

A Method for Data Minimization in Personal

Information Sharing

Prima Gustiene and Remigijus Gustas

Department of Information Systems, Karlstad University, Sweden

{Prima.Gustiene, Remigijus.Gustas}@kau.se

Abstract. A fundamental privacy principle, which is enforced in many

privacy-enhancing technologies, is data minimization, i.e. the amount of

personal data that are revealed to others and extend to which they are pro-

cessed should be minimized. Privacy-enhancing identity management is

important for processing personal data, the purpose of which is to protect

personal data. This is especially relevant for communication via Internet

where users are leaving much personal data. Privacy issues should be em-

bedded into a system’s core functionality. Minimization of data should be

maintained and controlled throughout the systems lifecycle, from the early

stages of system analysis and design to implementation. The primary goal

of this paper is to present a conceptual modelling method, including the

framework, modelling process and the basic modelling constructs, which

enables minimization of data. Data cannot be analysed separately without

taken into account the processes that cause the changes of data as well as

goals. Analysis of relevant data contributes to the problem of data mini-

mization in privacy-enhancing technologies.

Keywords: conceptual modelling, data analysis and minimization, privacy

enhancement, service-oriented modelling method.

1 Introduction

Privacy is an essential and fundamental human right (Schütz & Friedewald,

2011). Growing technological possibilities enable transformation of our society

towards a computerised social community highly dependent on information

sharing. Information sharing increases privacy problems e.g., unauthorised ac-

cess to personal data and using it for unexpected purposes. Privacy involves the

protection of personal information. Information privacy is one of the aspects of

the concept of privacy, which is related to the person’s right to determine what,

34 Prima Gustiene and Remigijus Gustas

when and how personal information can be communicated to various recipients

(Westin, 1967). The best protection of personal information is when the infor-

mation is not revealed at all, but this is not possible in this computerised society.

Nowadays business more and more takes place on the Internet. This situation

increases problems to secure personal data. The processing of the personal data

is usually not transparent for the users, but it can have painful consequences to

privacy and security of the users. Sophisticated technologies provide possibilities

to trace, store and use non-protected data for different purposes. The question is

what data and how much data should be collected, stored and shared doing busi-

ness online. The answer could be found in data analysis and design methods,

which could help to analyse and minimize the amount of personal data that are

revealed to others. The problem today is that the methods are not pragmatic-

driven and they have not enough semantic power for analysis of data.

Privacy-enhancing identity management (IDM) systems are designed to en-

force legal privacy requirements to guarantee the processing of privacy compli-

ant data (Fischer-Hübner & Hedbom, 2008). IDM provides technical means that

enables protection of legal privacy principles. Identity management systems

manage different identities of a person, helping in processing their personal data

and making data life cycle management more transparent. Difficult problems in

the area of personal data processing such as lack of data minimization and data

life cycle management require the new research solutions for reducing problems

of personal data processing. There is a lack of a method that provides systematic

guiding principles for aligning the overall systems design with respect to priva-

cy-enhancement mechanisms. These mechanisms must be analysed in the con-

text of a larger inter-organisational system between service requester and service

provider. As every system is unique, privacy issues should be integrated with

other types of system requirements. To integrate privacy issues into the whole

enterprise development system, it is necessary to consider these issues, as a part

of a new system development life cycle, from the early stages of business goals

analysis, requirements analysis and design to delivery of the system.

Data is an important asset concerning information privacy. Privacy-enhancing

identity management systems require accurate data analysis for processing per-

sonal data. Data is created, processed and consumed in various transactions for

different operational and analytical purposes. As data is the main element for the

management of information privacy, it is critical to identify a minimal amount of

data, which are relevant in the specific context or scenario. Interdependencies

among models that represent different aspects of the system cannot be analysed

in isolation. Business data and business processes should be analysed together.

Just having an integrated and systematic modelling method provides possibility

to analyse structural, interactive and behavioural aspects of a system together.

Such method can be applied for the analysis of different scenarios including such

non-functional requirements as information privacy issues. The main goal of this

paper is to present a framework of a service-oriented modelling method and a

modelling process that could be applied for data analysis and design to solve

data minimisation problems.

