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Abstract. Trains of DB Schenker Rail AG create a continuous logfile of diag-
nostics data. Within the company, methods to use this data in order to increase
train availability and reduce costs are researched. An interesting and promising
application is the prediction of train component failure.
In this paper, we developed and evaluated a method that utilizes the diagnostic
data to predict future component failures. To do so, failure codes were aggregated
and a flexible labeling scheme is introduced. In an extensive experiment section,
three different failure types are examined, a combination of them is evaluated,
and different parametrizations are inspected in more detail.
The results indicate that a prediction for all of the different types indeed is pos-
sible starting from days up to weeks ahead of the failure. However, the level of
data-quality and its quantity still have to be increased considerably to yield high
quality models.

1 Introduction

Each year, up to 400 million tons of goods are transported by DB Schenker Rail AG5. To
achieve this, a fleet of over 3500 trains is available. Reliability is a crucial issue, since
delivery dates have to be met. Complications may lead to delays and increase the cost
of a transport. Mechanical failures of the train itself is one of the main reasons for not
reaching destinations in time. Failures of a mechanical component are costly, since not
only the component itself has to be replaced or repaired, but also the train is standing
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still and consequently has to be transported to a repair station, which causes difficulties
with the global train schedule. Among others, these effects create additional costs.

To improve reliability, mechanical failure needs to be avoided as far as possible.
Trains are regularly maintained according to a maintenance schedule, but since a train
is a complex machine, not every component is checked each time. There are different
kinds of inspections, some are smaller and occur more often and are used for small
checkups. Others are large inspections that occur in longer intervals but with much more
in-depth examination. Scheduled maintenance alone is therefore not able to provide
constant monitoring of component status.

In other industries there have been successful implementations of constant monitor-
ing and failure prediction such as logfile evaluation and engine temperature monitoring
[1, 2]. It was shown that imminent failures can be detected early enough to avoid break-
downs. Fixed maintenance intervals can be replaced by on-demand maintenance, hence
reducing cost and increasing reliability. The availability of the fleet will improve, al-
lowing more goods to be transported. In this paper, we follow that path and present an
approach to achieve failure prediction suited to the data provided by DB Schenker Rail
AG.

The idea is to utilize the events occurring in the train’s computer systems. The vari-
ous soft- and hardware systems of a modern train provide a continuous stream of such
events, including status changes and errors. This is referred to as diagnostics data. Given
such data, a method to predict failure of various kinds of components is developed. The
approach uses the frequency of certain types of log entries in a variable time window
before the actual failure to label a dataset and then train a classifier using the labeled
data. The resulting model then is able to to predict such failures on new data.

The method incorporates in-depth knowledge from engineers of DB Schenker Rail
AG. The experts helped significantly to accelerate the data mining process involved by
reducing the amount of data to a feasible subset. The topic has been discussed in more
detail in the diploma thesis of Sebastian Kauschke [3]. In this paper, only a subset of
the work presented there will be shown.

In the next section, the approach is detailed with a focus on the employed pre- and
postprocessing of the data. Then, the experimental setup is skechted (Section 3 and
the results are shown in Section 4. The following section provides related work and in
Section 6 the paper is concluded and future research is given.

2 Prediction of Failures based on Diagnostic-Code Frequency

The proposed approach uses the frequency of diagnostic-code occurrence as a measure
to detect anomalies in the train’s behavior and predict failures. The existing diagnostics
data is used to create the features. We start by giving some details on the diagnostic data.
Then a hypothesis is proposed, followed by a detailed description of the preprocessing
of the data.

2.1 Diagnostics Data

Since the 1990s trains are equipped with on-board computers that connect and control
the various systems. A train of the so-called ”‘Baureihe 185”’ (BR185) for example
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has 37 main systems including a total of 70 subsystems. Each of the activities in those
systems and subsystems is recorded in the diagnostics data file. The diagnostic mes-
sages include, e.g., protocol messages, events, warnings, and errors as well as analog
measurements. A total of over 6900 types of diagnostic messages exist for this train
type.

