if a person is interested to know
the opinions of his/her friends about a certain set of alternatives
(e.g., alternative candidates for the next family car). Another
related scenario are so-called ”Micro-Polls” where the creator is
only interested in knowing the preference distribution of a larger
group of users. Second, in some scenarios it should be possible
that all decision makers can add alternatives – a typical example

of such a scenario is the group-based decision regarding a holiday
destination or a hotel [10]. In this context, each user should be
allowed to add relevant alternatives. An example scenario of the
third case (only external users can add alternatives) is the support of
group-based personnel decisions – in this context it should be pos-
sible that persons apply for a certain position (the application itself
is interpreted as the addition of a new alternative to the decision task).

Scope. The scope of a decision task denotes the external visi-
bility. The scope ”private” allows only invited users to participate,
i.e., the task is not visible for other users except those who have
been invited. If the scope is ”public”, the decision task is visible
to all users – this is typically the case in the context of so-called
Micro-Polls. The selection of the scope has an impact on other
features – related aspects will be discussed in Section 3.

Preference visibility. The visibility of individual preferences
of the other participants involved in a decision process can have an
impact on decision quality (see [6], [10], and [11]). There occur
some decision scenarios where all participants should exactly know
which person articulated a rating of an alternative. If, for example,
a date for a business meeting is the topic of the decision task it is
very essential to find a date where all division managers can attend
the meeting and therefore it is important to know the individual
preferences of the participants in that case. But there are of course
decision scenarios where preference visibility can lead to disad-
vantages for some participants but still some kind of transparency
of the preferences is helpful to come to the best decision. In such
cases a summary of all given preferences of an alternative is a good
way to support the participants best during the decision process. A
summary prevents all participants from statistical inferences but still
can help participants who are not sure about which rating to select.

Email notification. If this feature is set, emails can be used to
exchange information about the current state of the decision process.

18

For example, the status update interval specifies in which intervals
participants of a decision process receive a summary of the current
status of the decision process. The active participation reminder is
a feature which helps to trigger need for closure. If this feature is
set, a maximum inactive time (without looking at the current status
of the decision task) for the participants can be set. After this time
is elapsed an email will be sent to the corresponding participants to
encourage an active participation at the decision task.

Recommendation support. In context of group decision tasks
another very essential aspect is the aggregation function (recom-
mendation heuristic). Aggregation functions can help to foster
consensus in a group decision process, furthermore, user studies
show that these functions also help to increase the degree of the
perceived decision quality (see, for example [6]). Preferences of
individual users can be aggregated in many different ways and there
exists no standard heuristic which fits for every decision scenario.
To support groups of users in different scenarios the selection of
recommendation heuristics is a necessary feature which has to be
configured by the creator of a decision task. Some basic aggregation
heuristics which can be used in such cases are described below. For
an in-depth discussion of basic types of aggregation heuristics see,
for example, the overview of Masthoff [14]. The example given in
Table 1 represents the individual ratings of the participants for the
defined alternatives. The results of applying the decision heuristics
discussed below are depicted in Table 2.

restaurant Martin Dave George Ben
Clocktower 5 3 5 4

Häuserl im Wald 3 3 5 3
La Botte 5 3 3 3

El Gaucho 4 3 4 4

Table 1. Examples of user-specific ratings with regard to the available
decision alternatives (restaurants).

Majority Voting (see Formula 1) determines the value (d) that a
majority of the users selected as voting for a specific solution s
where eval(u, s) denotes the rating for solution s defined by user u.
For example, the majority of votings for Clocktower is 5 (see Table
2).

MAJ(s) = maxarg(d∈{1..5})(#(
⋃

u∈Users

eval(u, s) = d)) (1)

Least Misery (see Formula 2) returns the lowest voting for solution s
as group recommendation. For example, the LMIS value for the s =
Clocktower is 3.

LMIS(s) = min(
⋃

u∈Users

eval(u, s)) (2)

Most Pleasure (see Formula 3) returns the highest voting for solution
s as group recommendation. For example, the MPLS value for the s
= Clocktower is 5.

MPLS(s) = max(
⋃

u∈Users

eval(u, s)) (3)

Group Distance (see Formula 4) returns the value d as group recom-
mendation which causes the lowest overall change of the individual
user preferences. For example, the GDIS value for s = Clocktower is
5 (or, alternatively 4).

GDIS(s) = minarg(d∈{1..5})(
∑

u∈Users

|eval(u, s)− d|) (4)

Finally, Ensemble Voting (see Formula 5) determines the majority
of the results of the individual voting strategies H = {MAJ, LMIS,
MPLS, GDIS}. For example, the ensemble-based majority voting for
Clocktower is 5.

ENS(s) = maxarg(d∈{1..5})(#(
⋃
h∈H

eval(h, s) = d)) (5)

solution MAJ LMIS MPLS GDIS ENS
Clocktower 5 3 5 5 5

Häuserl im Wald 3 3 5 3 3
La Botte 3 3 5 3 3

El Gaucho 4 3 4 4 4

Table 2. Results of applying the aggregation functions to the user
preferences shown in Table 1. MAJ = Majority Voting; LMIS = Least

Misery; MPLS = Most Pleasure; GDIS = Lowest Group Distance; ENS =
Ensemble Voting. This example is based on the preference information in

Table 1.

Explanations. Explanations can play an important role in decision
tasks since they are able to increase the trust of users in the out-
come of a decision process [4]. When configuring a decision task in
CHOICLA, explanations can be selected as a feature of the decision
process. In the current version of CHOICLA, explanations are sup-
ported by simply allowing the creator of the decision process to in-
clude textual argumentations as to why a certain decision alternative
has been selected as ”the final decision”. If this feature is selected,
the administrator of a decision task has to enter some explanatory
text, if not, the entering of such a text remains just an option.

3 Dependencies among features
We now discuss examples of constraints that restrict the combina-
tions of features as shown in the feature model of Figure 1. The
constraint-based representation of these constraints is shown in the
CSP definition of the feature model given in Section 2.

Scope of a decision. If a decision task is public, there are re-
strictions regarding the support of message interchange (e.g., via
email) and the visualization of the preferences of other users. In
the case that a decision task is private, it is in both cases possible
to choose. Preferences can (but must not) be made visible to other
users and the type of possible message interchange can be specified.
The differentiation between public and private decision tasks also
has an impact on other system properties. For example, if a decision
task is defined as private, the corresponding decision application can
not be reused by other users, i.e., found as a result via the CHOICLA

search interface.

Preference visibility. A dependency of type ’requires’ exists
between the feature preference visibility and the corresponding
notation of visibility. Preference visibility denotes a functionality
where the individual preferences of other users are made visible for
the current user. The type of visualization can only be selected in the
case that the preference visibility feature is has been selected by the
designer of a decision task.

19

Figure 2. CHOICLA: definition of a decision task. Basic settings & further configurable features in case the decision makers are allowed to contribute own
alternatives during the decision process.

Email notification. Similar to the visibility of preferences, the
type of supported message exchange (e.g., via email) can only be
specified in the case that the creator of the decision task decided to
support email notifications. As already mentioned, email communi-
cation is only supported if the scope of the decision task is private.

These simple examples already show the need to manage deci-
sion task related variability in a structured fashion. Our knowledge
representation approach allows for a product line oriented develop-
ment of decision support functionalities and makes systems much
more flexible for future requirements and corresponding extensions.

4 Configuring decision tasks in CHOICLA

In the following we give an example of how a decision task can
be configured in the CHOICLA decision support environment
(www.choicla.com). The application knowledge base of CHOICLA

is currently rule-based. For reasons of easier maintenance and adapt-
ability we apply reasoning and CSP for future versions of CHOICLA.

Parts of the user interface that supports a creator of a decision
task are depicted in Figure 2. The possible parametrizations corre-
spond to the features in the model of Figure 1. If, for example, a
specific feature A depends on the inclusion of another feature B, this
is taken into account in the user interface, i.e., such a feature (feature
A) can only be selected, if the other feature (feature B) is also
selected. In the example of Figure 2, the scope of the decision task
is private (only invited users can participate), all decision makers are
allowed to add alternatives, and for all participants of the decision
process the preferences of other users are visible (names as well
as preferences). Note that in the CHOICLA environment there are
many additional features that can be selected within the scope of a
decision task configuration process.
For understandability reasons we kept our working example simple
and focused on aspects that give the reader an impression of the
basic underlying configuration problem. The user interface for the
inclusion of alternatives is depicted in Figure 3.
Figure 4 shows how the decision alternatives can be voted by the
individual users of a decision task.

Figure 3. CHOICLA: user interface for addition of decision alternatives.
The dots in the upper right corner of every symbol indicate whether there is

an information in this category available or not. The meaning of the used
symbols is (from left to right): edit, delete, geographical information, files,

links and comments.

Figure 4. CHOICLA: user interface for individual voting of decision
alternatives. Each alternative can be voted by a five-star scale. The tab

Places shows the geographical distribution of the decision alternatives (if
available). In tab Group Preferences the actual group recommendation as

well as the individual preferences of the other users (if feature f14 is set) is
presented to the users. The process where the ”final decision” can be set is

triggered by the button Finalize Choicla.

5 Related and Future Work
There exist a couple of online tools which support different types of
decision scenarios. The Decider5 is a tool that allows the creation of
5 labs.riseup.net.

20

issues and decision alternatives – the corresponding recommendation
is provided to users who are articulating their preferences regarding
the given decision alternatives. Rodriguez et al. [17] introduce
Smartocracy which is a decision support tool which supports the
definition of tasks (issues or questions) and corresponding solutions.
Solution selection (recommendation) is based on exploiting infor-
mation from an underlying social network which is used to rank
alternative solutions. Dotmocracy6 is a method for collecting and
visualizing the preferences of a large group of users. It is related to
the idea of participatory decision making – it’s major outcome is a
graph type visualization of the group-immanent preferences. Doo-
dle7 focuses on the aspect of coordinating appointments – similarly,
VERN [19] is a tool that supports the identification of meeting times
based on the idea of unconstrained democracy where individuals are
enabled to freely propose alternative dates themselves. Compared
to CHOICLA these tools are not able to customize their decision
processes depending on the application domain and are also focused
on specific tasks. Furthermore, no concepts are provided which help
to improve the overall quality of group decisions, for example, in
terms of integrating explanations, recommendations for groups, and
consistency management for user preferences.

The support of group decision processes on the basis of rec-
ommendation technologies is a new and upcoming field of research
(see, e.g., Masthoff et al. [14]). The application of group recom-
mendation technologies is still restricted to specific domains such as
interactive television [13], e-tourism [9, 15], software requirements
engineering [6], and ambient intelligence [16].

Future Work. Our future work will focus on the analysis of
further application domains for the CHOICLA technologies. Our
vision is to make the design (implementation) of group decision
tasks as simple as possible. The resulting decision task should be
easy to handle for users and make group decisions in general more
efficient. Within the scope of our work we will also focus on the
analysis of decision phenomena within the scope of group decision
processes. Phenomena such as decoy effects [7] and anchoring
effects [8] are well known for single-user cases but are not investi-
gated in group-based decision scenarios. Finally, we will also focus
on the development of further group recommendation heuristics.
In this context, our major goal is to make the CHOICLA datasets
available to the research community in an anonymized fashion for
experimentation purposes.

6 Conclusions
In this paper we have shown how to represent the design of de-
cision tasks as a configuration problem. In this context, we gave
a short introduction to the CHOICLA group decision environment
which supports the flexible design and execution of different types
of group decision tasks. Compared to existing group decision sup-
port approaches, CHOICLA provides an end user modelling environ-
ment which supports an easy development and execution of group
decision tasks.

ACKNOWLEDGEMENTS
The work presented in this paper has been conducted in the research
project PEOPLEVIEWS funded by the Austrian Research Promotion

6 dotmocracy.org.
7 doodle.com.

Agency (843492).

REFERENCES
[1] Don Batory, ‘Feature models, grammars, and propositional formulas’,

in Proceedings of the 9th International Conference on Software Product
Lines, SPLC’05, pp. 7–20, Berlin, Heidelberg, (2005). Springer-Verlag.

[2] David Benavides, Sergio Segura, and Antonio Ruiz-Corts, ‘Automated
analysis of feature models 20 years later: A literature review’, Informa-
tion Systems, 35(6), 615 – 636, (2010).

[3] A. Felfernig, D. Benavides, J. Galindo, and F. Reinfrank, ‘Towards
Anomaly Explanation in Feature Models’, Workshop on Configuration,
Vienna, Austria, 117–124, (2013).

[4] A. Felfernig, B. Gula, and E. Teppan, ‘Knowledge-based Recom-
mender Technologies for Marketing and Sales’, International Journal
of Pattern Recognition and Artificial Intelligence (IJPRAI), 21(2), 1–
22, (2006).

[5] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration – From Research to Business Cases,
Elsevier, 2014.

[6] Alexander Felfernig, Christoph Zehentner, Gerald Ninaus, Harald
Grabner, Walid Maalej, Dennis Pagano, Leopold Weninger, and Flo-
rian Reinfrank, ‘Group decision support for requirements negotiation’,
in Advances in User Modeling, eds., Liliana Ardissono and Tsvi Kuflik,
volume 7138 of Lecture Notes in Computer Science, 105–116, Springer
Berlin Heidelberg, (2012).

[7] J. Huber, J. Payne, and C. Puto, ‘Adding Asymmetrically Dominated
Alternatives: Violations of Regularity and the Similarity Hypothesis’,
The Journal of Consumer Research, 9(1), 90–98, (1982).

[8] K. Jacowitz and D. Kahneman, ‘Measures of Anchoring in Estimation
Tasks’, Personality and Social Psychology Bulletin, 21(1), 1161–1166,
(1995).

[9] A. Jameson, S. Baldes, and T. Kleinbauer, ‘Two methods for enhanc-
ing mutual awareness in a group recommender system’, in ACM Intl.
Working Conference on Advanced Visual Interfaces, pp. 48–54, Gal-
lipoli, Italy, (2004).

[10] Anthony Jameson, ‘More than the sum of its members: challenges for
group recommender systems’, in Proceedings of the working confer-
ence on Advanced visual interfaces, AVI ’04, pp. 48–54, New York,
NY, USA, (2004). ACM.

[11] Anthony Jameson and Barry Smyth, ‘Recommendation to groups’, in
The Adaptive Web, eds., Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl, volume 4321 of Lecture Notes in Computer Science, 596–627,
Springer Berlin Heidelberg, (2007).

[12] Alan Mackworth, ‘Consistency in networks of relations’, Artificial In-
telligence, 8(1), 99–118, (1977). Reprinted in Readings in Artificial
Intelligence.

[13] J. Masthoff, ‘Group modeling: Selecting a sequence of television items
to suit a group of viewers’, User Modeling and User-Adapted Interac-
tion (UMUAI), 14(1), 37–85, (2004).

[14] J. Masthoff, ‘Group Recommender Systems: Combining Individual
Models’, Recommender Systems Handbook, 677–702, (2011).

[15] K. McCarthy, M. Salamo, L. Coyle, L. McGinty, B. Smyth, and
P. Nixon, ‘Group recommender systems: a critiquing based approach’,
in 2006 International Conference on Intelligent User Interfaces (IUI
2006), pp. 282–284, Sydney, Australia, (2006). ACM.

[16] I. Perez, F. Cabrerizo, and E. Herrera-Viedma, ‘A Mobile Decision Sup-
port System for Dynamic Group Decision-Making Problems’, IEEE
Transactions on Systems, Man, and Cybernetics, 40(6), 1244–1256,
(2010).

[17] M. Rodriguez, D. Steinbock, J. Watkins, C. Gershenson, J. Bollen,
V. Grey, and B. deGraf, ‘Smartocracy: Social networks for collective
decision making’, in HICSS 2007, p. 90, Waikoloa, Big Island, HI,
USA, (2007). IEEE.

[18] Martin Stettinger, Gerald Ninaus, Michael Jeran, Florian Reinfrank,
and Stefan Reiterer, ‘We-decide: A decision support environment for
groups of users’, in Recent Trends in Applied Artificial Intelligence,
eds., Moonis Ali, Tibor Bosse, KoenV. Hindriks, Mark Hoogendoorn,
CatholijnM. Jonker, and Jan Treur, volume 7906 of Lecture Notes in
Computer Science, 382–391, Springer Berlin Heidelberg, (2013).

[19] S. Yardi, B. Hill, and S. Chan, ‘VERN: Facilitating Democratic group
Decision Making Online’, in International ACM SIGGROUP Confer-
ence on Supporting Group Work (GROUP 2005), pp. 116–119, Sanibel
Island, Florida, USA, (2005). ACM.

21

22

A backtrack-free process for deriving product family
members

Homero M. Schneider
1

Abstract.1 In this paper, we present a new approach for the
customisation of product families. It is based on a knowledge
framework for representing product families that combines a
generic product structure and an extension of the classical constrain
network model by the attachment of design functions to the
variables. We also present a method for deriving family members
from this framework, which consists of a two-stage process. First, a
solution to the constraint network is found which is consistent with
the set of customer requirements. Second, the solution is used to
transform the generic structure into a specific one corresponding to
a product family member that meets the customer requirements.
One major outcome of the design functions is the establishment of
instantiation patterns that guide the problem-solving process.
Moreover, if a few modelling conditions are satisfied, it can be
proved that finding solutions becomes a backtrack-free process. As
a practical example, this approach is used for the implementation
of a prototype configurator for a solar powered pumping system.

1 INTRODUCTION

Since the proposal made by Mittal and Frayman [1] to represent

product configuration as a CSP problem, many extensions have

been put forward to cope with the specificities of configuration

problems [2]. Moreover, to improve the efficiency of the product

configuration process, it is a practice to use knowledge about the

problem domain to guide the search process [3]. Following this

rationale, this paper presents an approach to derive members of a

product family that exploits the specificities intrinsic to this

concept.

It is well known that the design of a product family is a

“difficult and challenging task” [4], for it requires the development

of multiple products at the same time. However, after the product

family is designed, it should not be a surprise that the process of

deriving its members can be turned into a routine design task. This

claim follows from the fact that during the design process,

designers acquire a great amount of knowledge regarding the

product family architecture, how the variable aspects depend on

each other and their range of variability.

The approach presented in this paper is based on a knowledge

framework which combines two general models. A generic product

structure (GPS) that represents the product family architecture, and

a constraint network model extended with design functions (CN-F)

to complement the GPS in the definition of the product family

members. The CN-F model is an extension of the classical

constraint network (CN) model by the attachment of design

functions to its variables. The primary role of these functions is to

1 Centre for Information Technology Renato Archer, Campinas, Brazil,

email: homero.schneider@cti.gov.br

generate the values for the variables to which they are attached

during the customisation process. However, design functions are

also used to elicit the dependencies between the variables to form

dependency patterns.

In our approach, members of the product family are derived

from the knowledge framework as instantiations into two stages.

First, a solution to the CN-F model has to be found from the

customer requirements. This process is guided by dependency

patterns. Then, the solution obtained is used to transform the GPS

into a specific physical model that corresponds to a product family

member, one that meets the customer requirements.

Although the instantiation patterns can restrict the design space

to relatively few variables, they cannot avoid backtracking. Thus,

another important contribution of this work is the setting up of

modelling conditions such that if the CN-F model satisfies them,

the instantiation process becomes backtrack-free. These conditions

eliminate the sources of inconsistencies during the execution of the

instantiation algorithm proposed for the CN-F model.

In contrast to other approaches that claim to be backtrack-free

[5, 6], which typically resort to a pre-processing stage and to

computational power, our approach resort to the structuration of

the customization process of product families. As a result, it is

possible to implement very efficient configurators based on the

data flow principle.

As for the remaining of this work, in the next section we review

the related literature. In Section 3, we present the SPPS system,

which will be used along the paper as our practical example, the

solar powered pumping system. In Section 4, we introduce our

knowledge framework, by defining the elements of the GPS and

CN-F models. In Section 5, we introduce our method for deriving

product family members. First, we present our instantiation

algorithm. After that, we introduce the conditions for which this

algorithm is backtrack-free. Then, we present the method for

transforming the GPS into a specific product model. In Section 6,

we present the implementation of our prototype configurator.

Finally, in Section 7, we make our concluding remarks.

2 RELATED WORK

One early proposal to extend the CSP model was made by Mittal

and Falkenhainer [7], who proposed a dynamic constraint

satisfaction problem (DCSP) to deal with the fact that the set of

variables that are relevant for the solution of a configuration

problem may change dynamically during the problem solving. To

deal with the structural aspect of configuration problems, Sabin

and Freuder [8] proposed a composite CSP. In their approach, the

variables are allowed to represent an entire sub problem, such as

23

the constituent parts of the final product or the internal structure of

components. In [2], Veron et al. proposed to model the

configurable product as a tree with internal nodes representing sub-

configurable components and leaf nodes corresponding to

elementary configurable or standard components. The attributes of

the configurable components are represented as variables and each

component is associated to a state variable. The configuration

process works on two levels. First, the state variables are used to

manage the tree structure. Then, the CSP problem is addressed to

define the attributes of the active components. The user expresses

his choices by adding/retracting unary constraints.

The CSP approaches have been focused mostly on discrete

variables and binary constraints. However, in the configuration of

engineering products, it is quite common to have continuous

variables and constraint on multiple variables. Thus, Gelle et al. [9]

introduced local consistency methods to handle discrete and

numerical variables and in the same framework to address

engineering products represented as a CSP.

With a few exceptions, dependencies have been largely

neglected in product configuration approaches. In [10], Xie et al.

proposed the Dependent CSP. In this approach, the variables can

be related by dependencies or constraints and are divided into

independent and dependent by means of the relation of

dependency. The independent variables are assigned values from

their associated domains, while the values of the dependent

variables are assigned values from the values of the independent

variables through the relations of dependency. A solution is an

assignment to the variables such that all dependencies and

constraints are satisfied. The search for solutions is made by a

backtracking method of the type "backjunping". The updating of

values and the verification of constraints is organized by a directed

acyclic graph. This graph is defined based on the dependencies

between variables and of constraints in relation to the independent

variables. Heuristics are used to establish the order in which

variables are considered.

To avoid response delay and dead-ends associated to search-

based methods, some recent works resorted to a two-stage process,

by precompiling all the solutions using some form of efficient

representation. Although these methods still have to solve a hard

problem to find all the solutions, this is done offline and only once.

Then, the interactive part of the configuration process can be done

efficiently. For instance, Hadzic et al. [5] proposed a method to

compile all the solutions of the problem using binary decision

diagrams. Although they claim that the method has very good

practical results, depending on the size of the configuration

problem it may run out of space. A different pre-processing method

is proposed by Freuder et al. in [6]. Unlike other conventional

approaches that add constraints to the problem, thus making them

susceptible to space limitation, they remove values from the

domain of the variables to make their representation of the problem

backtrack-free. The disadvantage of this method is that solutions

are lost.

3 THE SOLAR POWERED PUMPING
PRODUCT FAMILY

At the core of a solar powered pumping system (SPPS) product

family, there is a water pump system and a photovoltaic (PV)

array, which provides power to the pump. To improve the pump

performance, a pump controller is used to condition the power and

to control the pump. A float switch (ST) is used to turn the pump

off when the water tank is full, and another switch (SW) is used to

turn the pump off when the water level at the well is low, thus

avoiding that it runs dry. The components of an SPPS are

connected by wires to transmit power and control signals. The

water is carried from the well to the tank through a piping system.

A battery bank may be added to the system if the customer requires

the system to have some autonomy, so that water may be pumped

at night or during heavily clouded days. A charge controller is used

to manage the charging of the battery bank.

Although a typical SPPS is composed of a few components, the

product family may have a very large number of variants. For

example, the water pump may have many options, each one

operating optimally within a narrow window of water head and

flux with a specified power, and the PV array can be configured in

many ways, based on the choice of the PV model and the

arrangement of the components.

Hence, configuring an SPPS to meet the customer requirements

and optimizing its performance and cost is far from trivial,

demanding a lot of expertise. This precludes most of the potential

customers of participating interactively on the decision making

along the configuration process, except for providing the

application requirements at the beginning of the process.

4 THE PRODUCT FAMILY KNOWLEDGE
FRAMEWORK

In the following subsections, we will present our knowledge

framework for representing product families. In this approach we

assume that the product family has already been developed.

However, with this framework we will abstract all the relevant

knowledge about the product family for deriving its members.

4.1 The generic product structure

The GPS is a modular architecture composed of component types,

which stands for classes of components with the same

functionality. In our approach, component types belong to four

possible categories: common/generic, optional/generic,

common/specific and optional/specific. Figure 1 illustrates

schematically the concept of component types and their

classification. A component type is specific if the corresponding

class has only one component. However, if the corresponding class

has two or more components, then the component type is generic.

Figure 1. Classification of component types

24

If all members of the product family have a component in the

corresponding class, the component type is common. Otherwise, if

at least one member of the product family does not have a

corresponding component in the class, it is optional. Note that the

component types form a partition on the set of components that is

used to derive all the members of the product family.

In Figure 2, it is shown the GPS for the SPPS product family.

The PV array, Pump system, Sensors, Wiring and Piping systems

are common component types, i.e., they are present in every

member of the SPPS product family. However, the Battery bank

and Charge controller are optional component types. The Well and

Tank sensors are assumed to be specific component types, i.e., they

do not vary among applications. All the other components are of

the generic type, i.e., they can vary among applications and have

two or more variants. It should be noted that, according to our

classification, to be a common component type in the product

family architecture does not imply that it is fixed. Actually, in our

example, most of the product family variability happens on the

common part of the GPS. Hence, although the optional components

in a product family are one main source of variability, another

important source of diversity can be the common part of the

product family GPS. This is the case only if it is composed of

generic components types.

Formally, we say that a GPS represents the architecture of a

given product family if and only if the architecture of each member

of that family is isomorphic to a substructure of the GPS and

collectively the members of the product family are coherent to the

classification of the component types on the GPS.

Hence, given a sample of SPPS, the GPS can be used to decide

which of them belong to the product family. On the other hand, the

GPS is not enough to determine which configuration of

components can lead to a member of the product family, and let

alone, which specific configuration will meet the requirements of a

given application. To achieve this goal, we combine the GPS with

the CN-F model.

4.2 The Constraint Network Extend with
Design Functions

The CN-F model used in our approach can be regarded as an

extension of the traditional CN model. It is defined by the tuple

(), where is a set of variables, is a set of constraints on

subsets of , and is a set of design functions (which will be

abbreviated as d-function), such that, every variable in has at

least one d-function attached to it that can generate its values. In

what follows, we will define each of these elements and show how

they apply to the SPPS product family in complement to the GPS.

Variables – Variations between the members of the product family

are identified by variables in . Consequently, these variables can

be mapped on the GPS. Their scope of variation can vary widely,

since they may be related from a specific feature to a whole

component. For example, the configuration of the PV array is

completely specified by three variables: PV module model, PV

modules in series and PV module strings in parallel. The pump is

associated only to the variable Pump model. The range of values

that can be assigned to a variable is called its domain. For example,

the domain for the variable Pump model is composed by the set of

pumps {HR-03, HR-03H, HR-04, HR-04H, HR-07, HR-14, HR-

20, C-SJ5-8, C-SJ8-7}.

Since all the variability of the product family is related to

optional and generic components, only these types of components

are associated with variables. These variables will be referred to as

output variables because after their values are assigned, a product

family member is specified. A special type of output variable is the

inclusion variable associated to optional component types (e.g.,

Battery inclusion). These are binary variables that define if the

component is included or not in the derived product.

However, variations can also be related to the application

environment. For the SPPS example, the amount of Daily water

needed, the Well yield, the Tank capacity, the System autonomy,

etc., are variables that express the customer requirements and are

referred to as input variables. Input and output variables are not

necessarily disjoint subsets of . Besides these two classes, the set

 may contain auxiliary variables, which are neither input nor

output variables. For example, the variable Total dynamic head is

defined in terms of input variables, and although it is an essential

variable for the choice of the pump system, it is not used to specify

directly any of the components in the GPS. Therefore, it is

classified as an auxiliary variable. In the SPPS example, we have

identified 32 mixed discrete and continuous variables. In Figure 3,

they appear as nodes of the constraint network, numbered from 1 to

Figure 2..The GPS for the SPPS product family

Figure 3. Constraint network for the SPPS product family

25

32. Some of these variables have been named explicitly within the

text. As it will be discussed below, for convenience, variables can

be grouped to form a composite variable. The encircled nodes in

Figure 3 represent composite variables.

Constraints – Constraints define how subsets of variables in are

related to each other, thus restricting the possible combinations of

values that can be assigned to them simultaneously. For example,

the following sample of constraints describes how the auxiliary

variable Total dynamic head is related to some variables in :

C7: Total dynamic head (22) is equal to the sum of the Water

level (1), Water drawdown (2), Tank elevation (6) and the

friction loss of the piping system.

C8: Total dynamic head (22) must be less or equal than the head

of the pump system (defined by the combination of the pump

and its controller).

C18: If there is a Battery inclusion (10), the Daily water (4)

requirement must be equal or less than 24 hours of pumping

with the maximum available Pump output flux (32) at the
required Total dynamic head (22).

Note that while the constraint C8 is defined over one variable,

the other two relate four variables. Actually, in our approach,

constraints can involve any subset of . To satisfy a constraint, the

values assigned to the variables in the expression defining it must

render the expression true. However, if a constraint involves an

inclusion variable and the corresponding optional component will

not be included in the custom product, it can be disregarded.

Figure 3 depicts the complete constraint network for the SPPS

product family. Note that, when nodes are the composition of

variables, they may involve more than one constraint, each one

relating a different subset of those variables.

Design Functions – The d-functions have been introduced as an

extension to the CN model to capture the necessary knowledge to

generate the values for the variables in . Generically, d-functions

will be represented by (), where is the depended

variable to which the d-function is attached and are the

independent variables from which the value for is generated. As

an example, Figure 4 shows the specification of d-function F4,

which generates the values for Total dynamic head as a function of

Water drawdown, Water level and Tank elevation.

As we shall see in more details below, an important

consequence of d-functions is the dependency relation between

variables that they establish. However, if the value generated by a

d-function is to be consistent with the values of the variables it

depends on, it must incorporate all the constraints involving these

variables. We say that a d-function incorporates a constraint if and

only if every combination of the values of the independent

variables (for which the d-function is defined) and the value

generated from them, satisfy that constraint. For example, from

lines 1, 2, 3 and 4, it can be verified that constraints C7 and C8 are

incorporated by F4.

In general, not all the variables related (by constraints) to the

variable which a d-function is attached to will be involved in the

dependency. For example, the variables Daily water, Battery

inclusion and Pump output flux are related to Total dynamic head

by the constraint C18 but are not required for the generation of its

values. Consequently, C18 is not incorporated by F4. If a

d-function does not incorporate a constraint involving the variable

to which it is attached, we say that the constraint is free regarding

that d-function. However, a free constraint may be incorporated by

another d-function attached to the same variable or to a related

variable.

Input variables are attached with special d-functions that

request the user to assign a value chosen from a delimited range of

values, which may be generated dynamically as a function of

values assigned to other variables. Hence, except possibly for the

input variables, all variables in will necessarily depend on some

other variable due to the d-function attached to them, forming a

network of dependencies on , as discussed in more detail below.

The d-function F4 specified in Figure 4 is relatively simple. The

CN-F model for the SPPS also contains much more complex ones.

For example, to define the values of the variables that specify the

component type PV array (related above), the d-function F16 finds

the best module arrangement to cope with the power requirements

of the SPPS without violating the voltage and current restrictions

imposed by the pump or battery controller. As another example,

the d-function F12 selects the pump system from a performance

table which correlates the total dynamic head, the output flux and

the input power for the optimal performance of the pump systems.

If a set of variables is strongly coupled, i.e., the value of any

one variable cannot be assigned independently of the others, as in

the two cases just discussed, they are be grouped together to form a

composite variable and the same d-function will generate the

values for all of them. Otherwise, attaching a single d-function to

each of those variables would form dependency loops between

them, a condition that is undesirable in our approach.

Since only values generated by the d-functions are taken into

account in the configuration process, in our approach the domain of

a variable in can be defined as the set of all values that can be

generated by the d-functions attached to it. An important

consequence of this definition is that the domains need not to be

defined explicitly. Moreover, they can be either discrete or

continuous without distinction.

Before introducing the instantiation process for the CN-F

model, we note that the dependency between variables in induces

a dependency between d-functions in . For example, the

d-function F4 attached to Total dynamic head depends on the

d-functions that generate the values to variables Water drawdown

and Water level, Tank elevation.

5 DERIVING PRODUCT FAMILY
MEMBERS

Members of the product family are derived from the knowledge

framework. This process is divided into two stages. First, a solution

to the CN-F model is found from the values of the input variables.

Figure 4. The d-function F4 attached to Total dynamic head

26

Second, this solution is used to transform the GPS into a specific

model representing the desired product family member.

5.1 Finding solutions to the CN-F model

An assignment of values to all the variables in such that no

constraint in is violated is said to be a solution to the CN-F

model. The set of all solutions will be denoted by . As we will

argue below, solutions in S correspond to members of the product

family.

The instantiation process begins with the assignment of values

to the input variables and proceeds towards the output variables,

through the auxiliary variables. This process is guided by the

dependencies established over by the d-functions. In Figure 5,

we present an instantiation algorithm to carry out this process. In

that algorithm, a d-function is enabled if all the variables it depends

on have been assigned their values. The set represents the

variables for which the values have already been generated and

 () represents the set of free variables in relation to . For this

algorithm to work properly, it is necessary to rule out loops

between d-functions. Thus, we assume that can

be order by the dependency relation induce over , that is to say,

for the element is an input d-function or all

d-functions it depends on precedes it in that order.

Every time a d-function () from is executed (line

2 of the instantiation algorithm), a value is assigned to variable

from the values of the variables . If we represent this

dependency by a directed graph, with arrows from the independent

variables toward the dependent one, the execution of the

instantiation algorithm can be represented by a dependency graph

as the one shown in Figure 6. The nodes represent variables (single

or composite), the same ones shown on the constraint network in

Figure 3. Near to each node, it is indicated the d-function that was

used to set its dependency (the incoming arrows). The dependency

graph can be organized into dependency levels. At level 0 are the

input variables whose values have been assigned by the customer

and that do not depend on other variables. In general, a variable is

localized at level if it depends on at least one variable at level

 . Note that the input variables Daily water and System

autonomy, represented by nodes 4 and 5, appear at levels 2 and 3,

respectively. Although it is the customer who assigns their values,

they also depend on other variables for checking the consistency of

the values assigned by the customer.

Now, every instantiation graph can be associated to a subset of

 , composed of exactly those d-functions used to generate it. Since

the same set of d-functions can be elicited for a variety of inputs,

we will call this set an instantiation pattern, represented by . More

specifically, every subset satisfying the ordering condition

and such that, for every , there is only one is an

instantiation pattern. If a variable in is attached with more than

one d-function, the CN-F model will be associated to more than

one instantiation pattern. However, in general, one should not

expect many instantiation patterns. In the modelling of the SPPS

example, there is only one instantiation pattern composed of 17

d-functions, number from F1 to F17 in Figure 6.

As indicated in Figure 5, there are only two points during the

execution of the instantiation algorithm where it can terminate

without finding a solution. Each one is associated to a different

type of inconsistency. Type I arises when the d-functions attached

to a variable cannot generate its value. The inconsistency of type II,

arises if there is a free constraint in () that is violated by the

values assigned to the variables in . If the values assigned to the

input variables are not part of a solution in , then there is some

inconsistency embedded in the input and the algorithm will fail.

As it is well known, local consistency in a CN model does not

guarantee global consistency [11]. Therefore, although the values

generated by the d-functions are locally consistent, the instantiation

pattern does not guarantee that an input without an embedded

inconsistency will lead to a solution. Thus, in what follows we will

introduce two consistency conditions to the CN-F model such that

our instantiation algorithm will always be able to find a solution.

Consistency condition 1 – For every , there is at least one

 which is defined for every instantiation of the variables it

depends on.

Consistency condition 2 – Let be an instantiation pattern.

Every constraint in is incorporated by some d-function belonging

to .

Figure 6. The instantiation graph for the SPPS product family

Figure 5. The instantiation algorithm to find solutions to the CN-F model

27

It can be proved that, if the CN-F model satisfies the

Consistency conditions 1, no inconsistency of type I will arise

during the execution of the instantiation algorithm, and if all its

instantiation patterns satisfy the Consistency condition 2, no

inconsistencies of type II will arise. However, if the CN-F model

satisfies the two conditions, lines 4-12 of the algorithm in Figure 5

can be eliminated, since the inconsistency testing is no longer

required. Therefore, the resulting instantiation algorithm becomes

extremely simple.

The CN-F model for the SPPS satisfies the second condition

state above; however, it fails the first one. The problem is with the

d-function attached to Total dynamic head shown in Figure 4.

According to its specification, only after all three inputs variables it

depends on have being assigned their values is that the Total

dynamic head is calculated and the result is compared to the head

of the available pumps. If the condition on line 4 is not satisfies,

there is no solution to the application and the configuration has to

be aborted. To satisfy the Consistency condition 1, an alternative

approach is to restrict the range of values for the input variable

Water level dynamically, so that the resulting total dynamic head of

the application is always within the range of the available pump

systems. Nevertheless, this restriction is equivalent to the abort

condition in a disguised form. On the other hand, because the

decision to abort is taken at the very start of the configuration

process, and we can give explanations for why the configuration

process cannot proceed, this modelling approach was preferred.

However, to cope with this abort condition, it was necessary to add

a control mechanism in the implementation of the instantiation

algorithm, not present in its description in Figure 5. Note that the

risk of having to abort the configuration is reduced as the

maximum head of the available pumps is increased.

5.2 Transforming the GPS into physical models

Once the solution to the CN-F model has been found, all the output

variables on the GPS have their values assigned, and its

transformation into a specific physical model can start. This

process is carried out in two steps. First, it is necessary to remove

the optional components types from the GPS that are not required

in view of the customer requirements. For example, if the customer

does not require any system autonomy, there is no need for

batteries in the SPPS. To determine if an optional component type

have to be removed we refer to the value of the associated

inclusion variables. In our example, if the value is 0, the

component is removed. Otherwise, if it is 1 the component is kept

in the structure. After the GPS has been stripped of the unnecessary

components, the second step of the transformation process is

carried out with the substitution of the generic components by

specific ones from their correspondent class of components. The

definition of which component will be selected is made based on

the values of the output variables on the generic component type.

For example, besides the inclusion variable, the Charge controller

is associated to three other variables. One of these variables

specifies the model of the charger, and the other two the

configuration of two switches to set the output voltage of the

charger. After all the generic component types have been

substituted by specific ones, a physical model of the custom SPPS

will emerge from the GSP.

Based on the transformation process described above, every

solution in leads to a specific physical model. Obviously, the

resulting physical model is isomorphic to the GPS of the product

family and is coherent to the component types by construction.

Now, if every relevant design constraint has been elicited and

introduced in the CN-F model, we can conclude that every solution

in corresponds to a member of the product family.

6 IMPLEMENTATION OF THE
CONFIGURATOR

The SPPS configurator has been conceived as a tool to support the

sales force of a company that provides water pumping solutions to

the rural area. The configurator requires the sales force to have

only enough technical knowledge about SPPS to make some

assessments at the customer site to input the customer

requirements. This process is interactive with the configurator

requesting specific information. To avoid inconsistencies

embedded in the input, the configurator makes a few checks,

suggesting appropriate corrections if necessary. But in case no

solution can be provided to the customer, the configurator notifies

the impossibility as early as possible.

In Figure 7, it is shown the implementation of SPPS

configurator using LabVIEW. At the centre, it can be seen the

d-functions (numbered F1 to F17), each one representing a subVI

(a kind of routine in LabVIEW), with the variables to which they

are attached at the right of the diagram. The variables to which the

d-functions depend on are indicated by the lines coming from

below. Thus, this diagram arrangement clearly reveals the

dependency between the d-functions. At the left of the diagram, it

can be seen the control structure which operates in conjunction

with the loop structure (the outer structure encompassing the whole

program). Initially, only the first four d-functions will be executed.

If the abort condition in the d-function F4 (specified in Figure 4) is

true there is no solution for the configuration problem and the

program ends. Otherwise, the abort variable is set to false and the

other d-functions are executed. As the d-functions are executed, the

values for the correspondent variables are generated, and they are

set to inactive. The d-functions attached to variables (other than the

inclusion variable) on optional component types, which will not be

included in the custom product, can be set to inactive without

generating values. When no abortion happens and all the functions

are inactive (which is equivalent to F = in the control algorithm

in Figure 5), a solution has been found and the program ends. This

happens in exactly three iterations of this configurator program.

It is interesting to note that, if the CN-F model satisfies the two

consistency conditions, the configurator can be implemented a data

flow program by the concatenation of d-functions. Moreover, if it

were not for the abort condition, the iteration structure in Figure 7

could have been dismissed.

7 CONCLUSIONS

In this paper, we have proposed a new approach to the

customisation of product families. It is based on a knowledge

framework which combines a GPS and a CN-F model to represent

product families. Members of the product family are derived from

this knowledge framework by a two-stage process. First, a solution

to the CN-F model is found from the customer requirements

through an instantiation process. Then, in the second stage, the

solution is used to transform the product family GPS into a specific

model which represents the desired product family member.

28

A number of contributions to the area of product configuration

are introduced by this approach. It is provided a formal definition

for the product family GPS and an extension to the classical CN

model by attaching d-functions to the variables to generate their

values. Since the domains of the variables are defined through the

d-functions, their values need not to be predefined explicitly. As a

consequence, we can deal with mixed discrete and continuous

variables.

Moreover, the d-functions provide a method to establish the

dependency between variables as part of the modelling of the

customisation process. Dependency patterns can reduce the design

space for finding solution considerably. However, despite their

local consistent, they do not avoid backtracking. To achieve this

goal we have set up a few conditions for the CN-F model, such

that, if satisfied, deriving product family members becomes a

backtrack-free process. The remarkable aspect about this

Figure 7. A view of the SPPS configurator program implemented in LabVIEW

29

achievement is that it does not depend on pre-processing, but can

be obtained by the systematization of the knowledge about product

families.

 It is also interesting to note that through the d-functions it may

be possible to design components during the customization

process, thus providing great flexibility to the customization

process. However, this is a capability which requires further

investigation, because making changes to components without the

proper delimitation of the design space can compromise the

manufacturability or performance of the product being derived.

Our approach is suited for the configuration of complex product

families for which the customers do not have the necessary

expertise to participate directly during all the configuration

process. It can deal with configuration problems for which the

constraints between the variables are highly complex, since they

are incorporated by the d-functions and dealt with in the form of

procedures. The complexity of the configurator is not particularly

affected by the number of variables, since this amounts to adding

new d-functions. In case some of the variables are attached with

more than one d-function, this will generate multiple instantiation

patterns. However, the proposed instantiation algorithm is enough

to deal with this condition, since at every moment only one

instantiation pattern is being followed. As for the verification of the

compliance to the consistency conditions, this is largely an analysis

of the d-function individually. (The same is true for maintenance,

because d-functions are high modular.) Now, if the CN-F model

satisfies our assumption on the ordering of the set of d-function and

the two consistency conditions, the configurators can be

implemented in the form of dataflow programs by the

concatenation of the d-functions.

