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ABSTRACT

Many real world applications in the healthcare domain would
gain a substantial advantage from sharing and search tech-
nologies available for P2P infrastructures if these technolo-
gies could provide required confidentiality guarantees. Cur-
rently, DHT-based indexes which are typically applied for
effective and efficient information sharing and retrieval in
P2P networks do not offer sufficient confidentiality for the
patient data in a healthcare network and medical document
archives. In this paper we discuss the challenges involved
in securing patient data stored in a DHT-based index and
discuss initial solutions to address these challenges.

1. INTRODUCTION

Patient data records in the healthcare domain are often nat-
urally distributed over the archives of corresponding doctors
and healthcare facilities. Real world applications using this
data would gain a substantial advantage from using sharing
and search technologies available for P2P infrastructures.
The P2P paradigm enables efficient sharing and retrieval
of information in distributed settings and promises unlim-
ited scalability, easy maintenance, and robustness against
network attacks and failures. A study [19] stressed the im-
portance of P2P networks in medical informatics, especially
for improving data sharing between doctors and hospitals,
in the national (US) as well as international contexts. How-
ever, considering high sensibility of the personal confiden-
tial data, privacy preserving mechanisms are unavoidable in
this context. In this paper we illustrate the problem of ef-
ficient and confidential information sharing in a healthcare
network along the following scenario: In case of emergency,
information about blood group, allergies and vaccinations of
a patient must be accumulated from collaborative network
peers and presented to an authorized emergency physician
to enable rapid and informed treatment decisions. This in-
formation is naturally spread among several network peers,
e.g. physicians, internists and hospitals that treated the pa-
tient in the past. In case of emergency these peers need to
be efficiently identified and requested to provide required in-
formation. However, the knowledge of the content provider,
in this case a doctor or a hospital, can also disclose insides
in a patient’s history for the interested third parties. For
instance, an insurance company, a bank or a potential em-
ployer might want to find out some data about the patient
history. The specific area of expertise of the corresponding
specialist can give insides in the art of potential diseases
or the number of medical peers corresponding to a person

indirectly disclosures illness frequency. DHT-based indexes
are the standard choice for efficient identification of con-
tent providers and searching information in P2P networks
in general. However, an ordinary DHT-based index does
not provide sufficient confidentiality guarantees for health-
care data. This index is created using the inverted index
data structure, which is then distributed over the network
peers. An inverted index is a sequence of posting lists, each
of which contains the IDs of all peers containing informa-
tion about the specific term (which corresponds to a patient
ID in our scenario). Table 1 shows an inverted index with
four posting lists and seven posting list elements (elements
for short). For instance, for patient John Doe the index
includes information on one dentist, one urologist and one
general practitioner who treated her in the past. This infor-
mation can be easily extracted from the ordinary inverted
index and thus requires additional protection against unau-
thorized access. A mnaive solution would be to rely just on
access control mechanisms on a trusted server. However, it
is unlikely that all institutionally independent doctors and
hospitals in a collaborative healthcare network can agree on
a single trusted central authority to enforce access control
on index entries. Moreover, centralized indexes are attrac-
tive targets for attack and will need additional protection
even if the index would be encrypted. For example, even if
the exact content of the elements is obscured, the length of
the posting lists corresponds to the number of doctors the
patient visited in the past. Additionally, an adversary can
scan posting lists on a compromised server to collect and
count the ID’s of the patients of a specific doctor.

In this paper we investigate the problem of building a DHT-
based inverted index HEALTH*Zfor secure provider selec-
tion in collaborative healthcare P2P networks. This index
fulfills the following conditions: (i) any information pub-
lished in the DHT can be accessed only by authorized par-
ticipants; (ii) each participant can easily and inexpensively
access all information she has authorization for; (iii) the
solution must withstand adversaries, and; (iv) the solution
must be completely decentralized and stable even if some
providers will not be available, to allow scalability in large
P2P networks. Our contribution is summarized as follows:
(i) we formalize the problem of securing provider informa-
tion stored in the DHT-based index: we describe the pos-
sible threats that need to be addressed by an acceptable
solution and show what characteristics each acceptable so-
lution should adhere; (ii) we propose a solution for securing



Papetrou, O. | dentist:Peer P19, podiatrist: Peer P7
Zerr, S dentist2:Peer P30

Doe, Joe urologist: Peer P40, dentist:Peer P19
Smith, Joe dentist:Peer P19

Table 1: A Patient-Doctor Inverted Index

the DHT index. The solution combines several technologies
which are required to fully secure the data: k out of n en-
cryption, encryption against statistical attacks, and policy-
driven authorization; (iii) we perform a theoretical evalua-
tion for the cost and security offered by the network. The
paper is organized as follows: Section 2 discusses the threat
model; Section 3 presents HEALTH *Zindex; Section 4 con-
tains evaluation; Section 5 describes related work; Section 6
provides a conclusion.