A Method for Data Minimization 35

2 Model Driven Architecture and Modelling Levels

Model Driven Architecture (MDA) (OMG, 2010) is an approach for model-

driven engineering of software systems. It provides a set of guidelines for the

structuring of specifications, which are expressed as three models: Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform

Specific Model. The important feature of MDA is the mapping rules and tech-

niques used to modify one model into another. Still, a question mapping rule

automation between CIM and PIM levels is feasible and remains a major re-

search effort. Pragmatic and semantic levels are supporting computation-neutral

modelling (CNM) and are similar to CIM at MDA framework (see figure 1).

Technology-oriented design is done at a syntactic level. It is implementation

specific modelling (ISM), which can be compared with PIM at MDA frame-

work.

Pragmatic specifications aim to provide motivation for conceptual representa-

tions of enterprise components at the semantic level that defines business pro-

cesses across organisational and technical system boundaries. Pragmatic

knowledge, expressed in terms of pragmatic entities such as goals, problems and

opportunities, provides motivation for conceptual representations of enterprise

components, which take part in various business processes of an enterprise. To

structure the pragmatic knowledge about business processes (as services) is

important, because such knowledge provides motivation for various configura-

tions of service architectures and defines the ‘why’ aspect of the problem do-

main. Pragmatic specifications are necessary for several reasons. They motivate

service events and show the guidelines over how pragmatic aspects are mapped

to conceptual representations, which define the semantics of business design,

including the structural, behavioural and interactive aspects of business process-

es.

Pragmatic dependencies can be viewed as modelling basis to reason about the

intentions of designers related to new solutions. Pragmatic entities such as goals,

problems, and opportunities can be related by pragmatic dependencies and ana-

lysed in different situations. Any business process functionality can be defined

as a service. A service, in different contexts, from pragmatic point of view can

be regarded as different pragmatic entities such as a problem, opportunity or a

goal. Business activities can be defined in terms of a set of interaction loops

between service requester and a service provider, and linked to design goals

(Gustas & Gustiene, 2008). Behind every business process is a clear motivation

or goal, which can be analysed together with a final process state. The achieve-

ment of this state should bring value to customer. Goal hierarchies can help to

identify missing processes and data. Goals also provide a basis for reasoning

about the semantic incompleteness of system specifications.

Pragmatic specifications aim to provide justification for conceptual representa-

tions of data and processes. To understand how and why technical system com-

ponents are useful and how they fit into the overall organizational system at least

three modelling levels of information system specifications are necessary: prag-

matic level, semantic level and syntactic level (Gustas & Gustiene, 2009). Ac-

cording to FRISCO report (Falkenberg et al., 1996) these three levels are of great

interest in the context of information systems design as they deal with the usage,

36 Prima Gustiene and Remigijus Gustas

meaning, and structures of system representations. Architectural framework for

service-oriented modelling is presented in figure 1 and is explained below.

Business-Oriented

Analysis

Service-Oriented

Analysis

Technology-

Oriented Design

PRAGMATIC LEVEL

SEMANTIC LEVEL

SYNTACTIC LEVEL

Legend:

 Computation

Neutral Modelling

(CNM)

 Implementation

Specific Modelling

(ISM)

traceability

motivation

Fig.1. Architectural framework for service-oriented modelling

Pragmatic level is the level where business-oriented analysis is done. Analysis

at this level using pragmatic dependencies (Gustiene, 2010) is supposed to drive

a system engineering process from business goals to service interactions. Here

the decision of which information is necessary and why takes place. Semantic

level is important for integration of interactive ‘where’ and ‘who’, structural

‘what’ and behavioural ‘how’ and ‘when’ aspects (Zachman, 1987) of conceptu-

al representations. Semantic descriptions constrain the implementation specific

representations. Syntactic level defines the details, which explain the data pro-

cessing needs for specific application or software component.

The fitness of system specifications between these levels is critical for the suc-

cess of the final result. Consistency between levels much depends on having

appropriate modelling techniques for the refinement of pragmatic entities that

justify and represent their structural and dynamic aspects at the semantic level.

An integrated modelling way provides possibility to check consistency between

levels. It also underlines the possibilities for requirements traceability, which is

crucial for verification and validation of system requirements (Maciaszek, 2005).

Such three-level architectural framework is the foundation of modelling that

helps to provide interplay between business-oriented analysis, service-oriented

analysis and technology-oriented design, which are critical for relevant data and

process analysis.