Despite the advantages related above, to exploit all the potential

of our approach in practical applications, there are a number of

issues that must be further developed. For example, concerning the

integration of our approach into a mass customisation system, it

will be necessary to have a more elaborate representation of the

GPS to support the generation of customer quotations and

production orders [13]. However, at least for a mass customization

systems based on 3D printing, we have shown that our approach

can be integrated with CAD tools, and that the generation of 3D

models for the custom products can be made automatically, in a

seamless way [14].

ACKNOWLEDGEMENTS

The author wish to gratefully acknowledge the financial support of

FINEP for the realization of this work.

REFERENCES

[1] S. Mittal and F. Frayman, “Towards a Generic Model of

Configuration Tasks,” in Proceedings of the 11th International Joint

Conference of Artificial Intelligence, San Francisco: Morgan

Kaufman, 1989, pp.1395–1401.

[2] M. Veron, H. Fargier and M. Aldanondo, “From CSP to

Configuration Problems,” in AAAI-99 Workshop on Configuration,

Orlando, Florida, July 18–19, 1999.

[3] B. Wielinga and G. Schreiber, “Configuration design problem

solving,” IEEE Expert, vol. 12, no. 2, pp. 49–56, 1997.

[4] T. W. Simpson, B. Aaron, L. A. Slingerland, S. Brennan, D. Logan

and K. Reichard, “From user requirements to commonality

specifications: an integrated approach to product family design,”

Research in Engineering Design, vol. 23, no. 2, pp. 141–153, 2012.

[5] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, H.

Hulgaard and J. Moller, “Fast backtrack-free product configuration

using a precompiled solution space representation,” in International

Conference on Economic, Technical and Organizational aspects of

Product Configuration Systems, Technical University of Denmark,

Lyngby, Denmark, June 28–29, 2004.

[6] E. C. Freuder, T. Carchrae and J. C. Beck, “Satisfaction Guaranteed,”

in Workshop on Configuration, Eighteenth International Joint

Conference on Artificial Intelligence, 2003.

[7] Mittal, S. and Falkenhainer, B., “Dynamic Constraint Satisfaction

Problems,” in Proceedings of the 8th National Conference on

Artificial Intelligence, 1990, pp. 25-32.

[8] D. Sabin and F. Freuder, “Configuration as Composite Constraint

Satisfaction,” in Technical Report FS-96-03, Workshop on

Configuration, Menlo Park: AAAI Press, 1996, pp. 28–36.

[9] E. Gelle, B. V. Faltings, D. E. Clement, and I. F. C. Smith,

“Constraint Satisfaction Methods for Applications in Engineering,”

Engineering with Computers, vol. 16, no. 2, pp. 81–85, 2000.

[10] H. Xie, P. Henderson, J. Neelankavil and J. Li, “A Systematic search

strategy for product Configuration,” in 17th International Conference

on Industrial & Engineering Applications of Artificial Intelligence &

Expert Systems Manufacturing (IEA), Ottawa, Ontario, January 1,

2004.

[11] R. Dechter, “Constraint Networks,” in Encyclopedia of Artificial

Intelligence, S. C. Shapiro, Ed. New York, Wiley, pp. 276–285,

1992.

[12] C. Forza and F. Salvador, “Managing for variety in the order

acquisition and fulfillment process: The contribution of product

configuration systems,” International Journal of Production

Economics, vol. 76, pp. 87–98, 2002.

[13] A. Haug, L. Hvam and N. H. Mortensen, “A layout technique for

class diagrams to be used in product configuration projects,”

Computers in Industry, vol. 61, pp. 409–418, 2010.

[14] H. M. Schneider, D. T. Kemmoku, P. Y. Moritomi, J. V. L. da Silva,

Y. Iano, “Matching the Capabilities of Additive Technologies with a

Flexible and Backtrack-free Product Family Customisation Process,”

in Proceedings of the Fraunhofer Direct Digital Manufacturing

Conference 2014, Berlin, Germany, March 12-13, 2014.

30

Optimization based framework for transforming
automotive configurations for production planning

Tilak Raj Singh 1 and Narayan Rangaraj 2

Abstract. A product (e.g. automobile, computer) can be config-
ured using different combinations of its available attributes (fea-
tures). However, selection of attributes may not be independent of
the selection of other attributes. In practice, each attribute implies a
selection rule (dependency) for other sets of attributes in order to gen-
erate a valid configuration. Due to dynamic changes in the product
design, miniaturization, legislation etc., product attributes and their
selection rules get changed. This implies that variants produced in
the past may not be valid for future product design. Nevertheless,
customer history contains important information related to customer
buying behaviour which is an essential input for future planning ac-
tivities. In order to achieve efficient adaption of past customer orders
to a changed product design, we propose a fully automated optimiza-
tion based framework. The methodology is demonstrated using an
industry size example.

1 Introduction

Manufacturing companies are currently focusing on mass customiza-
tion. In this environment customer mix and match different available
product attributes to get desired configurations. Selection of any at-
tribute implies certain conditions on other set of attributes. For exam-
ple, if driving assistance system is selected in a car then the customer
may only be able to select steering types which have required control
options. These engineering dependencies are available in the prod-
uct’s technical documentation (e.g. Bill-Of-Material) and each valid
configuration must satisfy these restrictions in order to be producible
[13]. Manufacturers enable their customers to select and order con-
structible product variants by offering sales manuals and web-based
product configurators. The product configurator guarantees that at-
tributes selected by the customer must satisfy all dependency rules
at the time configuration is created. If any combination of attributes
violates the product configuration rules (constraints), then, this will
be an invalid configuration and cannot be produced [5]. We will use
the term configurations rule (or rules in short) in the meaning of all

1 IT-Production Tools, Mercedes-Benz R & D India, Bangalore, Email:
tilak.singh@daimler.com

2 Indian Institute of Technology, Bombay, Powai Mumbai, India, email:
narayan.rangaraj@iitb.ac.in

restrictions imposed on configuration problem and by fulfilling all
rules configuration will be considered feasible for production.

In order to provide short lead time for complex engineering
products (e.g. Automobiles, Computers) often hybrid manufactur-
ing philosophies like assemble-to-order is used. The production is
setup based on forecast demand and final assembly is done for the
real customer orders. The effectiveness of this method depends upon
the quality of the forecasted demand. Most manufacturers use data
about product variants produced in the past to get suitable estimates
for the future customer demand [10]. Continuous changes in prod-
uct design and market conditions imply that product variants which
have been produced in the past may not be valid according to the
changed product. However, changes are incremental in nature which
means that past variants can be upgraded (by dropping and/or adding
some features) to new changed model once the required changes are
incorporated [4]. In this paper our aim is to develop methods to up-
grade base configuration (configuration produced in the past) in such
a way that 1) new configuration satisfies required product configu-
ration rules 2) new configuration should be as similar as possible to
the base configuration. The similarity measure can be monitored by
using some distance (e.g. Hamming distance) or cost function.

In contrast to the above problem, another requirement to trans-
form existing configuration to the new configuration arises from the
Reconfiguration problem [11]. In this case the previously selected
base configuration is still valid with respect to configuration model
however the customer may want to make some explicit changes with
respect to the earlier choice - for example, adding or dropping some
of product’s features. Most of these reconfiguration problems are
motivated by the customer’s request to change the previously se-
lected variants. This is not an uncommon situation in premium cus-
tomizable products. However, the reconfiguration problem can also
be driven from the manufacturer point of view. For example due to
capacity limitations, production of customer orders may be shifted
from one country/plant to another. Then the production feasibility
need to be checked as configuration rules may vary between produc-
tion plants and counties.

In this paper we propose an integrated solution framework where:
1) user can update any given configuration by changing configura-
tion variables (adding or removing product attributes) 2) Feasibility

31

of desired configuration can be checked at any point of time 3) In case
of conflicts with underlying configuration rules, the solution is com-
puted through solving an optimization model which ensures that the
modification to the base configuration is done with minimal change
cost. In section 2 and section 3 we will discuss characteristics of the
problem and the available data. Section 4 will focus on the develop-
ment of an optimization based configuration transformation model.
In section 5 the solution procedure will be discussed with initial com-
putational results.

2 The planning problem

A product can be configured using different combinations of its at-
tributes (features). In case of automobiles, attributes could be: body
style, transmission type, sunroof, parking assistance etc. If we de-
scribe a product as an exhaustive list of attributes then the product
configuration can be expressed as a 0-1 vector over the attribute set,
where 0 (zero) represents the absence of any attribute and 1 (one)
represents its presence in the configuration. A feasible configuration
can be achieve by satisfying predefined set of rules (Boolean formu-
las) monitoring interdependencies among attributes.

Let us define our product configuration problem as per [7, Defi-
nition 1]: the configuration problem C can be expressed through a
triple (X,D,F), where:

• X is a set of product attributes (configuration variables) lets say
{1, ...n}. Where n is the total number of attributes.

• D is the set of attributes finite domains d1, d2, ..., dn.
• F = {f1, f2, ..., fm} is set of propositional formulas (rules or

restrictions) over attribute set X .

In this paper the configuration variables X are boolean, hence do-
main di ∈ {0, 1}, ∀i ∈ X . A configuration is said to be feasible if
an assignment for all attributes (i ∈ X) is found which fulfils each
and every propositions in F . For configuration problem C a solution
space S(C) can be built by finding all assignment of configuration
variable X which satisfy rules F . The problem we have in hand, the
size of solution space S(C) could be in the ranges of thousands of
billion [6].

For a customizable product which changes with respect to time
(due to introduction of new attributes, discontinuation of existing at-
tributes or change in attributes dependencies) the configuration prob-
lem at any given time t can be expressed as Ct = (Xt, Dt, Ft),
where Xt,Dt and Ft are configuration variable, its domain and un-
derlying propositional formulas respectively at time t. In this pa-
per the domain Dt is fixed (boolean for all variables/attributes) so
changes in configuration problem are possible by changing configu-
ration variables X , changing rule set F or both.

In the scenario shown in Figure 1, let us assume that at time t the
manufacturer wants to make some planning estimate for time t +

T (mid to long term planning, typically T = 6 months - 3 years)
to support various planning activities such as production planning,

t

PlanninghDate

Ct T

ProductionhHistory

Ot-2 Ot-1 Ot
Ct-2 Ct-1

t-2 t-1

TargethProductionhDate

t(=t+T t(+1
Ct(+1Ct(

Transformationhofhproducth
varianthproducedhinhthehpast

hhw.r.t.hnewhconfigurationhdatahCt(

{ -hProduction
hhhPlanning
-hCapacityh
hhhPlanning
-hLogistics
-hMaterialh
hhhPlanninghetc.

TimehLine

th:hTimehinhmonth
Th:hPlanninghperiodhinhmonth
Cth:hProducthconfigurationhdatahathtimeht
Ot:hOrderhhistoryhathtimehth)producthconfigurationsh
hhproducedhinhpast)

Figure 1: Product variant produced in the past need to be transformed
w.r.t. new product design for use in future planning

capacity planning, material requirement, supplier selection. At time
t the manufacturer has information about its current and past product
configurations data (Ct, Ct−1, ..., capturing list of attributes/features
(X) and its dependencies/rules (F)) and order history Ot, which is an
0-1 assignment of attributes. At any time t the validity of the product
configurations will be checked according to rules written in Ct =

{Xt, Ft}. As the product changes with respect to time, for every
time instance we will have a corresponding product configuration
problem instance. In practice, process of engineering change starts
much before (typically 5-7 years) the start of production. This gives
possibility to know the product configuration data for future time i.e.
Ct+T = {Xt+T , Ft+T } at given time t.

Now, for given set of configurations (Ot, will also be called base
configuration) which are derived from configuration model Ct =

(Xt, Ft) we are required to validate their feasibility with respect
to Ct+T = (Xt+T , Ft+T). In case of infeasible configurations we
are required to find the new configuration in the solution space of
S(Ct+T) with the minimal change to its base configuration. As the
configurations variables are Boolean in nature, change in the config-
uration can be performed either by adding new attributes, or remov-
ing old attributes. The distance between two configurations (base and
transformed) can be expressed through sum of the changes in the at-
tribute assignment, which can be expressed through the Hamming
distance. However, changing any arbitrary attribute in the base con-
figuration in order to make them feasible may not be practically de-
sired. For example, some of the product attributes may have high
cost of change such as engine, special body style or sophisticated op-
tional equipment, and changing these attributes may be difficult to
handle as compared to changes in some simple options such as cup
holder or some alarm features. Thus, a change cost can be associated
with each attribute and transformation of base configuration to new
configuration can be sought to be achieved by minimizing the total
change cost. Change cost will only be associated to configuration if
certain attribute is either added or removed in the configuration. One
may consider two different quantities of change cost for an attribute
such as attribute addition cost and attribute removal cost.

32

In case of Reconfiguration problem, some attributes are fixed by
customer (attributes on which modification is asked) or may have
very high change cost as they may be customer’s most preferred at-
tributes. Then the solution is sought only by changing the remain-
ing set of attributes. The reconfiguration problem can be defined as
a special case of configuration problem where certain configuration
variables are set to predefined values (true or false). The aim is to
fix certain attributes in base configuration (either by replacing some
previously selected attribute or adding new) and then look for a new
configuration which has minimal changes with respect to the base
configuration.

In our case, the changes in the configuration can only be made
either by adding new attributes or removing previously selected at-
tributes from the configuration. As configuration changes are associ-
ated with change in attributes thus a change cost can be associated
with each attribute to measure the impact of change.

In our work we propose an optimization model for transforming
invalid configurations to valid ones as well as transforming configu-
rations with predefined settings over attributes (Reconfiguration). We
develop a framework which can incorporate information from differ-
ent data sources such as configuration rules, sales program (cost as-
sociated with attributes) and planning expert’s knowledge (to change
configuration in some guided way). As most of the information is
available or can be converted in the form of logical propositional for-
mulas, we develop an optimization based framework after a required
transformation of the logical propositions. In the next section we dis-
cuss various input data for the planning problem.

3 Input Data and its characteristics

3.1 The configuration data

A variant rich customizable product can be defined on the basis of
attributes (features) in order to facilitate aggregate level of planning
for components and modules [14]. Customer configurations can be
created by combining different attributes that are permitted by the
corresponding configuration data. It is important that while combin-
ing different attributes, we must fulfil the interdependencies between
attributes, so that a feasible product configuration can be generated
[13]. For instance, if in the USA some engines require special trans-
mission types, this condition must hold while configuring a car of
that type. A product document captures the technical, market and
legal restrictions and provides an important data source for the con-
figuration feasibility check.

Interdependencies among attributes are documented and main-
tained in the configuration data by a rule system. These rules are
basically Boolean expressions imposed against each attribute. Selec-
tion of attributes in a configuration is done through evaluating the
respective Boolean expression. Table 1 shows an example of such a
data.

A customer configuration consists of a list of attributes. Each at-
tribute is represented as a Boolean variable in the configuration data.

Attribute Name Rule Description
1 Automatic

climate
control

(2)∧ (3∨ 4) attribute 1 only when at-
tribute 2 is present and
either attribute 3 or 4 is
present

2 Air condition TRUE must be present in every
variant

3 Comfort
package

¬(4) attribute 3 is not with at-
tribute 4

4 Performance
package

¬(3) attribute 4 is not with at-
tribute 3

Table 1: Example: Rule based configuration data

The value of the attribute will be set to TRUE, if particular attribute is
selected by the customer. The selection of the attribute is controlled
by the logical rule system as shown in rule column of table 1. The
logical rule system is built from usual Boolean operators ∨(OR),
∧(AND), ¬(NOT) and an attribute serving as a proportional vari-
able. The customer order processing is controlled by evaluating the
rule’s formulae under the variable assignment induced by the cus-
tomer order and executing suitable actions based on whether the for-
mula evaluates to TRUE or FALSE.

As discussed in section 2 configuration problem (C) can be de-
fined by triple (X,D,F). For configuration data shown in table 1.
X = {1, 2, 3, 4},D ∈ {0, 1}∀X , and F = {f1, f2, f3, f4} where

f1 = {1→ (2) ∧ (3 ∨ 4)}
f2 = {2}
f3 = {3→ ¬(4)}
f4 = {4→ ¬(3)}

where a → b means attribute a implies attribute b, if a is se-
lected (or set to true) then b has to be selected in the configura-
tion. Propositional formulas in F can also be expressed as F =

{((2)∧ (3∨ 4))∨¬(1), 2,¬(4)∨¬(3),¬(3)∨¬(4)}. In the given
example, associated rule with f3 and f4 have the same boolean ex-
pression so only one can be evaluated and also f2 = {2} says that
attribute 2 will be the part of every configuration. As all rules written
in the configuration rule set F has to be satisfied. All element of F
can be combined with AND operator, ϕ = ∧f∈F f . Thus ϕ will be
the boolean formula whose Truth value will represent an configura-
tion. ϕ is also called as product overview formula [9]. Our config-
uration variable set X contains all possible attributes which can be
the part of the product configuration either from customer point of
view of manufacturer. For example, some plant and production re-
lated attribute may not be relevant to the customer but is required to
handle feasibility of production at certain planning stage. In the next
section we discuss different changes in the configuration data which
may result in modification or upgradation of configurations.

3.2 Changes in the configurations

As a customizable product can be defined based on different features
offered by the manufacturer, product changes can be studied based on

33

the change in the offered product attributes. In this section we will
outline various changes in product attributes which can make certain
product variants to invalid. The changes in the product attributes can
be cause by one or more of reasons described below:

1. Deletion of old attributes: All past configurations containing at-
tributes which are discontinued will become invalid according to
changed product. If discontinued attributes have no dependencies
with remaining attributes we can simply remove these attributes to
restore the validity (feasibility) of the product variant. For a com-
plex engineering product this is very unlikely. In general, product
attributes have complex dependencies among each other and mod-
ification of one attribute needs to be validated with the remaining
set of attributes.

2. Change in rule: The technical rules pertaining to an attribute
that are expressed in configuration data may get changed due to
various reasons such as design modification, legal changes. For
some practical product instances, a single attribute may depend
on hundreds of other attributes by a complex Boolean expression.
Change in some part of a rule may affect feasibility of certain at-
tribute combinations.

3. Inclusion of new attributes: As a product evolves, some new fea-
tures get added. These may not have been present in the past, but a
customer may select them in the future. As newly introduced fea-
tures may have some dependencies with other available attributes,
variants produced in the past have to be modified in such a way,
that transformed configurations also contain new features (accord-
ing the estimate of new feature).

4. Attribute fragmentation/atomization: In some cases an attribute is
split into more attributes. For example, let us assume that a car was
produced with the option off-road package which includes fea-
tures as high battery capacity, heavy duty suspension, hi-fi music
system and a sunroof. Customers were not allowed to select above
features individually but selection can be made through package.
Now, due to some change, the manufacturer has decided to divide
the off-road package into two new packages. The first package
includes the features high battery capacity and heavy duty sus-
pension, the second package includes the hi-fi music system and
sunroof. Both new packages can be selected individually, which
means that the customer has more choice than before which may
effect the distribution of packages from the past. Some input form
sales in-terms of demand estimates of new package may help here
to adapt past configurations according to new product offerings.

5. Replacement of attributes: Most often due to technology and other
changes, some old attributes are replaced by new attributes. For
example, some old telematic features are replaced by the new
generation touchscreen based systems. Therefore historic product
variants should also be upgraded to the new generation to use them
for planning of a future production system.

Apart from the above changes there also exists some desire to change
attributes of a past product variant according to new product offer-

ings. For example, due to market changes, the demand for a certain
engine type may decrease in comparison to other available engines.
In this case the changes in the engine distribution across all trans-
formed historic orders have to be considered in the transformation
process. This information is not documented in the configuration
rules but can be accessible through planning experts or through some
sales forecast. During the development of the automatic configura-
tion transformation system we try to accommodate these kinds of
requests.

3.3 Customer history

Let a product be defined by a set of 4 attributes {1, 2, 3, 4}. Accord-
ing to Table 1, the configuration can be listed as described in Table 2
and 3. As shown in Table 3, customer configuration can be presented
as a 0/1 vector over attributes, any change in the configuration can
be made by changing attributes from 0 to 1 and vice-versa. While
transforming the configuration, one objective will be to be as close
as possible to the old configuration. This can be done by minimizing
the Hamming distance between the old and new configurations.

No. Configurations
i 1,2,3
ii 1,2,4
iii 2,3
iv 2,4

Table 2: Configuration based
on attributes set

No. 1 2 3 4
i 1 1 1 0
ii 1 1 0 1
iii 0 1 1 0
iv 0 1 0 1

Table 3: Configuration as 0/1
matrix over attributes

4 Formulation of the optimization model

During the transformation of product configurations, we need to eval-
uate each rule written in the corresponding configuration data. At the
same time, we also need to ensure, that the changes in the given prod-
uct variant are done with minimal cost. Cost can vary based on de-
viation from the base configuration and the type of changes done. In
this section we explore an optimization based framework to find a so-
lution for the above problem. To create an optimization based trans-
formation procedure, all information included in the product config-
uration process need to be considered in the model. To do this, in the
following section we first transform rules from the configuration data
to the corresponding 0-1 discrete programming equivalent forms.

4.1 Transformation of logical rules to linear
inequalities

Constraint programming approach is a well-used methodology inside
the many product configuration systems [2]. Restrictions on product
configurations are modelled as constraints and a solution is a total
assignment satisfying each of the constraints. Most of the proposed
framework rely of the transformation of boolean formulas to special
structure such as conjunctive normal form (CNF) before writing the

34

final constraint set [3]. We developed an alternate method to avoid
the initial conversion of the input to CNF. Our formulas are so large
that naive CNF conversion by applying the distributive law failed
for lack of memory and time. Also, CNF conversion steps involves
introduction of large number of new variables which increases the
complexity of the problem.

4.1.1 Data structure for configuration rules

Using the normal precedence operators and the conventional evalua-
tion of expressions, the logical rule from configuration data (F) can
be presented in form of a tree structure. For example, let’s say selec-
tion of an attribute 1 is controlled by following Boolean expression:

f1 = (2) ∧ (3 ∨ 4) (1)

The tree representation of above expression can be shown as Figure
2. We used Stack for storing binary tree for implementation of algo-
rithm for transforming logical rules to algebraic inequalities [12].

∧

∨

43

2

Figure 2: Representation of
attribute selection rule in a
binary tree

index Elements
0 ∧
1 2

2 ∨
3 3

4 4

Figure 3: Rule in a stack

4.1.2 Transforming propositional formula’s to 0-1 LP

In this section we describe the transformation of logical propositions
to its equivalent linear integer constraint through an example. The
procedure to obtained required transformation is discussed in [12]
and [1]. Linear inequalities over Boolean variables are a widely used
modelling technique. The main task during transformation of an at-
tribute selection rule into a system of linear constraints is to maintain
the logical equivalence of the transformed expressions. The resulting
system of constraints must have the same truth table as the original
statement. For every attribute we introduce a binary decision vari-
able, denoted by xi. The connection of these variables to the propo-
sitions is defined by the following relations:

xi =

{
1 iff attribute i is TRUE
0 otherwise

(2)

Imposition of logical conditions linking the different actions in a
model is achieved by expressing these conditions in the form of lin-
ear constraints connecting the associated decision variables.

Let us assume that a product is defined by five different attributes
as shown in table 4. Our task is to write a set of linear constraints
which represents same information as described for configuration

Attribute Name Selection Rule
1 Rear-view camera 1→ ¬(4 ∨ 5) ∧ (¬6)
2 Parking assistant system 2→ (1) ∧ (¬(4 ∨ 5))

3 Cruise control 3← (1 ∨ (4 ∧ 5))

Table 4: Example: attributes and their selection rule

problem. In this example attribute 1, 2 and 3 imposes a selection rule
criteria while attribute 4 and 5 do not have explicit dependencies.

Our approach, in principle, involves identification of precise com-
pound attribute rules of the problem and then processing it with iden-
tified equations. The logical rule is represented by a tree graph (as per
Section 4.1.1), where attributes are associated with their common op-
erator node. We traverse through the tree and prune it in such a way,
that the standard transformation equation can be applied [12]. Figure
4 shows the final expression tree for configurations rule written in
Table 4.

∧

∧

1− x51− x4

1− x6

(a)

∧
∧
1− x51− x4

x1

(b)

∨
∧
x5x4

x1

(c)

Figure 4: Example: Final expression tree for (a) Attribute 1 (b) At-
tribute 2 (c) Attribute 3

3 0 0 1 1 2 0

−1 1 0 1 1 0 0

1 0 −2 0 0 0 1

0 0 0 −1 −1 0 2

0 0 0 0 1 1 −1

×

x1

x2

x3

x4

x5

x6

x7

≤

4

2

0

0

1

B× [x] ≤ b (3)

Where: B = Coefficient matrix over attributes and b is the right-hand
side values. In order to transform the given Boolean expressions to
liner constraints we introduced new variable x7 corresponding to at-
tribute 3. Attribute x7 controls boolean expression 4 ∨ 5. Resulting
constraint system is shown in Eq. 3.

4.2 The configuration transformation model

In this section we present a mathematical model for the transfor-
mation of a base configuration (configuration produced in past)
to the new configuration. The new configuration should satisfy
all restrictions imposed by product document and should have
maximum correlation with its base configuration.

Let
i be ith attribute, i ⊆ {1...n}, where n is the total number of
attributes

35

Data

ai =

{
1 if ith attribute is present in base configuration
0 otherwise

ci = Change cost associated with attribute i. We assume that ci
is given as input either from user or derived from sales
planning data (e.g. cost of attribute)
Decision variables

xi =

{
1 if ith attribute is in transformed configuration
0 otherwise

Objective Function

Z = Minimize
∑
i

ci × |ai − xi| (4)

Subject to
B[x] ≤ b (5)

The Hamming distance between base and new configuration for
attribute i calculated by |ai−xi|. Constraints in Eq. 5 is the set of lin-
ear inequalities derived from configurations rules (restrictions). Ob-
jective function Z is used to minimize the mismatch cost associated
with each attribute so that the transformed configuration will match
the base (old) configuration as close as possible. Change cost asso-
ciated with each attribute is assumed here as an input data provided
either by planning experts (sales) or by user. Usually for automobile
change cost for complex attributes such as power train, production
country is high compare to other attributes. In this case user can spec-
ify relative cost (such as weight factor or priorities) among attributes.
Constraint 5 is a set of linear constraints originating by transforming
logical conditions written in the product document to linear inequal-
ities using the procedure described in Section 4.1. Any new config-
uration [x] from the above optimization model will guarantee that
the configuration is feasible according to the product document and
the objective function will ensure its minimum cost deviation from
the base configuration. As the configuration transformation model
transforms one configuration at a time, for every transformation of
non-feasible (according to given product document) configuration,
this model needs to be run. A typical practical instance of this prob-
lem contains around 500-1000 decision variables and some tens of
thousands of constrains.

5 Solution framework

Our aim is to provide an automated system which can interpret in-
formation from configuration data and planning experts. The system
should consider given information in the best possible way while
transforming the base (given) product variants to new (upgraded)
variants. For this, we will create a knowledge database, where in-
formation from planning experts can be stored and used during the
configuration transformation. The term planning experts is used to

present collective information/rules specified by engineers/product
managers or the user of the our application. For the reconfiguration
problem, change information can be described by the customer and
same can be applied during updating the base configuration. The ex-
pert database will collect the changes of attributes from one stage of
product to another. Table 5 shows an excerpt of such a knowledge
database. In the expert database we want to maintain an explicit set
of rules which can be applied in a guided way to base configura-
tion. For example, in the past, a car was produced only with one type
of entertainment system. Due to some enhancement in the product,
the manufacturer now provides three different entertainment systems.
The challenge will be to distribute new entertainment systems over
configurations produced in the past. In this case, the knowledge of
the planning expert plays an important role in achieving a realistic
transformation of past products.

Situation in Past in Future
An old attribute is replaced
by new attribute (one to
one mapping)

i j

An attribute has been re-
placed by number of new
attributes (one to many
mapping)

i i = j for 70% config-
urations produced in
past; i = k for 30%
configurations

Group of individual at-
tribute replaced by new
Package (many to one
mapping)

i, j, k p = [i, j, k] add
package p if at least
two attribute from
{i, j, k} is present

An old package is divided
in more than one packages

p = [i, j, k, l] p1 = [i, j], p2 =

[k, l]

Table 5: An excerpt of expert’s knowledge database

Knowledge from the expert database is applied to every configu-
ration that we want to transform. It may happen that the modifica-
tions from the expert database do not suffice to meet all the config-
uration rules. In that case, we use the configuration transformation
model presented in section 4.2. A solution is sought automatically
that is valid under the new model, but which differs minimally (in
the ”Hamming distance”) from the ”old” configuration. The flow di-
agram in Figure 5 shows the solution framework.

The configuration transformation process starts with analyzing the
product configuration rules. In this step, we can get the list of all
available attributes and attribute dependencies in terms of logical
rules. These rules can be converted into a set of linear inequalities
as discussed in Section 4.1. Once the configuration rules are mod-
elled as constraints, we will look into the expert database and apply
all possible attribute mappings described in the expert database. All
discontinued attributes will be removed from the base configuration
because they will not be valid for the new model. At this stage, we
will check if this configuration is feasible according to given config-
uration rules. If the answer is YES, we proceed with transforming
the next configuration. If the answer is NO, we call the configuration
transformation model as defined in Section 4.2. We repeat the above

36

procedure till all configurations are transformed.

Removexall
discontinuedxattributes

fromxbasexconfiguration

Updatexthexoptimization
modelxforxconfiguration

transformation
1Sectionx4.2Y

Solvexthexmodel

Nextxorder?

Stop

updatexbasexconfiguration
asxperxexpertsxknowledgex

basex

Feasibility
check?

Notxfeasible

Transformxlogicalxrules
toxlinearxinequalitiesxas

discussedxinx inxSectionx4.1

Storextransformed
order

No

Yes

Productxconfigurationxrules

Readxbasexconfiguration

Figure 5: Flow diagram for transformation of product variants from
past to given document information

5.1 Computational Experiments

We have tested our solution approach with various industry size prob-
lems. In this section, we will present two different experiments cre-
ated out of practical scenarios in the automotive industry.

Sr Scenario total at-
tributes

total base
configura-
tions

Exp1 Transforming past config-
urations as per changes in
configuration rules

695 2200

Exp2 Upgrading base configura-
tions with new Engine

705 1000

Table 6: Excerpt of computational scenarios

Table 6 shows the computational set up for two experiments. In
the first experiment (Exp1) our aim is to utilize customer orders pro-
duced in the past for future production planning. For this, 2200 past
configurations are taken which are 6 months old from new produc-
tion date. As the product has undergone engineering changes, our
aim is to upgrade the given configurations as per the new configu-
ration rules. The new configurations are defined with 695 different
attributes.

Figure 6 shows the plot of time versus Hamming distance
for transformed configurations. The transformation is done after
analysing new configurations rules which results in information such

0 5 10 15

0.
02

0.
05

0.
08

Exp. 1: Hamming distance from base−configuration

T
im

e
(s

ec
)

Figure 6: Experiment1 Transforming base configurations as per
new configuration rules

as discontinuation of some old attributes. Removing of barred at-
tributes and application of information from expert’s knowledge as
discussed in section 5, we found that a large number of configu-
rations become feasible (Hamming distance zero in figure 6) . For
other configurations, solutions are found by solving the optimization
model as discussed in section 4.

4 5 6 7 8 9 10

0.
06

0.
08

0.
10

Exp. 2: Hamming distance after upgrading engine type

T
im

e
(s

ec
)

Figure 7: Experiment2 Hamming distance vs time plot of engine
upgradation problem

In experiment 2, we solved the reconfiguration problem by up-
grading the engine type. Given 1000 configurations were upgraded to
a new engine type. First, attributes related to the old engine type were
replaced with the new engine and some related attribute replacements
were done through expert’s knowledge base. For example, associat-
ing the right gear box for the new engine. After user’s modification,
we transformed the given configurations as per the model shown in
Figure 7. A large number of given configurations are transformed
with minimal changes (4-8 attributes) to its original values. The op-
timization model out of configuration rules has a few thousand deci-
sion variables and thousands of linear constraints.

We used the optimization solver IBM Ilog Cplex 12.2 to solve the
order transformation model. For simplicity, the following assump-
tions were made: 1) the attribute change cost is assumed to be one
in Experiment1. 2) In Experiment2 we used a relatively high
change cost for new engine and in all transformed configurations, the
attributes related to new engine remained unchanged. On applying
expert knowledge and the mathematical model that we have devel-
oped, the initial computational results shows that the given configu-
rations can be transformed as per the desired objective in reasonable
computation time (a few seconds).

37

6 Related work

Product configuration systems have been a key enabler for mass cus-
tomization. One main contribution of configurations system is to sup-
port mass customization at various key processes such as product
configuration, product data management (PDM) and customer rela-
tionship management (CRM) for effective product and process vari-
ety management [5]. The effect of configuration process can be seen
on the customization responsiveness when information from sources
such as customer requirements, product characteristics, production
process and logistics network are considered in the configuration sys-
tems [8].

In a variant rich customizable product, finding customer focused
configurations out of enormous choices is a challenging task [16].
Failing to access market needs has an adverse effect in product qual-
ity of product configurators [15]. Enabling production planning with
customer historical demand (configurations produced in the past)
may help to retain aspects of customer buying behaviour. However,
to use past configurations for future production planning, an upgra-
dation is required. Fichter et. al. [4] considered some of the product
change conditions in their work of transforming configurations be-
tween two different product document rules. They proposed a knowl-
edge based framework to transform invalid product variants accord-
ing to change of rules in a configurator. However, in their heuristic
approach it is not clear whether the transformed configuration has
small deviation (minimal cost/distance) from original configuration.
Walter et. al. [17] have discussed MaxSAT based approach for recon-
figuration problem. In our paper we translated configurations propo-
sitional rules to set of linear constraints and the configuration trans-
formation problem. An optimization based model has some advan-
tages and the results of this formulation can be extended to support
the generation or the transformation of sets of configurations [12].

7 Conclusion

In order to adapt the customer configurations produced in the past
to the latest engineering design and market conditions we have dis-
cussed an optimization based framework. Design related changes
are captured in our optimization model by transforming the prod-
uct configuration rules to a set of linear inequalities. Market and
expert knowledge during configuration transformation are captured
by maintaining a knowledge database to transform configurations
according to the best available information. The method will facil-
itate future planning activities based on consistent and constructible
configuration sets (order sets), which will have maximum correla-
tion with the past customer demand. For a complex product which
changes dynamically with respect to time, production planning ac-
tivities will improve gradually with the effective adaption of design
and market changes.

REFERENCES
[1] Egon Balas, ‘Logical constraints as cardinality rules: Tight representa-

tion’, Journal of Combinatorial Optimization, 8(2), 115–128, (2004).
[2] Caroline Becker and Hélène Fargier, ‘Maintaining alternative values

in constraint-based configuration’, in IJCAI, ed., Francesca Rossi. IJ-
CAI/AAAI, (2013).

[3] Hachemi Bennaceur, ‘A comparison between sat and csp techniques’,
Constraints, 9(2), 123–138, (2004).

[4] Michael Fichter, Michael Klein, and Andreas Schmidt, ‘Transforma-
tion of product between various version of the rule world of a product
configurator’, IEA/AIE, Springer-Verlag Berliun Heidelberg, 5579(1),
721 – 730, (2009).

[5] C. Forza and F. Salvador, ‘Application support to product variety man-
agement’, International Journal of Production Research, 46(3), 817–
836, (2008).

[6] H. Graf, ‘Innovative logistics is a vital part of transformable facto-
ries in the automotive industry’, in Reconfigurable Manufacturing Sys-
tems and Transformable Factories, ed., AnatoliI. Dashchenko, 423–
457, Springer Berlin Heidelberg, (2006).

[7] T. Hadzic, S. Sathiamoorthy, R. M. Jensen, H. R. Andersen, J. Møller,
and H. Hulgaard, ‘Fast backtrack free product configuration using pre-
compiled solution space representations’, in Proceedings of the Interna-
tional Conference on Economic, Technical and Organisational aspects
of Product Configuration Systems, (2004).

[8] P.T. Helo, Q.L. Xu, S.J. Kyllnen, and R.J. Jiao, ‘Integrated vehicle con-
figuration systemconnecting the domains of mass customization’, Com-
puters in Industry, 61(1), 44 – 52, (2010).

[9] Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency assertions
for automotive product data management’, Journal of Automated Rea-
soning, 24(1-2), 145–163, (2000).

[10] Andrew Kusiak, M. R. Smith, and Zhe Song, ‘Planning product config-
urations based on sales data’, IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 37(4), 602–609, (2007).

[11] Peter Manhart, ‘Reconfiguration - A problem in search of solutions’, in
IJCAI’05 Configuration Workshop, eds., Dietmar Jannach and Alexan-
der Felfernig, pp. 64–67, (2005).

[12] Tilak Raj Singh and Narayan Rangaraj, ‘Generation of predictive con-
figurations for production planning’, in 15 th International Configura-
tion Workshop, p. 79, (2013).

[13] C. Sinz, A. Kaiser, and W. Küchlin, ‘Formal methods for the valida-
tion of automotive product configuration data’, Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 17(1), 75–97,
(JAN 2003). Special issue on configuration.

[14] R. Srinivasan and J. M. Swaminathan, ‘Managing configurable prod-
ucts in the computer industry: Planning and coordination issues’, vol-
ume 22, pp. 33–43. Sadhna:Academy Proceedings in Engineering Sci-
ences, (February 1997).

[15] Alessio Trentin, Elisa Perin, and Cipriano Forza, ‘Product configurator
impact on product quality’, International Journal of Production Eco-
nomics, 135(2), 850 – 859, (2012). Green Manufacturing and Distribu-
tion in the Fashion and Apparel Industries.

[16] Alessio Trentin, Elisa Perin, and Cipriano Forza, ‘Sales configurator ca-
pabilities to avoid the product variety paradox: Construct development
and validation’, Computers in Industry, 64(4), 436 – 447, (2013).

[17] Rouven Walter, Christoph Zengler, and Wolfgang Küchlin, ‘Applica-
tions of maxsat in automotive configuration’, in 15 th International
Configuration Workshop, volume 1, p. 21, (2013).

38

Testing Configuration Knowledge-Bases
Franz Wotawa and Ingo Pill1

Abstract. Writing tests for configuration knowledge-bases is a dif-
ficult task. One not minor reason is the huge search space. For ex-
haustive testing, all possible combinations of configuration parame-
ters must be considered. In practice, exhaustive testing is thus often
impossible, due to the sheer, exponential, number of combinations.
Consequently it becomes necessary to focus on the most important
configurations first. This abstract challenge is well-known in the test-
ing community, and can be addressed by exploiting combinatorial
testing. Combinatorial testing deals with reducing the number of test
inputs by aiming at exhaustive combinations of parameter subsets.
That is, ensuring that a test-suite contains tests covering all value
combinations for all parameter subsets for (or up to) a given size. In
this paper, we formulate the configuration-testing problem and show
how combinatorial testing can be used in a corresponding test case
generation process, in order to achieve a huge reduction in the num-
ber of required test cases.

1 INTRODUCTION
A configuration, i.e., something that results from a particular ar-
rangement of parts or components (according to the Merriam Web-
ster dictionary2), can be considered as a system aggregating specific
parts in order to implement a desired functionality or behavior. In
model-based configuration, we use a knowledge-base in order to rep-
resent those components’ functionality, given user requirements, and
any other knowledge that is necessary for defining or constructing the
system. Such additional knowledge encompasses, for instance, con-
straints prohibiting physically impossible (and thus conflicting) ar-
rangements. Obviously, the outcome of any configuration algorithm
depends heavily on the model’s quality. In some sense, quality in this
case can be considered as being “as close as necessary (and possible)
to reality”, so that we need to capture the “appropriate” knowledge
and do that in the right way.

In case of faults in the knowledge base, e.g., when we miss some
constraint that prohibits some impossible configuration, a derived
configuration might be incorrect for at least some specific scenarios
or corner cases. Thus, testing, which is basically unavoidable for ver-
ification and validation problems, is not only essential for hardware
and programs, but also for knowledge-bases. We certainly have to
ensure that a configuration behaves as desired. The evidence is even
stronger when moving from static configuration, e.g., configuring a
product based on user needs, to dynamic configurations where the
system might adapt itself for a certain situation. For example, a robot
might adapt its control behavior in case of a broken wheel, that is, on
its view of the world that it stores in an internal knowledge-base as
foundation for its reasoning. In such cases, a reliable and, to a certain
degree, expected and “safe” behavior has to be ensured.

1 Technische Universität Graz, email: {wotawa,ipill}@ist.tugraz.at
2 http://www.merriam-webster.com/dictionary/configuration

In this paper, our focus is on such faults in configuration
knowledge-bases an their consequences. Of course, another source
for failure is in the configuration algorithm’s implementation, i.e.,
the reasoning engine, itself. While such faults are outside our paper’s
focus, the generated tests can also be used to test the reasoner.

Regarding fault detection and isolation, the size of a knowledge-
base is of certain interest. That is, if the knowledge-base itself, or the
configuration space, is very small, exhaustive testing might even be
feasible and a valid option for specific situations. However, in case
of huge knowledge-bases or huge configuration spaces, exhaustive
testing is practically impossible. For instance, and without loosing
generality, let us assume the example application of parameter con-
figuration. There the purpose is to find a value assignment to all avail-
able system parameters, in order to receive a setup that implements
a desired functionality. If we have parameters p1, . . . , pn, each tak-
ing values from a domain D with size k, an exhaustive search would
require us to test kn possible configurations, which, for the obvious
reasons, is most likely infeasible for those values for k and n expe-
rienced in practice. Therefore, we require effective alternatives that
allow us to systematically focus our testing efforts.

In system testing, where we often have to test in the context of
alternative “environments’, we suffer from a similar problem. For in-
stance, if we want to test a web page, we have to consider various
hardware platforms from PCs to smart phones and tablets, a variety
of operating systems, a set of web browsers commonly used, and so
on. Testing the web page in the context of all the possible “configu-
rations” is of course an achy task that requires a lot of resources. An
empirical study (see e.g., [12]) showed, however, that not all combi-
nations of parameter value assignments are necessary for revealing a
bug. Rather, it seems sufficient to consider local parameter configu-
rations. Implementing the concept of combinatorial testing (see also
Section 4), we aim to cover all local parameter combinations up to,
or of, a given size in a test suite. That is, all the combinations for
(all possible) chosen “local” subsets of parameters, which allows us
to dramatically reduce the number of required tests. Of course the
choice of the subset size directly influences the “locality” of the test
case generation process.

In this paper, we discuss the testing problem for configuration
knowledge-bases and propose the use of combinatorial testing for
automated test input generation. We introduce our preliminary def-
initions using a simplified example from the e-vehicle domain, and
furthermore discuss two different testing aspects. First, we consider
testing of different configurations. And second, when considering the
desired functionality as being changeable, there arises the question of
whether there actually is a valid configuration for a certain combina-
tion of functionalities.