2. THREAT MODEL

HEALTH?targets the problem of supporting efficient provider

selection for healthcare data distributed over a set of network
peers. In order to provide efficient, scalable and completely
decentralized solution this network makes use of a DHT-
based index which is distributed among network peers. In-
formation stored in this index requires protection against
unauthorized usage. The index needs to resist statistical
attacks and achieve the privacy goals described in the fol-
lowing.

Attacks: To give a sense of the set of potential dangers,
consider the following three goals of a potential attack on
an index.

o Determine the number of peers sharing patient’s data
on the network. Aggregate number of posting elements
shared about a particular patient over the network cor-
responds to the number of peers treated the patient in
the past. For example, an adversary may observe that
the number of peers sharing records of a patient ex-
ceeds average number of peers for other patients and
conclude the increased illness probability.

e Determine whether a patient record appears at a par-
ticular inaccessible site, or at any indexed site. For
example, a patient record at a specialists’ peer cor-
responds to an increased probability of a particular
disease.

e Reconstruct the list of records shared by a particular
peer on the network. The list of posting elements
shared by the peer corresponds to the list patients
shared by this peer. For instance, a competitor peer
may want to obtain such list of patients.

Privacy Goal: HEALTH ?focuses on attaining content pri-
vacy with respect to data d made searchable by some con-
tent provider p. That means that an adversary A should
not be allowed to deduce that p is sharing data d unless
A has been granted access to d by p. In addition, state of
the art techniques auch as secure communication channels
such as https should be used to provide confidentially for
the content of queries and updates. Query privacy preserv-
ing techniques like [16, 7], can be used to prevent an adver-
sary from determining which searcher issued what particu-
lar queries. An adversary could determine peers involved in
the patient history by examining query logs, for this reason
HEALTH" Zdoes not store any query log information.

J DHT Finger table | DHT Index | Shared Information
Peer Key range

P7 (192.3.11.2) 7-13

P14 (195.32.1.14) 14-18

P30 (111.27.2.2) 30-32

P57 (28.124.2.67) 57-63

DHT Finger table | DHT Index | Shared Information
7

Key Value (Posting list)
Papapetrou,0. dentist:url/323101
dermatologist:url/1132
Allergy to penicillin

Zerr,Sergey

DHT Finger table | DHT Index | Shared Information
Peer of a doctor

Patient Name Info
Papapetrou,O. Allergy to penicillin
Full history:
dentist:url/323101

Figure 1: An Unsecured Inverted Index over DHT

3. HEALTH+Z NETWORK

In this section we define HEALTH *Zindex structure which
provides confidentiality guarantees that hold even if a given
number of the network peers are compromised or malicious
and analyze characteristics of the index. DHT as a Dis-
tributed Inverted Index: HEALTHZnetwork consists of a
set of content providers CP = {cp1,...,cpn} (doctors or
hospitals in our scenario) which share information about
entities £ = {e1,...,em} (e.g. patients). For the ease of
presentation we assume that each content provider corre-
sponds to one network peer P;...P,. In order to enable
efficient search, information about the entities is indexed us-
ing HEALTH " distributed index. HEALTH*?distributed
index is based on a Distributed Hash Table (DHT). DHT
is a family of distributed algorithms typically applied in the
mainstream P2P systems. As the name implies, the func-
tionality of DHT's is similar to the functionality of traditional
hash tables: they enable efficient distributed storage and re-
trieval of (key, value) pairs. Thereby an ordinary inverted
index, like the one presented in Table 1, can be partitioned
across several peers.Without loss of generality, key is a num-
ber in the range of [0...27) where z is a value specific to the
DHT implementation (e.g., for Chord DHT|[20], z is 160).
In our scenario, we want to use as keys the patient names.
Therefore, patient names are converted to numeric repre-
sentations by using a consistent hash function. There are
several suitable consistent hash functions for converting any
type of data to integers. In this work we use MD5 hashing,
followed by modulo with the maximum key value.