3 Perspectives of Service-Oriented Modelling Method

Service-oriented modelling method for information system design (Gustiene,

2010), (Gustas & Gustiene, 2012) is a method based on new principles of ser-

A Method for Data Minimization 37

vice-oriented analysis and design. This method puts into foreground the model-

ling of interactions (Dietz, 2001) among various enterprise actors. From ontolog-

ical point of view (Dietz, 2006), every enterprise system could be seen as a com-

position of different actors that could be viewed as organizational and technical

components. The interaction among them is motivated according to the strategic

goals of some specific scenario that could be seen as part of some problem do-

main. The uniqueness of the method is that it is based on the principles of ser-

vice orientation. Business processes can be analysed as a composition of service

interactions. Service-oriented representations are built by conceptualizing inter-

actions among organizational and technical components, which are viewed as

various types of enterprise actors. Continuity of interaction loops is the main

principle of service orientation. Modelling of interactions between different

types of enterprise actors is critical from system analysis and design point of

view for several reasons. Explicit modelling of interactions helps to develop an

integrated graphical representation of business data and processes. Interaction

dependencies among different enterprise actors are important for motivating data

transition events and effects (Gustas, 2011). Interaction dependencies provide

the possibility to preserve the modularity of crosscutting concerns between dif-

ferent components and to integrate behavioural effects with structural changes in

various classes of objects, which represent different data.

The definition of service presented in this method explains the necessary ele-

ments and provides with the guidelines how these elements are related to form

service architecture. There are two ontological perspectives of communication

action (Dietz, 2006), (Gustas & Gustiene, 2009) that lie in the foundation of the

main construct for service-oriented modelling: intersubjective and objective.

The intersubjective perspective defines how actors (service requesters and ser-

vice providers) are related to each other. This perspective is important as it pre-

sents the actors, as independent loosely coupled components, who add value by

performing some activities. It signifies certain commitment and responsibilities

between enterprise actors (Ferrario & Guarino, 2008).

The objective perspective defines how different objects change when the ac-

tions during interaction process take place. The objective perspective can be

applied to represent the internal behaviour of the objects. It represents data,

which is analysed in the context of interaction between organizational and tech-

nical system components. Interactions among different actors can be used to

manifest object property changes that are results of different actions. Property

changes are important for eliciting of semantic meaning of the problem domain.

The cohesion of these two perspectives results into a single modelling notation

(construct), which allows the integration of static and dynamic aspects of the

system, which are important to maintain a holistic representation where external

and internal views of service conceptualizations are visualized together.

A starting point of the ontological definition of an enterprise system in the pre-

sented service-oriented foundation is quite similar to ontological understanding

of system and enterprise as a system. Enterprise system is a composition of the

organizational and technical components, which are viewed as various types of

enterprise actors and which interact as service requesters and service providers.

Actors are subsystems that are represented by individuals, organizations and

their divisions or roles, which denote groups of people. Technical actors are

38 Prima Gustiene and Remigijus Gustas

subsystems such as machines, software and hardware components, etc. Any two

actors can be linked by inheritance, composition, classification or interaction

dependencies, which are represented graphically in figure 2.

Composition

Inheritance

Interaction

Classification

Fig.2. Actor dependencies

Inheritance dependency between actors is used for sharing the static and dy-

namic similarities. More specific actors inherit the composition and interaction

dependencies from more general actors. Dependencies represent additional in-

trinsic actor interoperation features and structural properties that are prescribed

by an enterprise system. Composition is a conceptual dependency used to relate a

whole to other concepts that are viewed as parts. It is a stricter semantic relation

as compared to an aggregation and a composition that is defined in the object-

oriented approaches.

Classification link between two actors is used to define their instances. In con-

ceptual modelling, an instance can be viewed as an element of a set that is de-

fined by a concept it belongs to. In the same way as an object can be manipulat-

ed by operations, an actor has interaction privileges and responsibilities that are

defined by the interaction dependencies.

Interaction dependencies are used to conceptualize services between various

enterprise system actors. Since actors are implemented as organizational and

technical system components, they can use each other according to prescribed

patterns to achieve their goals. Two interaction dependencies into opposite direc-

tions between a service requester and service provider define a typical action

workflow loop. Interaction flows of a conference management system are repre-

sented in figure 3.