Our paper is organized as follows. First, we discuss some related
research with a focus on testing of knowledge-based systems in gen-
eral. Afterwards, we introduce the foundations of configuration using

39

a running example. We then use the same example to discuss com-
binatorial testing. After the introduction into combinatorial testing,
we discuss testing of configuration knowledge-bases in more detail.
Finally, we conclude the paper and outline future research directions.

2 RELATED RESEARCH

Knowledge-based systems are used for various purposes like con-
figuration, diagnosis, and also decision support, e.g., for high-level
control of systems. For all these application areas, systems have to
be predictable, that is, they have to behave as expected and do not
cause any trouble leading to a loss of resources or even harm peo-
ple. Despite this fact, it is interesting to note that there has not been
a huge number of papers dealing with testing, verification, and val-
idation of knowledge-based systems. Robert Plant [17, 18] was one
of the first dealing with verification, validation, and testing of expert
systems and knowledge-based systems in general. There is also an
earlier survey available (see [13]) that deals with tools for validation
and verification of knowledge-based systems.

Regarding testing of knowledge-based systems, it is also worth
mentioning El-Korany and colleagues’ work [5], where their focus
is on the testing methodology. There the authors distinguish differ-
ent cases where testing is required, i.e., inference knowledge testing
and task knowledge testing. The objective behind their work was to
increase the level of correctness of knowledge-based systems. Other
work includes [9], where Hartung and Håkansson discuss test au-
tomation for knowledge-based systems. Their approach works for
production rules that are extracted from the knowledge-bases.

Hayes and Parzen [10] focused more on the question of “to what
degree a knowledge-based systems fulfills its purpose”, that is, as
indicated in the title of their publication, on achieving the desired
behavior. In order to answer the question about the quality of de-
cisions coming from a knowledge-based system, Hayes and Parzen
introduced a special metric (QUEM) to judge the quality of the solu-
tions. The proposed approach is essential for measuring the overall
performance of a knowledge-based system.

To the best of our knowledge, there is only little work on test-
ing configuration motors or motors that make use of configuration
methods like recommenders. Felfernig and colleagues [8, 7] discuss
the use of testing, i.e., white-box testing, and development environ-
ments in the context of recommender applications. Other work from
Felfernig and colleagues [6] mainly focuses on the second step of
debugging, i.e., fault localization and correction, but still requires
test cases for finding inconsistencies between the behavior coded in
a knowledge base and the expected behavior, which originates from
knowledge engineers or customers of the configuration system.

Tiihonen and colleagues [20] described a rule-based configura-
tor and also introduced a more or less model-independent testing
method. In their approach the configurator is tested using randomly
generated requirements given to the configurator. Besides discussing
the underlying methodology Tiihonen et al. also presents empirical
results gained from 4 different configuration models. In contrast to
Tiihonen and colleague the testing approach proposed in this paper
is not a random testing approach. Moreover, our focus is more on
testing the configuration knowledge-base and not the whole configu-
rator. Although, the obtained tests can be used later for testing con-
crete implementations.

In our paper, we rely on previous research in the domain of
testing knowledge-based systems, but focus on the specific case of
knowledge-based systems for configuration. We distinguish different
cases for testing and suggest to use a specific testing methodology,

i.e., combinatorial testing, which seems to suit configuration very
well.

3 THE CONFIGURATION PROBLEM
For illustration purposes, let us consider the following simplified ex-
ample from the domain of vehicle configurations. In Figure 1, we
illustrate an example comprising an electric vehicle that contains an
electric motor, electric consumers like an air-condition, and a battery
that delivers the required electricity. Battery size and other factors,
like the driving mode, substantially influence the range of the vehicle.
The configuration knowledge base for our example comprises four
components, i.e., an air-condition, a motor, the driving mode, and the
battery - each of them offering some options, which then vary from
configuration to configuration. Let us now assume that there are two
engine types (standard and powerful), three types of air-condition
(none, manual, and electronic), two driving modes (leisure and race),
and three different batteries (type1, type2, type3), each providing a
different electric capacity. Clearly, the configured vehicle’s range de-
pends heavily on the battery and actual power consumption. That is,
for instance, if there is too much power consumption, some partic-
ular range can never be achieved. The range, however, reflects an
important part of a customer’s needs. While customer A is satisfied
when she can drive the car for one day in a city for no more than 100
km, customer B expects his car being able to cover more than 200
km before it has to be recharged. Other customer requirements might
concern air-conditioning, or the availability of a particular driving
mode.

Figure 1. Configuration problem of an electric vehicle

In the following, we discuss the formalization of our e-vehicle
configuration example, but let us introduce the definition of a con-
figuration problem first.

Definition 1 (Configuration problem) A configuration problem is
a tuple (SD ∪ REQ,PARTS,MODES) where SD is the system de-
scription, REQ are the requirements, and PARTS are the configurable
parts that are allowed to be set to particular modes from MODES.

We assume that SD and REQ are first order logic formulae. Other
formalisms might also be used requiring the existence of consistency

40

checks and reasoning capabilities. Our definition of the configuration
problem assumes that the functionality or behavior of the parts (from
PARTS) are defined in SD for a particular mode (from MODES). For
our e-vehicle example, we consider 4 different parts: the electric mo-
tor (emot), the air-condition (ac), the driving mode (dm) and the bat-
tery (bat), i.e., PARTS = {emot, ac, dm, bat}.

What is missing, is the configuration knowledge and the require-
ments. Regarding the latter, we assume that we want to distinguish
slow acceleration cars (slowacc) from fast acceleration cars (fastacc),
as well as the availability of air-condition cooling (cooling). More-
over, a user might specify the maximum distance before recharging,
which might be city for less than or equal 100 km, interurban for dis-
tances up to 250 km, and max, otherwise. In the following, we depict
SD for our running example. In the system description, we make use
of the predicate mode that assigns a component a certain parameter
value, cons for fixing the power consumption of a part, and avpow
for stating the available electrical power for batteries.

Electric motor: The standard engine provides slow acceleration
only, but draws less electrical power. The powerful motor provides
fast acceleration but consumes more electricity as a downside.

mode(emot, standard)→ (cons(emot, 300)∧ slowacc)
mode(emot, powerful)→ (cons(emot, 400)∧ fastacc)

Air-condition: If there is no air-condition, then there is no power
consumption and also no cooling. The manual air-condition draws
less power than the electronic one. Both provide cooling.

mode(ac, none)→ (cons(ac, 0)∧¬cooling)
mode(ac,manual)→ (cons(ac, 100)∧ cooling)
mode(ac, electronic)→ (cons(ac, 150)∧ cooling)

Driving mode: A leisure driver consumes no additional electricity
on top of the power required to drive the motor. A racy driver
draws more power due to higher acceleration.

mode(dm, leisure)→ (cons(dm, 0))
mode(dm, race)→ (cons(dm, 100))

Battery: The three battery types have varying capacities.

mode(bat, type1)→ (avpow(bat, 450))
mode(bat, type2)→ (avpow(bat, 600))
mode(bat, type3)→ (avpow(bat, 800))

Other constraints: There are several further domain-dependent
constraints: The racy driving mode can only be obtained when
having a powerful motor, i.e., it is not possible to have fast accel-
eration without the right motor.

¬ (mode(dm, race)∧¬fastacc)

In addition, we have to ensure that a component cannot be in more
than one mode simultaneously,, and that some available functions
are in contradiction, e.g., slow and fast acceleration.

¬ (mode(emot, standard)∧mode(emot,manual))
¬ (mode(none, standard)∧mode(manual,manual))
¬ (mode(none, standard)∧mode(manual, electronic))
¬ (mode(none,manual)∧mode(manual, electronic))
¬ (mode(dm, leisure)∧mode(dm, race))
¬ (mode(bat, type1)∧mode(bat, type2))
¬ (mode(bat, type1)∧mode(bat, type3))
¬ (mode(bat, type2)∧mode(bat, type3))
¬ (slowacc∧ fastacc)

The power consumption of all vehicle parts should never exceed
the available power, so that we add an integrity constraint:

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)→ B > (E +A+D)

Finally, we have to map power consumption and available power
to the vehicle’s maximum distance (without recharging) class.

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)∧B − (E +A+D) > 99→ city

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)∧B − (E +A+D) > 200→ interurban

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)∧B − (E +A+D) > 400)→ max

It is worth noting that the above definition allows to derive differ-
ent maximum distances at the same time. If the distance is larger
than 400 city, interurban, and max become valid. This could be
avoided via integrity constraints or chaining to constraints, in or-
der to get non-overlapping definitions. However, this definition is
intended such as to allow to specify a minimum capability.

Now let us we define formally what we understand about a con-
figuration. Intuitively, a configuration has to do with a mode assign-
ment, which corresponds to choosing a certain part, e.g., setting the
battery to type1 means that we want this battery in our configuration.

Definition 2 (Configuration)
Let (SD∪REQ,PARTS,MODES) be a configuration problem. A con-
figuration is an assignment of a particular mode to each of the parts,
i.e., a set C is a configuration, if and only if |C| = |PARTS| and
∀ p ∈ PARTS : ∃mode(p,m) ∈ C where m ∈ MODES.

As this definition ignores REQ and SD, it induces the whole con-
figuration space. Being interested only in valid configurations, i.e.,
those that do not contradict REQ and SD, we define them as follows:

Definition 3 (Valid configuration) Let C be a configuration for the
configuration problem (SD∪REQ,PARTS,MODES). Configuration
C is valid if and only if SD ∪ REQ ∪ C is satisfiable.

Clearly Definition 3 does not ensure that a valid configuration
meets the requirements. Hence, we define a suitable configuration.

Definition 4 (Suitable configuration) Let C be a valid configura-
tion for the configuration problem (SD ∪ REQ,PARTS,MODES). C
is suitable iff the requirements REQ can be derived from the system
description and the configuration, i.e., SD ∪ C |= REQ.

The user requirements have a direct impact on the space of suit-
able configurations. Clearly, REQ = {city} has more suitable con-
figurations than the requirements REQ = {city, cooling}. The given
definitions of configuration are close to those of reconfiguration and
parameter configuration, e.g. from [19, 15]. However, to some extent,
generative configuration, e.g., [19], can also be handled, when as-
suming a boundary for involved components and connections. Each
potential component and connection has to be defined in the sys-
tem description having two modes. One is for indicating the use of
a component or connection in a configuration, and the other for stat-
ing that the component or connection is not used. In addition, some
integrity constraints have to be specified, in order to ensure that in a

41

final configuration there is no connection without the corresponding
components. Note that for larger systems and configurations such a
bounded variant might lead to a description that cannot be used for
computing configurations in reasonable time, which does not contra-
dict the observation that the given definitions - in principle - allow
for specifying different configuration problems.

Let us come back to our running example and the definition of
suitable configurations. When stating REQ = {city, cooling} we can
obtain the suitable configuration{

mode(emot, standard),mode(ac,manual),
mode(dm, leisure),mode(bat, type1)

}
but also{

mode(emot, powerful),mode(ac, electronic),
mode(dm, leisure),mode(bat, type2)

}
among others. The configuration{

mode(emot, powerful),mode(ac, none),
mode(dm, leisure),mode(bat, type1)

}
would be a valid one, but is not suitable as cooling is not established.
For computing configurations meeting requirements, we refer the in-
terested reader to [19] or [15].

What remains now, is the question whether the formalized config-
uration problem represents reality and results in the desired configu-
rations. Hence, we need to test the configuration knowledge-base. To
this end, in the next section we introduce a certain testing methodol-
ogy suitable for this task.

4 COMBINATORIAL TESTING
Combinatorial testing is a method for the algorithmic computation of
tests and in particular test input data for a system under test (SUT).

An answer to the question of how much test input data we should
generate in order to reveal undetected faults is of great practical im-
portance. As mentioned before, for n inputs with k possible values,
an exhaustive approach would require us to test kn combinations.
When missing an important combination, so that a fault remains in
the source code, the consequences might be catastrophic, especially
for safety-critical systems. Recently, researchers suggested not to
consider all input value combinations, but only certain ones focusing
on an exhaustive “local” search (see e.g. [3, 23, 24]). The underlying
idea is that while input combinations might be required in order to
reveal a bug, in practice, we can restrict the size of considered com-
binations and consider multiple “local” combinations in a test case.

Combinatorial testing formalizes this idea of considering a certain
combination of inputs - in our case parameter subsets of size -, e.g., 2
or 3, where all possible value combinations are tried. Regarding the
considered combination of inputs we distinguish the strength of com-
binatorial testing, e.g., strength 2 or 3. Each strength t (where t ≥ 2)
requires that each t-wise tuple of values of the different system pa-
rameters is covered at least once in the test suite, which reduces the
necessary number of test cases substantially. Of course, the strength t
could also be set to the maximum in order to do an exhaustive search.
The natural question is then if this method is sufficient. In [12], for
example, the authors report on an empirical study considering vari-
ous programs from different domains and showed that it was enough
to consider six-way interactions in order to detect all faults.

We now illustrate combinatorial testing in the context of our run-
ning example, where we restrict our focus purely on the testing

methodology. Even more details are offered in the next section. For
brevity let us consider the component modes as inputs:

input values
emot standard, powerful
ac none, manual, electronic
dm leisure, race
bat type1, type2, type3

When searching for all two-way combinations, i.e., combinations
of values for two particular inputs, we would obtain results similar
or equivalent to the one depicted in Table 1. There for each combina-
tion of two inputs, all possible value combinations are given, which
results in 9 test cases. For comparison reasons, we also depict the test
cases for strength 3 in Table 2. It is worth noting that, when consid-
ering all combinations, we would finally obtain 36 test cases.

Table 1. All two-way interactions for the e-vehicle example

emot ac dm bat
1 powerful none race type1
2 standard none leisure type2
3 powerful none leisure type3
4 standard manual race type1
5 powerful manual leisure type2
6 standard manual race type3
7 powerful electronics leisure type1
8 standard electronics race type2
9 powerful electronics race type3

The significant advantage of combinatorial testing is that the num-
ber of test cases can be reduced while still considering combinations
of input values. In order to implement combinatorial testing as a test
case generation method, the following steps are required:

1. First, someone has to write a model of the input space, comprising
the inputs and their value domains.

2. The combinatorial design procedure takes this input space and
generates an array where each row is simple a test case describing
the value for each input considering the given strength t.

3. Every row is delivered back as a single test case describing poten-
tial input data (but not the expected output).

Another benefit of combinatorial testing is that Steps 2 and 3 can
be automated completely. There are tools available for computing
the test cases, e.g., the ACTS combinatorial test generation tool [16].
ACTS has been developed jointly by the US National Institute Stan-
dards and Technology (NIST) and the University of Texas at Arling-
ton and currently has more than 1,400 individual and corporate users.

A drawback of combinatorial testing is that only test input data is
generated. Hence, the oracle problem, i.e., classifying the computed
output as being correct or not, still remains for combinatorial testing.
However, at least, combinatorial testing offers a structured and well
defined method for test input data generation that can be effectively
used in practice.

Regarding an algorithm for computing test cases using combinato-
rial testing, we refer the reader to the available literature. The under-
lying data structure for computing the test is the mixed-level covering
array which can be defined as follows (see [4]).

Definition 5 A mixed-level covering array which we will denote as
MCA(t, k, (g1, . . . , gk)) is an k × N array in which the entries of

42

Table 2. All three-way interactions for the e-vehicle example

emot ac dm bat
1 standard none leisure type1
2 powerful none race type1
3 standard none race type2
4 powerful none leisure type2
5 standard none leisure type3
6 powerful none race type3
7 standard manual race type1
8 powerful manual leisure type1
9 standard manual leisure type2

10 powerful manual race type2
11 standard manual race type3
12 powerful manual leisure type3
13 standard electronics leisure type1
14 powerful electronics race type1
15 standard electronics race type2
16 powerful electronics leisure type2
17 standard electronics leisure type3
18 powerful electronics race type3

the i-th row arise from an alphabet of size gi. Let {i1, . . . , it} ⊆
{1, . . . , k} and consider the subarray of size t×N by selecting rows
of the MCA. There are

∏t

i=1
gi possible t-tuples that could appear

as columns, and an MCA requires that each appears at least once.
The parameter t is also called the strength of the MCA.

The mixed level covering array defines all possible combinations
of t inputs having a finite value domain of gi for an input i. It is worth
noting that in combinatorial testing we have to have finite domains
(which is perfectly fine in case of configuration knowledge-bases).
We might also remark that the technique for discretizing the param-
eter values is referred to as input parameter modeling in combina-
torial testing [11]. After discussing combinatorial testing, we show
how combinatorial testing can be effectively used for testing config-
uration knowledge-bases in the next section.

5 TESTING KNOWLEDGE-BASES
The obvious purpose of testing is to reveal a SUT’s faults. To this
end, the SUT is executed using certain input values, and the resulting
behavior is logged. This behavior is compared with the expected one.
In case of deviations, a fault is detected and we certainly get inter-
ested in the corresponding root causes. In his ACM Turing Lecture
1972, Edsger W. Dijkstra mentioned that ”program testing can be
a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence”. Hence, someone might be
interested in efficiently detecting deviations, i.e., finding the right in-
put that causes the misbehavior. Finding such an input might be like
finding a needle in a haystack. Testing methods like combinational
testing help in this respect.

For a more detailed view on testing, we recommend Myers
book [14], where he - aside covering other issues - introduces 10
testing principles. In the 5th one, Myers mentions that ”test cases
must be written for input conditions that are invalid and unexpected
as well as for those that are valid and expected”. Hence, there is a
requirement not only to test for expected results, but also to execute
a SUT using input values for which the SUT was not designed. In
case of a configuration knowledge base, this means that we have to
use also queries where we expect no solution due to inconsistencies
arising during resolution.

Testing is based on test cases. We formalize test cases in a simpli-
fied form appropriate for our purposes.

Definition 6 (Test case) A test case for a SUT is a tuple (IN,OUT)
where IN is a formalization of the input values, and OUT defines the
expected output when executing the SUT using IN.

We say that a test case (IN,OUT) is a passing test case for a SUT
if the execution of SUT using IN returns an output that is not in con-
tradiction with OUT. Otherwise, we say that the test case is a failing
test case. A test suite is a set of test cases. In order to test a SUT, we
are interested in having a test suite that comprises at least one fail-
ing test case. If there is no such test case, we assume the SUT to be
correct with respect to the test suite.

After discussing some basic testing principles, the question re-
mains of how to actually test configuration knowledge-bases. Ac-
cording to Definition 1, the formalized knowledge covers the system
description SD and the requirements REQ. What we actually want
to ensure is that when querying the knowledge-base using a certain
request, we obtain the expected result. Hence, for testing purposes,
we are interested mainly in testing SD and not REQ.

There are some additional aspects when discussing testing con-
figuration knowledge-bases. For testing ordinary programs, the role
of input and output variables is well known. For configuration prob-
lems, someone might, however, also consider REQ as input and the
set of suitable configurations SCONF as output. It might also be de-
sirable to ask for the requests to be obtained when assuming a certain
configuration. In terms of configurations, most likely there are some
valid configurations that are not suitable. Others are not even valid.
According to Myers 5th testing principle, however, we also have to
check the invalid and unexpected cases.

We now formalize these two testing problems. Let us assume a
system description SD that describes configuration knowledge re-
garding PARTS and MODES. The first testing problem is for check-
ing whether the derived suitable configurations are the correct ones.

Definition 7 (Testing configuration) The testing configuration
problem concerns testing the knowledge-base in its capabilities for
deriving the expected configurations, and can be characterized as
follows:

Input: SD, PARTS, and MODES
Objective: Finding test cases of the form (REQ, SCONF), where

REQ are requirements, and CONF is a set of expected configura-
tions for the configuration problem (SD∪REQ,PARTS,MODES).
Note that CONF might be empty in case of inconsistencies. Other-
wise, CONF is expected to comprise suitable configurations only.

The second testing problem is related to checking whether given
configurations lead to the derivation of the correct requirements, if
there are any.

Definition 8 (Testing requirement derivation) The testing re-
quirement derivation problem captures the case where we are
interested in testing the capabilities of the knowledge base to derive
requirements from conflicts. It can be characterized as follows:

Input: SD, PARTS, and MODES
Objective: Finding test cases, of the form (C,R) where C is a con-

figuration and R is the expected result. Obviously, R might be
⊥ in case the configuration itself lead to an inconsistency, i.e.,
SD ∪ C |= ⊥. R might comprises all requests for which C is a
suitable configuration, or might be empty if there are no requests
for which C is suitable.

43

In order to solve both configuration specific testing problems, we
need a method for computing input values, i.e., requirements respec-
tively configurations, and the resulting values. For the first part, we
can easily make use of combinatorial testing with the advantage
of a reduced number of test cases to be computed while still re-
taining the capabilities for revealing a faulty behavior. Computing
the expected outcome in an automated fashion, however, is not di-
rectly possible, because of a missing specification. Hence, we have
to rely on the knowledge engineer to provide this information. In the
testing community, this problem is referred to as the oracle prob-
lem. There are some related methods like model-based testing (e.g.,
see [22, 21]) or metamorphic testing (e.g., see [1, 2]). The latter uses
symmetries in the functions or systems to be tested in order to gain
information about the correct behavior. For example, when testing
the sinus function implementation, we can make use of the property
sin(x) = sin(2π+x). If available, such techniques can be also used
for testing configuration knowledge-bases. However, in the following
we discuss the overall testing process ignoring metamorphic testing.

Algorithm 1 TEST CONF(SD,PARTS,MODES,CM)

Input: A system description SD, its component set PARTS, their
modes MODES, and a combinatorial testing model CM for require-
ments.
Output: A test suite TS where also the result of the test is stored for
each test case

1: TS := ∅
2: t := 2
3: flag := FALSE
4: repeat
5: Call the combinatorial testing algorithm using CM and t and

store the result in T .
6: for all t ∈ T do
7: Convert t to its corresponding requirements representation

REQ.
8: Call the configuration engine on (SD ∪

REQ,PARTS,MODES) and store the result in SCONF.
9: Present REQ and SCONF to the user for obtaining a classi-

fication UC ∈ {PASS,FAIL, ?}
10: if UC = FAIL then
11: Ask the user for SCONF
12: flag = TRUE
13: end if
14: TS := TS ∪ {(REQ, SCONF,UC)}
15: end for
16: t := t+ 1
17: until flag or no more t-way combinations are possible
18: return TS

In the proposed testing methodology for configuration knowledge-
bases, we make use of combinatorial testing for generating the inputs
for both problems, the testing configuration as well as the testing re-
quirement derivation problem. We use these inputs, and a configura-
tion engine (respectively a theorem prover) for generating the current
output. The input and the corresponding output is given to the user
(e.g., the knowledge engineer) for classifying the result as FAIL or
PASS. Note that we also have to consider that the user has no clear
understanding of the expected outcome. In this case, the classifica-
tion inconclusive (i.e., ?) can be used. This test input generation and
classification process that keeps the user in the loop, is started con-

sidering 2-way combinations. If no FAIL is obtained, the process
can be continued for 3-way combinations or even stronger ones, of
course re-using previously obtained classifications. The process can
definitely stop when strength t in combinatorial testing (for obtain-
ing t-way combinations) reaches the number of variables used. Ex-
perimental surveys suggest that it seems enough to consider 6-way
combinations (see [12]).

Algorithm 1 summarizes the steps necessary for computing a test
suite in order to solve the testing configuration problem. The algo-
rithm for solving testing requirement derivation problem is very sim-
ilar. Algorithm 2 shows the necessary steps. The only differences are
in the for-loop of the algorithm, where we have to take care of the
different situations. Both algorithms terminate assuming a finite set
of requirements and configurations. When ignoring the time required
for theorem prover, computing a configuration, and user interaction,
the time required for executions is mainly bound by the time required
for combinatorial testing.

Algorithm 2 TEST REQ(SD,PARTS,MODES,CM)

Input: A system description SD, its component set PARTS, their
modes MODES, and a combinatorial testing model CM for configu-
rations.
Output: A test suite TS where also the result of the test is stored for
each test case

1: TS := ∅
2: t := 2
3: flag := FALSE
4: repeat
5: Call the combinatorial testing algorithm using CM and t and

store the result in T .
6: for all t ∈ T do
7: Convert t to its corresponding configuration representation

C.
8: if SD ∪ C |= ⊥ then
9: R := ⊥.

10: else
11: Call the the theorem prover with input SD ∪ C and store

the derivable requirements in R.
12: end if
13: Present C and R to the user for obtaining a classification

UC ∈ {PASS,FAIL, ?}
14: if UC = FAIL then
15: Ask the user for R
16: flag = TRUE
17: end if
18: TS := TS ∪ {(C,R,UC)}
19: end for
20: t := t+ 1
21: until flag or no more t-way combinations are possible
22: return TS

Finally, it is worth discussing the computation of combinatorial
tests in Algorithm 1 and Algorithm 2. For Algorithm 2, we al-
ready computed the test cases in the previous section. See, for ex-
ample, Table 1 for all two-way combinations. There, test case 4
would lead to an inconsistency when calling the theorem prover,
because the standard motor would lead to slowacc which contra-
dicts the rules ¬(mode(dm, race)∧¬fastacc) in combination with
¬(slowacc∧ fastacc). Hence, we would be able to detect the case

44

where a knowledge-base is missing some of the mentioned rules.
For obtaining the combinatorial tests for Algorithm 1, the situation

is a little different (but not much). There, we are interested in require-
ment combinations. As discussed before, there might be cases where
we do not want to specify all requirements. Hence, we have to find
a model for the combinatorial testing algorithm where we are able
to take not care on a certain requirement. For our e-vehicle exam-
ple, we have three different requirement categories: cooling, driving
distance, and acceleration, each of them with the following possible
values:

input values
cooling true, false,
driving distance city, interurban, max,
acceleration slowacc, fastacc,

Note that the value is used to indicate that this requirement is cur-
rently not active. When using this model as input to the ACTS tool,
we are able to obtain 12 combinatorial tests of strength 2 depicted
in Table 3. Each row comprises requirements for our configuration
model. Some of the requirements may lead to suitable configura-
tions, some may not. This clarification has to be performed when
considering the test cases in Algorithm 1.

Table 3. All two-way interactions for the requirements of the e-vehicle

driving distance acceleration cooling
1 city slowacc false
2 city fastacc
3 city true
4 interurban slowacc
5 interurban fastacc true
6 interurban false
7 max slowacc true
8 max fastacc false
9 max

10 slowacc true
11 fastacc false
12

From the results obtained using our running example we are able
to conclude that combinatorial testing – in principle – can be used
to solve the two testing problems, which correspond to configura-
tion knowledge-bases. These two problems correspond to the two
different questions someone would ask during and after the devel-
opment of configuration knowledge-bases. The first question, deals
with the challenge of ensuring whether a knowledge-base is able
to derive expected configurations. The second question is related to
the evaluation whether a knowledge-base allows for deriving con-
figurations that fulfill the given requirements. Both questions have
to be addressed within the development of configurators and their
knowledge-bases in order to gain trust in their correctness.

6 CONCLUSION
In this paper, we raised the question of how to test configuration
knowledge-bases. We focused on model-based configuration and de-
fined two testing problems. One for checking whether obtained con-
figurations are in line with the requirements, and the other for test-
ing whether the correct set of configurations is returned for given
requirements. The proposed testing method relies on combinatorial

testing for computing input data needed. We argued that combina-
torial testing is very well suited for configuration testing, because
of ensuring a good fault detection capability while still reducing the
number of input combinations to consider. In practice, limited com-
binations, i.e., five- to six-way combinations have turned out to be
sufficient for revealing faults that have not been found before. The
question whether, e.g., six-way combinations are enough for config-
uration knowledge-base testing, will have to be addressed by future
research and corresponding experiments.

In future research also the proposed approach has to be em-
pirically evaluated. For such an evaluation, large configuration
knowledge-bases should be used. Moreover, by introducing faults in
the knowledge-bases someone would be able to check, whether the
proposed approach is capable of detecting faults. Ideally, the fault de-
tection capabilities should be compared with other approaches, e.g.,
random testing. Another interesting question is due to the testing ca-
pabilities of existing knowledge-based configuration tools. Do they
support testing? Which testing strategies do they suggestion? These
two questions among others can be answered, when carrying out a
case study with the objective of evaluating existing configuration so-
lutions. It is worth noting that we focussed more on the principles
of testing configuration knowledge-bases in this paper and provided
a solution. We leave a detailed empirical analysis of the proposed
approach for future research.

ACKNOWLEDGEMENTS
The research presented in this paper has been carried as part of the
eDAS project funded by the European Commission FP-7 grant agree-
ment number: 608770.

REFERENCES
[1] T.Y. Chen, S.C. Cheung, and S.M. Yiu, ‘Metamorphic testing: a new

approach for generating next test cases’, Technical report, Department
of Computer Science, Hong Kong University of Science and Technol-
ogy, Hong Kong, (1998). Technical Report HKUST-CS98-01.

[2] T.Y. Chen, J. Feng, and T.H. Tse, ‘Metamorphic testing of programs on
partial differential equations: a case study’, in Proceedings of the 26th
Annual International Computer Software and Applications Conference
(COMPSAC ’02), pp. 327–333, Los Alamitos, CA, (2002). IEEE Com-
puter Society.

[3] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gard-
ner C. Patton, ‘The AETG system: An approach to testing based
on combinatorial design’, IEEE Trans. Softw. Eng., 23(7), 437–444,
(1997).

[4] Charles J. Colbourn, ‘Covering arrays’, in Handbook of Combinato-
rial Designs, eds., Charles J. Colbourn and Jeffrey H. Dinitz, Discrete
Mathematics and Its Applications, 361–365, CRC Press, Boca Raton,
Fla., 2nd edn., (2006).

[5] Abeer El-Korany, Ahmed Rafea, Hoda Baraka, and Saad Eid, ‘A struc-
tured testing methodology for knowledge-based systems’, in 11th In-
ternational Conference on Database and Expert Systems Applications
(DEXA), pp. 427–436. Springer, (2000).

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,
‘Consistency-based diagnosis of configuration knowledge bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[7] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, ‘An integrated
environment for the development of knowledge-based recommender
applications’, International Journal of Electronic Commerce (IJEC),
11(2), 11–34, (2006).

[8] A. Felfernig, K. Isak, and T. Kruggel, ‘Testing knowledge-based rec-
ommender systems’, OEGAI Journal, 4, 12–18, (2005).

[9] Ronald Hartung and Anne Håkansson, ‘Automated testing for knowl-
edge based systems’, in Knowledge-Based Intelligent Information and
Engineering Systems, eds., Bruno Apolloni, RobertJ. Howlett, and
Lakhmi Jain, volume 4692 of Lecture Notes in Computer Science, 270–
278, Springer Berlin Heidelberg, (2007).

45

[10] Caroline C. Hayes and Michael I. Parzen, ‘Quem: An achievement test
for knowledge-based systems’, IEEE Transactions on Knowledge and
Data Engineering, 9(6), 838–847, (November/December 1997).

[11] D.R. Kuhn, R.N. Kacker, and Y. Lei, Introduction to Combinatorial
Testing, Chapman & Hall/CRC Innovations in Software Engineering
and Software Development Series, Taylor & Francis, 2013.

[12] D.R. Kuhn, R.N. Kacker, Y. Lei, and J. Hunter, ‘Combinatorial software
testing’, Computer, 94–96, (August 2009).

[13] Stephen Murrell and Robert T. Plant, ‘A survey of tools for the valida-
tion and verification of knowledge-based systems: 1985-1995’, Deci-
sion Support Systems, 21(4), 307–323, (1997).

[14] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons,
Inc., 2 edn., 2004.

[15] Iulia Nica and Franz Wotawa, ‘(re-)configuration of communication
networks in the context of m2m applications’, in Proceedings of the
15th Workshop on Configuration, Vienna, Austria, (2013).

[16] NIST, User Guide for ACTS. which is online available at
csrc.nist.gov/groups/SNS/acts/documents/acts user guide v2 r1.1.pdf;
last visited on June 20th, 2014.

[17] Robert Plant, ‘Rigorous approach to the development of knowledge-
based systems’, Knowl.-Based Syst., 4(4), 186–196, (1991).

[18] Robert T. Plant, ‘Expert system development and testing: A knowledge
engineer’s perspective’, Journal of Systems and Software, 19(2), 141–
146, (1992).

[19] Markus Stumptner, Gerhard Friedrich, and Alois Haselböck, ‘Gen-
erative constraint-based configuration of large technical systems’, AI
EDAM, 12, 307–320, (9 1998).

[20] Juha Tiihonen, Timo Soininen, Ilkka Niemelä, and Reijo Sulonen, ‘Em-
pirical testing of a weight constraint rule based configurator’, in ECAI
2002 Configuration Workshop, pp. 17–22, (2002).

[21] J. Tretmans, ‘Model-based testing and some steps towards test-based
modelling’, in Proceedings of the 11th International School on Formal
Methods for Eternal Networked Software Systems (SFM 2011), (2011).

[22] M. Utting and B. Legeard, Practical Model-Based Testing - A Tools
Approach, Morgan Kaufmann Publishers Inc., 2006.

[23] Cemal Yilmaz, Myra B Cohen, and Adam A Porter, ‘Covering arrays
for efficient fault characterization in complex configuration spaces’,
Software Engineering, IEEE Transactions on, 32(1), 20–34, (2006).

[24] Linbin Yu, Yu Lei, R.N. Kacker, and D.R. Kuhn, ‘Acts: A combinatorial
test generation tool’, in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pp. 370–375,
(2013).

46

Calpinator:
A Configuration Tool for Building Facades

Andrés F. Barco and Elise Vareilles and Michel Aldanondo and Paul Gaborit1

Abstract. Reducing energy consumption of residential and com-
mercial buildings is a major challenge nowadays. One of the strate-
gies to achieve a significant reduction lies on building renovation.
On this regard, a project targeting the industrialization of high per-
formance thermal renovation for apartment buildings is been exe-
cuted. The renovation is based on an external envelop composed by
rectangular wood-made panels that cover the whole building. Two
concurrent configuration tasks within the project have been identi-
fied: The configuration of each one of the panels w.r.t. to the facade
and the configuration of the entire facade using a set of these pan-
els. We focus our efforts on the development of a decision support
system for the configuration of panels and facades. In this paper we
introduce Calpinator, a Java-based configuration tool which is the
heart of the decision support system for the project. The tool uses
the notion of Constraint Satisfaction Problems as underlying model
and implements a smart greedy-recursive algorithm to find a feasible
configuration. In this communication we present the tool’s design, its
features and its implemented algorithm. We use a real-world scenario
to illustrate the kind of facades the system can deal with.

1 INTRODUCTION

Energy consumption of residential and commercial buildings is con-
stantly growing and currently it exceeds industry and transport sec-
tors. It represents more than a third of the energy consumption in
developed countries: 44% in France2, 37% in Europe [19], 36% in
North America [7] and 31% in Japan [5]. The increase in population,
the enthusiasm for new technologies and the improvement of living
comfort combined with the domestic habits creates an energy de-
mand of buildings that will continue to increase in the coming years.
Therefore, reducing energy consumption of buildings is now a prior-
ity in national and international levels.

According to Falcon et al. [8] one of the strategies to achieve a
significant reduction lies on thermal building renovation. However,
old methods involving by hand configuration, human scheduling and
craft assembly, are expensive both in time and costs (bill of materi-
als). It is therefore essential to assist this massive renovation of build-
ings with decision support systems [13].

Our work is part of project called CRIBA (for its acronym in
French of Construction and Renovation in Industrialized Wood Steel)
[8]. This project focuses on the industrialization of energetic renova-
tion for residential buildings. The challenge, very ambitious, is to
have a building energetic performance under 25kWh/m2/year af-

1 Université de Toulouse, Mines d’Albi, Route de Teillet Campus Jarlard,
81013 Albi Cedex 09, France, email: abarcosa@mines-albi.fr

2 http://www.developpement-durable.gouv.fr/IMG/pdf/
Rep_-_chiffres_energie.pdf

ter the renovation. To do this, the building is completely covered with
a new envelope composed of rectangular panels that are prefabricated
in factories. The core of our work lies on the two concurrent config-
uration tasks that have been identified: To configure each one of the
panels w.r.t. to the facade and to configure the entire facade using
a set of these panels [23, 24]. We focus our efforts on the develop-
ment of a decision support system for the configuration of panels and
facades.

In this paper we introduce Calpinator, a Java-based configuration
tool which is the heart of the decision support system for the CRIBA
project. The tool uses the notion of Constraint Satisfaction Problems
as underlying model and implements a smart greedy-recursive algo-
rithm to find one feasible configuration of panels and facades. In this
communication we present the tool’s design, its features and briefly
describe the implemented algorithm. It is worth noting that the algo-
rithm, whose details can be fond in [2], is not part of the contribution
of the present work. Instead, we focus our efforts on the implemen-
tation of the algorithm.

1.1 Related work
Layout synthesis, also known as space planning, techniques have
been used within different contexts and scenarios. For instance, find-
ing solutions for room configurations [25], apartment layouts [15]
and activities within a business office [12]. Also, some tools have
been implemented using different approaches, here we name a few
of them. For example, in [22] Shikder et al. present a prototype for
the interactive layout synthesis of apartment buildings including de-
sign information and an iterative design process. In [4] is introduced
WRIGHT, a constraint-based layout generation system that exploits
disjunctions of constraints to manage the possibilities on positioning
two-dimensional objects in a two-dimensional space. Another sys-
tem, LOOS [9], is able to configure spaces using rectangles that can
not be overlaped but that may have holes. It uses test rules applied by
steps to the rectangles in order to reach a good configuration based on
its orientation and relation with other rectangles. The same authors
have developed SEED [11]: A system based on LOOS used for early
stages on architectural design. A comparison between WRIGHT and
LOOS can be found in [10]. The system HeGel [1] (for Heuristic
Generation of Layouts) is yet another space planning tool that simu-
lates human design based on experimental cases. Finally, Medjdoub
et al. presents in [17] the system ARCHiPLAN which integrates ge-
ometrical and topological constraints to apartment layout planning.

2 PROBLEM CONTEXT
In order to achieve the CRIBA project goals and ensure the seal-
ing of the building, each facade of the renovated building must be

47

completely covered by rectangular configurable panels, i.e., it is nec-
essary a configuration of panels to cover the facade. Configuration is
the task of designing a given product (here facades) from predefined
generic components (here panels) [14, 21]. Components, which are
described in terms of its functions, characteristic and prices, are usu-
ally arranged in a catalog. Customized solutions, are built from the
combination of this catalog components and users requirements and
preferences.

In our context, a configuration solution for a facade layout is there-
fore finding a spatial positioning of panels that covers the whole
facade front, without overlapping nor holes. Keep in mind that,
whereas components (i.e., panels) in our catalog have well-defined
geometric shapes, dimensions and relations, their number is not
known in advance.

2.1 Layout elements
The following elements are part of the renovation. We include the
description of facades because its composing elements are important
in the accurate configuration of panels.

• Facades: A facade is represented by a 2D coordinate plane, with
origin of coordinates (0,0) as the bottom-left corner of the facade,
containing rectangular zones defining:

– Perimeter of facade to renovate with its dimensions (height and
width).

– Frames (windows and doors) with their dimensions (height and
width) positioned in the reference plane.

– Supporting areas (place to fix panels), with their permissible
load, positioned in the reference plane.

– Zones labeled as “out of configuration” which are areas that
can not be covered by configured panels and therefore require
specific panels design.

• Rectangular panels (shown in Figure 1): Panels are rectangular,
of varying dimensions (from 1 to 45.5m2) and may include dif-
ferent equipment (joinery, solar modules, etc.). These panels are
designed one at a time, when the definition of the layout config-
uration has been done, and manufactured in the factory prior to
shipment and installation on the building site.

Figure 1. Prefabricated rectangular panels

2.2 Configuration process
The renovation process follows a series of steps going form the build-
ing site through the elaboration of panels and ending in its assembly
[23]. At each level, a series of descriptive questions are asked to the
user. Each answer has a potential impact on the permissible dimen-
sions of panels. For example, the inaccessibility of a given facade
may limit the dimensions of panels and therefore the surface covered
by each one of them.

Once the descriptions of the site, building and facade are com-
pleted, the layout configuration of each facade can begin. Facades
must wear a set of panels that must be the greatest as possible while
respecting the architectural constraints, supporting areas, manufac-
turing and accessibility limitations. A rectangular panel is well con-
figured if it meets the following conditions:

C1 It should cover the greatest possible area given the accessibility
and the geometric position of frames.

C2 It can be installed in facade and supported by one or more sup-
porting areas.

C3 It does not overlap with any other panel.
C4 It does not block the definition and configuration of the rest of

the facade.

2.3 Configuration example
Consider the facade to renovate in literal (a) of Figure 2. The horizon-
tal and vertical lines represent the places in which we are allowed to
attach panels, i.e., the supporting areas. They correspond to various
possible locations for the fasteners supporting the weight of panels.
In this article, we assume that these places are capable of supporting
a large enough weight to not constrain the surface of the panels.

Figure 2. Well and ill-configured facades

48

Fasteners consist of two parts: One fixed directly onto the facade
(wall bracket) and one installed on the panel at the factory. On the
facades, the fasteners are positioned in the center of the supporting
areas. At the level of the panels, brackets are fixed to the lower edge
of the panels at equidistant (from 0.9 to 4 meters) from each other:
These minimum and maximum distances allow to better distribute
the weight of supported panels. A wall bracket can support a single
panel (if it is on the perimeter of the panel) or two panels (if it is at
the junction between two consecutive panels).

Small rectangles present on the facade to renovate in Figure 2 lit-
eral (a), correspond to the locations of frames (doors and windows).

Two areas of the facade are considered “out of configuration”: The
gable and the bottom part before the first horizontal supporting area.
Two specific panels will be designed, one triangular for the gable and
a square one for the specific building foot.

Figure 2 literal (b) presents a facade with three ill-configured pan-
els: Due to the impossibility to place another panel north to the al-
ready placed panel P1, because there are no supporting areas at the
corners of panel P2 and because panel P3 partially overlaps a frame.
None of these configurations are valid. Facades in literals (c), (d) and
(e) of Figure 2 present layout configurations where all panels meet
the four conditions. From these, the facade (e) is preferred over the
other two because it uses less panels.

3 UNDERLYING MODEL
Following the CSP model, we have identified 6 constraint variables,
presented in Table 1, that allow us to represent the core of the layout
configuration for a given facade: The spatial positioning of panels.
Recall that a CSP problem is described in terms of a tuple 〈V,D, C〉,
where V is a set of variables, D is a collection of potential values
associated for each variable, also known as domains, and C is a set
of relations over those variables, referred to as constraints [18].

Table 1. 6 variables used in the Calpinator implementation.

Variable Description Domain

(px0,py0) Origin (bottom-left) x0 ∈ [0, wfac], y0 ∈ [0, hfac]
of panel p

(px1,py1) End (top-right) x1 ∈ [0, wfac], y1 ∈ [0, hfac]
of panel p

wp Width of panel p [0.9, 13.5]
hp Height of panel p [0.9, 13.5]

The algorithm implemented in the tool uses the following param-
eters to set domains and to link variables: Width of facade (wfac),
height of facade (hfac), environmental property (efac), for each
frame f its origin point (fx0,fy0) and its end point (fx1,fy1) and, a col-
lection of horizontal and vertical supporting areas each one of them
with its origin point (sax0,say0) and its dimensions (saw,sah).