The process of retrieving all information for a patient in-
volves two steps: (1) find all doctors that this patient has
visited, and (2) contact the peers corresponding to these doc-
tors, to retrieve all relevant information. The first step, of
locating all relevant doctors, is performed using the DHT
inverted index. The name of the patient is transformed
to its numeric representation using a consistent hash func-
tion. Then, the peer responsible for holding this value in
the DHT is located, and contacted to retrieve the list of
doctors that this patient visited. The peers corresponding
to these doctors contacted directly, for authorized clients
(such as emergency doctors) to retrieve important informa-
tion for the patient, e.g., allergies, medication, and past ill-
nesses. The good scalability characteristics of DHTs make
them suitable information sharing infrastructures for many
mainstream applications. However, current DHT-based sys-
tems do not enable indexing information confidentially, or



restricting information access. Everything that is published
in the DHT is by default accessible to all participating peers.
In the next section we show how the DHT can be secured so
that only authorized peers can retrieve relevant information.
Confidential Distributed Indexing: A naive approach to lo-
cate doctors for a particular patient would be to broadcast
the query to all available peers which leads to unacceptable
latency in a larger network. As discussed above, an ordi-
nary inverted index will help to precisely locate patients’
medical records, but does not provide the required confiden-
tiality guarantees. In order to index entities confidentially,
HEALTH*?modifies index content as discussed in the fol-
lowing. Each posting list in this index is a bit map; like in
ordinary inverted index this list corresponds to a patient;
each posting element (bit) in this map corresponds to a con-
tent provider. This bit is set to one if the corresponding
provider shares information about the entity and to zero
otherwise. Note that in general a posting element may con-
tain additional data shared by the content provider. Here we
consider the bit map to simplify the presentation. In fact, a
non-encrypted HEALTHZindex is an entity-provider inci-
dence matrix which is presented in Figure 1.

More formally, given the network H, index I, a content provider

cpi, and an entity ey,
cp; € H= Ve € H:cpex €1

Practically, this means that index structure contains an en-
try for every content provider-entity pair. In order to pro-
tect the index against unauthorized usage, bit maps are
encrypted using k-out-of-n encryption scheme as discussed
later in the “Encryption” paragraph. The presence of an en-
crypted entry in the index does indicate that an entity is
shared by the corresponding peer.

Encryption: In order to protect the index against unautho-
rized usage, posting elements are encrypted using k-out-of-n
encryption scheme [17]. Application of k-out-of-n encryp-
tion to distributed indexing was first proposed in [21]. In
this scheme a single posting element (secret) is spit into n
parts (secret shares) such that at least k out of n parts are
required in order to reconstruct the secret. These secret
shares are computed at the peer holding the plain informa-
tion and then distributed over the network peers, such that
only encrypted information is sent over the network and even
in case index holding peers are compromised/malicious, the
plain text information is not available for them. The query-
ing user needs to be authorized by at least k peers in order
to obtaine enough shares to decrypt posting elements. Even
if k-1 peers are compromized, it will not possible to recon-
struct the initial information. Figure 3 illustrates a part of
P2P network with peers Pi, P>, P3 and n=3. The post-
ing list for the entity e; is encoded into three posting lists
each represented as a random vector. Each of those vectors
is stored on a separate peer (i.e., Pi, P> and P3). Assume
k=2; then in order to decrypt the elements corresponding
to the entity e1 the user needs to be authorized by at least
two peers out of Py, P2, Ps.

The encryption algorithm works as follows: All the opera-
tions described later in this section are carried out in the fi-
nite field Z,. The secret splitting algorithm starts by choos-
ing a large prime number p, such that any posting element
(secret) to be shared is in Z,. In addition, each peer ¢ is
assigned a unique random value x; in Z,. We call this the

x-coordinate of the peer. The numbers p and x; are made
public, so all users know them.

To index an element ag its provider generates a pseudo-
random polynomial f of degree k-1. The coefficients a; (ex-
cept ao) are randomly picked from the field Z,. The secret
share given to the i*" peer is f(x;). k such shares are enough
to reconstruct the polynomial. To decrypt an element, a user
must obtain £ of its secret shares and determine the coef-
ficients of the polynomial f by solving a system of k linear
equations.