Each diagnostic message consists of the diagnostic-code, the system and subsystem
this code belongs to, timestamps when it occurred first and when it vanished (diagnostic
messages may span a certain amount of time), as well as the environment data. The
environment data can include status variables, analog measurements, or simply plain
text.

Please note that the data provided to conduct this research suffers from low cov-
erage in regard to the recorded timespan which made high-quality predictions a true
challenge.

A feature consists of an aggregation of past occurrences of a certain diagnostic-code
in a specific time-frame. This way, for each day and train a feature vector is produced
that incorporates information about how often diagnostic-codes appeared in that time-
frame. Those vectors are then labeled in two categories: normal and warning where
normal is representing a point in time where no failure was imminent, and warning is
denoting an imminent failure.

A classifier is then trained on the labeled data, and 5-fold cross-validation is used to
evaluate the classifier.

2.2 Hypothesis

In the following we propose a hypothesis concerning the dependency between diagnostic-
codes and failure events.

Hypothesis 1 Failure of components of the train are preceded by an increased appear-
ance of specific diagnostic-codes in a certain time-frame before the failure occurs. The
failure can be predicted by detecting which diagnostic-codes show this kind of increase
and how much they increase opposed to a situation with no imminent failure.

Based on this hypothesis a method to predict failures is created by the use of ma-
chine learning. To proof the hypothesis it is necessary to answer the questions to what
extent a time-frame before the breakdown must be examined, and how far in advance a
failure can be predicted. Those values will be discovered experimentally.

2.3 Preparations

The available data spans 18 months in time and includes over 3.7 million diagnostic-
codes in a total of 187 trains. In that timeframe the majority of failures happened, most
of them being of little interest for this research. To decide which failures are of interest,
the following criteria have to be met:

– the component has failed because of deterioration
– the component needs to be attached to one of the systems sending diagnostic mes-

sages
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Table 1. Exemplatory occurences of diagnostic-codes

Day: 1 2 3 4 5 6 7 8

CodeA: 1 0 2 1 1 3 2 0

CodeB: 1 1 4 3 2 4 2 2

CodeC: 2 4 2 1 1 2 4 3

– the failing component causes a certain amount of cost or affects the trains ability to
move

– the date of the failure needs to be known

At DB Schenker Rail AG a database including all repair station activities exists. It is
mainly used for accounting purposes, but in this case it was used to search for activities
that indicate failures which fit the required criteria. The database contains information
about the dates the failures happened and on which trains they happened.

From the failures meeting the criteria, the three most frequent ones in the given
timeframe were chosen:

– ASG instand setzen (repair motor control, found 142 times)
– LZB instand setzen (repair guiding system, found 126 times)
– LZB Empfangsantenne einstellen (repair antenna of guiding system, found 93 times)

2.4 Preprocessing

At first a decision has to be made which diagnostics-codes are relevant for the failure to
be predicted. In an ideal environment, all existing diagnostics-codes (over 6900) would
be used as features at first. This feature set can later be reduced by methods that single
out the necessary features for the specific failure prediction.

In this case an expert was questioned and stated only diagnostic-codes of the system
the failing component belongs to should be examined. With this information, the 30
most frequent diagnostics-codes of the relevant systems in the timeframe before the
failure are chosen to be the features. The frequency of each code occurrence per train
per day is calculated and will be used for the further steps.

2.5 Aggregation of features

A feature consists of the frequency of a diagnostic-code CodeX .
In Table 1 an exemplary amount of occurrences per day is shown for CodeA, CodeB,

and CodeC.
For each day and each diagnostic-code a vector Ax is calculated. In the following

example x = 3 is chosen:

Ax =

CodeA
CodeB
CodeC

 =

2
4
2
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This Vector sums up the occurrences of all diagnostics-codes on day x. To achieve
a time-span evaluation, a vector V is built, accumulating the vectors Ax−v, . . . , Ax by
averaging the values. For x = 5 and v = 3 this is:

Vx,v =

 (0 + 2 + 1 + 1)/4
(1 + 4 + 3 + 2)/4
(4 + 2 + 1 + 1)/4

 =

 1
2.5
2


2.6 Labeling

Each of the three failure-types will be handled as a separate classification problem. For
every day x and every train a vector Vx,v is calculated as described in Section 2.5,
covering the v days preceding x. For each case of a failure a warning-timeframe is
defined. The warning-timeframe ends with the day of the failure (S) and is of length w.