In what follows we briefly describe five of the six constraints that
are part of the model and that are constraints in the Calpinator tool,
more details about the model can be found in [2]. The sixth con-
straint, dealing with weight restrictions, is not presented because it is
not yet included in the implementation.

Environmental The width wp and height hp of panels may be con-
strained because accessibility difficulties to the facade (e.g. trees,
water sources, high voltage lines, etc), transportation issues (e.g.
only small trucks available) or even climatological aspects (e.g.
wind speed more than a given threshold).

Dimension Considering the panels suppliers and panel fabrication
specifications, the width wp and height hp of each panel is in the
range [0.9, 13.5]. However, this is actually a combination of val-
ues. In other words, it is possible to configure a panel with dimen-
sions 0.9 × 13.5, 3 × 8.4 or 13.5 × 0.9, but it is not possible to
configure one with dimensions 13.5× 13.5, this is due to fabrica-
tion and transportation constraints.

Area A correct facade configuration is one in which the whole fa-
cade area is covered by prefabricated panels. Thus, a constraint
forcing the sum of panel areas (wp× hp) to be equal to the facade
area (wfac× hfac) is needed.

Non-Overlap In addition, we must ensure that the panels do not
overlap so we can have a valid configuration. Thus, for each pair
of panels p and q we apply the non-overlap constraint (also known
as ndiff in different CSP tools).

Panel vs. Frames We adjust the width or height of a given panel if
there exists a frame near to it. Either the panel overlaps the frame
or the panel is right, left, up or down of the frame. In any case,
due to the internal structure of the panel, borders of frames and
borders of panels must be separated by a minimum distance given
as input.

4 CALPINATOR: A FACADE CONFIGURATOR
Using the aforementioned model, we have developed two algorithms
for solving the problem of facades configuration. The first algo-
rithm is an attempt to find one layout configuration in a greedy fash-
ion (more information can be found in [2]). The second algorithm
uses global constraints and a constraint engine to find all possible
panel configurations for covering the facades (more information can
be found in [3]). In the current state of development of our tool,
however, only the greedy-recursive algorithm has been implemented
(Section 4.2). The constraint-based solution is planned for forthcom-
ing releases of the tool and will, probably, use the constraint solver
Choco [20] version 3 as underlying engine.

The result of our work is a Java-based tool that we call Calpinator3.
It allows the user to input a building specification with an undefined
number of facades and throws a solution for each of the facades if
there is any. An intuitive view of the process is available by means
of a friendly graphical user interface. In this Section we present the
internal design of Calpinator, its implemented algorithm, the input
and output formats, and the current options for customization.

It is worth mentioning that currently the user is suppose to be an ar-
chitect, the building owner or a third-party contractor that is in charge
of mapping the building data into the appropriated input format. Nev-
ertheless, the goal, in a different stage of the project, is to automate
the renovation process in every possible way. Thus, one of the part-
ners in the CRIBA project is working on the automatic generation of
the input for the configurator. In essence, they will use drones with
pattern and image recognition to obtain most 4 of the facade related
information.

4.1 Design
Calpinator has a very basic and modular design. The main charac-
teristic of Calpinator is the implementation of a greedy algorithm for

3 The name Calpinator is the combination of the French word calpinage,
which means layout, and the word configurator. https://bitbucket.
org/anfelbar/calpinageprototype/wiki/Home

4 Some aspects can not be managed by drones. This is the case of the sup-
porting areas maximum load, which is data that is recorded by the building
constructors.

49

finding panels and facades configuration. Besides, we have enhanced
the tool with an intuitive graphical user interface and provide a stan-
dard storage format (JSON) to allow a transparent communication
with other software. Figure 3 presents the internal design of calpina-
tor at first glance.

Figure 3. Calpinator internal design.

Let us explain further the execution and interaction between ob-
jects in the figure. Initially, the user inputs its building profile speci-
fication as a JSON file (Step 1). As expected, if the input file is not
well formed, an exception is thrown (Step 2a). Alternatively, the sys-
tem creates a data base (Step 2b) that stores all objects of the build-
ing, i.e., facades, frames, etc. Once the parsing is done, it informs the
control it can enable the solving process (Step 3). The first task of the
Control (Step 4) is to send the Painter object to draw the facades and
its elements. Afterwards, (Step 5) the user may customize the solving
process as explained in Section 4.4. If no user-parameters are given,
Calpinator uses the default options (see Section 4.4). Next, when the
user asks for the solution (Step 6), the Control calls the Solver (Step
7) which executes the greedy-recursive algorithm presented in Sec-
tion 4.2. If a solution is found, the Control tells the Painter (Step 8),
by user’s demand, to draw one panel of the solution at a time. Finally,
the user may save the solution to another JSON file (Steps 9-10).

Take into account that each time the user opens a new building
profile, the data base with the profile objects is re-instantiated. This is
done in order to avoid conflicts between elements of different build-
ing profiles.

4.2 Algorithm internals
Using the elements description in Section 3, we have developed an
algorithm that solves the layout configuration in a greedy fashion
[2]. This means that the algorithm makes local decisions for posi-
tioning panels following a well-known approach in layout synthesis
field called constructive [12, 16]. Such decision making process is
opposite to previous works where a search space is explored using
backtracking search (see [6, 25] for instance). The implemented al-
gorithm exploits recursion, simulating backtracking, when position-
ing a panel is not possible due to constraint conflicts. In what follows,
we present the algorithm which an adaptation of the original one pre-
sented by the authors in [2]. The difference between this algorithm
and the original one resides in the non-implementation of the weight
constraint (postponed for further releases of the tool).

Step 1-: It begins by retrieving an available origin point and finding
an end point given the heuristic for panel orientation. At this
point, consistent with dimensions upper bounds, the panel
is as big as possible.

Step 2-: It proceeds by generating a new valid point by means of
solving conflicts between panels and frames. If dimensions
of the panel violate dimensions constraints then it fails at
positioning the panel.

Step 3-: It checks whether it is possible to install it using an hori-
zontal or vertical supporting areas.

Step 4-: To install the panel, either in an horizontal or a vertical sup-
porting area, it checks if the corners of the panel match sup-
porting areas. This ensures that the panel can be installed as
well as panels above it and at its right.

Step 5-: In the case it is not possible given the absence of support-
ing areas, it reduces the dimensions of the panel until the
corners are matched with supporting areas.

Step 6-: Finally, if the panel is well positioned, it proceeds by com-
puting new origin points and adding the next panel recur-
sively.

Step 7-: If the next panel can not be placed, dimensions for current
panel are reduced and another check is run. Otherwise we
have found a solution so add it to the solution list and return.

4.3 Profiles and solutions

In order to use Calpinator, the user must know how to input the infor-
mation and how to retrieve solutions. In this section we present the
formats used by the tool.

4.3.1 Input

At the current state of development, Calpinator tool receives as in-
put a building description that we call a profile. A building profile
is, in essence, a table with alphanumeric values describing each of
the facades in the building. In order to input this data into the tool,
we have adopted a well-known format called JSON which is a com-
position of entries in the form key:value. This decision is attractive
given that many formats (such as excel sheets and XML files) can be
mapped to JSON files and vice versa. For instance, a simple excel
sheet can be easily mapped into a JSON file using the open source
program Mr. Data Converter5. Support for other formats, such as ex-
cel sheets and XML files, will be provided in forthcoming versions
of the tool.

In order to avoid ambiguity, Calpinator is able to read only a par-
ticular set of values stored in a JSON file. The JSON input file for
Calpinator is described in what follows.

• type: This key represents the type of element described by the
entry. Allowed values are: ‘facade’ which informs that there is
a new facade in the building: ‘floor end’ which is an horizontal
supporting area: ‘cross wall’ which is a vertical supporting area:
‘crossing’ which describes the place in which an horizontal and
vertical supporting areas meet: ‘window’ a new window in the fa-
cade: ‘door’ a new door in the facade and: ‘out’ a zone out of con-
figuration. There can be any number of elements in the building
profile. Furthermore, elements do not follow any particular order
inside the JSON file.

5 The program is available online at http://shancarter.github.
io/mr-data-converter/

50

• id: Each element is associated with an unique alphanumeric value
that distinguishes the element from any other.

• ref: Each element, except from facades, belongs to another ele-
ment. The key ‘ref’ is an alphanumeric value referring to the ele-
ment that the current element belongs to.

• x: Origin coordinate in x-axis.
• z: Origin coordinate in z-axis.
• width: Width of the element (in meters).
• height: Height of the element (in meters).

It is worth mentioning that Calpinator makes a distinction of all
elements in a building profile. To do so, it uses the element identifier
and the reference the element belongs to. Simply stated, all elements
in a given facade must have different identifiers. However, elements
of different facades may have the same identifiers provided they have
different references. A given element will be part of the facade refer-
enced by the field ‘ref’ regardless the ‘id’ value of the element.

Given that most users are used to excel sheets, we present an in-
put example using an excel table and show its corresponding JSON
translation. Table 2 presents a building with one facade, one window,
one door, one zone out of configuration and three different support-
ing areas. Table 3 shows the corresponding translation into JSON.

Table 2. Building profile example using excel sheet.

type id ref x z width height
facade fac1 0 0 18,95 10,64
floor end 1 fac1 0,16 0 18,79 0,16
cross wall 1 fac1 0 0 0,16 10,64
crossing 1 fac1 0 0 0,16 0,16
window 1 fac1 0,92 1,11 1,4 1,3
door 1 fac1 9,69 0,16 0,8 2,25
out 1 fac1 5,88 0 2 2

Table 3. Building profile example using JSON format.

[
{’type’:’facade’, ’id’:fac1, ’ref’:’’, ’x’:0, ’z’:0,

’width’:18.95,’height’:10.64},
{’type’:’floor end’,’id’:1,’ref’:’fac1’,’x’:0.16,’z’:0,

’width’:18.79,’height’:0.16},
{’type’:’cross wall’,’id’:1,’ref’:’fac1’, ’x’:0, ’z’:0,

’width’:0.16,’height’:10.64},
{’type’:’crossing’,’id’:1,’ref’:’fac1’, ’x’:0, ’z’:0,

’width’:0.16,’height’:0.16},
{’type’:’window’,’id’:1,’ref’:’fac1’,’x’:0.92,’z’:1.11,

’width’:1.4,’height’:1.3},
{’type’:’door’,’id’:1,’ref’:’fac1’, ’x’:9.69, ’z’:0.16,

’width’:0.8,’height’:2.25},
{’type’:’out’,’id’:1, ’ref’:’fac1’, ’x’:5.88, ’z’:0,

’width’:2,’height’:2}
]

Recall that this is the first version of the Calpinator tool and thus
the input data is limited to that used by the greedy-recursive algo-
rithm. In consequence, important data as the y-coordinate (for a 3D
model), facade adjacency and facade inclination have been currently
left out of the configurator’s input. Forthcoming developments will
take into account these values but will have, necessarily, to be imple-
mented with other versions or algorithms of that presented in Section
4.2.

4.3.2 Output

The output of a configuration is another JSON file containing the
information of each one of the panels. Additionally, the output con-
tains all information concerning frames inside panels. In short, each

frame (e.g., window or door) covered by a panel has a relative posi-
tion w.r.t. the origin of the panel. This is necessary for the fabrication
of the panel. i.e., each panel must be fabricated with the correspond-
ing holes for frames. Thus, for each panel or frame the output specify:
type: Type of element(‘panel’ or ‘frame’), id: Panel or frame identi-
fier, ref: Facade id or panel id that the element belongs to, x: Origin
x-coordinate (relative to facade origin or the panel origin), z: Origin
z-coordinate (relative to facade origin or the panel origin), width:
Width of the element, height: Height of the element.

4.3.3 Facades with no solution

Calpinator tool allows for any kind of facade to be used as input.
Nonetheless, it is not the case that any facade has a valid configura-
tion given the constraints in our model or given the user preferences.
For instance, literal (a) in Figure 4 does no have supporting areas
in necessary places (no supporting areas at meter 15). Or perhaps,
a given facade has no possible configuration because there is not
enough distance between frames and supporting areas which is the
case of literal (b) in Figure 4. Lastly, a facade may not be configured
with Calpinator because an ill definition of zones out of configura-
tion, as presented in literal (c) of Figure 4: No supporting areas at the
top of the zone. As a workaround, the user should extend the zone
out of configuration until the next horizontal supporting area. In the
figure, the doted square shows the result of extending the zone.

Figure 4. Three facades with no solution.

4.4 Parameterization

In its current state, our configurator is customizable in two ways. On
the first hand, the user may choose an heuristic that defines a pref-
erence in the orientation of panels. On the other hand, the user may
change the lower and/or upper bound for panel dimensions. As a con-
sequence of such parameterization, the tool finds different solutions
for the same facade. Nevertheless, as the implemented algorithm is
deterministic, any given customization will result in the same config-
uration for a given input.

4.4.1 Orientation heuristic

When we talk about orientation we refer to relation between width
and height which have an impact on the internal structure of the
panel. In essence, if the width of the panel is bigger than its height,
we consider the panel as horizontally oriented. Conversely, if the

51

panel height is bigger than its width, we consider it as vertically ori-
ented. The user, for instance, may prefer to use horizontal panels in
its facade. Calpinator will try then to put each panel horizontally, i.e.,
wp ∈ [0.9, 13.5]∧hp ∈ [0.9, 3.5] (see the constraint Dimensions in
Section 3). If a given panel can not be placed in the preferred ori-
entation due to constraints conflicts, calpinator tries to place it using
the other orientation. At the model level we consider the heuristic as
a soft constraint, i.e., it can be violated without causing failure. This
is why we do not include soft constraints in the core of our model.

4.4.2 Dimensions range

Recall that given the environmental aspects of the facades, the dimen-
sions for panels may be reduced to a given interval. In addition, the
user may, optionally, further constrain the dimensions for all panels
in the facade according to its preferences. This is done by changing
the lower and upper bound of the panel dimensions. As expected, the
tool will respect the consistency between environmental constraints
and the user preference. For instance, if the environmental properties
constrain the width of a panel to be in the interval [0.9, 8] and the
user preferred upper bound is 9.5, the tool will set the upper bound
in 8. This is due to the monotonic properties of CSPs. For this cus-
tomization the tool presents three options:

• Manually: The user may change either the lower bound, the upper
bound or both values.

• Random: The system chooses a random value for the upper
bound. This constraints only one dimensions, the width for hori-
zontal orientation and the height for vertical orientation. Note that
the random strategy is applied for each panel in the facade. Thus,
it is likely that most of the panels have different dimensions. This
is interesting because, on the one hand, each time the user runs
the algorithm it will find a different configuration of panels. On
the other hand, it is more likely that the algorithm finds a valid
configuration because it will try new values until exhaustion.

• Square: Try square panels only, i.e., constraints the upper both of
vertical and horizontal orientation to be in the range of [0.9, 3.5]

Keep in mind that a given facade may have no configuration solu-
tion given its properties. Thus, constraining dimensions may reduce
the number of chances to find one feasible facade configuration.

5 USING CALPINATOR
In this section we present a brief description of how Calpinator works
in practice using some examples in real-world scenarios. As Calpina-
tor is implemented in Java, the user needs to count with an updated
version of the Java Virtual Machine. In addition, several dependen-
cies are necessary in order to run the application. The libraries6 used
by the tool are Oracle Commons libraries (beanutils, collections, io,
lang and logging) and Maven libraries (ezmorph and json-lib).

After launching the application, the user opens a JSON file spec-
ifying a building profile with any number of facades and elements
(see Section 4.3.1). Then, all facades inside the building profiles
are shown in the application, each facade in one tab. For instance,
a building with two facades will be visualized as presented in the
Initial State of Figure 5.

6 For simplicity, these libraries are included in the distribution of Calpina-
tor. Recall that these libraries are free software but each may have its
own License agreement. Calpinator is distributed under General Public
License version 3 and can be fount at https://bitbucket.org/
anfelbar/calpinageprototype/wiki/Home

(Initial State) (State 1) (State 2)

(State 3) (State 4) (State 5)

(State 6) (State 7) (State 8)

Figure 5. View of the configuration evolution.

Next, a customization may be done by changing the panels di-
mensions and choosing an heuristic as explained in Section 4.4. Af-
terwards, selecting the solve entry in the menu bar, the tool will
try to find one feasible configuration for the facade in the current
selected tab. For instance, Figure 5 presents a configuration solu-
tion for a facade with wfac equals 12.59 meters and height equals
10.907. The customization for this facade is horizontal panels with
maximum width of 13.5 meters for each panel. Each of the states in
the figure presents different views reached by making left click on
the canvas of Calpinator. Additionally, if the user wants to go back
and see a partial configuration he may do so by using the right click
on the canvas. Ultimately, the tool allows to save the configuration
solutions by choosing save in the menu bar. Note that only those
solved facades will be saved in the output. Given that this is work in
progress and that the greedy algorithm is a deterministic one, the tool
will only find one solution (if there exist) that satisfies the four condi-
tions presented in Section 2.2. In consequence, the potentially many
solutions for the facade layout are not found by Calpinator and thus
no heuristic or criteria for choosing the best one is necessary. On-
going investigation is looking into the possibility of finding different
solutions by combining the greedy approach and search trees.

5.1 Examples

In this section we present some examples with different panel orien-
tation and panel dimensions. The illustrated facades are part of the
working site La Pince in the commune Saint Paul-lès-Dax in the de-
partment of Landes, France. Each of the columns of Figure 6 presents
one facade of La Pince. The original facades, i.e., its frames, doors
and supporting areas, are presented in literals (1a) and (2a).

Literals (1b) and (1c) in Figure 6, for the facade on the left, show
configurations thrown by Calpinator using horizontal panels, with 3
meters as width upper bound for literal (1b) and 9.5 meters for literal
(1c). Next, in literal (1d) and (1e) we present the configurations of
the same facade using vertical orientation, with 6 meters as height
upper bound for literal (1d) and 13.5 meters for literal (1e).

Conversely, the right column of Figure 6 presents some configura-
tion configurations for the facade in literal (2a). The first two config-

52

(1a) (2a)

(1b) (2b)

(1c) (2c)

(1d) (2d)

(1e) (2e)

Figure 6. La Pince facade 1 (right) and facade 2 (left).

urations present an horizontal orientation of panels and width upper
bound of 8 and 13.5 meters for literals (2b) and (2c), respectively.
Finally, in literals (2d) and (2e) of Figure 6 we present the configu-
rations with vertical panels and height upper bound of 8 meters and
13.5 meters, respectively.

6 CONCLUDING REMARKS
Controlling energy consumption in buildings is one of the major
challenges of the 21th century. Reducing energy consumption in
buildings is now focused on the renovation of existing buildings. To
achieve renovation goals set by the French Government in 2009 and
2013, it is essential to assist massive renovation with technological

tools and industrial methods rather than artisanal ones.
We presented in this paper a tool dedicated to the definition of lay-

out configuration for building facades. The novelty of the tool lies on
the implementation of a greedy-recursive algorithm that takes into
account the many constraints inherited by facades in order to find
a feasible configuration of panels. This work falls under the project
CRIBA which aims to industrialize the renovation from the outside
of buildings of residential housing in order to achieve an energy per-
formance close to 25kWh/m2/year.

We have presented our first problem of layout configuration de-
scribing the specifics details related to the insulation of facades out-
side. In a second step, we have brefly described the knowledge model
supporting this configuration problem based on constraints. The set
of constraints was formalized by CSP in [2]. These formalize both
manufacturing constraints and transportation, but also constraints re-
lating to the geometry and structure of building and the internal struc-
ture of rectangular panels. The first version of the layout configura-
tion tool incorporating all of these constraints is then presented and
illustrated on an example from the pilot project site. The solutions
proposed by our algorithm are all consistent with the constraints of
the layout problem.

However, not the algorithm nor the tool take into account aesthet-
ics preferences of users (e.g. architects’ preferences). To avoid the
generation of non-compliant solutions, additional “business” knowl-
edge should be added to the (constraint) knowledge model. They are
mainly related to the building after aesthetic renovation, such as an
alignment constraint of connection joints between panels.

6.1 Future work

We acknowledge that our work is still in its infancy. Different efforts
in crucial aspects will improve results in the model, algorithms and
the tool. On this regard, the following objectives are strategic direc-
tions within the project.

a. Implement the constraint-based algorithm introduced in [3] is a
priority. The algorithm is conceived to throw all possible panel
configurations for the facade. This goal includes finding a con-
straint solver with appropriated filtering and search capabilities.

b. Improve greedy-algorithm with pre-processing and post-
processing capabilities. Intuitively, a human configuration takes
advantages of the facade dimensions and positions of frames
to find a solution. Thus, it is adequated to add new constraints
consequence of previous structural analysis of the facade.

c. Add more variables, hence constraints, to the model and improve
or create new algorithms. For instance, there exists a constraint
for fasteners and panel’s edges distances which is important for
the panel’s stability. Also, there are some constraints over incli-
nation of the facade, or the building itself, and panels positions.
These and other relations will increase both the detail and the
complexity of the problem, but are mandatory steps for the indus-
trialization of the renovation.

d. Implement in Calpinator tool the weight constraint. The weight
constraint to be implemented involves a new constraint variable,
faiload: Maximum weight load of fastener which is in the range
of [0, 500] kilograms. The constraint is is defined as follows.

Weight Constraint A given fastener in a supporting area is
defined by its coordinates and its maximum weight load.
Let ATPi be the panels attached to the fastener fai and let

53

computeWeight(p) be a function7 that returns the weight of
panel p. Constraint over panels weight is defined by

|ATPi|∑
j=1

computeWeight(ATPi[j]) ≤ faiload

This constraint is not implemented yet because we have not ex-
tracted and validated knowledge on how to distribute the panel’s
weight in the supporting areas. Up-to-now, we know that half of
the panel’s weight have an impact on a supporting area if there
is only one fastener interacting between the panel and the sup-
porting area. Otherwise all the panel’s weight will be supported
in area. Figure 7 shows some examples of this knowledge.

Figure 7. Distribution of weight in supporting areas.

e. Finally, a big challenge is to model and implement the concur-
rent renovation of multiple-adjacent facades. This particular sce-
nario introduce different problems. Consider, for instance, a ver-
tical supporting area at the right edge of a facade which is, in fact,
the first vertical supporting area in the next facade. A given con-
figuration has to take into account the weight in both facades over
the same supporting area. Another issue is the angle between two
adjacent facades and its implications for the width of panels.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the TBC Générateur d’Innovation
company, the Millet and SyBois companies and all partners in the
CRIBA project, for their contributions to the CSP model. Special
thanks to the referees for their comments and to Philippe Chantry
from École des Mines d’Albi for his contribution to the tool’s GUI
and some graphics in the paper.

REFERENCES
[1] Ö. Akin, B. Dave, and S. Pithavadian, ‘Heuristic generation of layouts

(hegel): based on a paradigm for problem structuring’, Environment and
Planning B: Planning and Design, 19(1), pp. 33 – 59, (1992).

[2] A. F. Barco, E. Vareilles, M. Aldanondo, and P. Gaborit, ‘A recur-
sive algorithm for building renovation in smart cities’, in 21st Interna-
tional Symposium on Methodologies for Intelligent Systems. To appear.
Springer-Verlag, (June 2014).

7 This function uses the next values to calculate the weight of a panel: dimen-
sions of the panel, insulation type of the panel, weight of the frames within
the panel (if any) and weight of any other component (e.g. solar modules).

[3] A. F. Barco, E. Vareilles, M. Aldanondo, P. Gaborit, and M. Falcon,
‘Constraint-based decision support system: Designing and manufactur-
ing building facades’, in Join Conference on Mechanical, Design En-
gineering and Advanced Manufacturing. To appear. Springer-Verlag,
(June 2014).

[4] Can A. Baykan and Mark S. Fox, ‘Artificial intelligence in engineering
design (volume i)’, chapter WRIGHT: A Constraint Based Spatial Lay-
out System, 395–432, Academic Press Professional, Inc., San Diego,
CA, USA, (1992).

[5] The Energy Conservation Center, Energy Conservation Handbook, The
Energy Conservation Center, Japan, 2011.

[6] P. Charman. Solving space planning problems using constraint technol-
ogy, 1993.

[7] U.S. Green Building Council, New Construction Reference Guide,
2013.

[8] M. Falcon and F. Fontanili, ‘Process modelling of industrialized ther-
mal renovation of apartment buildings’, eWork and eBusiness in Archi-
tecture, Engineering and Construction, 363–368, (2010).

[9] U. Flemming, ‘Knowledge representation and acquisition in the LOOS
system’, Building and Environment, 25(3), 209 – 219, (1990).

[10] U. Flemming, C.A. Baykan, R.F. Coyne, and M.S. Fox, ‘Hierarchi-
cal generate-and-test vs constraint-directed search’, in Artificial Intel-
ligence in Design ’92, eds., J.S. Gero and Fay Sudweeks, 817–838,
Springer Netherlands, (1992).

[11] U. Flemming and R. Woodbury, ‘Software environment to support early
phases in building design (seed): Overview’, Journal of Architectural
Engineering, 1(4), 147–152, (1995).

[12] M. M. D. Hassan, G. L. Hogg, and D. R. Smith, ‘Shape: A construc-
tion algorithm for area placement evaluation’, International Journal of
Production Research, 24(5), pp. 1283–1295, (1986).

[13] Y. Juan, P. Gao, and J. Wang, ‘A hybrid decision support system for sus-
tainable office building renovation and energy performance improve-
ment’, Energy and Buildings, 42(3), 290 – 297, (2010).

[14] U. Junker, Configuration., Chapter 24 of Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science
Inc., New York, NY, USA, 2006.

[15] K.J. Lee, H.W. Kim, J.K. Lee, and T.H. Kim, ‘Case-and constraint-
based project planning for apartment construction.’, AI Magazine,
19(1), pp. 13–24, (1998).

[16] R. S. Liggett, ‘Automated facilities layout: past, present and future’,
Automation in Construction, 9(2), pp. 197 – 215, (2000).

[17] B. Medjdoub and B. Yannou, ‘Separating topology and geometry in
space planning’, Computer-Aided Design, 32(1), 39 – 61, (2000).

[18] U. Montanari, ‘Networks of constraints: Fundamental properties and
applications to picture processing’, Information Sciences, 7(0), 95 –
132, (1974).

[19] L. Pérez-Lombard, J. Ortiz, and C. Pout, ‘A review on buildings en-
ergy consumption information’, Energy and Buildings, 40(3), 394 –
398, (2008).

[20] C. Prud’homme and JG. Fages, ‘An introduction to choco 3.0 an open
source java constraint programming library’, in CP Solvers: Modeling,
Applications, Integration, and Standardization. International work-
shop., Uppsala Sweden, (2013).

[21] D. Sabin and R. Weigel, ‘Product configuration frameworks-a survey’,
IEEE Intelligent Systems, 13(4), 42–49, (July 1998).

[22] S Shikder, A Price, and M Mourshed, ‘Interactive constraint-based
space layout planning’, W070-Special Track 18th CIB World Building
Congress May 2010 Salford, United Kingdom, 112, (2010).

[23] E. Vareilles, A. F. Barco, M. Falcon, M. Aldanondo, and P. Gaborit,
‘Configuration of high performance apartment buildings renovation: a
constraint based approach’, in Conference of Industrial Engineering
and Engineering Management (IEEM). IEEE., (2013).

[24] E. Vareilles, C. Thuesen, M. Falcon, and M. Aldanondo, ‘Interactive
configuration of high performance renovation of apartment buildings
by the use of csp’, in 15th International Configuration Workshop, pp.
pp. 29 – 34. CEUR Workshop Proceedings, (aug 2013).

[25] M. Zawidzki, K. Tateyama, and I. Nishikawa, ‘The constraints satis-
faction problem approach in the design of an architectural functional
layout’, Engineering Optimization, 43(9), pp. 943–966, (2011).

54

Towards More Flexible Configuration Systems:
Enabling Product Managers to Implement Configuration

Logic

Klaus Pilsl and Martin Enzelsberger and Patrick Ecker1

Abstract.1 Developing a configurator requires a deep
understanding of the configurable product. The configuration logic
must encompass the way product components may be combined
and customized, as well as how the integrity of a configuration can
be verified. When products evolve over time, the configurator must
be adapted accordingly. Product Managers are intimately familiar
with the features and capabilities of a product and drive its
development. By enabling them to specify the configuration logic
of a product, the time required to introduce new products or
respond to changes in existing ones can be reduced significantly. In
order to achieve this, an environment must be provided that
facilitates the implementation of configuration logic in an efficient
and intuitive manner. In this paper we try to identify the key
aspects of such an environment and present our experiences in
realizing a product configuration system based on our findings.

1 INTRODUCTION

Creating and maintaining a product configurator is usually a

complex task [1]. The configurator database report 2014 [2] said,

that 14% of the 900 configurators running 2013 disappeared 2014.

Keeping a configurator running and up to date is often more time

consuming than expected.

For reducing the creation and maintenance expenses for

configurators, it is the target to give product managers the tools to

create configurators themselves.

This article focuses on the very practical problems product

managers face in building product configurators. Further on we

identify key elements of an optimal configuration system

environment. This leads to new approaches in the way the data is

being entered, calculated and presented through the web. Notable

findings will be presented in the last section.

2 DRAWBACKS OF COMMON DATA
STRUCTURES USED IN
CONFIGURATION SYSTEMS

As described in Ecker [3] and Šormaz [4] there are different ways

of how the product data can be provided:

1. Relational form

1 IndiValue GmbH, Sarleinsbach, Austria, email:

klaus.pilsl@combeenation.com, martin.enzelsberger@combeenation.com,

patrick.ecker@combeenation.com

2. Code / macros / scripts

3. Object oriented form

4. Mixture

Due to the penetration of relational database management systems

[5] and the software solutions the configurators are built with (i.e.

ERP-Systems) most configurator system use that relational data

structure.

Each of the above listed data structure has its own problems and

drawbacks. The following paragraphs will highlight those.

2.1 Relational form

Relational data structures need to image the product data in tables.

These tables follow either a predefined [6] or a user generated

schema. It is obvious, that product managers have more flexibility

if they can define their own schema, which is necessary for certain

kinds of products [7][8], but it also demands a higher skill level

from the product managers, which most of them do not have.

But even in predefined schemata the problem remains, that the

data of the product need to be squeezed in this predefined form.

The challenge here is, to find a way to maximize functionality and

readability which are adversary.

Our experience has shown that the majority of the product

managers quickly lose sight on the complexity of the data

structures they develop.

Problems:

 The product managers are forced to establish an extra

documentation layer to keep the system manageable.

 The complexity especially for rule driven visualizations

outruns many product managers’ capabilities.

 The chronology the system has to calculate the rule needs

to be defined by the product manager. This is discovered

as a major weak point in terms of error and debugging

expenses.

2.2 Code / macros / scripts

Code allows the product managers to transcript even most complex

rules. The product manager does not have to follow a predefined

schema at all.

Problems:

 The period of vocational adjustment is very high.

55

mailto:klaus.pilsl@combeenation.com
mailto:martin.enzelsberger@combeenation.com
mailto:patrick.ecker@combeenation.com

 This informal freedom, however, quickly leads to a lack

of lucidity, which makes this form of product data

unpopular for product managers who are not software

developers.

 It demands a high skill level in software development

from the product manager

 Developing a configurator by coding is time consuming

and expensive

 Future adapting and enhancements are also expensive and

time consuming

2.3 Object oriented form

Just like with the relational form there is a schema, but here they

are called classes. The product manager can define an individual

classes for every product. The main difference to the relational

form is that the rules create dependencies, not the entities of the

database.

That gives the product manager the ability to freely transcript

the product rules into the system without the need of creating a

database structure or a schema fitting his requirements first.

Problems:

 The period of vocational adjustment is moderate.

 This form demands a very sophisticated user interface to

guide the user properly.

The advantages of this approach are:

 Because of the fact, that the class is individual for each

product, the system can create it, while the product

manager models the product.

 Classes can also be derived (inherited). So the product

manager can easily create variations of the product data.

3 KEY ASPECTS OF THE OPTIMAL
ENVIRONMENT

There are several key aspects which define an optimal product

configuration environment which support the product manager in

building the product configurator.

As a result of our experience and findings we created a

configurator management system which fulfills the requirements

described in this paper. This system is call Combeenation[9].

The Configurator Management System Combeenation from IndiValue GmbH.

Showing the user interface designer of a front door configurator.

3.1 Instant feedback

The process of creating product data is usually defined by the

following steps:

 Modeling the structure and rules

 Saving and compiling

 Testing

This iteration is continuously repeated, until the product data is

finished for publishing. The described process is called

progressive evaluation [10].

Progressive evaluation can be very time consuming. Especially

testing (opening a test configuration, navigating through the

configurator to the point of interest, collecting the test data, closing

the test configuration) is very expensive.

If a system would save the data instantly give instant feedback

even into every displayed data affected by the changes including an

always open test configurator, the time needed for modelling

product data would greatly be reduced.

Leitner et al. [11] state that testing and adapting the layout of

the configurator interface plays a major role in developing a

suitable user interface for configurators. Rapid prototyping

processes can be implemented with Combeenation, an innovative

configuration environment that supports application development

on a graphical level and enables immediate user testing.

3.2 Simple user interface structure

Concerning the user interfaces of the configurator management

system many user interfaces are IT oriented. That means the

interface is built on the necessities of the system, the data structure

and the underlying technology that runs the configurator system.

As described in Ko et. al. [12] most of the product managers are

experts in the field of their product, but aren’t very practiced in the

use of integrated development environments (IDEs) or other user

interfaces which are mainly designed for software developers.

The key aspect in this area is to create a user interface for a

configurator management system that focuses on the product itself

instead of the technical system. The product in its actual visual

appearance should always be visible to give instant feedback of the

changes made. The components, the properties, the rules and the

controls the product manager has to work with needs to be

presented in a continuous and integrated way, regardless how these

items are used for. This reduces the times needed to jump between

screens, menus or pages.

The user interface of a configurator plays a key role for both,

consumers and product managers. Leitner et al. [11] identified five

key principles for developing user interfaces for configurators

which are suitable for both types of users.

 Customize the customization process: Adaption of the

user interface depending on the type of customer.

 Provide starting points: Initial design from which the

customer can continue the configuration process.

 Support Incremental Refinement: Tradeoff analysis (i.e.

product comparison functionalities).

56

 Exploit prototypes to avoid surprises: Development and

Teach the customer: Increasing the user’s knowledge

about product properties.

Besides these key principles, the arrangement of user interface

elements of the configurator as well as the kind of process

navigation (i.e. handling, ease of use, guidance through the

configuration process) affects the customer’s satisfaction with the

configurator [13].

3.3 Separation of data and rules

In mass production industries it is common to integrate values

(sizes, angles, weights, etc.) into the structure data (i.e. CAD

systems). That is okay as long as the products do not change much

after they are released to market.

In mass customization [15], however, the product and with it its

values change continuously using product configurators. It is also

often needed to start configurations of a specific product via

different starting values (several presets for the same product).

These requirements can be met by separating the configurable

values from the rules and structure data. This way different sets of

values can be easily combined with different versions of rules and

structure data.

How difficult/easy it is to apply a small change in an established

structure with/without this separation will be defined by the

viscosity of the system [15], which describes the flexibility of the

system.

To supply such a flexible system it is important to make this

separation. That also has to be taken care of in the user interface, so

that the product manager knows, which parts (values vs. rules) of

the product are stored where.

3.4 Separation of product design and UI
design environments

We experienced, that product managers working with configurator

management tools, which do not separate the user interface

designer from the product designer, struggle with data duplication.

Some applications need to be displayed on different devices

(desktop, tablets, smartphones), or on different channels (websites,

apps, social media channels …), or some of them need to be

refurbished to meet new requirements.

In order to create several different user interfaces for the same

product, they have to also duplicate the product data. That leads to

more data, which greatly increases the workload of the product

manager, if this product data needs to be modified.

By separating the product design from the user interface design

environment the product manager can address these requirements.

4 IMPLEMENTATION OF A PRODUCT
CONFIGURATOR SYSTEM

To meet the needs described we developed a system for creating

product configurators. In order to make the use of the system for

the product managers as easy as possible, we have chosen to use

these standards and technologies:

 HTML5: For maximum acceptance and further

developments we have chosen to use HTML5 for

presentation and communication. So the system is

supported by every modern Browser without the need to

install plugins or downloaded software the product

manager would have to install first.

 Quick start: To allow new product managers an easy and

quick start into the system, we decided to implement the

solution as Software-as-a-Service (SaaS) and hosted it in

the Cloud (in this case Microsoft Azure [3])

 Another aspect of SaaS is, that the product manager does

not need to invest administration and maintenance work

to run the system.

4.1 Graphical product representation

Visuals are crucial and the biggest part of the mission. Most users

valuate product primarily on its visual appearance. This applies for

consumers just as for product designers. We put a lot of effort into

providing a flexible system for the visual representation of the

product.

Changes in the visual will be applied in real-time. Instead of

rasterized graphic formats we use scalable vector graphics (SVG)

for a better image quality. The visual editor is interactive and you

get what you see (WYSIWYG). After the configuration process is

ended by a user each scalable vector graphic can be converted to a

PNG or PDF file, making it easy for further processing or printing.

The usage of SVG also allows us the enable custom fonts,

gradients, patterns, mask, filters and many other effects. For more

information about SVG see [16].

4.2 Quick response times

Our system is built with low response times in mind, since

researches have shown that higher latency times have a negative

influence on the user acceptance, no matter if that is for consumers

or product managers [17].

We experienced that latency times need to stay below 250ms

otherwise most users interact with the same UI element again (e.g.

clicking a button).

This speed must be achieved with any representation of the

changes: simple values, results of complex chained calculations,

visuals, and so on.

4.3 Calculation on server and client

To achieve quick response times, it is necessary to split the

calculations on the server and client side. The product manager,

however, must not be confused. It always must be clear on where

the calculation will be done, because there are advantages and

disadvantages with either method:

The advantages of server side computations [18]:

 Big data necessary for a calculation does not have to be

transmitted to the client

 Product rules are knowhow of the company which needs

to be protected. Some product managers don’t want to

transmit this knowledge to the browser of the client. Our

system won’t transmit the company’s knowledge to the

57

client at any time. Just the results are transmitted and

presented to the client.

 Virtual machines, which are hosted in a datacenter, offers

far more computation power than a client device.

 Progress is always saved. If a user catches up later he

may continue where he left the configuration (also on

other devices).

 It would be possible that more users collaborate on the

same product.

Disadvantage of server side computing:

 The system needs to be designed to scale up on demand.

This can be done through distributed computing with

automatically adding virtual servers if needed. This is

especially difficult to implement if the machines work

with stateful sessions.

Advantages of client side computing:

 Quick responses are possible

 No network communication needed

Disadvantage of client side computing:

 Only simple calculation should be done, because

transmitting big raw data into the client browser can be

ineffective

To take a good mix of both advantages it is possible let the

system operates on server side calculation for the product design

rules and on client side calculation for the UI design rules.

This way calculations of the product itself are done on the

server and calculations concerning the user interface (i.e. jumping

to a certain page based in input data) are done on the client.

The separation of product design and UI design environments

(see 3.4) allows the system to intuitively distinguish between both

methods.

4.4 One solution

Most systems on the market cover one part of the mission. The

other parts are done by other software tools which needs to be

connected via interfaces.

A common thing for instance is, to create a product configurator

by using an ERP-software [19] and linking a CAD-software [20]

with it to create the visuals.

That leads to this constellations: Both systems hold their own

product data. Many parts of these 2 data sets need to be redundant

on both systems. And there is a third set of data: the interface itself

hold data, too.

Product managers struggle with the big amount of human

resources needed to keep these data sets up to date.

It is less maintenance works if all the modules needed for

product configuration are handled by one system [18] with one

data set.

All the modules of this single system run on this one set of data,

and any module of that system can directly and without conversion

access the data needed to fulfil its function. Combeenation

provides such a system.

5 CONCLUSION

We have highlighted the problems and drawbacks of current

systems, which product managers use if they want to build a

product configurator. Further on we emphasized key aspects which

are needed for such a solution, including a responsive and easy to

understand user interface and a strict separation of data and rules.

With these findings in mind we built the configurator

management system Combeenation [9], which addresses all those

problems and provide an all-in-one solution. This solution is

trimmed to rapidity, easy to use, flexible and is highly scalable.

First client projects are currently implemented with Combeenation

and all usability and performance issues in these projects are

monitored to provide further data for potential improvements.

REFERENCES

[1] T.A. Rogoll and F.T. Piller, Konfigurationssysteme für Mass

Customization und Variantenproduktion, ThinkConsult. 2003.

[2] Blazek, P., Partl, M., Streichsbier, C. (2014): Configurator Database

Report 2014, Vienna

[3] P. Ecker, Sicherheitsaspekte bei der Entwicklung einer Software-as-

a-Service-Lösung mit Windows Azure, University of Applied

Sciences Upper Austria, Hagenberg, 2012.

[4] D.n. Šormaz, Distributed Agent-Based Integrative Model For Mass

Customization Product Development, Ohio University, Department

of Industrial and Systems Engineering, 2010.

[5] C.M. Ricardo, Databases Illuminated, Jones & Bartlett Publ., 2011.

[6] ISS+ from MoveIT GmbH, Product Builder in Microsoft Dynamics

NAV

[7] Front Door Configurator from TOPIC GmbH, Austria

[8] Window Configurator from IFN Internorm AG, Austria

[9] www.combeenation.com

[10] T. Green and A. Blackwell, Cognitive Dimensions of Information

Artefacts: a tutorial, 1998.

[11] G. Leitner, A. Felfernig, P. Blazek, F. Reinfrank, G. Ninaus, User

Interfaces for Configuration Environments. In: A. Felfernig, L. Hotz,

C. Bagley, J. Tiihonen (eds.), Knowledge-based Configuration: From

research to business cases, 2014.

[12] J.R. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, S.

Wiedenbeck, The state of the art in end-user software engineering,

ACM Computing Surveys, 1-44, 2011.

[13] P. Blazek and K. Pilsl, The Impact of the Arrangement of User

Interface Elements on Customer Satisfaction in the Configuration

Process, In: T. D. Brunoe et al. (eds.), Proceedings of the 7th World

Conference on Masss Customization, Personalization, and Co-

Creation (MCPC 2014), Aalbor, Denmark, 2014.

[14] F.T. Piller, Mass Customization - Ein wettbewerbsstrategisches

Konzept im Informationszeitalter, Deutscher Universitäts-Verlag,

2006.

[15] T. Green and M. Petre, Usability Analysis of Visual Programming

Environments: A ‘Cognitive Dimensions’ Framework Journal of

Visual Languages & Computing, 131-174, 1996.

[16] J. Ferraiolo, Scalable Vector Graphics (SVG) 1.0 Specification,

http://www.w3.org/TR/2001/REC-SVG-20010904/REC-SVG-

20010904.pdf, September 2001

[17] F.H. Nah, A study on tolerable waiting time: how long are Web users

willing to wait? College of Business Administration, University of

Nebraska-Lincoln, 2004.