This scheme avoids complex key management and does not
require re-encryption of the data unless more than k peers
in the network are compromised. Moreover, if an adversary
learns some of the shares, proactive sharing techniques can
be used to prevent the adversary from getting k shares [11].
With this technique, the shares are updated so that those
already known become useless.

k-out-of-n encryption in HEALTH T Zreplaces replication typ-
ically performed in P2P networks. Differently from the pub-
lic networks, HEALTH 7% does not store any exact copies of
the index as all n parts of the encrypted secret differ. How-
ever, owing to the k-out-of-n encryption scheme the network
is resistant to the failures of up to n-k peers which store any
part of the index. We discuss overhead introduced by this
scheme in the evaluation section.

Access Control: Like in an ordinary P2P system, the index
is partitioned across several peers according to entities such
that each network peer stores only a part of the index. In
difference to the public P2P systems, this index is stored
privately on the peers and queries are answered only upon
requests of the authorized users. In order to perform access
control on the index entries, HEALTH *Zmakes use of stan-
dard authentication and authorization techniques.

Index Construction and Updates: Assume a network con-
tains H content providers cpi,...,cpn. At startup the in-
dex is empty. If the content provider cp; wants to share the
data of entity ej, it first searches for the entity e; as dis-
cussed in the following. In case the entity is not indexed,
cp; receives an empty result. An empty result corresponds
to the case of a new patient, which was never indexed in
the DHT by any content provider, either doctor or hospital.
To insert the new entity in the index cp; creates a new bit
map of size N and sets the " bit to one and all other bits
to zero. Then, cp; encodes each posting element using k
out of n encryption scheme and distributes the result over
n network peers. Unlike ordinary P2P networks where the
set of peers changes dynamically, set of content providers
in HEALTHZis rather static due to the natural proper-
ties of the healthcare network. This set can be extended by
adding a new column to the index; this is a rather expen-
sive but infrequent operation and can be further optimized,
e.g., by adding columns in batches of B bits. Thus each
adding of the columns will accommodate an increase of B
content providers in the index and each posting list will in-
crease by B bits. On the contrary, the bitmaps in the index
require frequent dynamic updates; the bitmaps correspond-
ing to the entities can be added and updated dynamically
by corresponding content providers. Each content provider
only needs to update the column that corresponds to her
peer. This update can be performed inexpensively as it re-
quires only a constant number of DHT lookups. Deletion
of an entity is a rare operation which frequency in most of
the cases depends on the retention period of records (e.g.
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Figure 3: k-out-of-n Encryption of a Posting List

10 years by German law). In order to delete an entity from
the index, corresponding bitmap is simply removed. Con-
fidentiality Guarantees: HEALTH Zindex provides strong
and quantifiable confidentiality guarantees that hold even if
the entire index entries stored on k-1 malicious peers are
made public. On her compromised peer, an adversary A
can examine index entries. As all posting lists have equal
length and represented as random bit vectors, she cannot
determine the number of peers sharing patient’s data on the
network. She cannot determine at which particular site the
patient record appear, although she can conclude that the
patient record appears at least at one indexed site (which
is not sensitive information in current setup since it corre-
sponds to the fact that a particular person visited a doctor
at least once). Similarly, she cannot reconstruct the list of
records shared by a particular peer on the network as every
peer corresponds to all patients in the index matrix. The k
parameter in the k-out-of-n encryption defines the number
of the peers that share a secret about a particular posting
list and need to be compromised by an adversary in order
to break the encryption of posting elements.

There is a tradeoff between confidentiality preservation and
retrieval efficiency. The higher the k value, the more secure
the index. However, higher k values lead to increased net-
work traffic and response time. In the most secure case, k is
close or equal to the number of providers (doctors) within
the network and querying would essentially be performed by
broadcasting the query. Smaller k£ values decrease network
cost as well as security level. Thus k is a tunable parameter
that can be adjusted during the index creation with respect
to the trust level within the network.

The N value determines the number of peers holding a par-
ticular index entry. Since k peers holding shares of a par-
ticular index entry are needed to reconstruct the entry, N-k
is the number of peers that can be offline at a time and the
network would be still able to deliver enough shares.

4. EVALUATION

After discussing HEALTH Zarchitecture and confidential-
ity guarantees, we evaluate its storage requirements, query
costs, and network usage for a network participant com-
pared with an ordinary DHT, using a simulated data set.
We created a simulated network with a reasonable size for a
European country.