The vectors are labeled the following way:

1. For all failure dates: vectors in the range of S−w, . . . , S that belong to the defunct
train are labeled as warning.

2. All other vectors are labeled as normal

The vectors consist of a total of 30 features.

2.7 Postprocessing

Since the diagnostics data used for this experiment is incomplete and not all the days in
the 18 month time interval are covered for every train, there is a necessity to filter out
days that have no recorded entries at all. This means, if there is no entry on a specific
day for a train, the data on this day will be marked as invalid. It will be excluded from
vector generation and will not be used for training and evaluation.

This is especially problematic for the labeling process, since 50 % - 75 % of the
time there are no or few data recordings available for the warning vectors. When the
coverage of data for a specific failure date is lower than 50 %, all the vectors in the
warning-timespan are marked as invalid and not used for training and evaluation.

3 Experimental Setup

In the following the algorithms used in the experiments are summarized. Then, a total
of five different experiments are defined.

3.1 Training and Evaluation

The WEKA Suite [7] is used for training and evaluation. The classifiers JRip, J48,
RandomForest, and SMO are chosen for classification. This selection ensures that most
symbolic algorithms are present and that also a statistical classifier is employed.

The WEKA parameterization of the classifiers were set as follows:
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Table 2. v and w values for experiment 1 and 2

(a) Exp. 1: Motor Control Failure

Configuration v w number of failures
a 5 3 49
b 10 5 46
c 30 10 40

(b) Exp. 2: Guiding System Failure

Configuration v w number of failures
a 5 3 85
b 10 5 87
c 30 10 89

JRip: Folds: 3, minNo: 2, Optimizations: 2.

J48: confidenceFactor: 0.25, minNumObj: 2, subtreeRaising: true.

RandomForest: maxDepth: unlimited, numFeatures: unlimited, numTrees: 10.

SMO: C: 300, Tolerance: 0.001; Epsilon: 1E-12, Kernel: Polykernel (Cache Size:
250007; E=5).

To verify the results, 5-fold cross-validation was used. The main performance indi-
cators are the precision and recall values of the warning class. Usually, accuracy is a
good measurement for the performance of a classifier, but in this case accuracy is over
97 % in most cases. The reason for this are the unbalanced classes. The warning class is
a minority class by a factor of up to 100. Another measure that reflects the performance
of the classifier is the area under curve (AUC) value. We decided to include this eval-
uation measure instead of regular accuracy as it is capable to incorporate unbalanced
classes.

3.2 Five Experiments

A total of five experiments were conducted during our study: One experiment for each
of the chosen failure types, and one experiment for a combination of all three failure
types. The fourth experiment is used to show that a discrimination between the three
types of failure is possible. In the last experiment a wider range of the v and w values
is examined, to show where the peak potential can be achieved.

Experiment 1: Motor Control Failure This experiment is based on the failure of
the Antriebssteuergerät (ASG), which is the motor control unit of the train. It manages
power distribution to the four electric engines. If it fails, it is often the case that one of
the two power converters shuts down, which results in a 50 % power loss. This may
stop the train from moving, depending on how heavy it is loaded.

For this type of failure, 142 instances have been recorded. After postprocessing the
labeled data, only a certain number of those is still considered valid according to the
criteria described in Section 3. This depends on how the timeframes are chosen for the
w and v to built the vectors. Three combinations of v and w were chosen (see Table 2
(a)).
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Table 3. v and w values for experiment 3 and 4

(a) Exp. 3: Guiding System Antenna Fail-
ure
Configuration v w number of failures

a 5 3 17
b 10 5 17
c 30 10 20

(b) Exp. 4: Combining all
three Failure Types

v w number of failures
30 10 97 (total)

Experiment 2: Guiding System Failure This experiment is based on the failure of
the Linienförmige Zugbeeinflußung (LZB), which is one of the guiding systems used
by Deutsche Bahn. It allows to coordinate the positions of all trains and achieve faster
driving speeds. If it fails, the train driver is forced to rely on other guiding systems,
which can reduce overall speed or cause other problems.