PC Chair

Revie-

wer

Confe-

rence
Contact

Person

Accept

Reject

Submit

Appoint

Reviewers

Return

Review

Author

Withdraw

MSEPS

2013

Fig. 3. Example of semantic dependencies between actors

A Method for Data Minimization 39

Identification of interaction flows and static dependencies among actors is the

first step in the modelling process. An interaction link between two actors indi-

cates that one actor depends on another actor by a specific action. It represents

an intersubjective perspective of interaction. For instance, a contact person

submits a paper to the conference. He wants this paper to be published. It can be

done by accept action, which is initiated by the PC chair. The conference has

quite different goals. For instance, conference goals would be to make the sub-

mission and reviewing processes as smooth as possible and to be the best confer-

ence, i.e. to accept just the best papers.

There are two actors involved in this business process, a contact person who

will submit a paper and a conference. A conference is composed of PC Chairs

and Reviewers. A conference management system has delegated all major com-

munication through a PC chair, which is a part of a Conference (see composition

dependency). PC Chair has a goal to handle reviewing process as good as possi-

ble that is to do everything in time. He appoints reviewers and sends the review

results to a contact person. The task of reviewers is to reviews the papers. A

contact person who is also an author (see inheritance dependency) submits the

paper to the conference, by triggering the action Submit. When the person sub-

mits the paper, the conference has two possibilities the paper will be accepted, or

rejected (see actions Accept and Reject). A Contact Person has also possibility to

withdraw the paper (see action Withdraw). When the conference receives the

submitted paper, a PC Chair chooses reviewers and sends the paper for review.

After reviewing process, a Reviewer returns review to PC Chair (see action

Return Review). The results of the review will be sent to contact person (ac-

ceptance information or rejection).

4 Modeling Process

The main contribution of this paper is to present the modelling process that

consists of five fundamental steps, which support the incremental and systematic

service-oriented analysis and design process. An integrated modelling process

provides the guidelines for the transition between levels (see figure 1). The re-

quirements traceability is critical for change management, verification and vali-

dation processes. A starting point of service-oriented analysis is identification of

actor goals and interaction dependencies among service requesters and service

providers. The structural aspects of a system are used to represent business data.

The behavioural aspects are clarified by defining object transition effects. With-

out ability to represent noteworthy structural changes, it would be difficult to

understand the deep semantics of interactions. Having possibility to reiterate

these modelling steps, helps to keep data minimal. The steps of this process are

as follows:

1. Identification of the main scenario.

Suppose the conference needs to accept just the best papers and a contact per-

son hopes that his paper to be among those accepted papers. This scenario repre-

sents a normal flow of events (Cockburn, 2001). It can be expressed by using

two interaction loops, which are represented in figure 3. The first service loop

40 Prima Gustiene and Remigijus Gustas

related to paper submission and acceptance. It can be represented as follows:

if Submit(Contact Person  PC Chair)

then Accept(PC Chair  Contact Person).

The second interaction loop deals with the actions of appointing reviewers and

retuning reviews. It is as follows:

if Appoint Reviewers(PC Chair  Reviewer)

then Return Review(Reviewer  PC Chair).

The interaction flows among actors are graphically illustrated in figure 4.

Review

Documents

PC

Chair

Submission Appoint

Reviewers
Submit

Accept

Revie-

wer

PC

Chair

Review
Return

Review

Revision

Instructions

Contact

Person

Fig. 4. Main interactions in a conference management system

Interaction flows are the special types of concepts that represent moving

flows. In service-oriented modelling method, solid rectangles are used for the

denotation of material flows and light boxes show information flows. An action

with a missing data or material flow is understood as a decision or control flow.

Actions are performed by actors and are represented by ellipses. They are neces-

sary for transferring flows between subsystems, which are represented by vari-

ous organizational components. Actors are denoted by square rectangles.

2. Definition of actions in terms of transition dependencies.

The internal effects of objects can be expressed by using transition links (──)

between various classes of objects. There are three fundamental ways for repre-

senting object behaviour by using reclassification, creation and termination ac-

tions (Gustas and Gustiene, 2012). If termination and creation action is per-

formed at the same time, then it is called a reclassification action. The graphical

examples of creation, termination and reclassification are presented in figure 5.