4.1 Experimental Data
We used the data from the World Health Organization for
Europe! in order to estimate the potential number of doctors

1
http://waw.who. int/gho/health_workforce/physicians_density/en/
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Figure 4: Population and Number the Physicians per
European Country

3x10°

2x10°

Number of messages

Figure 5: Network Cost for Index Construction per Par-
ticipant

and patients that our system has to manage. Figure 4 shows
the number of physicians per European country. According
to the data, the number of physicians in the majority of
the European countries does not exceed 300,000 whereas
80,000,000 is a maximal estimate for the population. Both
numbers correspond to Germany. The proportion of the
physicians with respect to the European population does
not vary much and the proportion physician/persons can be
estimated as 1/450 on average.Using these boundaries we
created a matrix index. We randomly assigned patients to
doctors using following estimations:

e We assumed the normal distribution of the number of
doctors per patient

e We assumed that on average a person has her data by
20 doctors and used this number as a mean for the
distribution

e We assumed that patients are uniformly distributed by
the doctors

Thus each patient was assigned to 20 randomly chosen doc-
tors on average, and each doctor served on average 5,333
patients. Assuming a bit of storage per patient-doctor re-
lation, the index requires 25 kBytes for each patient’s bit
map. The k out of n encryption additionally increases this
size by n times.

4.2 Experimental Setup

With our experiments we compared network and storage
costs for an unencrypted index and for various encrypted
indices. Network cost was measured as follows:

a. Network cost for creating the index from scratch. This
cost occurs only once, when bootstrapping the net-
work. This is the cost required for publishing all infor-
mation of all content providers in the DHT
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b. Network cost for executing a query or for updating a
record. This cost occurs every time a content provider
needs to locate information for a patient (e.g., an emer-
gency room doctor), or when a content provider adds
a patient in her patients list

c. Storage cost. Each content provider contributes to the
DHT by holding a small part of the distributed in-
verted index. This cost is the storage cost incurred by
each peer on average

Note that our analysis does not include two additional cost
factors: (a) the network overhead for maintaining the DHT
connectivity between all content providers, and, (b) the cost
for storing the actual medical information at the content
providers. The former factor is not included because DHT's
were already evaluated independently, and they were found
to be scalable and extensible [20].

The latter factor depends on the information that is kept
for each patient, and it is orthogonal to the application; this
cost anyway occurs in current medical systems.

Parameter Selection: The parameter k determines the secu-
rity level within the network. However, in order to increase
k, m also needs to be increased. The parameter n, on its
turn, determines the number of the times the index storage
cost has to grow. We have to assume that different possibly
old hardware is used by the network participants and thus
each peer should hold not more around 50 Mbytes index
data which corresponds to k<6 in our setup. We run the
experiments for an unencrypted matrix index and compared
it with 12 setups that differ in the choice of k and n.
Network Cost for Index Creation: Figure 5 (Network Cost
for Index Construction per Participant) summarizes the av-
erage network cost per peer for creating the index. We mea-
sure cost with number of messages. The cost for both, unen-
crypted and encrypted index is at the same order of magni-
tude, even with high encryption parameters, e.g., k=6 and
n=6. As expected, this cost grows linearly with n.

Recall that this cost occur only once, while bootstrapping
the network. During this bootstrapping period, it is ex-
pected that the network will be more loaded than usual, be-
cause all content providers will be publishing information for

all their patients at the same time. However, this bootstrap-
ping process does not run under time constraints, therefore
content providers can just wait for a couple of hours after
installing the system, before starting to use it.

Query and Update Overhead: The number of messages needed
for the retrieval of a particular posting list increases by k
times compared with an ordinary DHT, because of the k-
out-of-n encryption. However, even for k=6, retrieving the
patientSs information requires only 54 messages. Assuming
ASDL speeds, this number of messages is negligible and can
be easily executed in real-time.

Cost per update grows linearly with n. This happens be-
cause the content provider needs to locate the peers that
hold all the n bit maps for the patient, and update one bit
at each of them. For this update, the whole lists need not be
retrieved. Similar to query cost, this cost is also negligible
and can be executed in real time.

Storage Overhead: Unlike a DHT which is an inverted in-
dex, in HEALTH ?all posting lists have the same number
of elements which corresponds to a number of document
providers. Encryption under Shamir’s k-out-of-n scheme
does not change the size of the posting elements although
the number of posting lists in the network increases by n
times. Figure 7: (Storage Cost per Participant) shows that
a storage overhead increases linearly with the growing num-
ber of n. For all the proposed setups, storage costs per peer
do not exceed 60 Mbytes. This storage overhead is negligi-
ble for today’s off-the-shelf personal computers.