[18] M. Enzelsberger, Entwicklung von Hive, einer domänenspezifischen

Sprache zur Spezifikation von Produktlogik durch Nicht-

Programmierer, University of Applied Sciences Upper Austria,

Hagenberg, 2012.

[19] Internet Pricing and Configurator from SAP AG (SAP IPC)

[20] Inventor from Autodesk, SolidWorks from Dassault Systems, etc.

58

ReMax – A MaxSAT aided Product (Re-)Configurator
Rouven Walter and Wolfgang Küchlin1

Abstract. We introduce a product configurator with the ability of
optimal re-configuration built on MaxSAT as the background engine.
A product configurator supported by a SAT solver can provide an an-
swer at any time about which components are selectable and which
are not. But if a user wants to select a component which has already
been disabled, a purely SAT based configurator does not support a
guided re-configuration process. With MaxSAT we can compute the
minimal number of changes of component selections to enable the
desired component again. We implemented a product configurator
— called ReMax — using state-of-the-art MaxSAT algorithms. Be-
sides the demonstration of handmade examples, we also evaluate the
performance of our configurator on problem instances based on real
configuration data of the automotive industry.

1 Introduction

Using Propositional Logic encodings and SAT solving techniques to
answer the question whether a formula is satisfiable or not has a wide
range of applications [10]. The application of SAT solving for ver-
ification of automotive product documentation for inconsistencies,
e.g. within the bill-of-materials, has been pioneered by Küchlin and
Sinz [7].

In [16] we considered applications of MaxSAT in automotive con-
figuration. We mentioned the possible usage of re-configuration with
MaxSAT to make an invalid configuration valid again by keeping the
maximal number of the customer selections. Re-configuration is of
highly practical relevance [9]. For example, the after-sales business
in the automotive industry wants to extend, replace or remove com-
ponents with minimal effort while keeping the configuration valid.

In this paper, we extend this idea by considering product configu-
ration in general. We focus on product configuration based on fami-
lies of options, because this is the normal case when a user configures
a product. Within a family of options, the user must select exactly one
option out of a regular family or else may select at most one option
out of an optional family. With the focus on families, we can distin-
guish two solving approaches:

1. SAT Solving: With a SAT aided product configurator, we can val-
idate a configuration after each step of the configuration process.

2. MaxSAT Solving: With a MaxSAT aided product configurator,
we can compute an optimal solution for an invalid configuration,
such that a user has to make a minimal number of changes in the
current configuration to regain validity.

We identify different use cases. We describe them in detail and make
remarks about extensions or variants of them. We also show how a

1 Symbolic Computation Group, WSI Informatics, Universität Tübingen,
Germany, www-sr.informatik.uni-tuebingen.de, email:
{walterr,kuechlin}@informatik.uni-tuebingen.de

user process can look like using a MaxSAT aided product configura-
tor.

This paper is organized as follows. Section 2 introduces all rele-
vant mathematical definitions and notations needed for the later sec-
tions. In Section 3 we describe the basic concepts of SAT-based prod-
uct configuration. Section 4 shows use cases of SAT aided product
configuration. After that we describe use cases for MaxSAT aided
product configuration in detail in Section 5 and illustrate a possible
configuration process. Sections 6 and 7 describe the techniques we
used for our implementation and experimental results with bench-
marks based on industrial configuration instances. Section 8 de-
scribes related work and finally, Section 9 concludes this paper.

2 Preliminaries

We consider propositional formulas with the standard logical oper-
ators ¬,∧,∨,→,↔ over the set of Boolean variables X and with
the constants ⊥ and >, representing false and true, respectively. Let
vars(ϕ) be the set of variables of a formula ϕ. We call a formula
ϕ satisfiable, if there exists an assignment, a mapping from the set
of Boolean variables X to {0, 1}, under which the formula ϕ eval-
uates to 1. The evaluation procedure is assumed to be the standard
evaluation for propositional formulas. The Boolean values 0 and 1
are also referred to as false and true. If no such assignment exists,
we say the formula is unsatisfiable. The question whether a proposi-
tional formula is satisfiable or not is well-known as the satisfiability
(SAT) problem, which is NP-complete.

In most cases a SAT solver accepts only formulas in conjunctive
normal form (CNF). A formula in CNF is a conjunction of clauses,
where a clause is a disjunction of literals (variables or negated vari-
ables). Let var(l) be the variable of a literal l.

If a formula ϕ =
∧k

i=1

∨mi
j=1 li,j in CNF is unsatisfiable, we can

ask the question about the maximal number of clauses that can be
satisfied at the same time. This optimization variant of the SAT prob-
lem is called maximum satisfiability (MaxSAT) problem. The corre-
sponding question about the minimal number of unsatisfied clauses is
analogously called minimum unsatisfiabitlity (MinUNSAT) problem.
A solution to one of the two problems can be used to easily com-
pute the solution of the other one, because the following relationship
holds: k = MaxSAT(ϕ) + MinUNSAT(ϕ). It is worth noting that
a model of the optimum of the MaxSAT problem is also a model of
the optimum of the MinUNSAT problem and vice versa. In general,
there are several models for the optimum.

The MaxSAT problem can be extended in different ways: (i) we
can assign a non-negative integer weight to each clause (denoted with
(C,w) for a clause C and a weight w) and ask for the maximum
sum of weights of satisfied clauses, which is known as the Weighted
MaxSAT problem, (ii) we can split the clauses in hard and soft clauses
and ask for the maximum number of satisfied soft clauses while sat-

59

isfying all hard clauses, which is known as the Partial MaxSAT prob-
lem, and finally (iii) we can combine both specifications, which is
known as the Weighted Partial MaxSAT problem. The mentioned re-
lationship above between the MaxSAT and MinUNSAT problem also
holds for all MaxSAT variants.

Given a set of Boolean variables F = {M1, ...,Mn} and the re-
striction that exactly one variable has to be satisfied,

∑n
i=1 Mi = 1,

we call the set F a regular family and the elements members of
the family. For example, given a set of Boolean variables E =
{E1,E2,E3} representing the selectable engines of a car. An engine
is chosen if and only if the corresponding variable is set to true. A
car has exactly one engine, which makes the set E a family.

Given a family F = {M1, ...,Mn} with the restriction that
at most one variable has to be true, we call the set F an op-
tional family. For example, given a set of Boolean variables AC =
{AC1,AC2,AC3,AC4} representing the selectable air conditioners
of a car. An air conditioner is an optional feature in a car, but there
can be at most one air conditioner. This makes the set AC an optional
family.

The restrictions of a regular family or an optional family are spe-
cial cases of cardinality constraints, which restrict the number of
satisified variables of a set of Boolean variables to be {≤, <,=, >
,≥} a non-negative integer k. The restriction for a regular family
can be encoded in CNF with the following two formulas, while an
optional family can be encoded by using only the second formula:

1. At least one satisfied variable:
∨n

i=1 Mi

2. At most one satisfied variable:
∧n

i=1

∧n
j=i+1(¬Mi ∨ ¬Mj)

The given encodings for the two special cases = 1 and ≤ 1 are very
simple and require only O

(
n2
)

clauses without adding new auxil-
iary variables. There are also encodings using auxiliary variables in
exchange for a fewer number of clauses [14].

Since we consider only regular and optional family types, more
general cardinality constraints than the above-mentioned special
cases are not necessary and thus not considered in this paper. In the
context of automotive configuration, we usually deal with rules and
families of certain model series. For example, the number of seats
is fixed and therefore we do not need to handle a family of seats
where we would need a cardinality constraint to restrict the selection
of seats between two and four.

3 Product Configuration Concepts for
SAT-Configuration

In this section, we describe the basic concept of SAT-based product
configuration. We concentrate on rules in Propositional Logic, be-
cause in our main application context of automotive configuration
we always deal with this type of rules. Along with the set of rules
we consider families, which results in the following definition for
product configuration:

Definition 1. (Product Configuration Instance2) A product configu-
ration instance is a triple (R,F ,S):

• SetR = {ϕ1, . . . , ϕk}, where ϕi is a propositional formula.
• Set F = {F1, . . . ,Fm}, where Fi is a family.
• Mapping S :

⋃m
i=1 vars(Fi)→ {no, yes} × (N≥0 ∪ {∞}).

2 In the configuration literature a product configuration instance is a solution
for a configuration problem, whereas we refer to the term as a description
of a product configuration problem.

The following relation holds between rules and families:⋃
R∈R

vars(R) ⊆
⋃

F∈F
F.

The rules R describe the relationship among the family members
of the different families. They determine the possible valid combi-
nations. The set F contains all optional and regular families. The
mapping S represents the selections and deselections of the family
members in respect of a priority. For simplicity reasons we will only
use the term selections to refer to both selections and deselections.
There are three main cases for a member s:

1. S(s) = (c, 0) with c ∈ {no, yes}:
The user made no decision about the member (priority 0).

2. S(s) = (c, p) with c ∈ {no, yes} and p ∈ N≥1:
The user made a selection (priority greater zero).

3. S(s) = (c,∞) with c ∈ {no, yes}:
The user made an indispensable (hard) selection (infinity priority).

We abbreviate the mapping S for a member s as follows: For a posi-
tive selection we write a positive literal s and for a negative selection
we write the negative literal ¬s. We can then write a single tuple
(s, p) with p ∈ N≥0 ∪ {∞} and describe the mapping S as a set of
tuples. For simplicity reasons we leave each member s with priority
0 out of S in the given examples of this paper.

The set S of selections can be seen as a partial assignment
given by the user of the product configurator and can be divided
in two disjoint sets of positive and negative selections: Pos(S) :=
{(s, p) | (s, p) ∈ S and s is a positive literal} and Neg(S) :=
{(s, p) | (s, p) ∈ S and s is a negative literal}.

The priority of a selected member is only relevant when it comes
to the question of re-configuration. Then the priorities represent the
users preferences.

Example 1. We consider a product configuration instance
(R,F ,S), whereR and F describe components of a computer sys-
tem and dependencies among them. Table 1 shows the families and
Table 2 shows the rules. Let S = ∅, which means a user has not
made selections so far.

Family Type Members
M (Mainboard) regular M1,M2,M3,M4

V (Videocard) regular V1,V2,V3,V4,V5

C (CPU) regular C1,C2,C3,C4

P (Power Supply) regular P1,P2

CD (CD-Device) optional CD1,CD2,CD3

CR (Card-Reader) optional CR1,CR2

Table 1: Families F of the computer system

Rules
M1 → ((V1 ∨V2 ∨V4) ∧ (C1 ∨ C3) ∧ P1 ∧ ¬CD1)
M2 → ((V2 ∨V5) ∧ (C2 ∨ C3) ∧ (P1 ∨ P2) ∧ ¬CD1)
M3 → ((V3 ∨V4) ∧ (C2 ∨ C3 ∨ C4) ∧ P1)
M4 → ((V1 ∨V2) ∧ (C1 ∨ C4) ∧ P1 ∧ ¬CD2)

C1 → ((V2 ∨V3) ∧ P2)
C2 → (V4 ∨V5)
C3 → (V3 ∨V4)

Table 2: Configuration rulesR of the computer system

We will now define the criteria of a valid configuration:

60

Definition 2. (Valid Configuration) A product configuration instance
is called a valid configuration if the following formula is satisfiable:∧

R∈R

R ∧
∧
F∈F

CC(F) ∧
∧

(s,p)∈S,p6=0

s

Where CC(F) are the appropriate cardinality constraints of a family
(described in the preliminaries).

If a configuration instance is valid, the corresponding (partial)
variable assignment (also called model or configuration solution) is
of interest, because the variable assignment describes which mem-
bers are chosen and which are not.

A configuration solution is in general not complete, e.g. when the
selections S made by a user contain selections with priority 0.

After defining the basic product configuration concepts, we will
go into more detail in the next section by describing which use cases
of a SAT aided product configurator exist and finally by showing an
iterative process of SAT aided product configuration.

4 SAT aided Product Configuration
With SAT solving a product configurator can validate a user’s se-
lection and also compute the selectable members for the remaining
families. The overall plan is quite simple: Each selection of an op-
tion results in a true valuation of that option. Regular families result
in propagations of the value false to the remaining options, after one
family member has been selected. Given a partial valuation, it is easy
to compute by SAT solving which of the remaining options can still
be selected, and which must be set to true or false, respectively, as a
consequence of previous selections.

We describe these use cases in detail in the following subsections
and afterwards consolidate them in an iterative user process.

4.1 Use Case: Validation & completion of a
(partial) selection

Given a product configuration instance (R,F ,S), we can validate
the selections with a SAT solver by checking the formula of Def-
inition 2 for satisfiability. Algorithm 1 shows the procedure. Only
selections with a priority 6= 0 are taken into account for the valida-
tion.

Algorithm 1: Validation & completion of a (partial) selection
Input: (R,F ,S)
Output: (result,model), where result is true if the (partial)

selection is valid, otherwise false and model is a
complete variable assignment

return SAT

(∧
R∈R

CNF(R) ∧
∧

F∈F
CC(F) ∧

∧
(s,p)∈S,p6=0

s

)

Because most SAT solvers take CNF as input, we write CNF(R)
to indicate the transformation of an arbitrary rule to its CNF rep-
resentation. In practice we use a polynomial formula transforma-
tion [15, 12] to get an equisatisfiable formula to avoid the potentially
exponential blow-up that occurs when using the distributive law.

If the configuration instance is valid, the algorithm also returns
a complete variable assignment. This complete variable assignment
gives an example which selections have to be made to complete the
given configuration instance. In general, the given model is not uniqe
and there exist several models.

Example 2. We reconsider the computer system configuration Ex-
ample 1. In the following two selection examples, we do not use pri-
orities because we just want to check the validity of the selections.

1. S = {M1,V4} leads to a valid configuration, which can be com-
pleted to {M1,V4,C3,P1,CD3,CR2}.

2. S = {M1,C1} leads to an invalid configuration, because M1

requires P1 and C1 requires P2, but due to the family constraints,
both cannot be selected at the same time.

4.2 Use Case: Computation of selectable members

During the configuration process a user would like to know which
of the remaining family members are still selectable, i.e. which se-
lections lead to a valid configuration. We can compute the selectable
members by validating the (partial) selections with a SAT solver. Al-
gorithm 2 shows the procedure. We iteratively make one SAT call for
each member and check if selecting this member is valid.

Algorithm 2: Computation of selectable members
Input: (R,F ,S)
Output: Mapping V from

(⋃
F∈F F

)
to {no, yes} indicating

whether a member is selectable or not
V ← Initialize mapping
foreach m ∈

⋃
F∈F F do

if

SAT

(∧
R∈R

CNF(R) ∧
∧

F∈F
CC(F) ∧

∧
(s,p)∈S,p6=0

s ∧m

)
then

V ← (m, yes)
else

V ← (m, no)

return V

After the computation of selectable members, the SAT aided prod-
uct configurator can display the result to the user (i.e. by disabling all
non-selectable members). Then the user knows about the selectable
members.

Remarks:

1. In the special case S = ∅, in which no selection has been made by
the user so far, the computation of the selectable members implic-
itly brings up members which can never be part of a valid config-
uration (redundant members) and members which have to be part
of each valid configuration (forced members).

2. The performance of Algorithm 2 can be improved. If a family al-
ready contains a positively selected member, then we know that
all remaining members are not selectable anymore due to the fam-
ily constraints. We just have to check families with no positively
selected member.
The performance can be improved further. We use an incremental
and decremental SAT solver, which allows us to load all rules,
family constraints and selections first and check each member m
by adding and removing the unit clause m from the SAT solver.
We do not have to load the invariant constraints repeatedly for
each check.

Example 3. We compute the selectable members for our computer
system configuration (see Example 1):

61

1. S = ∅: Table 3 shows the remaining selectable members.

Family Selectable Memb. Non-Selectable Memb.
M (Mainboard) M1,M2,M3,M4

V (Videocard) V1,V2,V3,V4,V5

C (CPU) C2,C3,C4 C1

P (Power Supply) P1,P2

CD (CD-Device) CD1,CD2,CD3

CR (Card-Reader) CR1,CR2

Table 3: Selectable members for an empty selection

2. S = {M1,V4}: Table 4 shows the remaining selectable members.

Family Selectable Memb. Non-Selectable Memb.
C (CPU) C3 C1,C2,C4

P (Power Supply) P1 P2

CD (CD-Device) CD2,CD3 CD1

CR (Card-Reader) CR1,CR2

Table 4: Result of the selectable members computation

4.3 SAT aided configuration process

Figure 1 illustrates a possible SAT aided configuration process in-
volving both Use Cases 4.1 and 4.2. After the user has made one or
multiple selections, the SAT solver validates the current configura-
tion. This results in two cases:

1. Valid configuration: In the case of a valid configuration, the user
can continue selecting members. Additionally, to guide the user
we can compute the selectable members for the current configura-
tion. After new selections, the process iterates.

2. Invalid configuration: In the case of an invalid configuration, the
user has to take back one or more of the previously made selec-
tions. The user can validate each backtracking step again until a
valid configuration state is reached.

User

 1. Select SAT Solver 2. Encode

 3a. UNSAT

Verify &
Complete

Selectable
Members

3b. SAT

 4. Feedback

Configuration

Figure 1. SAT aided configuration process

Remark: If a given complete example model l1 ∧ . . . ∧ ln in the
SAT case does not satisfy the demands of the user, she can exclude
this model by adding the hard clause ¬l1 ∨ . . . ∨ ¬ln. Then an-
other complete model will be produced if one exists, otherwise we
encounter the UNSAT case.

In a SAT aided product configuration process described above, the
user is left to herself when it comes to the question which selec-
tions should be undone to regain a valid configuration. Perhaps the
user made a selection of a highly desired member, which she does
not want to take back. Now the user has to try different configu-
ration changes by herself and a guidance is missing which one to
choose. This is the point where MaxSAT aided product configura-
tion can help. We will describe re-configuration use cases in detail in
the following section.

5 MaxSAT aided Product (Re-)Configuration

In this section we describe how re-configuration can be done with
partial (weighted) MaxSAT as a background engine. We show two
basic use cases, describe possible variations of them and finally inte-
grate the re-configuration step into our iteractive user process.

5.1 Use Case: Re-configuration of the selections

During the configuration process we may reach a state where we have
an invalid configuration. The cause of the conflict can be one or both
of the following:

1. The selections S conflict with the rulesR.
2. The selections S conflict with the family constraints.

We have to re-configure either the rules or the selections to re-
gain validity. For now we consider all rules as hard limitations that
we can not soften, which is the common case. We will discuss re-
configuration of rules later in Section 5.4.

Considering the rules as a hard restrictions, the question arises,
how many of the selections can be kept maximally to reach a valid
configuration. Remember, a user may have done multiple selections
at once without validating the current configuration and without con-
sidering the selectable members. Therefore, removing only the last
selection does not lead to a valid configuration again in general. Also
the last selection could be of infinity priority, so it is no option for
the user to remove the last selection.

To answer the question we set the selections as soft unit clauses
and re-configure the selections with a partial MaxSAT solver. The
following encoding represents our requirements:

Hard :=
⋃

R∈R

CNF(R) ∪
⋃
F∈F

CC(F) ∪
⋃

(s,p)∈S,p=∞

{s}

Soft :=
⋃

(s,p)∈S,p6=0,p6=∞

{s}

Selections with priority∞ are also considered as indispensable and
will be encoded as hard unit clauses. Only dispensable selections will
be re-configured. Algorithm 3 shows the re-configuration procedure.

With the resulting model, we can give the user an example of a
complete selection which requires a minimal number of changes in
order to regain a valid configuration compared to the original selec-
tions. Or, the other way round, the model gives an example about
how to keep the maximal number of selections.

62

Algorithm 3: Re-Configuration of a (partial) selection
Input: (R,F ,S)
Output: (optimum,model), where optimum is the minimal

number of changes to regain a valid configuration and
model is a model for the optimum

Hard← ∅
Soft← ∅
foreach R ∈ R do

Hard← Hard ∪ CNF(R)

foreach F ∈ F do
Hard← Hard ∪ CC(F)

foreach (s, p) ∈ S ∧ p 6= 0 do
if p =∞ then

Hard← Hard ∪ {s}
else

Soft← Soft ∪ {s}

(optimum,model)← PartialMinUNSAT(Hard, Soft)
return (optimum,model)

Remark: As desribed before we use a transformation like Tseitin
or Plaisted-Greenbaum instead of CNF(R) in practice. Even though
the Tseitin and Plaisted-Greenbaum transformations are only equi-
satisfiable, this is not an issue for MaxSAT when converting for-
mulas into hard clauses. Since the Tseitin and Plaisted-Greenbaum
transformations share the same models on the original variables, one
can easily verify that the search space between the converted and the
original instance remains the same.

Extensions: The described use case can be extended as follows:

1. User constraints: A user can add additional constraints consid-
ered as hard clauses.
If, e.g., mainboard M1 is selected, the user definitely wants video
card V2 to be selected. But if mainboard M2 is selected, the user
definitely wants video card V5 to be selected. Then we add the
rules (M1 → V2) ∧ (M2 → V5) as constraints to the rulesR.

2. Focus on selection: For each family an option “choose one of the
selected” can be offered to add a constraint such that only positive
selected members within a family will be considered during the
re-configuration computation.
E.g. if a user focuses on mainboards M1,M3,M4, a hard clause
(M1 ∨M3 ∨M4) will be added to the rulesR.

Example 4. We continue our canonical Example 1: Table 5 shows
multiple selections of members within families and a result model
re-configuration. For all selections shown we choose priority 1, that
means no selection in this example is an indispensable one.

Family Focus Selections Results
M No (M1, 1), (M2, 1), (¬M3, 1) M4

V Yes (V1, 1), (V2, 1) V1

C No (C2, 1), (C3, 1) C4

P No P1

CD No (¬CD1,∞) CD3

CR No CR2

Table 5: Users selections and results

Result: We have to make 5 changes minimally to regain a valid
configuration. Without the focus set for the video cards family V , we

would have to make 4 changes minimally, e.g. by choosing M2, V5,
C2, P1, CD3, CR2.

5.2 Use Case: Re-Configuration of the selections
with priorities

In the previous use case we treated all soft clauses as equivalent. A
user may prefer one member over the other, which results in prior-
ization of the selected members. We can handle priorities with Par-
tial Weighted MaxSAT solving. The encoding for this use case is
basically the same as before, but now we bring priorities into play.
Algorithm 4 shows the complete computation procedure.

Algorithm 4: Re-Configuration of a (partial) selection with pri-
orities

Input: (R,F ,S)
Output: (optimum,model), where optimum is the minimal

number of priority points to change to regain a valid
configuration and model is a model for the optimum

Hard← ∅
Soft← ∅
foreach R ∈ R do

Hard← Hard ∪ CNF(R)

foreach F ∈ F do
Hard← Hard ∪ CC(F)

foreach (s, p) ∈ S ∧ p 6= 0 do
if p =∞ then

Hard← Hard ∪ {s}
else

Soft← Soft ∪ {(s, p)}

(optimum,model)←
PartialWeightedMinUNSAT(Hard, Soft)
return (optimum,model)

Extension: All extensions presented in Subsection 5 carry over to
this use case.

Example 5. We reconsider our re-configuration Example 4 and add
a priority of 2 for member V2. Table 6 shows our selections with the
corresponding weights in parentheses and the results.

Family Focus Selections Results
M No (M1, 1), (M2, 1), (¬M3, 1) M4

V Yes (V1, 1), (V2, 2) V2

C No (C2, 1), (C3, 1) C4

P No P1

CD No (¬CD1,∞) CD3

CR No CR2

Table 6: Users selections with priorities and results

Result: We have to change 5 priority points minimally to regain a
valid configuration. If we would still be choosing member V1 instead
of member V2 we would have to change 6 priority points, because of
the higher priority of V2.

5.3 A MaxSAT aided re-configuration process
We reconsider the process of Figure 1 in Step 3a. UNSAT where the
user gets the feedback that her current selections lead to an invalid

63

configuration. With a SAT solver only, the user has to try by herself
which selections have to be undone to regain a valid configuration.
But now, we can help the user at this point by using re-configuration
with MaxSAT. Figure 2 illustrates both Use Cases 5.1 and 5.2 em-
bedded in a product configuration process using MaxSAT.

User

1. Re-configurate
MaxSAT
Solver

 2. Encode

 3a. No solution

Optimum
+

Example
Model

3b. Solution

 4. Feedback

Invalid Configuration

Figure 2. MaxSAT aided configuration process

After the user gets the feedback UNSAT, she can start a re-
configuration of her current selections. This results in two cases:

1. No solution: If the indispensable selections (with priority∞) col-
lide with the rules or the family constraints, then there is no solu-
tion. In this case, the user has to weaken some of the indispensable
selections in order to make a re-configuration possible. The user
can use high priorities to weaken the desired members to ensure
they will be preferred over other selections.

2. Solution: If the indispensable selections can be satisfied, then
there exists a solution with an optimum for the prioritized selec-
tions. In this case, the user will be told about the optimum, i.e.
about the number of minimal changes to regain a valid configura-
tion. Also, an example model with the optimum will be given to
the user.

Remark: Similiar to the SAT aided configuration process the fol-
lowing holds: If the given complete example model l1 ∧ . . . ∧ ln in
the solution case does not satisfy the demands of the user, she can
exclude this model by adding the hard clause ¬l1 ∨ . . . ∨ ¬ln. Then
another model with the same optimum will be produced, if one ex-
ists. If there is no other model with the same optimum, the next best
optimum under the new conditions will be computed with an exam-
ple model.

In case there is no solution and a user just do not want to weaken
her selections with priority∞, we can consider weakening the rules.
In the next section, we will describe this possibility in detail.

5.4 Use Case: Re-configuration of rules

It is possible that the selections a user made have no solution when
trying to re-configure them. Assuming the rules themselves are not
contradictory, then the cause for no solution are too many selections
with priority∞. There are two cases which can occur or both at the
same time:

1. Violation of the family constraints: If a user selects more than
one member of a family with infinity priority, the family con-
straints are violated.

2. Violation of rules: If a user does not violate the family con-
straints, then the selected members with priority infinity are in
collision with the rules.

The first case can be handled by a product configurator by simply
not allowing to choose more than one member with priority infinity
or giving the user a warning message when doing so.

In the second case, if the user is not willing to soften her selections,
we can not re-configure the selections w.r.t. the rules. But when we
have a closer look at the rules, there may be some rules, which we
can soften, e.g. when a rule is not a physical or technical restric-
tion, but only exists for marketing or similiar purposes. A company
may be willing to violate or change some of these rules to build the
product. Knowing the miminum number of rule changes in order to
permit a desired vehicle configuration can help in managing the set
of marketing rules.

For this use case, we extend Definition 1 by an additional mapping
SR : R → (N≥0 ∪ {∞}), which represents the priorities of the
rules a user made. After softening some of the rules this way we can
re-configure the rules by maximizing the number of satisfied rules,
respectively violating only a minimal number of rules. Algorithm 5
shows this procedure more formally.

Algorithm 5: Re-Configuration of rules
Input: (R,F ,S)
Output: (optimum,model), where optimum is the minimal

number of changes to regain a valid configuration and
model is a model for the optimum

Hard← S
Soft← S
foreach F ∈ F do

Hard← Hard ∪ CC(F)

foreach R ∈ R ∧ SR(R) 6= 0 do
if p =∞ then

Hard← Hard ∪ CNF(R)
else

Hard← Hard ∪ CNF(bR → R)
Soft← Soft ∪ {bR}

foreach (s, p) ∈ S ∧ p 6= 0 do
if p =∞ then

Hard← Hard ∪ {s}
else

Soft← Soft ∪ {s}

(optimum,model)← PartialMinUNSAT(Hard, Soft)
return (optimum,model)

Since a rule R is an arbitrary formula, we can not just convert
R to its CNF and add the resulting clauses as soft clauses. In gen-
eral, some of these clauses will be satisfied and some not. Instead we
want to maximize the number of rules. In other words, we are facing
a group MaxSAT problem [2, 6], where each CNF(R) is a group of
clauses. The goal of group MaxSAT is to satisfy the maximum num-
ber of groups. A group is satisfied if all clauses within the group are
satisfied.

The group MaxSAT problem can be reduced to a partial MaxSAT
problem as follows: For each non-indispensable rule R we introduce
a new variable bR and add the hard clauses CNF(bR → R). Addi-

64

tionally we add a unit soft clause {bR} for each new variable. Each
satisfied variable bR implies the whole group of clauses in CNF(R)
to be satisfied. Therefore, satisfying a maximal number of the newly
introduced variables satisfies a maximal number of the corresponding
formulas. On the other hand, with the help of the newly introduced
variables, we can identify, from the resulting model, which formu-
las are satisfied and show this result to the user. For a more detailed
explanation, see [2, 6].

Extension: Of course, rules can also have different priorities and
we can extend this use case by assigning priorities to rules and selec-
tions to compute the maximal sum of priority points. This extension
can be realized analogously as described for Use Case 5.2, thus we
will not describe it explicitly.

6 Implementation techniques

We implemented the above SAT-based and MaxSAT-based use cases
in one product configurator — called ReMax — on top of our uni-
form logic framework, which we use for commercial applications
within the context of automotive configuration. Our SAT solver pro-
vides an incremental and decremental interface. We maintain two
versions (Java and .NET) and decided to implement ReMax using
.NET 4.0 with C# along with the WPF Framework for the GUI.
We implemented state-of-the-art partial (weighted) MaxSAT solvers
Fu&Malik, PM2 and WPM1 on top of our SAT solver [5, 1].

Figure 3. Screenshot of ReMax with open “Families” tab

Figure 3 shows an example screenshot from the ReMax GUI with
the “Families” tab opened.

7 Experimental Results

Table 7 show statistics about the real configuration data from two
different German car manufacturers, called M01 and M02, which we
used for our benchmarks. Car manufacturer M01 uses arbitrary for-
mulas as rules, whereas M02 uses clauses as rules.

Rules Families
Problem Quantity #Variables Quantity Avg. size
M01_01 2074 1772 34 34,294
M01_02 2430 2087 41 39,293
M01_03 1137 880 30 18,233
M02_01 11627 996 188 6,282
M02_02 4465 612 174 5,321

Table 7: Statistics about car manufacturer problems

For the following benchmarks we used two partial weighted
MaxSAT solvers, which are based on the following principles:

1. WPM1: An unsat core-guided approach with iterative SAT calls.
In each iteration a new blocking variable will be added to each
soft clause within the unsat core [1].

2. msu4: An unsat core-guided approach with iterative SAT calls us-
ing a reduced number of blocking variables [11].

We implemented WPM1 on top of our own SAT solver while msu4
is an external solver3.

Our environment for the benchmarks has the following hardware
and software settings. Processor: Intel Core i7-3520M, 2,90 GHz;
Main memory: 8 GB. WPM1, based on .NET 4.0, runs under Win-
dows 7 while msu4 runs under Ubuntu 12.04.

For Use Case 5.2 we created three categories as follows: Out of
30%, 50% and 70% of the families one member is selected randomly
with a random priority between 1 and 10. The rules have infinity
priority. In general, this leads to an invalid configuration because the
rules are violated. For each category we created 10 instances.

Table 8 shows the results for each category as average time in sec-
onds. The abbreviation “exc.” means that the time limit of 30 minutes
was exceeded. As we can see, msu4 performs very well in all cate-
gories with reasonable times from less than one second up to about
25 seconds. Our solver WPM1 also has reasonable times from about
2 seconds up to about 28 seconds, but exeeds the time limit in two
categories for the instance M02_01.

30% 50% 70%
Problem WPM1 msu4 WPM1 msu4 WPM1 msu4
M01_01 7,34 0,66 12,70 1,08 15,59 1,84
M01_02 8,59 0,74 16,48 1,32 27,44 2,96
M01_03 2,10 0,33 4,10 0,45 5,80 0,85
M02_01 20,99 2,16 exc. 5,91 exc. 24,45
M02_02 3,90 0,48 9,60 1,56 13,01 4,77

Table 8: Results of Use Case 5.2 scenario

For Use Case 5.4 we created three categories as follows: Out of
30%, 50% and 70% of the families one member is selected randomly
with infinity priority, which leads to an invalid configuration in gen-
eral because the rules are violated. But this time, we assign all rules
a priority of 1. For each category we created 10 instances.

Table 9 shows the results for each category as average time in sec-
onds. As we can see, both solvers can handle all instances in each
category in reasonable time. While WPM1 takes from about 3 sec-
onds up to about 72 seconds, the external solver msu4 takes from less
than one second up to about 9 seconds in the worst case.

3 http://logos.ucd.ie/web/doku.php?id=msuncore

65

30% 50% 70%
Problem WPM1 msu4 WPM1 msu4 WPM1 msu4
M01_01 9,35 2,39 16,19 3,93 20,63 4,35
M01_02 12,86 2,80 19,32 5,47 27,82 4,82
M01_03 2,54 0,78 5,71 1,45 6,76 1,74
M02_01 18,40 4,43 41,16 8,33 71,29 8,55
M02_02 5,13 0,49 9,88 1,04 16,32 1,48

Table 9: Results of Use Case 5.4 scenario

8 Related Work
Another approach for re-configuration uses answer set programming
(ASP) on a decidable fragment of first-order logic [4]. Hence the
used language is more expressive. With the growing performance of
SAT solvers in the last decade, SAT solving in turn has been used to
solve problem instances of ASP [8].

An algorithm for computing minimal diagnoses using a conflict
detection algorithm is introduced in [13]. A minimal subset ∆ of
constraints is called a diagnosis if the original constraints without ∆
are consistent. Although this approach is described for constraints
of first-order sentences, the technqiues can be generalized to a wide
range of other logics.

The indicated idea above is further improved in [3], where an al-
gorithm — called FastDiag — is introduced which computes a pre-
ferred minimal diagnosis while improving performance.

We did not consider works dealing with explanations like MUS
(Minimal Unsatisifable Subset) iteration. When using MUS iteration
for re-configuration, a user not only has to manually solve each con-
flict, but also will not necessarily solve the conflicts in an optimal
manner, i.e. only changing a minimal number of selections.

9 Conclusion
We described product configuration for propositional logic based rule
sets which are widely used in the automotive industry. We showed
applications of SAT solving by two use cases. Furthermore, we
showed use cases of how MaxSAT can be used for product configu-
ration when it comes to an invalid configuration. With MaxSAT we
are able to re-configure an invalid configuration in an optimal way,
i.e. we can compute the minimal number of necessary changes. We
embedded both scenarios in configuration processes showing how a
user can be guided during the configuration process.

We presented an implementation of a product configurator — Re-
Max — supporting all of the described use cases using state-of-the-
art SAT and MaxSAT solving techniques. From real automotive con-
figuration data from two different German premium car manufactur-
ers we created synthetic product configuration benchmarks for the
presented use cases. Besides our own MaxSAT solver we used the
external solver msu4 to measure and compare the performance. As
our experimental results show, we can re-configure those problem in-
stances in reasonable time. Since some problem instances could be
solved within a few seconds, our product configurator could be used
as an interactive tool in these cases. Other problem instances took
over a minute in the worst case, but is still more than adequate for
a responsive batch service. While this may seem long, we were told
that the manual configuration of an order without tool support by a
trial and error process may well take on the order of half an hour.

We do not claim that our approach is currently fit for use as
a consumer configurator. However, many business units of a car
manufacturer, such as engineering or after sales are in need of a

(re-)configurator that feeds directly off the engineering product doc-
umentation. E.g., many test prototypes must be built before start of
production with a varying set of options.

Expert users sometimes need some complete car configurations
which cover all valid combinations of a subset of options, e.g. for
testing purposes. With a SAT based (re-)configurator, an expert user
can start the configuration from the desired options instead of te-
diously following the given configuration process in a usual sales
configurator. At any time, the user can ask the configurator for “any
completion” or, using MaxSAT, for a “minimal completion” of the
partial configuration to a complete configuration.

REFERENCES
[1] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, ‘Solving

(weighted) partial MaxSAT through satisfiability testing’, in Theory
and Applications of Satisfiability Testing - SAT 2009, ed., Oliver Kull-
mann, volume 5584 of Lecture Notes in Computer Science, 427–440,
Springer Berlin Heidelberg, (2009).

[2] Josep Argelich and Felip Many, ‘Exact Max-SAT solvers for over-
constrained problems.’, Journal of Heuristics, 12(4–5), 375–392,
(September 2006).

[3] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 26(1), 53 – 62, (2012).

[4] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(re)configuration using answer set programming’, in IJCAI-11
Configuration Workshop Proceedings, eds., Kostyantyn Shcheko-
tykhin, Dietmar Jannach, and Markus Zanker, pp. 17–24, Barcelona,
Spain, (July 2011).

[5] Zhaohui Fu and Sharad Malik, ‘On solving the partial MAX-SAT prob-
lem’, in Theory and Applications of Satisfiability Testing—SAT 2006,
eds., Armin Biere and Carla P. Gomes, volume 4121 of Lecture Notes
in Computer Science, 252–265, Springer Berlin Heidelberg, (2006).

[6] Federico Heras, Antnio Morgado, and Joo Marques-Silva, ‘An empir-
ical study of encodings for group MaxSAT’, in Canadian Conference
on AI, eds., Leila Kosseim and Diana Inkpen, volume 7310 of Lecture
Notes in Computer Science, pp. 85–96. Springer, (2012).

[7] Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency assertions
for automotive product data management’, Journal of Automated Rea-
soning, 24(1–2), 145–163, (2000).

[8] Fangzhen Lin and Yuting Zhao, ‘ASSAT: Computing answer sets of a
logic program by SAT solvers.’, Artifical Intelligence, 157(1–2), 115–
137, (August 2004).

[9] Peter Manhart, ‘Reconfiguration – a problem in search of solutions’, in
IJCAI-05 Configuration Workshop Proceedings, eds., Dietmar Jannach
and Alexander Felfernig, pp. 64–67, Edinburgh, Scotland, (July 2005).

[10] João Marques-Silva, ‘Practical applications of boolean satisfiability’, in
Discrete Event Systems, 2008. WODES 2008. 9th International Work-
shop on, 74–80, IEEE, (2008).

[11] João Marques-Silva and Jordi Planes, ‘Algorithms for maximum satis-
fiability using unsatisfiable cores’, in Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’08, pp. 408–413. IEEE,
(2008).

[12] David A. Plaisted and Steven Greenbaum, ‘A structure-preserving
clause form translation’, Journal of Symbolic Computation, 2(3), 293–
304, (September 1986).

[13] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32(1), 57 – 95, (April 1987).

[14] Carsten Sinz, ‘Towards an optimal CNF encoding of boolean
cardinality constraints’, in Principles and Practice of Constraint
Programming—CP 2005, ed., Peter van Beek, Lecture Notes in Com-
puter Science, 827–831, Springer Berlin Heidelberg, (2005).

[15] G. S. Tseitin, ‘On the complexity of derivations in the propositional cal-
culus’, Studies in Constructive Mathematics and Mathematical Logic,
Part II, 115–125, (1968).

[16] Rouven Walter, Christoph Zengler, and Wolfgang Küchlin, ‘Applica-
tions of MaxSAT in automotive configuration’, in Proceedings of the
15th International Configuration Workshop, eds., Michel Aldanondo
and Andreas Falkner, pp. 21–28, Vienna, Austria, (August 2013).

66

Sales Configurator Information Systems Design Theory
Juha Tiihonen1 and Tomi Männistö2 and Alexander Felfernig3

Abstract.1 We look for means to advance the field of configuration
systems via research that is performed rigorously and methodolog-
ically with the aim of theory creation. Specifically, we explore the
use of Information Systems Design Theory (ISDT) as a framework
for defining a design science theory for sales configurator construc-
tion. ISDT is the primary output of Design Science research that
“shows the principles inherent in the design of an IS artifact that
accomplishes some end, based on knowledge of both IT and human
behavior”. The components of ISDT include purpose and scope,
constructs, principles of form and function, artifact mutability,
testable propositions, and justificatory knowledge. Generalizing
from the novel principles of our earlier work applied in the con-
struction of a sales configuration system called WeCoTin, we
present the Sales Configurator Information Systems Design Theory
SCISDT. SCISDT aims to support development of generic config-
urators (aka configuration toolkits) that enable the creation of
configurator instantiations for individual companies or product
lines to provide choice navigation capability.

1 Introduction

Underlying this paper is research that attempted to answer the
research question “How to construct a practical and computational-
ly well-founded sales configurator?” [1]. As a part of that research,
a generic sales configurator was constructed and evaluated [2]. The
configurator was named WeCoTin.

Numerous configurators have been developed both as research
prototypes and as commercial software. The landmark R1/XCON
was deployed at Digital Equipment Corporation in the early 1980s
[3]. Major research efforts have been devoted to configurators
applicable to solving general configuration tasks instead of a spe-
cific domain. These include COSSACK [4], PLAKON [5, 6] and
its successor KONWERK [7, 8], and COCOS [9]. In addition, a
large number of commercial general-purpose configurators exist.
Trilogy SalesBUILDER [10] was among the first. ILOG offered a
generic configuration engine to be used in other vendors’ systems
[11, 12]. Anderson [13] identified 30 vendors by their Web pages.
In addition, prominent enterprise resource planning systems and
CRM vendors have one or more configurators, e.g., SAP [14, 15]
and Oracle [16-19].

There exists both numerous individual configurator instantia-
tions and general-purpose configurators that enable the creation of
such instantiations. However, developing such artifacts is not a
scientific contribution as such and deeper principles are required.

1 Department of Computer Science and Engineering, Aalto University,

Espoo, Finland, email: juha.tiihonen@aalto.fi
2 Department of Computer Science, Helsinki University, Helsinki, Finland,

email: tomi.mannisto@cs.helsinki.fi
3 Institute for Software Technology, Graz University of Technology, Graz,

Austria email: alexander.felfernig@ist.tugraz.at

Many of the approaches to configurator construction could have
been conducted within a Design Science framework but have not
necessarily been presented as such. In addition, scientific
knowledge on different approaches and means for building config-
urators has been published in different fields of research. For ex-
ample, a procedure for implementing configurator instantiations
based on generic configurators has been proposed [20] and sound
principles and requirements on user interaction of configurators
have been presented [21, 22]. However, any theories from the
design perspective of generic configurator systems are still non-
existent. This view is supported by an identified need for formal
configuration models and inference tools for providing systematic
and comprehensive solutions to practitioners [22].

Thus, we see that it is possible to advance the field of configura-
tion systems via research that is performed rigorously and method-
ologically with the aim of theory creation. Specifically, we explore
the use of Information Systems Design Theory (ISDT) [23] as a
framework for defining a design science theory for configurator
construction. The underlying idea is that an ISDT can be applied as
a prescription when constructing similar artefacts. However, an
ISDT must be applied and interpreted in the context of application
in an intelligent manner. For example, all aspects of the prescrip-
tion may not apply in the context or other ISDTs may be applicable
as sub-theories.

We use the construction of the WeCoTin sales configurator as a
basis for the theory and as an example for illustrating the different
parts of the theory.

In the following, we first briefly summarize the existing
knowledge and principles behind the creation of configurator sys-
tems (Section 2). Thereafter in Section 3, we introduce the Design
Science research approach. Section 0 outlines the WeCoTin sales
configurator based on our earlier work [1, 2] and introduces ISDT
and presents our proposal for the Sales Configurator Information
Systems Design Theory (SCISDT). Section 5 concludes.