Contact

Person

PC

Chair

Submission

Appoint

Reviewers

Submit

Accept

Revie-

wer

PC

Chair

ReviewReturn

Review

Revision

Instructions

Paper

In Review

Paper

Accepted

Review

Documents

Paper

Submitted

Paper

Reviewed
Review

Reviewing

Fig. 5. Main reclassifications in a conference management system

A contact person has a possibility to submit a paper. The submission is per-

A Method for Data Minimization 41

formed when the Paper[Submitted] object is created. When it is accepted, the

responsibility of the conference PC chair is to trigger the appoint reviewers ac-

tion. It is used to send review documents to the reviewers and reclassify Pa-

per[Submitted] to Paper[In review]. Reviewer is obliged to deliver review to PC

chair by triggering the return review action, which terminates the Reviewing

process and created a finalized Review. The PC Chair is authorized to accept a

reviewed paper by informing a contact person with revision instructions. A Pa-

per[Reviewed] is reclassified to Paper[Accepted] by the Accept action.

3. Identification of a noteworthy semantic difference in every action.

This step is important for identification of attributes, which are affected during

object transitions from the pre-condition to post-condition classes. The semantic

difference must be defined for every transition dependency by using mandatory

attribute links. Various types of attribute dependencies in a conference manage-

ment system are represented in figure 6. For example, the Accept action changes

the state of a Paper object from Reviewed to Accepted. Note that each Pa-

per[Accepted] must be characterized by five properties (Presentation Time, Re-

view, List of Authors, Submission number, Contact Person) and Pa-

per[Reviewed] - by four properties. The noteworthy semantic difference is

represented by the complementary attribute Presentation Time.

4. Refactoring.

It is difficult to get initial diagram without inconsistencies and redundancies

from the start. Classes and their attributes must be revisited and their semantics

examined several times. The refactoring step is necessary to keep conceptual

models clean from inconsistent attributes as well as minimize diagrams as much

as possible. The refactoring process (Fowler, 1999) does not alter semantics of

specification. Refactoring is an essential characteristic of good engineering,

because it makes necessary structural changes in order to make modelling clean

and understandable. The diagram, which illustrates the outcome of this step, is

presented in figure 6.

42 Prima Gustiene and Remigijus Gustas

Contact

Person

PC

Chair

Submission

Appoint

Reviewers

Submit

Accept

Revie-

wer

PC

Chair

Review

Return

Review

Revision

Instructions

Paper

In Review

Paper

Reviewed

Paper

Accepted

Contact

Person
Reviewer

Review

Presentation

Time

Submission

Number

 Author of

Review

 List of

Authors

Reviewing

Person

Review

Documents

Paper

Submitted

E-mail

Deadline

Rating

Fig. 6. Interactive, behavioural and structural aspects of a conference management system

Inheritance mechanism allows sharing attributes via generaliza-

tion/specialization relations. So, inheritance hierarchies can be used to reduce the

diagram. For instance, Accepted Paper class in this diagram inherits attributes

from Paper in state Reviewed.

5. Describing the alternative scenario.

This step is important, because the modelling process should provide with the

possibility to demonstrate available alternatives to the main course of events.

Note that the Reject event is an alternative to Accept. Therefore, it should be

added at this step (see figure 3).

We have introduced an incremental way of modelling enforcing only minimal

data sets, which are represented for various types of actions. Five steps of analy-

sis process are also important for integrity control between static and dynamic

aspects in a system. The data necessary in this business process are limited just

to most relevant, adequate and not excessive. But the process of data minimisa-

tion alone will not solve the problem. Creation of personal data records must be

adequate with respect to basic activities in a transaction. It means that analysis of

data should be done taking into account the context of business process as well

as data handling policy that the service requester and service provider establish

in an agreement. How to find out which data are relevant to specific business

process depends much not only on structural analysis, but on interactions and

behavioural aspects of a system.

Data life cycles vary in different scenarios. Data life cycle analysis is im-

portant to understand and to justify why and when personal data can be stored in

the system and when it should be deleted. Creation of personal data records and

A Method for Data Minimization 43

keeping them in identifiable form not longer than necessary is important princi-

ple of privacy enhancement technologies. To manage data life cycle implies

analysis of different aspects of data, what data is processed, by whom, why,

where, and how. To get answers to all these questions a holistic integrated repre-

sentation of a system should be analysed.

5 Conclusion

Problems in the area of personal data processing such as lack of data minimi-

zation and data life cycle management require the new research solutions. Priva-

cy issues are always embedded into some organization and are related to busi-

ness scenarios. It means that these scenarios should be analysed and designed

together with functional requirements. As data is the main element concerning

the management of information privacy, it is critical to have a way of data analy-

sis for the specific context of business scenario. The advantage of this conceptual

modelling method is that it facilitates reasoning about semantic integrity of data.