Overall the results of the experiments prove the matrix index
scalability for a given scenario and show that the network
and storage costs are also reasonable.

5. RELATED WORK

The P2P paradigm promises unlimited scalability, easy main-
tenance, and robustness against network attacks and fail-
ures [3]. A recent study stressed the importance of P2P net-
works in medical informatics, especially for improving data
sharing between doctors and hospitals, in the national (US)
as well as international contexts [19]. HEALTH?builds
upon the existing work on information sharing and provider
selection in P2P systems and enriches the DHT-based index
structure used in P2P networks with confidentiality guaran-
tees required in medical applications.

Encryption is a standard technique for storing data confi-
dentially [4, 9, 13]. Other techniques include suppressing
and/or generalizing released data into less specific forms, so
that they no longer uniquely represent individuals [8, 12]; k-
anonymity is one popular form of generalization (e.g., [2, 14,
15]). Unfortunately, it is not possible to directly apply these
techniques to secure an inverted index. Even if posting list
entries are encrypted, they can leak critical statistical data.
The problem of sensitivity of the posting list length infor-
mation was also stressed by [5]

The authors in [1, 21] considered protecting an inverted in-
dex when there is no single trusted central authority to en-
force access control on posting list elements. Like p-Serv,
HEALTH" ?addresses the problem of confidential provider
selection in a network. However, u-Serv does not provide
sufficient protection for the data in the healthcare domain
as the adversary can still conclude that certain percentage
of posting elements in the index are true positives, which
enables indirect conclusions on illness frequency of a person.
Moreover, pu-Serv lengthens the querying process and wastes



cycles at sites that do not contain query-relevant entries. For
example, if x = 5%, the user must query 20 times as many
sites to get the relevant results, which can lead to critical
delays in medical emergency applications. On the contrary,
HEALTH " Zenables an authorized user directly identify cor-
responding peers.

Zerber [21] developed in our previous work is an r-confidential
inverted index which protects indexed data by means of
frequency-based merging of posting elements related to sev-
eral terms in one posting list. In order to provide confi-
dentiality guarantees for the information stored in the in-
dex it requires a training data set from which it can learn
document frequency distribution. However, the terms in
the HEALTH " #index are unique patient IDs, such that re-
quired training information is not available in this scenario.
On the contrary, HEALTHZenables confidential provider
selection in case no training information is available.

While many other researchers have addressed aspects of data
confidentiality, none of their schemes are intended for an en-
vironment with many dynamic collaboration peers. For ex-
ample, researchers have suggested ways to search encrypted
text or tables stored on a remote untrusted server (e.g., [10,
18]). In a situation with many collaboration peers encryp-
tion based approaches are not easy to use or manage due
to the encryption key management. Data owners and/or
project group managers must generate and distribute key-
ing material for all group members.If a key is lost, stolen, or
even published, the index entries encrypted with it are com-
promised. When a key is compromised or a member leaves
a group, the key must be revoked and all the content asso-
ciated with that key must be re-encrypted and re-indexed.
Modern group key management schemes, such as logical key
trees [6] and broadcast encryption, reduce the costs associ-
ated with giving keys to members, but still require content
re-encryption. Some approaches also require that the entire
index for a particular collection of documents be regenerated
by the collection owner every time an entry is added to or
deleted from the index. Zerber [21] proposed usage k-out-
of-n encryption scheme which avoids key usage for data en-
cryption. HEALTH*Zbuilds upon this encryption scheme.

6. CONCLUSION AND FUTURE WORK

In this paper we considered challenges involved in building
confidential index in a P2P healthcare network and discussed
initial solutions to address these challenges. Our experi-
ments show that for a current setup it feasible to maintain
an incidence matrix based index with confidentiality guar-
anties within a P2P like network. Such index is protected
against any statistical attacks even if overtaken by an ad-
versary. One of the requirements of DHTs is that they need
to withstand unexpected peer failures and disconnections.
To withstand such events without losing data, DHTs em-
ploy data replication. The integration of the replication in
HEALTH*?keeping its’ confidentiality guarantees is an in-
teresting direction for the upcoming research.
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