2 Principles of configurators

Configuration has been a fruitful topic for artificial intelligence
research, including problem-solving methods, their efficient im-
plementation, and, to a lesser extent, conceptualizations and lan-
guages for representing configuration knowledge. System instantia-
tions based on novel approaches have been described along with
their business context.

2.1 Configuration knowledge modeling

Configuration knowledge modeling offers ways to represent
configuration models, requirements, and configurations. Three
primary types of configuration modeling conceptualizations can be

67

identified. The first type is actually not a conceptualization. It is
based on the idea that configuration knowledge can be directly
encoded in the presentation mechanisms of the problem-solving
method. At least rule-based approaches, constraint satisfaction and
its dynamic extensions, several logic-based approaches, and differ-
ent formalisms of propose-and-revise methods have been applied;
for summaries, see Stumptner [24] Sabin and Weigel [25], and
Hubaux et al. [26]. Of these methods, constraint satisfaction is the
most widely applied. The second type is configuration-domain-
specific conceptualizations, which are independent of problem-
solving methods. These can be roughly classified as connection-
based [27], resource-based [28], structure-based [5], or function-
based [29] approaches. The conceptualizations have little in com-
mon, other than the central notion of a component.

The third and the most recent type of conceptualization includes
unified approaches that combine the ideas of the individual ap-
proaches into a covering ontology or conceptualization. An exam-
ple of such a conceptualization is [30]. Unified conceptualizations
may include component types and their compositional structure,
attributes and topological concepts such as ports for specifying
connectivity. Resources model the production and use of some
entity, such as power or expansion slots. The underlying idea is
that some component individuals produce a resource and other
component individuals use it. There must be enough production to
cover use. Functions represent the functionality that a product
individual provides to the customer, the product’s user, or the
environment. The idea of functions is to provide a non-technical
view to the functionality and features of the product to be config-
ured. These are then mapped to component individuals, attribute
values, and connections that implement the desired functionality
and features. Concepts discussed above are organized in a taxo-
nomical structure with supertypes, subtypes, and support for inher-
itance. Constraints provide a general mechanism for specifying the
interdependencies of entities. A constraint is a formal rule, logical
or mathematical or a mixture of these, specifying a condition that
must hold in a correct configuration. A similar synthesis as [30] is
based on a representation that employs Unified Modeling Lan-
guage (UML) [31] with specific stereotypes and Object Constraint
Language (OCL) [32], was proposed for modeling configuration
knowledge [33-37]. The stereotypes include the connection-
oriented and resource-oriented concepts along with a taxonomical
hierarchy of component types [33-35, 37].

2.2 Problem solving

Numerous problem-solving methods have been applied to configu-
ration tasks; several overviews of the topic exist. A recent over-
view of problem solving in configurators is provided in [38]. In
their taxonomy of types of problem-solving methods for design and
configuration, Wielinga and Schreiber [39] consider configuration
problem-solving methods a subtype of design methods. Configura-
tion problem-solving methods can be further divided into
knowledge-intensive methods and uniform methods. Uniform
methods apply the same reasoning methods to all problems, where-
as knowledge-intensive methods use (explicitly modeled)
knowledge to constrain and direct problem solving. Knowledge-
intensive methods (propose, critique, and modify; case based, and
hierarchical) are not considered further in this work: the authors
consider uniform methods to already be mature enough for sup-

porting the configuration tasks in sales configuration of many
products and services.

Uniform methods include constraint solving and logic-based
methods. Constraint satisfaction (CSP) and its extensions have
gained significant popularity [12, 40, 41]. Many authors, e.g.,
Desisto [42] and Haag, Junker & O’Sullivan [43]2, consider con-
straint-based methods ideal for solving configuration problems.
Constraint-based methods can be extended with preference pro-
gramming. Here, the idea is to express preferences and to provide
inference that supports finding solutions that maximally satisfy
preferences in such a way that more important preferences are
satisfied before less important ones [45].

Several logic-based methods have been applied to solve config-
uration problems successfully. These include direct programming
in Prolog or through a higher-level modeling layer [46]. Descrip-
tion logics [47] have been applied [48-50]. Constraint logic pro-
gramming has also been applied [51]. Furthermore, a method has
been proposed to translate configuration domain modeling con-
cepts into weight constraint rules [52, 53]. Following this idea, an
experimental system, OOASP, showed the feasibility of checking a
configuration, completing a configuration, and performing recon-
figuration [54].

Sometimes different problem-solving methods have been com-
bined, such as description logic with constraint satisfaction [11].

2.3 Other aspects

Principles of configurators include numerous less technical aspects.
An overview of configuration systems and current topics is given
in [55]. Here, we do not attempt to provide a full treatment of these
aspects, and we recognize that there is still significant room for
future research. Examples of identified configuration related re-
search challenges include personalized configuration, community-
based configuration (by a group of users), standardized configura-
tion knowledge representations, intelligent user interfaces for
configuration knowledge acquisition, intelligent testing and debug-
ging, and unobtrusive preference elicitation [56]. To our
knowledge, it is not common for generic configuration systems to
directly support providing the user support capabilities proposed to
avoid the product variety paradox [21]: focused navigation, flexible
navigation, easy comparison, benefit-cost communication, and
user-friendly product-space description capabilities. Many sales
configurators even struggle on aspects like consistency checking
[22]. However, the application of configurators in business and
corresponding effects (e.g., on organization, processes, business
performance), and configurator user interaction aspects are relevant
and gaining momentum [21, 22, 57-61]. A number of books guide
companies on information management required by mass customi-
zation, configurator classifications, and selecting a configurator
[20, 59, 62].

3 Design Science and theory

The Design Science approach creates and evaluates IT artifacts
intended to solve identified organizational problems [63]. The
approach is gaining popularity as a framework for research of
constructive nature.

2 An essay in [44] that is based on the Configuration Workshop of the

17th European Conference on Artificial Intelligence (ECAI 2006).

68

Figure 1. Information Systems Research Framework [63], redrawn

Hevner et al. [63] characterize the Design Science approach as
follows (see Figure 1). The environment defines the problem space
in which the phenomena of interest reside. In Information systems
(IS) research, the environment consists of people, organizations,
and technology. People in an organization perceive, assess, and
evaluate business needs in the environmental context of their or-
ganization. The business needs perceived by the researcher stem
from this context. Research relevance is assured by framing re-
search to address business needs.

Design Science research is conducted through building and
evaluation of artifacts designed to meet the identified business
need, the ultimate goal being utility. The artifacts can be constructs
(vocabulary and symbols), models (abstractions and representa-
tions), methods (algorithms and practices), or instantiations (im-
plemented or prototype systems). Evaluation of an artifact often
leads to refinements.
Research rigor stems from the appropriate use of the knowledge
base. The knowledge base is formed by foundations used in the
develop/build phase of research and methodologies used in the
justify/evaluate phase. The knowledge base consists of previous
contributions to IS research and related disciplines. Contributions
in Design Science are assessed by their application to the identified
business need in the appropriate environment.
Gregor [64] discussed the nature of theory in the discipline of
Information Systems and presented five theory types (see Table 1).
Of these, the most relevant to configuration research, and Design
Science in more general, is theory type V: design and action, which
“Says how to do something. The theory gives explicit prescriptions
(e.g., methods, techniques, principles of form and function) for
constructing an artifact.” (p. 620). Continuing the idea, Gregor and
Jones [23] posit that the primary output of Design Science is In-

formation Systems Design Theory (ISDT). ISDT “shows the prin-
ciples inherent in the design of an IS artifact that accomplishes
some end, based on knowledge of both IT and human behavior.
The ISDT allows the prescription of guidelines for further artifacts
of the same type.” Thus, contributions are not the artifacts them-
selves. Rather, contributions are more general prescriptions for
artifacts of the same type. According to Gregor [64], a recipe-like
prescription exists when theory enables an artifact to be construct-
ed by describing a method or structure for its construction. Gregor
and Jones [23] further refine the idea into elements of information
system theory. They have identified 8 components; see Table 2.

Table 1. A Taxonomy of Theory Types in Information Systems
Research [64](p. 620)

Theory
Type

Distinguishing Attributes

I.
Analysis

Says what is. The theory does not extend beyond analysis
and description. No causal relationships among phenomena
are specified and no predictions are made.

II.
Explana-
tion

Says what is, how, why, when, and where. The theory
provides explanations but does not aim to predict with any
precision. There are no testable propositions.

III
Prediction

Says what is and what will be. The theory provides predic-
tions and has testable propositions but does not have well-
developed justificatory causal explanations.

IV.
Explana-
tion and
prediction

Says what is, how, why, when, where, and what will be.
Provides predictions and has both testable propositions and
causal explanations.

V
Design and
action

Says how to do something. The theory gives explicit pre-
scriptions (e.g., methods, techniques, principles of form and
function) for constructing an artifact.

69

Table 2 Components of Information Systems Design Theory [23] and Sales Configurator Information Systems Design Theory (SCISDT).

Component ISDT component Description [23] SCISDT component description (as explicated by WeCoTin)

Core components
1) Purpose and scope ”What the system is for,” the set of meta-requirements

or goals that specifies the type of artifact to which the
theory applies and in conjunction also defines the
scope, or boundaries, of the theory.

A web-based sales configurator that fulfills a set of major require-
ments

2) Constructs Representations of the entities of interest in the theory. Concepts of configuration knowledge [30], product configuration
modeling language PCML, weight constraint rule language.

3) Principle of form and
function

The abstract “blueprint” or architecture that describes
an IS artifact, either product or method / intervention.

A high-level architecture and main functions of components was
presented along with main working principles [2, 65, 66]

4) Artifact mutability The changes in state of the artifact anticipated in the
theory, that is, what degree of artifact change is encom-
passed by the theory.

WeCoTin has several internal interfaces that enable replacement of
major components. It has also been designed to be flexible in
numerous aspects, such as different ways to determine prices, and
support for several languages.

5) Testable propositions Truth statements about the design theory. The main propositions were capability to model and configure real
products. Another proposition is adequate performance. These
aspects were tested with highly satisfactory results.

6)Justificatory knowledge The underlying knowledge or theory from the natural or
social or design sciences that gives a basis and explana-
tion for the design (kernel theories).

The modeling constructs of PCML were given clear formal seman-
tics by mapping them to the weight constraint rule language. This
mapping also enables sound and complete inference by the
Smodels system.

Additional components
7) Principles of implemen-
tation

A description of processes for implementing the theory
(either product or method) in specific contexts.

To be discussed in an extended version of this paper.

8) Expository instantiation A physical implementation of the artifact that can assist
in representing the theory both as an expository device
and for purposes of testing.

WeCoTin. To be discussed in an extended version of this paper.

4 WeCotin and Sales Configurator Infor-

mation Systems Design Theory

4.1 WeCoTin sales configurator

WeCoTin consists of two main components: a graphical modeling
environment Modeling Tool and a web-based application WeCoTin
Configuration Tool that supports the configuration task. WeCoTin
Configuration Tool enables users to configure products over the
web using a standard browser. The user interface for end users is
dynamically generated.

WeCoTin Modeling Tool is used for creating and editing con-
figuration models and additional information needed to generate a
user interface for end users.

Configuration models are expressed in Product Configuration
Modeling Language (PCML). PCML is object-oriented and declar-
ative. PCML is conceptually based on a function-oriented subset of
the configuration knowledge conceptualization of Soininen et al.
[30].
WeCoTin is computationally well founded because it was con-
structed based on the idea of translation of configuration
knowledge into weight constraint rules [52, 53]. In addition,
WeCoTin incorporates tools that allow graphical configuration
modeling, semi-automatic generation of user interfaces, and several
other aspects that ease long-term management.

WeCoTin is implemented using the Java 2 Platform and Java
programming language, except for the component Inference En-
gine, which consists of smodels and lparse programs of the
Smodels system that are implemented in C++, and user interface
components that employ some JavaScript to generate the HTML

and CSS-based web-based UI. XML is applied for some user inter-
face definitions, price lists, and calculation definitions.

4.2 Purpose and scope

Companies with a mass customization strategy need to provide
choice navigation capability [67]. Configurators are the primary
means to this end. In the scope of this work, generic configurators,
aka configuration toolkits, enable the creation of configurator
instantiations for individual companies or product lines. Configura-
tors can provide numerous other benefits. On the other hand, taking
a configurator into use, and operating and keeping it up to date,
also incurs significant costs; the total cost of configurator owner-
ship should be justifiable.

Although there are numerous individual configurator instantia-
tions and generic-purpose configurators that enable such instantia-
tions to be created, it was deemed that none met all the desirable
properties that we considered important. The requirements are
summarized in [2, 66] and they include: A (sales) configurator
should enable

 easy set-up without programming (excluding integra-
tions),

 fluent modeling of products by product experts based on
a well-founded high-level modeling conceptualization,

 easy maintenance of configuration knowledge.
In addition, we wanted to experiment with applying answer set
programming for problem solving combined with a higher-level
configuration modeling and consistent and complete inference.

70

4.3 Constructs

ISDT constructs represent the entities that are of interest in the
theory, and corresponding terms should be defined as clearly as
possible [23].

In the context of this work, it is somewhat challenging to draw
the line between the constructs and principles of form and function.
Relevant constructs include at least the conceptualization of con-
figuration knowledge, and object-oriented product configuration
modeling language (PCML). A sales configurator (WeCoTin) as a
whole and its major parts (Modeling Tool, Configuration Tool)
also belong to the relevant constructs.

Underlying these as subsystems are the inference engine
Smodels [68], its modeling language weight constraint rule lan-
guage (WCRL), and the method of translating configuration
knowledge to WCRL [53]. These underlying subsystems were
developed outside the scope of the WeCoTin construction.

It is noteworthy that the conceptualization was constructed in
such a way that that it retains the natural thinking patterns used in
companies to describe the variation of product families. Composi-
tional structure of products and configurable attributes are the main
mechanisms for capturing variability. Taxonomy with inheritance
generalizes the approach. The full conceptualization also supports
connection-oriented constructs and resources that have proven to
be useful in earlier work. All these can be given formal semantics
by mapping them to a formal language.

4.4 Principle of form and function

Principles of form and function “define the structure, organization,
and functioning of the design product or design method. The shape
of a design product is seen in the properties, functions, features, or
attributes that the product possesses when constructed” [23].

A configurator should have separate environments for the mod-
elers and end users—the concerns are separate. Nevertheless,
WeCoTin offers the modeler the capability to rapidly test the creat-
ed or edited configuration model.

WeCoTin was built on a layered architecture. We propose this
as a significant principle of configurator construction. This provid-
ed a clear separation of

 formal inference, which in this case is logic-based;
 high-level modeling constructs, which match how the

product experts think of configuration and yet can be
provided with formal semantics and automatically
mapped to a form suitable for inference; and

 the end-user interface, creation of which does not require
programming, but is, for example, generated utilizing the
high-level modeling language.

The main functions of a configurator include checking for the
consistency and completeness of a configuration, with the capabil-
ity to prevent from ordering a product based on an incomplete or
inconsistent configuration. Price is an integral element that must be
managed within the scope of a configuration task.

A hierarchy of modeling languages needs to match the layered
architecture. In the case of WeCoTin, the high-level configuration
modeling language (PCML) is aimed to be adequate for modelers.
This is compiled into a formal weight constraint rule language with
variables. Finally, WCRL is compiled into a simple basic con-
straint rule language without variables. This principle provides
theoretical grounding and allows for sound and complete inference.

We feel that future configurators should support recommenda-
tion functionality to support users with choice navigation. Case-
based recommendation approaches seem to be potentially viable
(e.g. [69]), but further research is required. Future sales configura-
tor ISDTs should address user interaction more thoroughly, e.g.
along the lines of [21, 22].

4.5 Artifact mutability

WeCoTin has several internal interfaces that enable replacement of
major components. For example, Smodels could be relatively
easily replaced with another inference engine based on answer set
programming. There are interfaces for configuration model manip-
ulation and manipulation of configurations. These make it easier to
create different modeling environments and user interfaces for end
users.

WeCoTin has also been designed to be flexible in numerous re-
spects, such as different ways to determine prices, and built-in
support for several end-user languages and tax models. Product
changes do not require programming changes in the user interface
for end users: a template gives the general visual appearance, and
WeCoTin generates the product-specific part (the modeler can
change the input control types and determine their sequencing).

However, architectural mutability and suitability for generic
tasks including dimensioning and connections could potentially be
higher. Generic dimensioning tasks would require integrating
additional inference or calculation mechanisms; user-specified
connections would require appropriate user interface support. In
some configuration tasks, a dynamically determined flow of the
configuration process based on previous answers would be neces-
sary. There are no specific provisions for these needs.

4.6 Testable propositions

The main propositions were capability to model and configure real
products and adequate performance in this context. These aspects
were tested with highly satisfactory results.

Created 26 sales configuration models were characterized in
terms of size and modeling constructs that were applied [70]. The
sales configuration view of 14 real-world products was modeled in
their entirety (some with extra demonstration features, one in 2
variants), and 8 partial products or concepts. These offerings came
from 10 organizations representing machine industry, healthcare,
telecommunications services, insurance services, maintenance
services, software configuration, and construction. The created
models were small, but representative of the Finnish industry.
Among larger models was ‘Broadband’ that had 66 feature types,
453 effective attributes (the sum of inherited and locally defined
attributes in concrete types) and 43 type level “generic” con-
straints. A semi-automatically generated Linux model had 626
feature types, 4369 effective attributes, and 2380 constraints.

WeCoTin had demonstrably adequate performance with the four
models that were systematically tested [71]. We obtained addition-
al performance evaluation by configuring all the characterized
products using the WeCoTin user interface (Linux only partially)
with a 2.4 GHz Intel Core 2 Duo laptop. All configuration models
had a feeling of instant response, except the “Broadband” model’s
response time was slightly more than 3 seconds before an attribute
with 436 possible values was specified, after which the response
time decreased to less than a second. Linux was too slow to be

71

usable. Also, the compilation time from PCML to WCRL and then
to BCRL was very satisfactory: a script that compiled all the char-
acterized configuration models, except Linux, and a few additional
test and sample models ran in 32 seconds. For the Linux model,
achieving sufficient performance would require at least the capabil-
ity to control when full inference (with finding a configuration) is
performed, and possibly other optimizations.

Using WCRL and Smodels to provide inference seems to be a
feasible proposition for building a sales configurator. The typical
approach in previous work has been based on constraint satisfac-
tion.

4.7 Justificatory knowledge

The configuration knowledge conceptualization is based on a
synthesis of previous work and additional experiences from inter-
views in ten companies and two case studies [72-75].

PCML allows the variability of products to be expressed on a
high level that product experts can understand. Furthermore, the
modeling constructs of PCML were given clear formal semantics
by being mapped to a weight constraint rule language. This map-
ping enables sound and complete inference by the Smodels system,
giving a foundation to the claim that, if a sales configurator is built
on such well-founded principles, a working sales configurator can
be implemented.

New methods of characterizing configuration models and meas-
uring configurator performance were developed [70, 71].

Numerous configuration models based on the variability of real
offerings were developed [2, 70]. These show how WeCoTin could
be applied in respective companies to provide choice navigation
support.

5 Conclusions

In this paper, we presented, to our knowledge, the first attempt to
construct an Information System Design in the context of configu-
ration systems. An ISDT for sales configurators (SCISDT) ful-
filling a set of major requirements was presented. SCISDT is based
on the design of WeCoTin, a sales configurator that supports mass
customization of complex products.

The main components of SCISDT are as follows. The purpose
and scope are to construct a web-based sales configurator that
fulfills a set of major requirements. The major constructs include a
high-level object-oriented configuration modeling language that is
based on a well-founded conceptualization that can be mapped to a
language with an inference engine to support the configuration
task. The principles of form and function include a high-level
layered architecture with a matching hierarchy of modeling lan-
guages. Artifact mutability includes several internal interfaces and
built-in flexibility with respect to numerous aspects that allow for
application of the constructed sales configurator more widely than
for one specific domain only. The main testable propositions are
capability to model and configure real products and adequate per-
formance. Justificatory knowledge includes providing the major
modeling constructs clear formal semantics by mapping them to a
language with appropriate formal semantics and support for the
required inference capabilities.

Although we specifically addressed sales configurators, the De-
sign Science approach can potentially be applied in other configu-
ration related contexts. The authors view that applying the Design

Science approach can help to ensure the rigor and relevance of
configuration research. Contributions can be the additions to the
knowledge base as suggested by Hevner et al. [63], or (ISDT)
theories.

Acknowledgements

We thank DIGILE, TEKES and related companies for financial
support; this work has been partially funded by DIGILE SHOK
program Need 4 Speed (N4S). We also express our gratitude to
companies that have offered us access in the context of earlier
research that this work is based on.

References

[1] J. Tiihonen, Support for Configuration of Physical Products and Ser-
vices. Manuscript Submitted to pre-examination for the degree of
Doctor of Science (Technology). Helsinki, Finland: Unigrafia, 2014.

[2] J. Tiihonen, M. Heiskala, A. Anderson and T. Soininen, "WeCoTin–A
practical logic-based sales configurator," AI Communications, vol. 26
(1), pp. 99-131, 2013.

[3] J. McDermott, "R1: A Rule-based configurer of computer sys-
tems," Artificial Intelligence, vol. 19 (1), pp. 39-88, 1982.

[4] F. Frayman and S. Mittal, "COSSACK: A constraint-based expert
system for configuration tasks," in Knowledge-Based Expert Systems
in Engineering: Planning and Design, D. Sriram and R. A. Adey, Eds.
Woburn, MA, USA: Computational Mechanics Publications, 1987,
pp. 143-166.

[5] R. Cunis, A. Günter, I. Syska, H. Peters and H. Bode, "PLAKON - an
approach to domain-independent construction," in Proceedings of the
Second International Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems (IEA/AIE - 89),
Tullahoma, TN, USA, 1989, pp. 866-874.

[6] R. Cunis, A. Günter and H. Strecker, Eds., The PLAKON-Book. Lon-
don, UK: Springer-Verlag, 1991.

[7] A. Günter and L. Hotz, "KONWERK - A domain independent configu-
ration tool," in Configuration Papers from the AAAI Workshop, 1999.
AAAI Technical Report WS-99-05, 1999, pp. 125-126.

[8] L. Hotz and A. Günter, "Konwerk," in Knowledge-Based Configuration
- from Research to Business Cases, 1st ed., A. Felfernig, L. Hotz, C.
Bagley and J. Tiihonen, Eds. Waltham, MA, USA: Morgan Kaufmann
Publishers, 2014, pp. 281-295.

[9] M. Stumptner, A. Haselböck and G. E. Friedrich, "COCOS - a tool for
constraint-based, dynamic configuration," in 10th IEEE Conference
on Artificial Intelligence for Applications (CAIA-94), San Antonio,
TX, USA, 1994, pp. 373-380.

[10] H. L. Hales, "Automating and integrating the sales function: how to
profit from complexity and customization," Enterprise Integration
Strategies, vol. 9 (11), pp. 1-9, 1992.

[11] U. Junker and D. Mailharro, "The logic of ILOG (J)configurator:
Combining constraint programming with a description logic," in 18th
International Joint Conference on Artificial Intelligence (IJCAI-03),
Configuration Workshop, Acapulco, Mexico, 2003, pp. 13-20.

[12] D. Mailharro, "A classification and constraint-based framework for
configuration," Artificial Intelligence for Engineering Design, Analy-
sis and Manufacturing (AI EDAM), vol. 12 (4), pp. 383-397, 1998.

[13] A. Anderson, Towards Tool-Supported Configuration of Services. M.
Sc. thesis, Espoo: Helsinki University of Technology, Department of
Computer Science and Engineering, 2005.

[14] A. Haag, "Sales configuration in business processes," IEEE Intelligent
Systems, vol. 13 (4), pp. 78-85, 1998.

[15] A. Haag, "“Dealing” with configurable products in the SAP business
suite," in 19th International Joint Conference on Artificial Intelligence
(IJCAI-05), Configuration Workshop, Edinburgh, Scotland, UK, 2005,
pp. 68-71.

[16] S. R. Damiani, T. Brand, M. Sawtelle and H. Shanzer, "Oracle config-
urator developer user’s guide, release 11i," 2001.

[17] M. Sawtelle, "Oracle Configurator: Fusion Configurator Engine Guide,
Release 12.1," 2010.

72

[18] Oracle, "Peoplesoft Enterprise Configurator - Oracle Data Sheet," vol.
2009, 2005.

[19] Oracle. Siebel product & catalog management - oracle data sheet.
2007. Available:
http://www.oracle.com/us/products/applications/siebel/036241.pdf.

[20] L. Hvam, N. H. Mortensen and J. Riis, Product Customization. New
York: Springer, 2008.

[21] A. Trentin, E. Perin and C. Forza, "Sales configurator capabilities to
avoid the product variety paradox: Construct development and valida-
tion," Comput. Ind., vol. 64 (4), pp. 436-447, 2013.

[22] E. K. Abbasi, A. Hubaux, M. Acher, Q. Boucher and P. Heymans,
"The anatomy of a sales configurator: An empirical study of 111 cas-
es," in Advanced Information Systems Engineering - 25th Internation-
al Conference, CAiSE 2013, Valencia, Spain, 2013, pp. 162-177.

[23] S. Gregor and D. Jones, "The anatomy of a design theory," Journal of
the Association for Information Systems, vol. 8 (5), pp. 312-335, 2007.

[24] M. Stumptner, "An overview of knowledge-based configuration," AI
Communications, vol. 10 (2), pp. 111-125, 1997.

[25] D. Sabin and R. Weigel, "Product configuration frameworks — a
survey," IEEE Intelligent Systems, vol. 13 (4), pp. 42-49, 1998.

[26] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö, K. Czar-
necki, P. Heymans, T. Nguyen and M. Zanker, "Unifying software and
product configuration: A research roadmap," in Proceedings of the
Workshop on Configuration at ECAI 2012 (ConfWS’12), Montpellier,
France, 2012, pp. 31-35.

[27] S. Mittal and F. Frayman, "Towards a generic model of configuration
tasks," in 11th International Joint Conference on Artificial Intelli-
gence (IJCAI-89), Detroit, Michigan, USA, 1989, pp. 1395-1401.

[28] M. Heinrich and E. W. Jüngst, "A resource-based paradigm for the
configuring of technical systems from modular components," in Sev-
enth IEEE Conference on Artificial Intelligence Applications (CAIA-
91), Miami Beach, FL, USA, 1991, pp. 257-264.

[29] O. Najmann and B. Stein, "A theoretical framework for configuration,"
in Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems: 5th International Conference (IEA/AIE-92), Pa-
derborn, Germany, 1992, pp. 441-450.

[30] T. Soininen, J. Tiihonen, T. Männistö and R. Sulonen, "Towards a
general ontology of configuration," AI EDAM, vol. 12 (4), pp. 357-
372, 1998.

[31] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Lan-
guage Reference Manual. Reading, MA, USA: Addison-Wesley,
1999.

[32] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA. Boston, MA, USA: Addison-Wesley,
2003.

[33] A. Felfernig, G. E. Friedrich and D. Jannach, "Generating product
configuration knowledge bases from precise domain extended UML
models," in 12 Th International Conference on Software Engineering
and Knowledge Engineering (SEKE 2000), Chicago, IL, USA, 2000,
pp. 284-293.

[34] A. Felfernig, G. E. Friedrich and D. Jannach, "UML as domain specif-
ic language for the construction of knowledge-based configuration
systems," International Journal of Software Engineering and
Knowledge Engineering, vol. 10 (4), pp. 449-469, 2000.

[35] A. Felfernig, G. Friedrich, D. Jannach and M. Zanker, "Configuration
knowledge representation using UML/OCL," in UML 2002 — the
Unified Modeling Language - Model Engineering, Concepts, and
Tools, 5th International Conference, Proceedings (LNCS), Dresden,
Germany, 2002, pp. 49-62.

[36] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner and M. Zanker,
"Configuration knowledge representations for Semantic Web applica-
tions," Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AI EDAM), vol. 17 (1), pp. 31-50, 2003.

[37] A. Felfernig, "Standardized configuration knowledge representations
as technological foundation for mass customization," Engineering
Management, IEEE Transactions On, vol. 54 (1), pp. 41-56, 2007.

[38] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley and K.
Wolter, "Configuration knowledge representation and reasoning," in
Knowledge-Based Configuration - from Research to Business Cases,
A. Felfernig, L. Hotz, C. Bagley and J. Tiihonen, Eds. Waltham, MA,
USA: Morgan Kaufmann, 2014, pp. 41-72.

[39] B. Wielinga and G. Schreiber, "Configuration-design problem solv-
ing," IEEE Expert, vol. 12 (2), pp. 49-56, 1997.

[40] S. Mittal and B. Falkenhainer, "Dynamic constraint satisfaction prob-
lems," in Proceedings of the Eighth National Conference on Artificial
Intelligence (AAAI-90), Boston, MA, USA, 1990, pp. 25-32.

[41] G. Fleischanderl, G. E. Friedrich, A. Haselböck, H. Schreiner and M.
Stumptner, "Configuring large systems using generative constraint sat-
isfaction," IEEE Intelligent Systems, vol. 13 (4), pp. 59-68, 1998.

[42] R. P. Desisto, "Constraints still key for product configurator deploy-
ments," Gartner, Inc., Stamford, CT, USA, Tech. Rep. T-22-9419, 1
June, 2004. 2004.

[43] A. Haag, U. Junker and B. O'Sullivan, "Explanation in product config-
uration," IEEE Intelligent Systems, vol. 22 (1), pp. 83-85, 2007.

[44] C. Sinz, A. Haag, N. Narodytska, T. Walsh, E. Gelle, M. Sabin, U.
Junker, B. O'Sullivan, R. Rabiser, D. Dhungana, P. Grunbacher, K.
Lehner, C. Federspiel and D. Naus, "Configuration," IEEE Intelligent
Systems, vol. 22 (1), pp. 78-90, 2007.

[45] U. Junker and D. Mailharro, "Preference programming: Advanced
problem solving for configuration," AI EDAM, vol. 17 (1), pp. 13-29,
2003.

[46] D. B. Searls and L. M. Norton, "Logic-based configuration with a
semantic network," The Journal of Logic Programming, vol. 8 (1-2),
pp. 53-73, 1990.

[47] F. Baader, "Description logics," in Reasoning Web. Semantic Technol-
ogies for Information Systems, S. Tessaris, E. Franconi, T. Eiter, C.
Gutierrez, S. Handschuh, M. Rousset and R. A. Schmidt, Eds. Berlin,
Heidelberg: Springer, 2009, pp. 1-39.

[48] J. R. Wright, E. S. Weixelbaum, G. T. Vesonder, K. E. Brown, S. R.
Palmer, J. I. Berman and H. H. Moore, "A knowledge-based configu-
rator that supports sales, engineering, and manufacturing at AT&T
network systems," AI Magazine, vol. 14 (3), pp. 69-80, 1993.

[49] J. R. Wright, D. L. McGuinness, C. H. Foster and G. T. Vesonder,
"Conceptual modeling using knowledge representation: Configurator
applications," in 14th International Joint Conference on Artificial In-
telligence (IJCAI-95), Workshop on Artificial Intelligence in Distrib-
uted Information Networks, Montreal, Quebec, Canada, 1995, .

[50] D. L. McGuinness and J. R. Wright, "An industrial-strength descrip-
tion logic-based configurator platform," IEEE Intelligent Systems,
vol. 13 (4), pp. 69-77, 1998.

[51] N. Sharma and R. Colomb, "Mechanising shared configuration and
diagnosis theories through constraint logic programming," The Jour-
nal of Logic Programming, vol. 37 (1-3), pp. 255-283, 1998.

[52] T. Soininen, An Approach to Knowledge Representation and Reason-
ing for Product Configuration Tasks. Ph.D. thesis, Espoo, Finland:
Helsinki University of Technology, Department of Computer Science
and Engineering, 2000.

[53] T. Soininen, I. Niemelä, J. Tiihonen and R. Sulonen, "Representing
configuration knowledge with weight constraint rules," in AAAI
Spring Symposium on Answer Set Programming: Towards Efficient
and Scalable Knowledge (AAAI Technical Report SS-01-01), Stanford
University, CA, USA, 2001, pp. 195-201.

[54] G. Schenner, A. Falkner, A. Ryabokon and G. E. Friedrich. Solving
object-oriented configuration scenarios with ASP. Presented at 15th
International Configuration Workshop. 2013, Available: http://ws-
config-2013.mines-albi.fr/CWS-2013-Proceedings-Color.pdf.

[55] A. Felfernig, L. Hotz, C. Bagley and J. Tiihonen, Knowledge-Based
Configuration: From Research to Business Cases. Waltham, MA,
USA: Morgan Kaufmann, 2014.

[56] A. Felfernig, L. Hotz, C. Bagley and J. Tiihonen, "Chapter 15 - con-
figuration-related research challenges," in Knowledge-Based Configu-
ration, A. Felfernig, L. Hotz, C. Bagley and J. Tiihonen, Eds. Boston:
Morgan Kaufmann, 2014, pp. 191-195.

[57] C. Forza and F. Salvador, "Managing for variety in the order acquisi-
tion and fulfilment process: The contribution of product configuration
systems," Int J Prod Econ, vol. 76 (1), pp. 87-98, 2002.

[58] C. Forza and F. Salvador, "Product configuration and inter-firm co-
ordination: an innovative solution from a small manufacturing enter-
prise," Comput. Ind., vol. 49 (1), pp. 37-46, 2002.

[59] T. Blecker, G. Friedrich, B. Kaluza, N. Abdelkafi and G. Kreutler,
Information and Management Systems for Product Customization.
Boston: Springer, 2005.

[60] M. Heiskala, K. Paloheimo and J. Tiihonen, "Mass customization with
configurable products and configurators: A review of benefits and
challenges," in Mass Customization Information Systems in Business,

73

1st ed., T. Blecker and G. Friedrich, Eds. Hershey, PA, USA & Lon-
don, UK: IGI Global, 2007, pp. 1-32.

[61] F. Salvador and C. Forza, "Principles for efficient and effective sales
configuration design," International Journal of Mass Customisation,
vol. 2 (1-2), pp. 114-127, 2007.

[62] C. Forza and F. Salvador, Product Information Management for Mass
Customization: Connecting Customer, Front-Office and Back-Office
for Fast and Efficient Customization. Hampshire, UK; New York,
NY, USA: Palgrave Macmillan, 2006.

[63] A. R. Hevner, S. T. March, J. Park and S. Ram, "Design science in
information systems research," MIS Quarterly, vol. 28 (1), pp. 75-
105, 2004.

[64] S. Gregor, "The nature of theory in information systems," MIS Quar-
terly, vol. 30 (3), pp. 611-642, 2006.

[65] A. Anderson and M. Pasanen, "WeCoTin Requirements and architec-
ture (unpublished)," 2003.

[66] J. Tiihonen, T. Soininen, I. Niemelä and R. Sulonen, "A practical tool
for mass-customising configurable products," in Proceedings of the
14th International Conference on Engineering Design, Stockholm,
Sweden, 2003, pp. CDROM, paper number 1290, 10 pp.

[67] F. Salvador, P. M. de Holan and F. T. Piller, "Cracking the code of
mass customization," MIT Sloan Management Review, vol. 50 (3), pp.
71-78, 2009.

[68] P. Simons, I. Niemelä and T. Soininen, "Extending and implementing
the stable model semantics," Artif. Intell., vol. 138 (1-2), pp. 181-
234, 2002.

[69] A. Felfernig, M. Mandl, J. Tiihonen and M. Schubert. Personalized
product configuration. Presented at Multikonferenz
Wirtschaftsinformatik 2010, 24. PuK-Workshop: Planung/Scheduling
Und Konfigurieren/Entwerfen. 2010, Available:
http://webdoc.sub.gwdg.de/univerlag/2010/mkwi/.

[70] J. Tiihonen, "Characterization of configuration knowledge bases," in
19th European Conference on Artificial Intelligence (ECAI-2010),
Workshop on Intelligent Engineering Techniques for Knowledge Ba-
ses (IKBET), Lissabon, Portugal, 2010, pp. 13-20.

[71] J. Tiihonen, T. Soininen, I. Niemelä and R. Sulonen, "Empirical testing
of a weight constraint rule based configurator," in 15th European
Conference on Artificial Intelligence (ECAI-2002), Configuration
Workshop, Lyon, France, 2002, pp. 17-22.

[72] J. Tiihonen, Computer-Assisted Elevator Configuration. M.Sc (Eng.)
thesis, Espoo: Helsinki University of Technology, Department of
Computer Science, 1994.

[73] T. Soininen and J. Tiihonen, "Sales configurator in Datex procuct data
management process," 1995.

[74] J. Tiihonen and T. Soininen, "Product configurators - information
system support for configurable products," Helsinki University of
Technology, Espoo, Tech. Rep. TKO-B 137, 1997.

[75] J. Tiihonen, National Product Configuration Survey — customer
Specific Adaptation in the Finnish Industry. Licentiate of technology
(Eng.) thesis, Espoo: Helsinki University of Technology, Department
of Computer Science, Laboratory of Information Processing Science,
1999.

74

Open Configuration: a New Approach to Product
Customization

Linda L. Zhang
1
 and Xiaoyu Chen

*1, 2
 and Andreas Falkner

3
 and Chengbin Chu

2

Abstract.1 State-of-the-art product configuration enables
companies to deliver customized products by selecting and
assembling predefined configuration elements based on known
relationships. This paper introduces an innovative concept, open
configuration, in order to assist companies in configuring products
that correspond exactly to what customers want. Superior to
product configuration, open configuration involves both predefined
configuration elements and new ones in configuring customized
products. As a first step, this study explains the concept of open
configuration and the basic principles. It also discusses in detail the
challenges involved in open configuration, such as conceptual
model development, open configuration optimization, and open
configuration knowledge representation.

1 INTRODUCTION

With the advancement of design and manufacturing technologies,

customers are no longer satisfied with standardized products. They

increasingly demand products that could satisfy their individual

needs. As a result, companies need to timely offer customized

products at affordable costs to survive [1]. With traditional design

approaches, companies cannot efficiently develop customized

products [2, 3]. Product configuration has been proposed to enable

companies to deliver customized products at low costs with short

delivery times. Product configuration has been widely applied to a

variety of industries, including computer, telecommunication

systems, transportation, industrial products, medical systems and

services [4]. It brings companies a number of advantages in

delivering required products. These advantages include managing

product variety [5], shortening delivery time [6], improving

product quality [7], simplifying order acquisition and fulfilment

activities [8], etc.

Product configuration has received much attention from

industrial and academia alike. Researchers have approached

product configuration from different perspectives and have

developed diverse methods, methodologies, approaches, and

algorithms to solve different configuration issues and problems. In

spite of the diversities among these solution tools, they are

developed based on a common assumption: the configuration

elements, such as components, modules, attributes, functions, and

their relationships are predefined. In relation to this assumption, the

products that can be configured are known in principle even if not

explicitly listable [2]. In this regard, product configuration cannot

deal with such products that demand new functions and

1 IESEG School of Management (LEM-CNRS), Lille-Paris, France
2 Ecole Centrale Paris (Laboratoire Genie Industriel), Paris, France
3 Siemens AG Österreich, Vienna, Austria

* Corresponding author: x.chen@ieseg.fr

components in addition to the predefined ones. In another word, it

cannot configure customized products in a true sense, i.e., to the

full extent that it covers all reasonable and unforeseen customer

requirements.

This study proposes an innovative concept ‘open configuration’

in order to help companies configure such products that can meet

both predefined and unforeseen customer requirements, that is, to

meet customer requirements as complete as possible without

making too much compromise (see Section 2). In this regard, in

configuring customized products, open configuration deals with

not only the addition of new configuration elements, such as

functions, components, but also the modification of existing

configuration elements, more specifically components. Existing

component modification is to accommodate the integration of new

components with the predefined ones.

In the rest of this paper, Section 2 uses a fridge configuration

example to illustrate the limitation of product configuration, i.e.,

the product configured lie in a known range in accordance with the

predefined components. Section 3 introduces the concept of open

configuration, its basic principles, and its process. Section 4 sheds

lights on the challenges involved in open configuration. We end the

paper in Section 5 by pointing out the ongoing research that we are

working on.

2 PRODUCT CONFIGURATION

As a special design activity, product configuration capitalizes on

design results, such as components, attributes and their

relationships [9, 10]. It entails such a process that based on given

customer requirements, suitable components are selected from the

set of predefined component types; the selected components are

evaluated and further arranged into products according to the

configuration constraints and rules.

Take fridge configuration as an example. Assume in this

example, there are 6 component types, including Refrigerator (R),

Freezer (F), Freezer drawer (Fd), Variable compartment (V), Base

(B), Outer casing (O). Each component type is defined by a set of

attributes (number, size, price) and each attribute can assume a

number of values. Table 1 summarizes these component types, the

attributes, and attribute values.

For example, : (1,2)RN represents the number of Refrigerators

in one fridge can be 1 or 2; : (small, medium, large, extra-large)RS

indicates the component Refrigerator has four different sizes:

small, medium, large, extra-large. Price mentioned hereinafter

states the price of the configured fridge.

75

Table 1. The attributes of the fridge components.

Component types Number Size Price

Refrigerator 1-2
small, medium,

large, extra-large
depending on size

Freezer 0-1
small, large,

extra-large
depending on size

Freezer drawer 0-2 small
P(Fd) (i.e., a fixed

price)

Variable

compartment
0-1 small

P(V) (i.e., a fixed

price)

Base 1 standard, wide depending on size

Outer casing 1 standard, wide depending on size

There are relationships among components, among attributes,

and between components and attributes. For examples,

{ large, 1} { small}R F FS N S means if one large sized

Refrigerator and one Freezer are selected, the size of the Freezer is

small; 0 { 2, medium}Fd R RN N S states that if the component

Freezer drawer is selected then two medium Refrigerators are

required. The other relationships include: { medium, 0}R FS N

2RN ; { small, small} 1F R VS S N ; { extra-large, 1}R FS N

{ extra-large}FS ; { extra-large} { wide, wide}F B OS S S ;

 { 1, 0} { 1, large, small}V F R R VN N N S S ; { small, 1}R FS N

{ large}FS .

There are four additional rules, including (1) () 3R V FN N N ,

meaning the total number of Refrigerator, Variable compartment,

and Freezer in one fridge should be no more than 3, (2)

2 0R V FN N N , indicating if two Refrigerators are selected,

the number of Freezer and Variable compartment is zero, (3)

0Fd FN N representing that Freezer cannot be selected together

with Freezer drawer, and (4) 0Fd VN N indicating that Freezer

drawer cannot be selected together with Variable compartment.

 According to the above pre-defined components and their

relationships, only 17 fridge configurations are available as

possible solutions. While Fig. 1 shows 8 fridge configurations due

to the space issue, different positions of components in Fig. 1.c,

Fig. 1.d, Fig. 1.e, Fig. 1.f, and Fig. 1.g lead to the other 9 fridge

configurations. All customized fridges to be configured based on

customer requirements fall into this range of configuration

solutions. (Note: Fridges from the left to the right are arranged

based on the increase of price.) Take fridge f in Fig. 1 as an

example to explain the components and their attributes in the

configuration solution. This fridge configuration is represented as

{ :1,small ; :1,small ; :1,small ; :1,standard ; :1,standard} fFC R V F B O .