It provides a modelling process and modelling techniques for early requirements

analysis, where pragmatic and semantic aspects of different scenarios can be

analysed together.

The modelling process supports the traceability between different levels of ar-

chitectural framework, which is critical for understanding how and why tech-

nical system components are useful and how they fit into overall organizational

system. Analysis using this method can be applied to solve the problems of data

minimization. Applying a method for analysis and design of privacy concerns

would contribute with a new knowledge in designing security assurance and

privacy-enhancing mechanisms. The method could be applied for diagnosing the

redundant data, i.e. to distinguish between object properties, which are relevant

or not justified with respect to scenarios in the secondary interaction loops. It can

be also used to detect the temporal data or to distinguish between object proper-

ties that can be accessible not longer than necessary. The method is able to justi-

fy the persistent data, which must be to retained in relation to data transfer sce-

narios and policies, if various commitments are broken.

References

1. Cockburn, A.: Writing Effective Use Cases. Boston: Addison- Wesley (2001)
2. Dietz J. L. G.: Enterprise Ontology: Theory and Methodology, Springer, Berlin

(2006)
3. Dietz J. L. G.: DEMO: Towards a Discipline of Organisational Engineering. Euro-

pean Journal of Operational Research. 128(2), 351-363 (2001)
4. Falkenberg, E. D., Hesse, W., Lingreen, P., Nilsson, B. E., Oei, J.L.H., Rolland, C.,

et al.: A Framework of Information System Concepts (Report of the IFIP WP 8.1

Task Group Frisco). Leiden; Leiden University (1996)

5. Ferrario, R.. & Guarino, N.: Towards an Ontological Foundation for Service Sci-

ence. In Future Internet – FIS2008: The First Internet Symposium, FIS 2008 Vienna,

Austria. Revised Selected Papers, pp. 152-169. Berlin: Springer (2008)

44 Prima Gustiene and Remigijus Gustas

6. Fisher-Hübner, S. & Hedbom, H.: Benefits of privacy-enhancing identity manage-

ment. Asia-Pacific Business Review, IV (4), 36-52 (2008)

7. Fowler, M.: Analysis Patterns: Reusable Object Models. Menlo Park: Addison-

Wesley (1997)

8. Gustas, R.: Modeling Approach for Integration and Evolution of Information System

Conceptualizations, International Journal of Information System Modeling and De-

sign, Vol. 1, Issue No 1, pp.79-108 (2011)

9. Gustas, R. and Gustiene, P.: Conceptual Modeling Method for Separation of Con-

cerns and Integration of Structure and Behavior, International Journal of Infor-

mation System Modeling and Design, Vol. 3, Issue No 1, pp.48-77 (2012)

10. Gustas, R. & Gustiene, P.: A New Method for Conceptual Modelling of Information

Systems. Information Systems Development: Towards a Service Provision Society.

Proceedings of the 17th International Conference on Information System Develop-

ment, pp.157-165. New York: Springer (2009)

11. Gustas, R. & Gustiene P.: “Pragmatic – Driven Approach for Service-Oriented

Analysis and Design”, Information Systems Engineering - from Data Analysis to

Process Networks, IGI Global, USA (2008)

12. Gustiene, P.: Development of a New Service-Oriented Modelling Method for Infor-

mation Systems Analysis and Design. Doctoral Thesis, Karlstad: Karlstad University

Studies, 2010:19 (2010)

13. Maciaszek, L. A.: Requirements Analysis and System Design, Addison Wesley

(2005).

14. Schütz, P. & Friedewald, M.: Privacy: What Are We Actually Talking About? A

Multidisciplinary Approach. In S. Fischer-Hübner, P. Duquenoy, M. Hansen, R.

Leenes & Ge Zhang (Eds.) Privacy and Identity Management for Life. IFIP AICT

352, pp. 1-14, New York: Springer (2011)

15. OMG.: Model Driven Architecture [Electronic Version]. Retrieved October, 2012,

from http://www.omg.org/mda (2010)

16. Zachman, J. A.: A Framework for Information Systems Architecture. IBM System

Journal, 26(3), 276-292 (1987)

17. Westin, A.F.: Privacy and Freedom. Atheneum, New York, NY, USA (1967)