It has one small Refrigerator on top, one small Variable

compartment in the middle, one small Freezer at the bottom, one

standard Base, and one standard Outer casing.

Refrigerator

Refrigerator Refrigerator

Freezer

Refrigerator

Variable
compartment

Freezer

Refrigerator

Freezer
RefrigeratorRefrigerator

Freezer

Refrigerator

Variable
compartment

a b c d e f g h

Refrigerator

Refrigerator

Freezer
drawer

Figure 1. Fridge configuration solutions

Suppose the requirements from a customer include a cheaper

fridge with a freezer and a large refrigerator. In accordance with

these requirements, the constraints can be modeled as

{ :1,large; 1;min }FR N P . The configured fridge must satisfy these

constraints and additional rules mentioned earlier while fulfilling

the customer requirements. In this regard, the constraints

{ :1,large}R and { 1}FN limit the possible choices to: { , }c eFC FC ,

i.e., the configuration solutions shown in Figs. 1.c and 1.e. The cost

constraint {min }P indicating the minimal price results in the final

solution to be { :1,large ; :1,small ; :1,standard ; :1,cFC R F B O

standard } .

As only predefined elements are involved, product

configuration fails to provide customized products in a true sense

or provides these products which can meet unforeseen customer

requirements. Take the above fridge configuration as an example.

Suppose that the requirements from another customer include any

of the following:

 a fridge consisting of only one medium refrigerator,

 a fridge consisting of 2 freezers,

 an outer casing with a special color, and

 a cheaper fridge to be moved easily and with at least one

freezer drawer.

In general, the first two requirements violate some predefined

constraints (although the first one requires a new - lower - type of

outer casing as a side-effect); the last two introduce new concepts.

In more detail, the third requirement requires a new attribute value

for the component outer casing. The last one is more complex. A

part of it, i.e., being cheaper and with one freezer drawer, can be

fulfilled by the predefined functions and components, while the

rest cannot be fulfilled by the available functions, thus calling for a

new function: ‘to be movable’. This new function, in turn, needs

new components, such as ‘wheels’, ‘brakes’, etc., which are

necessary for delivering this function. Because of the lack of these

components, product configuration can provide the customer with

one of the fridges shown in Fig. 1 without satisfying all his

requirements. The customer, thus, has to accept this fridge by

making compromise (e.g., accept a cheapest fridge with a freezer

drawer, which cannot be moved easily).

3 OPEN CONFIGURATION

In order to help companies configure customized products that

correspond exactly to what a customer requires, this paper puts

forward the concept of open configuration. The basic principle and

general process of open configuration are introduced below.

3.1 Open configuration concept

Built on top of product configuration, open configuration is to

configure customized products to meet customer requirements in a

true sense. Similar as product configuration, it utilizes design

results, selects components, and arranges the selected components

according to constraints and rules. In extension to product

configuration, it involves new component design, more specifically

the specification of functions and the selection of the

corresponding components. In addition, it deals with the

modification of the predefined components, which allows the

integration of new configuration elements.

3.2 Open configuration overview and process

Open configuration involves two types of knowledge: predefined

knowledge and dynamic knowledge. Predefined knowledge relates

76

to predefined functions, components, and relationships; dynamic

knowledge is associated with newly defined elements. In relation

to these customer requirements, which can be fulfilled by the

predefined functions (i.e., Type Ⅰ requirements in Fig. 2), the

corresponding components are selected, while for these

requirements, which cannot be fulfilled by the predefined functions

(i.e., Type Ⅱ requirements in the figure), new functions and

corresponding components are specified. The specification of these

new configuration elements contributes to the extension of the

dynamic knowledge. The relationships among the predefined

elements and the newly defined elements are specified as well.

This specification contributes to the interaction between the

predefined knowledge and the dynamic knowledge. By respecting

the constraints embedded in both the predefined and dynamic

knowledge, all necessary components are selected, modified, and

arranged into a customized product.

Customer

requirements

Type Ⅱ
requirements

Type Ⅰ
requirements

Predefined

knowledge

Dynamic

knowledge

Customized

products

Figure 2. Open configuration overview

In more detail, suppose that given customer requirements are

valid, complete and do not conflict with one another. These

requirements are evaluated first to determine whether or not they

can be fulfilled by the available configuration elements (i.e.,

functions and components). According to the evaluation results,

these requirements are classified into Type Ⅰ and Type Ⅱ

requirements. Fig. 3 summarizes this process.

Type Ⅰ
requirements

Customer

requirements

evaluation

All required

configuration elements

available

Type Ⅱ
requirements

Yes

No

Components

modification

Components

selection

Final components

selection

New

functions

specification

New

components

specification

Components

arrangement

Configured alternatives

evaluation

Customized

products

Figure 3. Open configuration process

For Type Ⅱ requirements, new functions are specified and all

possible components which can realize these functions are

subsequently determined. Also specified are the relationships

among functions, among components, and between functions and

components. This process contributes to the extension of the

dynamic knowledge. For Type Ⅰ requirements, all possible

components are selected from the predefined ones. In addition, to

be compatible with the newly introduced components, some

predefined components are modified by respecting constrains and

rules embedded in the predefined and dynamic knowledge. This

process reflects the interaction between the dynamic and

predefined knowledge. From the modified components, newly

introduced components, and selected predefined components,

suitable components are further selected for forming configuration

alternatives, which can meet customer requirements. In the

selection, consistency and compatibility evaluations might be

carried out. The selected components are arranged into product

configuration alternatives by following the product structure

described in the dynamic and predefined knowledge. These

configuration alternatives are further evaluated under certain

criteria. Based on the evaluation results, the optimal one or

multiple are suggested to customers.

4 CHALLENGES INVOLVED IN OPEN
CONFIGURATION

In accordance with the involvement of new configuration elements,

open configuration changes the basic assumptions and reasoning

processes of product configuration. In this regard, there are a

number of potential challenges involved in open configuration.

Due to the page limitation, this paper discusses five of these

challenges, including open configuration modeling, system design

and development, open configuration solving, open configuration

optimization, and open configuration knowledge representation.

4.1 Open configuration modeling

Open configuration modeling addresses the modeling of open

configuration knowledge and the reasoning mechanism for using

the configuration knowledge. The modeling of open configuration

knowledge is to model configuration elements, constraints, and

rules. It involves two kinds of knowledge: predefined knowledge

and dynamic knowledge. A product model and corresponding

functional architectures should be developed for defining and

further classifying the two different types of knowledge. The

modeling of the reasoning mechanism is to shed light on (1) how

new functions are specified, (2) how new components are

determined, and (3) how components are selected and arranged

into products.

In open configuration modeling, the components and functions

are characterized by their attributes, while the inter-connections

among the components are represented by connections and ports.

The modeling of the dynamic knowledge needs to take into

account the fact that new functions and components are added

based on the unforeseen customer requirements. Thus, its modeling

involves newly-added concepts, constraints, and rules. The

modeling of the predefined knowledge needs to consider these

predefined components, modified components, and their

relationships. The interaction between predefined knowledge and

dynamic knowledge needs to be modeled as well.

Open configuration modeling is more sophisticated than

configuration modeling due to the involvement of the dynamic

knowledge. In this regard, it is interesting to see whether or not

these techniques which are suitable for modeling product

configuration (e.g., Unified Modeling Language (UML), Alloy,

and generative Constraint Satisfaction Problem (CSP) [11]) can be

used to model open configuration. If these techniques are feasible,

how can they be modified or adjusted to model open configuration.

If these techniques are not feasible, new modeling formalisms and

constructs are to be developed.

4.2 System design and development

System design and development for open configuration refers to

the design and development of the computer information system to

implement open configuration, i.e., open configurators. Open

77

configurators consist of a customer input module which deals with

customer requirements evaluation, open configuration knowledge

bases, reasoning and evaluation mechanisms, optimization and

diagnosis mechanisms, and an output module which communicates

the configuration results with users. Different from product

configurators, open configurators involve two knowledge bases: a

knowledge base for the predefined knowledge and the other for the

dynamic knowledge. Joint reasoning mechanisms between the two

knowledge bases are required, which mainly associate with

interacting and integrating elements from the two knowledge bases.

For the dynamic knowledge base, new elements design modules

are needed to develop and maintain this knowledge base. The new

elements design modules include the module for specifying new

functions with respect to the requirements, the module for selecting

new components to fulfill new functions and the module for

interfacing with the predefined elements. For the predefined

knowledge base, different from product configurators, there need

to be a modification module for modify existing components to be

compatible with the new ones.

 In designing and developing open configurators, the techniques

should have the ability to model dynamic knowledge and the

interaction between dynamic knowledge and predefined

knowledge. In this regard, the available system design techniques

for product configuration may need to be modified in designing

and developing open configurators.

4.3 Open configuration knowledge
representation

Open configuration knowledge representation entails the effective

organization of open configuration knowledge, including the

predefined and dynamic knowledge. It logically uniforms the open

configuration knowledge and enables the utilization of the

knowledge in different configuration tasks.

The representation of open configuration knowledge includes

the representation of predefined components, relationships,

constraints and rules; the representation of newly-added

components, relationships, constraints and rules; and the

representation of the constraints and relationships between

predefined knowledge and newly added knowledge. From the

experience of the knowledge representation for product

configuration, open configuration should be considered as both a

classification problem (i.e., capturing the aspects of taxonomy and

topology) and a constraint satisfaction problem (i.e., capturing the

aspects of constraints and resource balancing). Considering the

dynamic and indeterminate feature of open configuration, it might

be potentially challenging to capture different aspects of open

configuration knowledge (e.g., taxonomy, topology, constraints,

and resource balancing) in one model. Further studies may try to

design new models (or sub models to be embedded in the available

tools) separately on each aspect and joint them together to

represent the knowledge.

4.4 Open configuration solving

Open configuration solving relates to the development and

application of algorithms or other tools to solve open configuration

problems. In solving an open configuration problem, the problem

needs to be modeled first with respect to customer requirements

and configuration rules. To solve this model, algorithms need to be

developed subsequently.

In the situation that customer requirements demand new

functions, the dynamic knowledge will be specified. The modeling

of open configuration problem will associate with the interaction

between the customer requirements and two types of knowledge

(predefined knowledge and dynamic knowledge). The main

difficulties are (1) the modeling of new function specification, (2)

the modeling of new components selection according to the

customer requirements, (3) and the modeling of the interaction

between new components and selected existing components. After

modeling an open configuration problem, suitable algorithms need

to be developed to solve the model. Because of the differences

between product configuration and open configuration and the

corresponding differences between a product configuration model

and an open configuration model, these algorithms, which are

suitable for product configuration solving, may not be applicable

for open configuration solving. Thus, new algorithms are to be

developed.

4.5 Open configuration optimization

During each step of open configuration, optimal functions,

components and structures need to be specified from a number of

alternatives. The dynamic feature of open configuration increases

the degree of difficulty in optimizing the new functions, new

components, and the interaction between new components and

predefined ones. In this regard, an explicit optimization mechanism

needs to be developed.

In accordance with the open configuration process discussed

earlier, the optimization mechanism should evaluate the

configuration elements at three levels. In the first level, the

mechanism should evaluate all the possible function alternatives

for fulfilling Type II requirements and decide on the optimal ones.

This optimization might be based on, e.g., the performance and

completeness of these function alternatives. In the second level, the

mechanism should evaluate all the possible component alternatives

for delivering the determined new functions and decide on the

optimal ones. This optimization may take into account, e.g., the

compatibility among the new components and the interaction with

predefined components. In the third level, the mechanism should

evaluate all the product configuration alternatives and decide on

the optimal ones. This optimization may consider, e.g., product

reliability.

5 CONCLUSION

In response to the limitation of product configuration, this paper

proposed open configuration to help design customer-driven

product in a true sense. It introduced the concept and process of

open configuration. It also discussed several challenges involved in

open configuration. Currently, we are working on the formulation

of open configuration. In the formulation, new components,

relationships among new components, and relationships between

new components and existing components will be defined and

modeled. This formulation is to rigorously define open

configuration and shed light on the reasoning behind open

configuration.

78

REFERENCES

[1] M. Heiskala, K.S. Paloheimo, and J. Tiihonen, Mass customization of

services: benefits and challenges of configurable services, 206-221,

Proceedings of Frontiers of e-Business Research, Tampere, Finland,

2005.

[2] D. Sabin and R. Weigel, ‘Product configuration frameworks-a

survey’, IEEE Intelligent Systems and Their Applications, 13(4), 42-

49, (1998).

[3] S. Schmitt and R. Bergmann, Applying case-based reasoning

technology for product selection and customization in electronic

commerce environments, 42-48, Proceedings of the 12th International

Bled Electronic Commerce Conference, Bled, Slovenia, 1999.

[4] A. Trentin, E. Perin, and C. Forza, ‘Product configurator impact on

product quality’, International Journal of Production Economics,

135(2), 850-859, (2012).

[5] C. Forza and F. Salvador, ‘Managing for variety in the order

acquisition and fulfilment process: the contribution of product

configuration systems’, International Journal of Production

Economics, 76(1), 87-98, (2002a).

[6] A. Haug, L. Hvam, and N.H. Mortensen, ‘The impact of product

configurators on lead times in engineering-oriented companies’,

Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 25(2), 197-206, (2011).

[7] A. Trentin, E. Perin, and C. Forza, ‘Overcoming the customization-

responsiveness squeeze by using product configurators: Beyond

anecdotal evidence’, Computers in Industry, 62(3), 260-268, (2011).

[8] C. Forza and F. Salvador, ‘Product configuration and inter-firm co-

ordination: an innovative solution from a small manufacturing

enterprise’, Computers in Industry, 49(1), 37-46, (2002b).

[9] S. Mittal and F. Frayman, Towards a generic model of configuration

tasks, 1395-1401, Proceedings of the 11th International Joint

Conference on Artificial Intelligence, Detroit, USA, 1989.

[10] D. Brown, ‘Defining configuration’, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 12(4), 301-305,

(1998).

[11] A. Falkner, A. Haselböck, G. Schenner, and H. Schreiner, ‘Modeling

and solving technical product configuration problems’, Artificial

Intelligence for Engineering Design, Analysis and Manufacturing,

25(2), 115-129, (2011).

79

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.5712&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.5712&rep=rep1&type=pdf

80

Towards an understanding of how the capabilities
deployed by a Web-based sales configurator can increase

the benefits of possessing a mass-customized product
Chiara Grosso1 and Alessio Trentin 1 and Cipriano Forza 1

Abstract. Manufacturers that adopt mass customization are paying
a growing attention to understanding not only how product
customization can be delivered efficiently, but also how this
strategy can create value for their customers. As reported in
literature, the customer-perceived value of a mass-customized
product also depends on the uniqueness and self-expressiveness
benefits that a customer may experience above and beyond the
traditionally considered utility of possessing a product that fits with
the customer’s functional and aesthetical needs. Increasing
customer-perceived value by delivering uniqueness and self-
expressiveness benefits can therefore be one key in augmenting the
customer’s willingness to pay for a mass-customized product. This
paper conceptually develops and empirically tests the hypotheses
that five sales-configurator capabilities previously defined in
literature increase uniqueness and self-expressiveness benefits of a
mass-customized product, in addition to the traditionally considered
utilitarian benefit. The hypothesized relationships have been tested
by analyzing self-customization experiences made by engineering
students using a set of real Web-based sales configurators of
different consumer goods. The analysis results show that easy
comparison, flexible navigation and focused navigation capabilities
have a positive impact on each of the considered benefits, while
user-friendly product space description and benefit-cost
communication capabilities have a positive impact on utilitarian
benefit only. The findings of this study complement previous
research results on what characteristics sales configurators should
have to increase consumer-perceived benefits of mass
customization.

1 Introduction

According to Pine [42, p.48] mass customization is defined as
‘‘developing, producing, marketing and delivering affordable goods
and services with enough variety and customization that nearly
everyone finds exactly what they want’’. Nowadays, mass-
customization strategies are more and more widespread and,
therefore, mass customizers may need to identify unexploited
sources of differentiation advantage [35].

1 Università di Padova, Dipartimento di Tecnica e Gestione dei sistemi
ind.li, Stradella S. Nicola 3, 36100 Vicenza, Italy. E-mail addresses:
chiara.grosso@unipd.it (C.Grosso), alessio.trentin@unipd.it (A.Trentin),
cipriano.forza@unipd.it (C.Forza).

In such a context, increasing the customer-perceived benefits of
possessing a mass-customized product can be one key in delivering
value that exceeds those of competing mass customizers’ offerings.
In particular, manufacturers that adopt mass customization need to
take into account the various benefits that consumers can experience
from mass-customization and the product value implication for
customers [51]. While early literature emphasized the utilitarian
benefit of possessing a product that better fit with one's idiosyncratic
functional and aesthetical needs, the recent literature has developed
more sophisticated knowledge of the value implications of mass
customization to individual customers [20]. In particular, it has
recently been acknowledged that providing other benefits in addition
to the utilitarian one is crucial in augmenting customers’ willingness
to pay.

Since mass customizers are increasingly adopting Web-based sales
configurators, it is important to understand what characteristics sales
configurators should have to increase customer-perceived benefits of
a mass-customized product. Previous research, however, has focused
on how sales configurators should be designed to increase the
traditionally considered utilitarian benefit of owning a self-
customized product. The present paper offers additional insights into
this issue by conceptually developing and empirically testing
hypotheses on how capabilities deployed by a Web-based sales
configurator can increase the benefits of possessing a mass-
customized product.

2 Background

2.1 Consumer perceived benefits of a mass-
 customized product

According to Holbrook [33], every consumption experience
involves an interaction between a subject and an object, where the
subject of interest is a consumer or customer and the object of
interest is some product or service. The value that the consumer
gains from the consumption experience is created through that
interaction [19]. Mass customization allows customers to ask for
new personalized products at a level of individualized tailoring that
was never possible before [1]. Addis and Holbrook [1] identified a
trend that the same authors called 'an explosion of subjectivity' [1,
p.2] to denote the emerging phenomenon of a more widespread role
that individual subjectivity plays in consumption, where the term
'subjectivity' refers to a personal psychological state - that is, one's

81

own way of feeling, thinking, or perceiving. According to these
authors, mass customization implicitly recognizes the growing
importance of consumer subjectivity.

Previous mass-customization studies on mass-customized
product value [26, 38, 26, 47] explain that, in addition to the well-
researched utilitarian benefit, there are two benefits, namely
uniqueness and self-expressiveness benefits, which a consumer
could derive from the possession of a mass-customized product.

Utilitarian benefit, according to Merle et al. [38], is a benefit
deriving from the closeness of fit between product objective
characteristics (i.e. aesthetical and functional characteristics) and
an individual’s preferences. In other terms, utilitarian benefit
derives from the fact that the self-customized product fulfills the
individual's idiosyncratic functional and aesthetical needs [1].

The uniqueness benefit of possessing a mass-customized
product is defined by Merle et al [38] as the benefit that a
consumer derives from the opportunity to assert his/her personal
uniqueness by using a customized product. Uniqueness benefit is
related to the symbolic meanings a person attributes to the objects
as a result of social construction [12, 52, 49, 53, 29, 39]. Brewer’s
[8] optimal distinctiveness theory posits that people have
opposing motives to fit in and stand out from social groups. A
series of studies by Brewer and colleagues e.g. [9] has shown that,
whereas threats to one’s inclusionary status produce increased
attempts to fit in and conform, threats to one’s individuality
produce attempts to demonstrate how different one is from the rest
of the group. Consequently, uniqueness benefit deriving from a
mass-customized product will meet the individual need to assert
his/her own personality by differentiating his/her self from others
[21, 50].

Self-expressiveness benefit is defined by Merle et al. 38] as the
benefit that originates from the opportunity to possess a product
that is a reflection of the consumer’s image. This is in accordance
with the self-consistency motive underlying self-concept, where
the term “self-consistency” denotes the tendency for an individual
to behave consistently with his/her view of his/her self [48]. Like
uniqueness, self-expressiveness benefit is related to the symbolic
meanings a person attributes to the objects as a result of social
construction [12, 52, 49, 53, 29, 39]. According to Belk [4],
possessions are often extension of the self. As Belk states, "people
seek, express, confirm, and ascertain a sense of being through
what they have" [4, p.146]. The above statement implicitly relates
identity with consumption. Consumers deliberately acquire things
and engage in consumption practices to achieve a pre-conceived
notion of their selves [46]. Thus, a mass-customized product will
accomplish an individual’s need for self-consistency through the
possession of a product that is a reflection of his/her self.

2.2 Sales configurators

Consistent with previous research [23, 32, 30], we define sales

configurators as knowledge-based software applications that
support a potential customer, or a sales-person interacting with the
customer, in completely and correctly specifying a product
solution within a company’s product offer.

The benefits and challenges of implementing and using a sales
configurator have been the focus of several researches e.g., [54,
23, 34, 57, 58, 30-31]. Relatively less studies, however, have
addressed the question of what characteristics a sales configurator
should have to increase such benefits and alleviate such

challenges. For example, Randall et al. [43] suggest that, depending
on a customer’s expertise with a product, a sales configurator
should present either product functions and product performance
characteristics or design parameters to the potential customer.
Another example is Chang et al.’s [13] recommendation that a sales
configurator provides potential customers with examples of
configured products, in order to offer them guidance about what to
do. More recently, Trentin et al. [56] have conceptualized five
sales-configurator capabilities based on previous research
recommendations. The definitions of such capabilities are reported
in Table 1.

Table 1. Sales-configurator capabilities [55]

Capability Definition
Benefit-cost
communication

The ability to effectively communicate the
consequences of the configuration choices
made by a potential customer both in terms of
what he/she would get and in terms of what
he/she would give

User-friendly
product-space
description

The ability to adapt the description of a
company’s product space to the individual
characteristics of a potential customer as well
as to the situational characteristics of his/her
using of a sales configurator

Easy
comparison

The ability to support sales-configurator users
in comparing product configurations they have
previously created

Flexible
navigation

The ability to let sales-configurator users
easily and quickly modify a product
configuration they have previously created or
are currently creating

Focused
navigation

The ability to quickly focus a potential
customer’s search on those solutions of a
company’s product space that are most
relevant to the customer himself/herself

Previous studies on sales configurators, however, have typically

regarded the mass-customized product only as a source of utilitarian
benefits related to the fulfillment of customers’ functional and
aesthetical needs. As discussed in the previous section, however, a
mass-customized product can also be a source of benefits resulting
from uniqueness and self-expressiveness. What characteristics a
sales configurator should have to increase uniqueness and self-
expressiveness benefits is therefore a question that deserves
additional research, as previously pointed out by Schreier [47] or
Franke and Schreier [28].

3 Research hypotheses

In addressing the question raised at the end of the previous

section, we draw upon the five sales-configurator capabilities
conceptualized by Trentin et al.[55, 56] based on prior research on
sales configurators. For each of these capabilities, we develop
hypotheses about its effects on both uniqueness benefit and self-
expressiveness benefit, as well as on the traditionally considered
utilitarian benefit of possessing a mass-customized product.

In the existing literature, a number of studies make the point that,
to increase the utilitarian benefit of possessing a mass-customized
product, a sales configurator should support a company’s potential
customer in learning about the options available within the
company’s solution space, in learning about how these options are

82

useful in fulfilling his/her preferences and in learning about his/her
preferences themselves e.g., [62, 43, 44] The more a sales
configurator supports such a learning process about one or more of
these aspects during the configuration task, the more a potential
customer is enabled to create, within a company’s product space,
the configuration that best fits with his/her objective needs [59,
25]. Prior research has focused on product fit with an individual’s
functional and aesthetical needs, which leads to the traditionally
considered utilitarian benefit. However, this also applies to
product fit with an individual’s need for asserting his/her own
personality by differentiating his/her self from others.
Consequently, such a learning process also augments the
uniqueness benefit that a customer will enjoy from the possession
of the configured product. Finally, this also applies to product fit
with an individual’s need for behaving consistently with his/her
view of his/her self by possessing a product that reflects his/her
self concept. Accordingly, such a learning process also increases
the self-expressiveness benefit that a customer will derive from the
product configuration eventually purchased.

Clearly, the more effective the learning process enabled by a
sales configurator, the greater the utilitarian benefit, the
uniqueness benefit and the self-expressiveness benefit of
possessing the configured product. While Franke and Hader [25,
p.16] find that the learning effects of single self-customization
experiences lasting only a few minutes with sales configurators
“that were not even specifically designed for learning purposes are
remarkable”, we argue that such learning effects are greater if a
sales configurator deploys a higher level of each of the capabilities
conceptualized by Trentin et al. [55, 56] based on prior research
on sales configurators.

A sales configurator with a higher level of flexible navigation
capability allows a potential customer to go through a greater
number of complete trial-and-error cycles to evaluate the effects of
his/her prior choices and to improve upon them. This is because
this kind of sales configurator allows its users to change, at any
step of the configuration process, the choice they made at any
previous stage without having to begin the process all over again
and allows them to immediately recover a previous configuration
in case they decide to reject the newly-created one [56]. By
conducting more trial-and-error tests, the potential customer learns
more about the available choice options and the value he/she
would derive from them [59, 60].

A sales configurator with a higher level of user-friendly product
space description capability promotes a potential customer’s
learning process by increasing the congruence between the
challenges of the configuration task and the abilities of the
configurator user. This is because a sales configurator with this
capability presents product space information to potential
customers using the most suitable format (e.g., text, image,
animation,…) depending on their skill levels and cognitive styles
and offers different types of choices (e.g., among product
functions and performance levels rather than among product
components, or vice versa) according to the users’ prior
knowledge about the product [56]. In addition, such a sales
configurator allows its users to decide for themselves how many
feedback details they want to tackle, without forcing them to
process information content they do not value [56]. By tailoring
the sales configuration experience to each individual user’s
characteristics on both the content and presentation levels [36], a
sales configurator with higher user-friendly product space

description reduces the risk that the configuration task is too
difficult and, therefore, the user reacts with frustration. At the same
time, such a sales configurator alleviates the risk that the
configuration task is too easy and, thus, the individual gets bored. In
both cases, the effectiveness of the learning process would be
undermined [3, 63, 41].

A sales configurator with a higher level of focused navigation
capability increases learning effects by tailoring the sales
configuration experience to each individual user’s characteristics on
the interaction level [36]. A sales configurator with this capability
enables its users to freely prioritize their choices regarding the
various attributes of a product and, therefore, allows them to
quickly eliminate options they regard as certainly inappropriate
from further consideration [56]. In addition, such a sales
configurator enables its users to decide for themselves how many
configuration options they want to tackle, as not all potential
customers are necessarily interested in, and/or able to fully exploit
the potential of customization offered by a company [43]. In this
manner, this kind of sales configurator reduces the risk that the
configuration task is frustrating as well as the risk that it is boring,
and both of these situations would undermine the effectiveness of
the learning process [3, 63, 41].

A sales configurator with a higher level of benefit-cost
communication capability promotes a potential customer’s learning
process by providing him/her with better pre-purchase feedback on
the effects of his/her configuration choices. Such a sales
configurator is more effective in explaining the benefits the
customer would derive from consumption of the configured
product, as well as the monetary and nonmonetary sacrifices that
the customer would bear for obtaining that product [56]. For
example, a sales configurator with a higher level of benefit-cost
communication capability takes advantage of three-dimensional
Web and virtual try-on technologies to more closely simulate
customers’ real-world interactions with their configured products
[18, 14]. As the feedback provided by the sales configurator
improves, so does the effectiveness of the potential customer’s
learning process [10].

Finally, a sales configurator with a higher level of easy
comparison capability increases learning effects by providing better
pre-purchase feedback on the effects of the configuration choices
made by a potential customer. This is because such a sales
configurator allows its users to compare previously-saved
configurations on the same screen and to rank-order them based on
some criterion that is meaningful to the users [56]. Again, the better
the feedback provided, the more effective the customer’s learning
process [10].

As each of the sales configurator capabilities mentioned above
make the learning process more effective and the effectiveness of
such a learning process increases the utilitarian benefit, the
uniqueness benefit and the self-expressiveness benefit of the
configured product eventually purchased, we posit the following
hypotheses, which are graphically summarized in Figure 1.

HXa. The higher the level of flexible navigation capability
(H1a), focus navigation capability (H2a), benefit-cost
communication capability (H3a), user-friendly product space
description (H4a), easy comparison capability (H5a) deployed by a
sales configurator, the greater the utilitarian benefit that a consumer
derives from a product self-customized using that configurator.

HXb. The higher the level of flexible navigation capability

83

(H1b), focus navigation capability (H2b), benefit-cost
communication capability (H3b), user-friendly product space
description (H4b), easy comparison capability (H5b) deployed by a
sales configurator, the greater the uniqueness benefit that a
consumer derives from a product self-customized using that
configurator.

HXc. The higher the level of flexible navigation capability
(H1c), focus navigation capability (H2c), benefit-cost
communication capability (H3c), user-friendly product space
description (H4c), easy comparison capability (H5c) deployed by a
sales configurator, the greater the self-expressiveness benefit that a
consumer derives from a product self-customized using that
configurator.

Figure 1. Research hypotheses overview

4 Method

To test our hypotheses we conducted an empirical analysis using

data collected from a sample of 675 sales-configuration experiences
made by 75 students at the authors’ university (age range: 24-27;
30% females). Each participant was asked to make one mass-
customization experience on each of nine pre-assigned Web-based
sales configurators and, for each experience, to fill out a
questionnaire covering the constructs of interest (see Appendix A),
for a total of 675 mass-customization experiences. Each experience
involved browsing the sales-configuration website and configuring
one product from start to finish, on that website, according to one’s
own preferences. The nine sales configurators assigned to each
participant were chosen from a set of 30 real Web- based
configurators of consumer goods. The set included ten configurators
of notebooks/laptops (e.g., www.dell.com), nine configurators of
sports shoes/sneakers (e.g., www.converse.com) and eleven
configurators of economy cars (e.g., www.volkswagen.com). The
inclusion of multiple product categories, ranging from relatively
simple products with relatively few configuration steps to more
complex products with more configuration steps, was motivated by
the aim of increasing the variation ranges of the independent
variables within our sample. To further increase the differences
among the mass-customization experiences comprising our sample,
we assigned sales configurators to participants according to the
following rules: (i) no pairs of participants were assigned the same
combination of configurators, (ii) each participant was assigned

three configurators for each product category, and (iii) each of the
triples assigned to each participant included at least one product
configurator with a high mean score of the five capabilities within the
corresponding product category and at least one configurator with a
low mean score of the five capabilities within the same product
category.

The data were analyzed through structural equation modeling,
using LISREL 8.80. Following Anderson and Gerbing [2], we
decided to adopt a two-step approach, assessing construct validity
before the simultaneous estimation of the measurement and structural
models. Moreover, since our variables did not meet the assumption
of multivariate normal distribution (Mardia’s test significant at
p<0.001), we applied the Satorra-Bentler correction to produce
robust maximum likelihood estimates of standard errors and Chi-
square. Prior to conducting the analysis, Prior to conducting the
analysis, we decided to control for possible effects of participants’
characteristics. Consequently, and consistent with prior studies (e.g.,
[37, 56]), we regressed our observed indicators on 75 dummies
representing the participants in our study and used the standardized
residuals from this linear, ordinary least square regression model as
our data in all the subsequent analyses. Confirmatory factor analysis
(CFA) was subsequently employed to assess unidimensionality,
convergent validity, discriminant validity, and reliability of our
measurement scales. We tested a CFA model specifying the posited
relations of the observed variables to the underlying latent constructs,
with these constructs allowed to correlate freely [2]. Our CFA model
showed good fit indices (RMSEA (90% CI)= 0.0489 (0.0445;
0.0533), GFI=0.927, NFI=0.987), meaning that the hypothesized
factor structure reproduced the sample data well. The standardized
factor loadings were all in the anticipated direction, greater than 0.50
and statistically significant at p<0.001. Altogether, these results
suggested unidimensionality (i.e., a set of empirical indicators reflect
one, and only one, underlying latent factor) and good convergent
validity (i.e., the multiple items used as indicators of a construct
significantly converge) of our measurement scales [11, 2].
Discriminant validity, which measures the extent to which the
individual items of a construct are unique and do not measure other
constructs, was tested using [22] procedure. For each latent construct,
the square root of the average variance extracted (AVE) exceeded the
correlation with all the other latent variables, thus suggesting that our
measurement scales represent distinct latent variables [22].
Reliability of the measurement scales was assessed using both AVE
and the Werts, Linn and Joreskog (WLJ) composite reliability (C.R.)
method [61]. All the WLJ composite reliability values were greater
than 0.70 and all the AVE scores largely exceeded 0.50. This
indicates that a large amount of the variance is captured by each
latent construct rather than being due to measurement error [22, 40].

5 Results

After establishing measurement scale reliability and validity for

the focal constructs, we estimated the full model including the
hypothesized relationships among the same constructs. Our
hypotheses were that all five sales-configurator capabilities increase
consumer-perceived utilitarian benefit, uniqueness benefit and self-
expressiveness benefit of a mass-customized product. Accordingly,
all five capabilities were modeled as impacting both utilitarian
benefit and uniqueness benefit and self-expressiveness benefit.
Table 2 reports the LISREL estimates of the path coefficients and
the corresponding t values. In assessing whether a hypothesis is

84

supported or not, we adopted a p value of 5% as a threshold. This
is a conservative choice, as a cut-off value of 10% is often used in
literature.

Table 2. Path coefficients of the estimated model

 BCC EC FlexN FocN UFD
UT Coeff. § 0,283*** 0,102*** 0,132** 0,379*** 0,146*

t value† 3,654 3,669 2,735 5,237 2,451
UN Coeff. § 0,004 0,299*** 0,304*** 0,253* 0,034

t value† 0,036 6,773 4,106 2,537 0,42
SE Coeff.§ 0,148 0,19*** 0,151** 0,337*** 0,06

t value† 1,82 5,346 2,612 4,137 0,95
UT = utilitarian benefit
UN = uniqueness benefit
SE = self-expressiveness

benefit

BCC = benefit-cost communication
EC = easy comparison
UFD = user-friendly product-space

description
FlexN = flexible navigation
FocN = focused navigation

Significant at: *** p < 0.001; ** p < 0.01; * p < 0.05.
†Cut-off t value: 10%: 1.645; 5%: 1.960; 1%: 2.576; 0.1%: 3.29.

As regards utilitarian benefit, all the estimated path coefficients

were positive, as hypothesized, and statistically significant at p<
0.05, indicating that all our hypotheses regarding the utilitarian
benefit are supported. As regards uniqueness benefit, the estimated
path coefficients were positive, as hypothesized, and statistically
significant at p< 0.05 for easy comparison, flexible navigation and
focused navigation capabilities, but not for benefit-cost
communication and user-friendly product space description
capabilities. Therefore, only three of our five hypotheses are
supported. The same pattern of results was found with regard to
self-expressiveness benefit. It is worthwhile noting, however, that
the estimated path coefficient between benefit-cost
communication capability and self-expressiveness benefit is
statistically significant at p< 0.10, though not at p< 0.05.

6 Conclusions

6.1 Discussion of results and related work

The analysis results support the hypotheses that easy

comparison, flexible navigation and focused navigation
capabilities raise not only the utilitarian benefit of possessing a
mass-customized product, but also its uniqueness and self-
expressiveness benefits. These findings improve our
understanding of how product configurators should be designed to
increase customers’ willingness to pay for a mass-customized
product by triggering uniqueness and self-expressiveness benefits,
in addition to utilitarian benefit.

As regards user-friendly product space description and benefit-
cost communication capabilities, however, only the hypotheses
that they increase utilitarian benefit are supported, while the others
are not. Two possible explanations can be provided for these
unexpected findings. One explanation revolves around the notion
of functional fixedness. Functional fixedness is the phenomenon in
which an individual finds difficulties in attributing and
recognizing different types of relationships between objects
presented to him/her during decision-making processes or
problem-solving situations [15]. Another possible explanation is
that the existing sales-configurators, even when they deploy higher

levels of benefit-cost communication and user-friendly product
space description capabilities, provide feedback information with
content and format that are appropriate for promoting potential
customers’ learning about the possibility to fulfill customers’
functional and aesthetical needs through the consumption of a
configured product, but are not appropriate for supporting the same
learning process as far as satisfaction of uniqueness and self-
consistency needs are concerned. However, these are conjectures;
further research is needed on this issue.

The present paper contributes to the debate as to what
characteristics sales configurators should have to increase
consumers’ willingness to buy as well as consumers’ willingness to
pay for a mass-customized product. This debate has typically
focused on a twofold objective: (i) alleviating the difficulty that a
consumer experiences in self-customizing a product with a sales
configurator and in making a purchase decision and (ii) increasing
the utilitarian benefit deriving from the closeness of fit between the
objective characteristics of the configured product and the
consumer’s functional and aesthetical needs. Several
recommendations have been made by prior, both conceptual and
empirical studies joining this debate, and many of these
recommendations are subsumed by the five sales-configurator
capabilities considered in this study [56]. Higher levels of these
capabilities have been found as predicting both higher levels of
satisfaction with the configured product and higher levels of
purchase intention [56]. More recently, the debate has been
enriched by the consideration of the benefits that a consumer can
gain from the experience of self-customizing a product using a sales
configurator above and beyond those deriving from the possession
of the configured product. In particular, Trentin et al. [55] find that
the same five sales-configurator capabilities considered in the
present study increase hedonic benefit, which stems from the
capacity of the experience to be gratifying per se, regardless of the
completion of the configuration task, and creative-achievement
benefit, which derives from the capacity of the experience to arouse,
in combination with the configured product, the positive emotion of
pride of authorship. The present study makes an additional
contribution to this debate by examining the impacts of the same
five sales-configurator capabilities on another two benefits that a
consumer can enjoy by purchasing a mass-customized product, in
addition to the traditionally considered utilitarian benefit: namely,
the benefits of uniqueness and self-expressiveness.

Related work has been conducted in the domain of recommender
technologies. Like Web-based sales configurators, recommender
applications are intended to support online customers in making
purchase decisions [45]. With a focus on knowledge-based
recommender applications, Felfernig et al. [16] empirically examine
the effects of a number of possible features of such applications on
a variety of outcome variables, including a consumer’s willingness
to buy and his/her trust in that the application recommended the
optimal solution. The examined features include the provision of a
justification for why a product fits to a certain customer, the
possibility of making product comparisons, and the fitting of the
interactive user-recommender dialog to the user’s product domain
knowledge. These features are captured by the capabilities of
benefit-cost communication, easy comparison and user-friendly
product space description which are considered in the present study.
Interestingly, Felfernig et al. [16] find that the recommender
versions exhibiting such features are associated with higher ratings
of users’ trust in the recommended products, which in turn is

85

positively associated with users’ willingness to buy the products.
This result is echoed by our findings that benefit-cost
communication, easy comparison and user-friendly product space
capabilities predict the utilitarian benefit deriving from the
possession of a mass-customized product.

6.2 Limitations and further research

The present research is not without limitations, which might be

addressed in future research. A primary limitation lies in the fact
the empirical study was conducted with engineering students and
using only three categories of consumer goods. While engineering
students are undeniably potential buyers of the considered
products, they constitute a biased sample of the potential
customers of such goods. In addition, these products represent
only a small subset of consumer goods. A wider set of products
would strengthen the generalizability of the results. Consequently,
future research should seek to replicate our findings in truly
representative samples of potential customers and should use a
wider set of consumer goods.

Another limitation of the present study is its focus on the main
effects [17] of the five considered sales-configurator capabilities
on the three consumer-perceived benefits of interest. In line with
this focus, we neglect possible interaction effects between the five
capabilities as well as possible contingency effects. Future studies
should be designed to overcome this limitation.

6.3 Managerial implications

While having its limitations, our study not only reinforces the

importance of the research on the role of sales configurators in
mass-customization strategies, but also provides useful managerial
implications. By considering additional benefits, besides the
utilitarian one, our study increases practitioners’ awareness that
sales/product configurators can be an effective tool to augment the
consumer-perceived benefits of possessing a mass-customized
product. Exploiting such sources of differentiation advantages as
the fulfillment of consumers’ needs for uniqueness and self-
expressiveness can be one key for a company to augment the value
of its mass-customization strategy. For those firms that are
interested in fulfilling consumers’ needs for uniqueness and self-
expressiveness, our theoretical explanations and our empirical
results highlight the importance of adopting sales configurators
with higher levels of easy comparison, flexible navigation and
focused navigation capabilities. This is another step in the
direction of providing practitioners with prescriptive indications
on how sales configurators should be designed to increase the
benefits of possessing mass-customized products.

ACKNOWLEDGEMENTS

We acknowledge the financial support of the University of Padova,
Project ID CPDA129273.

APPENDIX A. Measurement instrument
Benefit-cost communication capability(a)

BCC1 Thanks to this system, I understood how the various
choice options influence the value that this product

has for me.
BCC2 Thanks to this system, I realized the advantages and

drawbacks of each of the options I had to choose from.
BCC3 This system made me exactly understand what value

the product I was configuring had for me.

Easy comparison capability(a)

EC1 The system enables easy comparison of product
configurations previously created by the user.

EC2 The system lets you easily understand what previously
created configurations have in common.

EC3 The system enables side-by-side comparison of the
details of previously saved configurations.

EC4 The systems lets you easily understand the differences
between previously created configurations.

User-friendly product-space description capability(a)

UFD1 The system gives an adequate presentation of the
choice options for when you are in a hurry, as well as
when you have enough time to go into the details.

UFD2 The product features are adequately presented for the
user who just wants to find out about them, as well as
for the user who wants to go into specific details.

UFD3 The choice options are adequately presented for both
the expert and inexpert user of the product.

Flexible navigation capability(a)

FlexN1 The system enables you to change some of the choices
you have previously made during the configuration
process without having to start it over again.

FlexN2 With this system, it takes very little effort to modify
the choices you have previously made during the
configuration process.

FlexN3 Once you have completed the configuration process,
this system enables you to quickly change any choice
made during that process.

Focused navigation capability(a)

FocN1 The system made me immediately understand which
way to go to find what I needed.

FocN2 The system enabled me to quickly eliminate from
further consideration everything that was not
interesting to me at all.

FocN3 The system immediately led me to what was more
interesting to me.

FocN4 This system quickly leads the user to those solutions
that best meet his/her requirements.

Utilitarian benefit(b)

UT1 This product is exactly what I had hoped for.
UT2 I could create the product that was the most adapted to

what I was looking for.
UT3 I could create the product I really wanted to have.

Uniqueness benefit(b)

UN1 With this product, I will not look like everybody else.
UN2 With this program, I could design a product that others

will not have.
UN3 With this product, I have my small element of

differentiation compared to others.

86

Self-expressiveness benefit(b)

SE1 I could create a product that is just like me.
SE2 This product reflects exactly who I am.
SE3 This product is in my own image.

(a) Trentin et al.[56]
(b) Merle et al. [38]

REFERENCES

[1] M. Addis and M.B. Holbrook, 'On the conceptual link between mass
customisation and experiential consumption: an explosion of
subjectivity'. Journal of Consumer Behaviour, 1(1), 50-66, (2001).

[2] J.C. Anderson, D.W. Gerbing, 'Structural equation modeling in
practice: a review and recommended two-step approach',
Psychological Bulletin, 103(3), 411–423, (1988).

[3] A. Bandura, 'Perceived self-efficacy in cognitive development and
functioning', Educational Psychologist, 28(2), 117–48, (1993).

[4] R.W. Belk, 'Possessions and the extended self', Journal of Consumer
Research, 15, 139-168, (1989).

[5] R.W. Belk, J.F. Sherry and M. Wallendorf, 'A naturalistic inquiry into
buyer and seller behavior at a swap meet', Journal of Consumer
Research, 14(4), 449-470, (1988).

[6] T. Blecker and G. Friedrich, Mass Customization Information Systems
in Business, IGI Global, London, UK, 2007.

[7] T. Blecker, N. Abdelkafi, B Kaluza and G. Friedrich, 'Key metrics
system for variety steering in mass customization', in: Piller, F.
T./Reichwald, R./Tseng, M. (Eds.): Competitive Advantage Through
Customer Interaction: Leading Mass Customization and
Personalization from the Emerging State to a Mainstream Business
Model. Proceedings of the 2nd Interdisciplinary World Congress on
Mass Customization and Personalization- MCPC’03, Munich,
October 6-8, (2003).

[8] M.B. Brewer, 'The social self: On being the same and different at
the same time', Personality and Social Psychology Bulletin, 17,
475-482, (1991).

[9] M.B. Brewer, J.M Manzi and J.S. Shaw, 'In-group identification as a
function of depersonalization, distinctiveness, and status',
Psychological Science, 4(2), 88-92, (1993).

[10] D.L. Butler and P.H. Winne, 'Feedback and self-regulated learning:A
theoretical synthesis', Review of Educational Research, 65(3), 245–
81, (1995).

[11] D.T. Campbell and D.W. Fiske, 'Convergent and discriminant
validation by the multitrait-multimethod matrix', Psychological
bulletin, 56(2), 81, (1959).

[12] R.L. Celsi, R.L. Rose and T.W. Leigh, 'An Exploration of High-Risk
Leisure Consumption through Skydiving', Journal of Consumer
Research, 20, June, 1-23, (1993).

[13] C.C. Chang, H.Y. Chen and I.C. Huang, 'The interplay between
customer participation and difficulty of design examples in the online
designing process and its effects on customer satisfaction: mediational
analyses', CyberPsychology & Behavior, 12(2),147–154, (2009).

[14] K. Dai, Y. Li, J. Han, X. Lu, and S. Zhang, 'An interactive web
system for integrated three-dimensional customization', Computers in
Industry, 57(8-9), 827-37, (2006).

[15] K. Duncker, 'The Structure and Dynamics of Problem-Solving
Processes', Psychological monographs, 58(5), 1-112, (1945).

[16] A. Felfernig, B. Gula, E. Teppan, 'User Acceptance of Knowledge-
based Recommenders, Machine Perception and Artificial
Intelligence', World Scientific Publishers, 70, 249-276, 2007.

[17] J.W. Finney, R.E. Mitchell, R.C. Cronkite and R.H. Moos,
'Methodological issues in estimating main and interactive effects:
examples from coping/social support and stress field', Journal of
Health & Social Behavior, 25(1) 85–98, (1984).

[18] A.M Fiore, S.E. Lee, and G. Kunz. 'Individual differences, motivations,
and willingness to use a mass customization option for fashion
products', European Journal of Marketing, 38(7), 835-49, (2004).

[19] A.F. Firat, and A Venkatesh, 'Liberatory Postmodernism and the
Reenchantment of Consumption', Journal of Consumer Research, 22,
December, 239-67, (1995).

[20] F.S. Fogliatto, G.J.C. da Silveira and D. Borenstein, 'The mass
customization decade: an updated review of the literature', International
Journal of Production Economics, 138(1),14–25, (2012).

[21] H.L. Fromkin, 'A social psychological analysis of the adoption and
diffusion of new products and practices from a uniqueness
motivation perspective'. In D.M. Gardner (Ed.), Proceedings of
the 2nd annual Conference of the Association far Consumer
Research, College Park, MD: Association for Consumer
Research, 464-469, (1971).

[22] C. Fornell and D.F. Larcker, 'Evaluating structural equation models
with unobservable variables and measurement error', Journal of
Marketing Research, 18(1), 39–50, (1981).

[23] C. Forza and F. Salvador, 'Application support to product variety
management', International Journal of Production Research, 46(3),
817–836, (2008).

[24] C. Forza and F. Salvador, 'Product configuration and inter-firm co-
ordination: an innovative solution from a small manufacturing
enterprise', Computers in Industry, 49(1), 37–46, (2002).

[25] N. Franke and C. Hader, 'Mass or Only "Niche Customization"? Why
We Should Interpret Configuration Toolkits as Learning Instruments',
Journal of Product Innovation Management, 31(5), in press (2013).

[26] N. Franke, M. Schreier and U. Kaiser, 'The "I designed it myself’’
effect in mass customization', Management Science, 56(1), 125–140,
(2010).

[27] N. Franke and M. Schreier, 'Why customers value self-designed
products: the importance of process effort and enjoyment', Journal of
Product Innovation Management, 27(7), 1020–1031, (2010).

[28] N. Franke and M. Schreier, 'Product uniqueness as a driver of customer
utility in mass customization', Marketing Letters 19(2), 93–107, (2008).

[29] G. Ger, S. Askegaard and A. Christensen, 'Experiential Natural of
Product- Place Images: Image as a Narrative' in Arnould, E. J. and
Scott, L. M. (Eds), Advances in Consumer Research, 26, Association
for Consumer Research, Provo, UT, 165-9, (1999).

[30] L. Haug, L. Hvam and H.N. Mortensen, 'The impact of product
configurators on lead- times in engineering-oriented companies',
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 25(2), 197–206, (2011).

[31] A. Haug, L. Hvam and N.H. Mortensen, 'Definition and evaluation of
product configurator development strategies', Computers in Industry,
63(5), 471–481, (2012).

[32] M. Heiskala, J. Tiihonen, K.S. Paloheimo and T. Soininen, 'Mass
customization with configurable products and configurators: a review of
benefits and challenges, in: T. Blecker, G. Friedrich (Eds.), Mass
Customization Information Systems in Business, IGI Global,
London, UK, 1–32, 2007.

[33] M.B Holbrook, Introduction to Consumer Value in Holbrook, M. B.
(Ed), Consumer Value: A Framework For Analysis and Research,
Routledge, London, 1-28, 1999.

[34] L. Hvam, S. Pape and M.K. Nielsen, 'Improving the quotation process
with product configuration', Computers in Industry, 57(7), 607–
621, (2006).

[35] P. Jiang, 'Exploring consumers’ willingness to pay for online
customisation and its marketing outcomes', Journal of Targeting
Measurement & Analysis for Marketing, 11(2), 168–183, (2002).

[36] G. Kreutler and D. Jannach, 'Personalized needs acquisition in Web-
based configuration systems', in: T. Blecker, G. Friedrich (Eds.), Mass
Customization, Concepts-Tools-Realization, Proceedings of the
International Mass Customization Meeting 2005 (IMCM'05), GITO-
Verlag, Berlin, Germany, 293-302, (2005).

[37] G. Liu, R. Shah and R.G. Schroeder, 'Linking work design to mass
customization: a sociotechnical systems perspective', Decision
Sciences, 37(4), 519–545, (2006).

87

[38] A. Merle, J.L. Chandon, E. Roux and F. Alizon, 'Perceived value of
the mass-customized product and mass customization experience for
individual consumers', Production & Operations Management, 19(5),
503–514, (2010).

[39] K. O'Donnell, 'Good Girls Gone Bad, The Consumption of Fetish
Fashion and the Sexual Empowerment of Women' in E. J Arnould and
L.M. Scott, (Eds), Advances in Consumer Research, 26, Association
for Consumer Research, Provo, UT, 184-89, (1999).

[40] S.W. O’Leary-Kelly and R.J. Vokurka, 'The empirical assessment of
construct validity', Journal of Operations Management, 16(4), 387–
405, (1998).

[41] R. Pekrun, T. Goetz, W. Titz, and R. P. Perry, 'Academic emotions in
students’ self-regulated learning and achievement: A program of
qualitative and quantitative research', Educational Psychologist,
37(2), 91–106, (2002).

[42] B.J. Pine II, Mass Customization – The New Frontier in Business
Competition, Harvard Business School Press, Cambridge, MA, 1993.

[43] T. Randall, C. Terwiesch and K.T. Ulrich, 'Principles for user
design of customized products', California Management Review, 47
(4), 68–85, (2005).

[44] F. Salvador and C. Forza, 'Principles for efficient and effective sales
configuration design', International Journal of Mass Customisation,
2(1–2), 114–127, (2007).

[45] J.B. Schafer, J.A. Konstan, and J. Riedl, 'E-commerce
recommendation applications', Data Mining and Knowledge
Discovery, 5(1-2), 115–153, (2001).

[46] H.J. Schau,'Consumer Imagination, Identity and Self-Expression', in
NA - Advances in Consumer Research Volume 27, (Eds.) J. Stephen
Hoch and R.J. Meyer, Provo, UT: Association for Consumer
Research, 50-56, (2000).

[47] M. Schreier, 'The value increment of mass-customized products: an
empirical assessment', Journal of Consumer Behaviour, 5(4), 317–
327, (2006).

[48] M. J Sirgy, 'Self-concept in consumer behavior: a critical review',
Journal of consumer research, 9(3), 287-300, (1982).

[49] D. Slater, Consumer Culture and Modernity. Polity Press,
Cambridge, UK,1997.

[50] C.R. Snyder, ' Product scarcity by need for uniqueness
interaction: A consumer catch-22 carousel?', Basic Appl. Soc.
Psychol, 13(1), 9–24, (1992).

[51] B. Squire, S. Brown, J. Readman and J. Bessant, 'The impact of mass
customisation on manufacturing trade-offs, Production & Operations
Management, 15(1),10–21, (2006).

[52] C.J., Thompson, 'Caring Consumers, Gendered Consumption
Meanings and the Juggling Lifestyle', Journal of Consumer
Research, 22(4), 388-407, (1996).

[53] C.J. Thompson, and D. L. Haytko, 'Speaking of Fashion, Consumers'
Uses of Fashion Discourses and the Appropriation of Countervailing
Cultural Meanings', Journal of Consumer Research, 24(1),15-42,
(1997).

[54] J. Tiihonen, T. Soininen, T. Männistö and R. Sulonen, State-of-the-
practice in product configuration – a survey of 10 cases in the Finnish
industry, in: T. Tomiyama, M. Mäntylä, & S. Finger (Eds.) ;
Knowledge intensive CAD, Chapman & Hall, London, UK, 95–114,
1996.

[55] A.Trentin, E. Perin and C. Forza, 'Increasing the consumer-perceived
benefits of a mass-customization experience through sales-
configurator capabilities' Computers in Industry, 65(4), 693-705,
(2014).

[56] A. Trentin, E. Perin and C. Forza, 'Sales configurator capabilities to
avoid the product variety paradox: construct development and
validation', Computers in Industry, 64(4), 436–447, (2013).

[57] A.Trentin, E. Perin and C. Forza, 'Product configurator impact on
product quality', International Journal of Production Economics, 135
(2), 850–859, (2012).

[58] A.Trentin, E. Perin and C. Forza, 'Overcoming the customization-
responsiveness squeeze by using product configurators: Beyond
anecdotal evidence', Computers in Industry, 62(3), 260–268, (2011).

[59] E. von Hippel, 'Perspective: user toolkits for innovation', Journal of
Product Innovation Management, 18(4) 247–257, (2001).

[60] E. von Hippel and R. Katz, 'Shifting Innovation to Users via Toolkits',
Management Science, 48(7), 821–833, (2002).

[61] C.E. Werts, R.L. Linn and K.G. Jo, 'Reskog, Intraclass reliability
estimates: testing structural assumptions', Educational & Psychological
Measurement, 34(1), 25–33, (1974).

[62] J. Wind and A. Rangaswamy, 'Customerization: The next revolution in
mass customization', Journal of Interactive Marketing, 15(1), 13–32,
(2001).

[63] P.H. Winne. 'Experimenting to bootstrap self-regulated learning',
Journal of Educational Psychology, 89(3), 397–410, (1997).

[64] J.L. Zaichkowsky, 'Conceptualizing involvement', Journal of
advertising, 15(2), 4-34, (1986).

88

Towards Open Configuration
Alexander Felfernig1 and Martin Stettinger1 and Gerald Ninaus1 and Michael Jeran1 and

Stefan Reiterer2 and Andreas Falkner3 and Gerhard Leitner 4 and Juha Tiihonen5

Abstract. Configuration technologies are typically applied in
closed settings where one (or a small group of) knowledge engi-
neer(s) is in charge of knowledge base development and mainte-
nance. In such settings it is also assumed that only single users con-
figure the corresponding products and services. Nowadays, a couple
of scenarios exist that require more openness: it should be possible
to cooperatively develop knowledge bases and to jointly configure
products and services, even by adding new features or constraints in
a flexible fashion. We denote this integration of groups of users into
configuration-related tasks as open configuration. In this paper we
introduce features of open configuration environments and potential
approaches to implement these features.

1 Introduction

Configuration [8, 24, 37] is one of the most successful technologies
of Artificial Intelligence (AI). It is applied in many domains such
as telecommunication [17], furniture [19], and financial services [9].
Most configuration-related functionalities are assuming closed set-
tings where knowledge bases are developed by a single (or a small
group of) knowledge engineer(s) and the corresponding configura-
tors are applied by single users. Implementing configurator applica-
tions this way entails drawbacks which become manifest in terms of
scalability problems in knowledge engineering [33] and suboptimal
decisions if a single user decides for the whole group [16].

Scalability Problems. The transformation of domain knowledge
into a configuration knowledge base is an effortful process of-
ten characterized by a knowledge acquisition bottleneck [20] that
is considered as a major obstacle for a sustainable application of
knowledge-based technologies [21, 41]. To tackle this bottleneck,
efficient approaches have been developed that support graphical
knowledge engineering [7, 22] and intelligent debugging [6, 14, 35].

These approaches help to improve the efficiency of knowledge en-
gineering but still do not solve the problem of missing scalability:
the increasing amount and complexity of configuration knowledge
bases exceeds the resources available for performing the correspond-
ing development and maintenance operations [23, 33]. In order to
assure scalability, future configuration technologies have to support
a deeper integration of a wider group of users (e.g., product devel-
opers, marketing experts, sales representatives, and knowledge en-
gineers) into knowledge engineering. Related solutions should go
beyond state-of-the-art approaches that are focusing on experienced
knowledge engineers and programmers [24] by allowing the comple-

1 TU Graz, Austria, email: {firstname.lastname}@ist.tugraz.at
2 SelectionArts, Austria, email: stefan.reiterer@selectionarts.com
3 Siemens, Austria, email: andreas.a.falkner@siemens.com
4 University of Klagenfurt, Austria, email: gerhard.leitner@aau.at
5 Aalto University, Finland, email: juha.tiihonen@aalto.fi

tion of knowledge engineering tasks by the mentioned groups. We
denote this approach as community-based knowledge engineering.

Suboptimal Decisions. A basic assumption of existing configura-
tion systems is that products and services are typically configured by
single users. However, many scenarios exist where not a single user
but a group of users is in charge of configuring a product (see Sec-
tion 3). Existing configuration environments do not take into account
such scenarios which often leads to situations where a single user
has to ”encode” the requirements and preferences of a whole group.
This can lead to suboptimal configurations (decisions) that do not
reflect the group preferences in an optimal fashion. Future configu-
ration technologies should take into account the fact that groups of
users can be engaged in configuration processes and provide group
decision mechanisms that help the group to jointly configure a prod-
uct in a consensual fashion. We denote this type of configuration
as group-based configuration. Especially in scenarios where multi-
ple stakeholders define and configure products, enhanced flexibility
is required: configurator users may request to add or refine product
features and constraints which can be seen, for example, in open in-
novation [4] or postponement scenarios [18, 42]. We subsume such
activities under the term flexible product enhancement.

The concepts of community-based knowledge engineering, group-
based configuration, and flexible product enhancement can be
summed up under the notion of open configuration. In this paper we
sketch functionalities which have to be provided by open configura-
tion environments. In Section 2 we introduce features and potential
technological solutions to tackle the issue of scalability in knowledge
engineering scenarios. In Section 3 we discuss features of group-
based configuration. In Section 4 we discuss aspects of product en-
hancement in open configuration. With Section 5 we provide a dis-
cussion of related work. We conclude the paper with Section 6.

2 Community-based Knowledge Engineering

In the following we will discuss aspects that become relevant if we
want to integrate a larger group of users into configuration knowledge
engineering. For the sake of simplicity and without loss of general-
ity we assume that a configuration knowledge base is represented in
terms of a constraint satisfaction problem (CSP) [27] consisting of
a set of variables V = {v1, ..., vn} with corresponding domain def-
initions (dom(vi)), and a set of constraints C = {c1, ..., cm}. We
base our discussions on the following simplified financial services
configuration knowledge base.

• V = {willingness to take risks (wr), expected return rate (rr), in-
vestment period (ip)}

• dom(wr)= {low, medium, high}, dom(rr)={<6%, 6-9%,>9%},
dom(ip) = {shortterm, mediumterm, longterm}

89

micro task topic description

variables definition/evaluation of variables included in V

questions definition/evaluation of questions related to vi ∈ V

dialog sequences definition/evaluation of question sequences
constraints definition/evaluation of constraints in C

examples definition/evaluation of test cases in T

diagnoses evaluation of conflict resolution alternatives for C

Table 1. Community-based knowledge engineering: example micro tasks.

• C = {c1 : wr = medium→ ip 6= shortterm,
c2 : wr = high→ ip = longterm,
c3 : ip = longterm→ rr = <6% ∨ rr = 6-9%,
c4 : rr = >9%→ wr = high,
c5 : rr = 6-9%→ wr 6= low ∧ wr 6= medium}

In cases where one or a small group of knowledge engineers is
in charge of developing and maintaining a configuration knowledge
base, attributes (component types), domains, and related constraints
are typically formalized on the basis of examples and textual de-
scriptions provided by domain experts [24]. If the product domain
knowledge has to be adapted, the whole process is restarted, i.e., do-
main experts articulate the change requests in an informal fashion
and knowledge engineers implement the needed adaptations.

The correctness of changes performed on a knowledge base can be
evaluated, for example, on the basis of regression tests where positive
and negative test cases are used to figure out whether the knowledge
base shows the intended behavior [6]. Positive test cases (examples)
are a specification of an intended behavior of the knowledge base
and negative test cases exemplify unintended behavior. Existing ap-
proaches to configuration knowledge base testing and debugging ex-
ploit positive test cases to detect errors/deficiencies by inducing con-
flicts in the incorrect configuration knowledge base. Such conflicts
are minimal sets of constraints that are responsible for the faulty be-
havior of the knowledge base and therefore have to be adapted by
knowledge engineers.

Community-based Knowledge Engineering. Intelligent testing and
debugging [6] is an important contribution to the improvement of
knowledge engineering processes. However, the growing size and
complexity of configuration knowledge bases often makes it hard for
individual knowledge engineers to keep track of new developments
and adaptations. As a consequence, more time is needed to provide
a new production version of the configuration knowledge base and
the probability of including erroneous constraints increases. In or-
der to assure scalability, it is important to integrate end-users more
deeply into knowledge base development and maintenance and thus
to exploit unemployed knowledge engineering potentials.

In the following we discuss issues that have to be taken into ac-
count when integrating groups into community-based knowledge en-
gineering processes. An in-depth integration of a larger group of
users allows knowledge engineers to delegate basic engineering tasks
(so-called micro tasks). Table 1 provides an overview of micro task
topics. For each topic a couple of different concrete micro tasks can
be defined, for example, a variable can be defined but also evaluated
with regard to the appropriateness of it’s domain definition.

In order to figure out variables (component types) relevant for the
configuration knowledge base, users should be allowed to enter pro-
posals for variables and component types (including the correspond-
ing domain definitions) on their own. Variables are often associated

with questions posed to the user of a configurator application – al-
ternative formulations of such questions and also the sequences in
which these questions are posed should be defined and evaluated by
users. In addition to structural properties typically defined in terms
of variables or component types and their relationships, constraints
define additional restrictions on possible combinations of variable
values (components).

Especially in community-based scenarios, where a larger number
of users interacts with the knowledge engineering environment, en-
gineering practices will change in the sense that users are providing
knowledge chunks in a collaborative fashion and the knowledge en-
gineering environment is in charge of aggregating this information.
In this context, it is necessary to have mechanisms that automatically
distribute knowledge acquisition tasks among users in a systematic
fashion (e.g., depending on the workload, knowledge level, and pref-
erences of users). Such tasks can be represented in a more-or-less
traditional form of todo-lists but can also be represented in terms of
so-called games with a purpose [40] which is an upcoming trend also
in the knowledge engineering field [36].

A simple example of such a knowledge acquisition interface is
depicted in Figure 1. In this example game, the users Ann and Paul
have the task to cooperatively figure out combinations of customer
requirements that are incompatible, i.e., induce an inconsistency with
the knowledge base. The players have successfully completed their
task if they, for example, selected the same set of assignments as
candidates for incompatibilities. The underlying assumption of this
game is that Ann does not know the input of Paul and vice-versa.

Further examples of gamification-based interfaces for configura-
tion knowledge acquisition are: cooperative definition of relevant
variables (including their domains), the estimation of intuitive di-
alog sequences (which questions should be asked in which order),
the derivation of further constraint types (e.g., filter constraints that
match user requirements to corresponding technical product prop-
erties), and the estimation of accepted repair rankings in situations
where no solution could be found. Such scenarios can be supported
by input templates that represent micro-tasks (see Figure 1).

Testing and Debugging. The definition and evaluation of (posi-
tive and negative) test cases is a crucial issue since the correctness
of a test suite directly influences the correctness of the results de-
termined by a configurator. In [6] positive and negative examples are
exploited for debugging knowledge bases on the basis of the concepts
of model-based diagnosis [32]. In this context, positive examples are
exploited for inducing conflicts in a configuration knowledge base.
A negative example is assumed to be integrated in negated form into
the knowledge base in the case that it has not been rejected by the
knowledge base. On the basis of the following two test cases (exam-
ples) we can show how positive examples are used to find errors in
the knowledge base. Both test cases are in conflict with constraints

90

Figure 1. Sketch of a user interface for game-based knowledge acquisition. The overall goal of the game is that both players agree on the set of incompatible
value combinations of a given set of variables. This user interface can be regarded as a micro task template for the acquisition of incompatibility constraints.

Figure 2. Group-based diagnosis of a faulty configuration knowledge base. Diagnoses are selected by taking into account the expertise of users/knowledge
engineers: the higher the personal score (value derived from his/her personal contributions), the higher the weight given to his/her opinion.

in the configuration knowledge base introduced in Section 2.

• t1 : wr = high ∧ rr = >9%
• t2 : rr = 6-9% ∧ wr = medium

A conflict between a test case t and a set of constraints in the con-
figuration knowledge base can be defined as a conflict set CS ⊆ C:
CS ∪ t inconsistent. Such a conflict set CS is minimal if there does
not exist another conflict set CS′ with CS′ ⊂ CS. To resolve a
minimal conflict, only one element has to be deleted from CS. In
our example, the test case t1 is in conflict with the constraints c2 and
c3 and test case t2 is in conflict with the constraint c5. Consequently
we have two different (and minimal) conflict sets which are CS1:
{c2, c3} and CS2: {c5}. Resolving these conflicts results in two dif-
ferent diagnoses, namely D1 = {c2, c5} and D2 = {c3, c5}, i.e., a
diagnosis is a hitting set [32] which includes at least one constraint
from each of the given conflict sets.

Typically, there are many alternative diagnoses and the question
has to be answered which of these is acceptable for the users en-
gaged in testing and debugging. Figure 2 depicts a basic approach
of integrating knowledge about the users expertise in the determina-
tion of a diagnosis. For the conflict CS1 = {c2, c3}, the majority of
users prefers to keep c2 as-is and to delete or change c3 to resolve
the conflict. Since CS2 is a singleton, no alternatives exist for re-

solving the conflict, i.e., c5 must be selected. Overall, the elements
in the diagnosis D2 = {c3, c5} have a lower community support and
therefore will be changed or deleted by the users in order to restore
the consistency with the test-suite {t1, t2}.

3 Group-based Configuration

An assumption of existing configuration environments is that there
is no need for additional configuration support in scenarios where
groups of users are jointly configuring their preferred product or ser-
vice. A major consequence of this assumption is that single users are
forced to encode the preferences of a group which is often done in a
suboptimal fashion.

Within the scope of an industry study with representatives of N=25
companies applying configurators we figured out that none of the ex-
isting configuration environments provides technologies that support
groups of users in jointly configuring a solution. However, there is
a strong agreement on the fact that such technologies have to be in-
cluded in future configurators. The study participants reported dif-
ferent scenarios for the application of group-based (socially aware)
configuration technologies. Social awareness in this context denotes
the fact that specific properties of group decision processes are ex-
plicitly taken into account by the configuration environment (e.g.,

91

ID domain for group-based configuration components and constraints decision makers

1 software release plans
requirements, releases,
dependencies, preferences

stakeholders in software project

2 product line scoping and open innovation
(new) features, constraints between
features, preferences

representatives from different
departments, customers

3
bundle configuration (e.g., hotel, flight,
tour, etc.)

(new) destinations, hotels,
sightseeing tours, (resource)
constraints, preferences

travel group

4
stakeholder selection for a new software
project

(new) persons, constraints
regarding competences and
resources, preferences

(initial) team members

5
architectural design in software
development

components, interfaces,
technologies, constraints between
components, preferences

(distributed) software project
members

6 financial service configuration
financial services, resource
constraints, preferences

family members

7
building configuration (e.g. smart home,
office block)

rooms, furniture, light control
equipment, constraints between
components, preferences

family members, suppliers,
company representatives

8 funding decisions
project proposals, resource
constraints, preferences

evaluators, consultants, decision
makers

Table 2. Application scenarios for group-based configuration identified within the scope of a study with N=25 companies applying configuration systems.

the need to achieve consensus among group members). Examples of
such scenarios are depicted in Table 2.

In these scenarios a group of users is in charge of jointly config-
uring a product or service, for example, when configuring a holiday
trip (bundle configuration) for a group of friends [25], the require-
ments and preferences of all group members should be taken into
account. When configuring a software release plan, the preferences
of individual stakeholders regarding the assignment of requirements
to releases have to be taken into account [31].

Taking into account requirements and preferences of group mem-
bers requires decisions regarding trade-offs. In the context of holiday
trips such a trade-off could be the acceptance of a lower-quality ho-
tel which is much nearer to the sightseeing destination preferred by
a specific user. When configuring software release plans, a trade-off
could concern the postponement of a specific requirement to a later
release while increasing the importance level of this requirement (to
avoid further postponements).

The determination of trade-offs must be based on preference ag-
gregation mechanisms [29] that take into account the preferences of
all group members as far as possible. For example, the least misery
strategy avoids massive discriminations of individual group members
by minimizing the maximum number of trade-offs to be accepted by
an individual. In contrast, majority voting follows the opinions of the
majority of the group members which can lead to discriminations
against individuals.

An example of the application of the least misery strategy in the
context of deciding about a common sightseeing trip is depicted in
Table 3. In this simplified example, each person is allowed to select
at most two destinations and the corresponding trip must include two
destinations. Since Ben and John have similar preferences, majority
voting would discriminate Kate. In contrast, least misery tries to find
a trade-off that has the potential to create group consensus. For a
detailed discussion of preference aggregation mechanisms we refer
the reader to [29].

A major issue for future research is the consideration of longer
time periods. For example, if a group of friends jointly configures
a holiday trip every year, the aggregation mechanisms used by the
group-based configuration environment should take into account (as
far as possible) the degree to which individuals had to accept trade-
offs in the past and use this information for the recommendation of
fair trade-offs in future configuration sessions.

On the technical level the above mentioned properties require ba-
sic research in the following areas.

First, constraint-based search methods have to be extended with
mechanisms that help to predict (partial) configurations which are of
relevance for the group. This requires learning methods for search
heuristics [34] that help to predict relevant configurations in an ef-
ficient fashion. Furthermore, it is important that configurators are
able to determine similar and diverse configurations efficiently which
could also be achieved on the basis of the mentioned heuristics.

Second, the determination of trade-offs for inconsistent require-
ments and preferences has to be based on efficient diagnosis meth-
ods integrated with intelligent preference aggregation mechanisms
[29] that can help to better predict trade-offs acceptable for all group
members. These aggregations must take into account the histories
stored in interaction logs in order to guarantee decision fairness in
the long run.

Third, negotiation and argumentation mechanisms have to be de-
veloped which support individuals to express acceptable trade-offs.
In our holiday configuration scenario an example of such a statement
is ”I accept to visit Greece this year if we agree to organize a trip to
Italy next year”. Such arguments cannot be expressed on the basis of
existing preference representations.

4 Flexible Product Enhancement
The ability to include additional variables (component types), values
(components), and constraints in a flexible fashion is important for
the implementation of open configuration.

92

destination Lindwurm Großglockner Pyramidenkogel Isonzo Valley

Ben 1 1 0 0
John 1 1 0 0
Kate 0 0 1 1

least misery 1 0 1 0
majority voting 1 1 0 0

Table 3. Example set of tourist destinations (in the Alps-Adriatic area). The assumption in this example is that each person is allowed to articulate at most
two preferences and the trip must include at least two destinations.

Product line scoping [26] (in the context of software product line
engineering) is in the need of such a flexibility since the features and
constraints element of the product line are not completely predefined
at the beginning of the engineering process. A larger group of users
has to jointly decide which components (features) and constraints
should be part of the product line. Thus, product line scoping can
be interpreted as open configuration where new alternatives and con-
straints (and preferences) can be integrated within the scope of the
configuration (product line scoping) process.

Open innovation [4] reflects the idea of integrating customer com-
munities into new product development processes of a company. In
this context, variability modeling for product lines also requires the
support of an easy integration of new component types, components,
and constraints which reflect features to be supported by future prod-
ucts. In both scenarios, the integration of new items has to be sup-
ported by corresponding group decision processes (see Section 3),
for example, before a new feature is integrated into the model, the
group has to perform the needed validation steps and decide about
the inclusion of the feature. This also holds for the afore mentioned
scenarios of release planning and holiday trip configuration.

A further example of the need for flexible enhancements are post-
ponement strategies [18, 42]. An example is the automotive indus-
try, where basic car configurations are delivered to dealers who can
then integrate additional components such as MP3 players and tow-
bars, i.e., are enabled to integrate their own products and services
into the basic configuration delivered by car producers. Conform to
the definition given in [18], the mentioned scenario is of type-III
where customers are allowed to specify additional equipment when
they already have a more precise idea of the interior of the car. The
corresponding configuration model has to provide flexible interfaces
that allow an easy integration of new component types, components,
and constraints. A knowledge representation concept that can be ex-
ploited in this context are contextual models [10] which allow a sys-
tematic extension of existing base diagrams with additional items
relevant in a specific context (e.g., the car dealer context). In such
scenarios, developers of configurator solutions also have to take into
account that – depending on the additional items introduced – search
heuristics [34] have to be adapted in order to assure efficient search.

5 Related and Future Work

Intelligent testing and debugging methods for configuration knowl-
edge bases have been introduced in [6] where positive test cases
can detect errors by inducing conflicts in a configuration knowledge
base. Conflicts are then resolved on the basis of model-based diag-
nosis [32]. In open configuration scenarios, testing and debugging
approaches have to be adapted to group-based settings where diag-
nosis discrimination has to take into account group preferences.

Bessiere et al. [2] introduced basic mechanisms to the learning

of constraint sets. In this context, knowledge bases are learned on the
basis of positive and negative examples. Generated examples are pre-
sented to users who have to decide whether the examples are positive
or negative. Learning is based on a so-called bias that is a knowledge
base generated from a vocabulary (variables, domains, and opera-
tors). The bias is systematically reduced on the basis of the infor-
mation included in the examples, for instance, all conflicts induced
in the bias by a positive example have to be resolved. In the case
of a negative example, at least one conflict must be preserved which
guarantees the rejection of the negative example. Approaches to the
application of association rule mining for configuration knowledge
discovery are discussed in [23]. An important research issue in this
context is to assure the understandability and manageability of the
derived configuration knowledge [12].

Human Computation is based on the idea of passing those tasks to
humans which are easy to solve for them but are not solvable by com-
puters [39]. Related research has already been conducted in the areas
of ontology construction (concept learning) [36] and sentiment anal-
ysis in text documents [30]. A major idea of the work presented in
this paper is to exploit the concepts of Human Computation as a cen-
tral mechanism for configuration knowledge base construction and
maintenance. These mechanisms go beyond concept learning [36]
and include tasks such as diagnosis discrimination, test case classifi-
cation and evaluation, and configuration dialog design.

Preferences are not known beforehand but are constructed within
the scope of a decision process [3, 38]. As a result, biases occur
which often lead to suboptimal decisions. Concepts to deal with
(group) decision problems in recommender systems are discussed in
[11, 15, 25, 28, 31]. A major issue for future research in this context
is an in-depth investigation of decision biases in group decision mak-
ing. An important question is to which extent biases are compensated
or become more intense when groups decide.

6 Conclusions

In this paper we introduced central ideas and research questions re-
lated to open configuration. Openness in this context is related to the
idea of a closer integration of end-users into configuration knowledge
base development and maintenance operations and of supporting de-
cision processes in scenarios where groups of users are in charge of
configuring a product or service. Furthermore, open configuration is
often characterized by the need of being able to integrate new items
(e.g., component types, components, and constraints) ”on the fly”.
On the basis of the results of a first industry study we reported exam-
ple application domains and discussed related research challenges.
The concepts presented in this paper can be applied in a broad range
of scenarios which go beyond open configuration. Further example
application domains are (constraint-based) scheduling [1], recom-
mender systems [5], and utility evaluation where user groups are in

93

charge of evaluating alternatives [13].

ACKNOWLEDGEMENTS

The work presented in this paper has been conducted in the research
project PEOPLEVIEWS funded by the Austrian Research Promotion
Agency (843492).

REFERENCES
[1] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based Scheduling,

Kluwer, 2001.
[2] C. Bessiere, R. Coletta, B. O’Sullivan, and M. Paulin, ‘Query-driven

constraint acquisition’, in 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI’07), pp. 50–55, Hyderabad, India, (2007).

[3] J. Bettman, M. Luce, and J. Payne, ‘Constructive consumer choice pro-
cesses’, Journal of Consumer Research, 25(3), 187–217, (1998).

[4] H.W. Chesbrough, Open Innovation. The New Imperative for Creating
and Profiting from Technology, Harvard Business School Press, Boston,
2003.

[5] A. Felfernig D. Jannach, M. Zanker and G. Friedrich, Recommender
Systems – An Introduction, Cambridge University Press, 2010.

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,
‘Consistency-based diagnosis of configuration knowledge bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[7] A. Felfernig, G. E. Friedrich, and D. Jannach, ‘UML as Domain Spe-
cific Language for the Construction of Knowledge-based Configuration
Systems’, International Journal of Software Engineering and Knowl-
edge Engineering, 10(4), 449–469, (2000).

[8] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration – From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 2014.

[9] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, ‘The VITA Financial
Services Sales Support Environment’, in AAAI/IAAI 2007, pp. 1692–
1699, Vancouver, Canada, (2007).

[10] A. Felfernig, D. Jannach, and M. Zanker, ‘Contextual Diagrams as
structuring mechanisms for designing configuration knowledge bases in
UML’, in 3rd International Conference on the Unified Modeling Lan-
guage (UML2000), number 1939 in LNCS, pp. 240–254, (2000).

[11] A. Felfernig, W. Maalej, M. Mandl, F. Ricci, and M. Schubert, ‘Recom-
mendation and decision technologies for requirements engineering’, in
ICSE 2010 Workshop on Recommender Systems in Software Engineer-
ing, pp. 1–5, Cape Town, South Africa, (2010).

[12] A. Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, and
G. Ninaus, ‘Recommender Systems for Configuration Knowledge En-
gineering’, in Workshop on Configuration, pp. 51–54, Vienna, Austria,
(2013).

[13] A. Felfernig, S. Schippel, G. Leitner, F. Reinfrank, K. Isak, M. Mandl,
P. Blazek, and G. Ninaus, ‘Automated Repair of Scoring Rules in
Constraint-based Recommender Systems’, AI Communications, 26(2),
15–27, (2013).

[14] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing (AI EDAM), 26(1), 53–
62, (2012).

[15] A. Felfernig, E. Teppan, and B. Gula, ‘Knowledge-based recommender
technologies for marketing and sales’, International Journal of Pat-
tern Recognition and Artificial Intelligence (IJPRAI), 21(2), 333–354,
(2006). Special issue of Personalization Techniques for Recommender
Systems and Intelligent User Interfaces.

[16] A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maaleij,
D. Pagano, L. Weninger, and F. Reinfrank, ‘Group Decision Support for
Requirements Negotiation’, in Advances in User Modeling, Springer
Verlag, volume 7138 of Lecture Notes in Computer Science, pp. 105–
116, (2012).

[17] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 13(4), 59–
68, (1998).

[18] C. Forza, F. Salvador, and A. Trentin, ‘Form postponement effects on
operational performance: a typological theory’, International Journal
of Operations and Production Management, 28, 1067–1094, (2008).

[19] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems, 13(4), 78–85, (1998).

[20] F. Hayes-Roth, D. Waterman, and D. Lenat, Building Expert Systems,
Addison-Wesley, 1983.

[21] S. Hoppenbrouwers, P. Lucas, D. Romano, and D. Moffat, ‘Attacking
the knowledge acquisition bottleneck trough Games-For-Modelling’, in
AISB Symposium, pp. 81–86, (2009).

[22] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation & Reasoning’, in
Knowledge-based Configuration – From Research to Business Cases,
eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 6, 59–
96, Morgan Kaufmann Publishers, (2013).

[23] Y. Huang, H. Liu, W. Ng, W. Lu, B. Song, and X. Li, ‘Automat-
ing knowledge acquisition for constraint-based product configuration’,
Journal of Manufacturing Technology Management, 19(6), 744–754,
(2008).

[24] L. Hvam, N. Mortensen, and J. Riis, Product Customization, Springer,
2007.

[25] A. Jameson, S. Baldes, and T. Kleinbauer, ‘Two methods for enhancing
mutual awareness in a group recommender system’, in International
Working Conference on Advanced Visual Interfaces, pp. 447–449, Gal-
lipoli, Italy, (2004).

[26] I. John, J. Knodel, T. Lehner, and D. Muthig, ‘A practical guide
to product line scoping’, in Software Product Line Conference 2006
(SPLC2006), pp. 3–12, (2006).

[27] A. Mackworth, ‘Consistency in Networks of Relations’, Artificial Intel-
ligence, 8(1), 99–118, (1977).

[28] M. Mandl, A. Felfernig, E. Teppan, and M. Schubert, ‘Consumer Deci-
sion Making in Knowledge-based Recommendation’, Journal of Intel-
ligent Information Systems (JIIS), 37(1), 1–22, (2010).

[29] J. Masthoff, ‘Group Recommender Systems: Combining Individual
Models’, Recommender Systems Handbook, 677–702, (2011).

[30] C. Musat, A. Ghasemi, A., and B. Faltings, ‘Sentiment Analysis Using
a Novel Human Computation Game’, in 3rd Workshop on the People’s
Web Meets NLP, pp. 1–9, (2012).

[31] G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner,
L. Weninger, and W. Schanil, ‘IntelliReq: Intelligent Techniques for
Software Requirements Engineering’, in 21st European Conference on
Artificial Intelligence / Prestigious Applications of Intelligent Systems
(PAIS 2014), p. to appear, Prague, Czech Republic, (2014).

[32] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[33] M. Richardson and P. Domingos, ‘Building Large Knowledge Bases by
Mass Collaboration’, in 2nd Intl. Conference on Knowledge Capture
(K-CAP03), pp. 129–137, (2003).

[34] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and P. Stuckey,
‘Search combinators’, Constraint Journal, 18(2), 269–305, (2013).

[35] M. Schubert, A. Felfernig, and M. Mandl, ‘FastXPlain: Conflict De-
tection for Constraint-Based Recommendation Problems’, in Trends in
Applied Intelligent Systems (proc. of 23rd International Conference on
Industrial Engineering and Other Applications of Applied Intelligent
Systems, IEA/AIE 2010), eds., Nicolás Garcı́a-Pedrajas, Francisco Her-
rera, Colin Fyfe, JoséManuel Benı́tez, and Moonis Ali, volume 6096
of Lecture Notes in Computer Science, 621–630, Springer, Cordoba,
Spain, (2010).

[36] K. Siorpaes and M. Hepp, ‘Games with a Purpose for the Semantic
Web’, IEEE Intelligent Systems, 23(3), 50–60, (2008).

[37] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

[38] E. Teppan and A. Felfernig, ‘Asymmetric Dominance- and Com-
promise Effects in the Financial Services Domain’, in IEEE In-
ternational Conference on E-Commerce and Enterprise Computing
(CEC/EEE2009), pp. 57–64, Vienna. Austria, (2009).

[39] L. von Ahn, ‘Human Computation’, in Technical Report CMU-CS-05-
193, Carnegie Mellon University, School of Computer Science, (2005).

[40] L. von Ahn, ‘Games with a Purpose’, IEEE Computer, 39(6), 92–94,
(2006).

[41] C. Wagner, ‘Breaking the Knowledge Acquisition Bottleneck through
Conversational Knowledge Management’, Information Resources
Management Journal, 19(1), 70–83, (2006).

[42] B. Yang and N. D. Burns, ‘Implications of postponement for the sup-
ply chain’, International Journal of Production Research, 41(9), 2075–
2090, (2003).

94

	001_proceedings_headings
	002_papers_configuration_workshop_2014
	01_confws2014_submission_14
	02_confws2014_submission_3
	INTRODUCTION
	PRELIMINARIES
	Data representation with RDF
	Querying with SPARQL
	Semantic heterogeneity

	WORKING EXAMPLE
	Converting object-oriented models to ontologies
	Unique Name Assumption and Closed World Assumption

	DATA INTEGRATION WITH SPARQL
	Creation of the system view
	Creating instances
	Complex mapping

	USING THE INTEGRATED MODEL
	Queries
	Checking constraints
	Special treatment of owl:sameAs

	RELATED WORK
	CONCLUSIONS

	02_confws20141_submission_3_empty
	03_confws2014_submission_7
	03_confws20141_submission_7_empty
	04_confws2014_submission_1
	05_confws2014_submission_16
	06_confws2014_submission_13
	07_confws2014_submission_11
	08_confws2014_submission_10
	09_confws2014_submission_6
	10_confws2014_submission_12
	11_confws2014_submission_4
	11_confws20141_submission_4_empty
	12_confws2014_submission_5
	13_confws2014_submission_8