For the guiding system failure, 126 instances were recorded. Only a certain amount
of those is still considered valid after postprocessing, according to the criteria described
above that are dependent on w and v. For this experiment, also three combinations of v
and w were chosen (cf. Table 2 (b)).

Experiment 3: Guiding System Antenna Failure The LZB has an antenna, which
provides it with the information it needs to work. If the antenna fails, the LZB will
cease to function properly, and the same restrictions as in experiment 2 will apply.

93 instances of antenna failure have been recorded. After postprocessing a major
amount is considered invalid. The following combinations of v and w were chosen (see
Table 3 (a)).

Experiment 4: Combining all three Failure Types In this experiment a multi-class
approach is used to show that discriminating between the three types of failures also is
possible. To achieve this, the feature generation and labeling process are altered.

In the feature generation step, the number of features is increased. The required
features for the three failure types partly overlap, so a mixture of features is used to
allow every failure to be predicted adequately.

The labeling process is adapted in the following way:

1. For all motor control failure dates: vectors in the range of the warning timeframe
are labeled warning1.

2. For all guiding system failure dates: vectors in the range of the warning timeframe
are labeled warning2.

3. For all guiding system antenna failure dates: vectors in the range of the warning
timeframe are labeled warning3.

4. All other vectors are labeled as normal

As the v = 30 and w = 10 combination of the previous experiments showed the
best results, for this experiment only this combination is used (Table 3 (b)).
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Table 4. Results for Motor Control Failure

(a) v = 5, w = 3

Classifier Precision Recall F1-Score AUC
JRip 0.333 0.076 0.12 0.534
J48 0.167 0.010 0.02 0.513
RandomF. 0.610 0.171 0.27 0.820
SMO 0.517 0.148 0.23 0.573

(b) v = 10, w = 5

Classifier Precision Recall F1-Score AUC
JRip 0.592 0.229 0.33 0.623
J48 0.678 0.150 0.25 0.609
RandomF. 0.835 0.380 0.52 0.904
SMO 0.612 0.226 0.33 0.612

(c) v = 30, w = 10

Classifier Precision Recall F1-Score AUC
JRip 0.728 0.675 0.70 0.838
J48 0.752 0.577 0.65 0.905
RandomF. 0.895 0.667 0.76 0.968
SMO 0.757 0.487 0.59 0.742

Experiment 5: Extended Timeframes The last experiment is conducted to show
which parameter combination of v and w achieves the highest AUC. RandomForest
is used as the only classifier as it showed the best overall performance in all previous
experiments. The failure type of experiment 1 is used for the evaluation. This choice
is somewhat arbitrary and we believe that the parameters are indeed subject to change
among different experimental setting, but, however, for demonstration purposes and due
to space restrictions, we had to choose one of the above experiments.

The former experiments showed the highest results in the (c) configuration, which
was the largest settings of v and w. To allow a better overview, if the performance can
be further increased, a grid of AUC values is generated, with v values ranging from 20
to 100, and w values from 10 to 50, each in incremental steps of 10.

4 Results

In this section the results of the experiments will be shown and discussed. Note that
for both precision and recall, the values are shown for the warning class. As the AUC
is insensitive to imbalanced class distributions, we preferred this type of measure over
regular accuracy.

4.1 Results Experiment 1: Motor Control Failure

In Table 4 the RandomForest classifier shows the overall highest performance. For all
classifiers performance increases come along with larger timespan v and warning time
w. RandomForest reaches AUC values of up to 0.904 (0.76 F1-score) in configuration
(c). JRip, J48 and SMO deliver similar precision values, but lack recall and their AUC
values are lower than RandomForest.

All classifiers show a significant increase of recall with each step up in timespans,
while precision interestingly does also increase.
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Table 5. Results for Guiding System Failure

(a) v = 5, w = 3

Classifier Precision Recall F1-Score AUC
JRip 0.351 0.077 0.13 0.536
J48 1.000 0.071 0.13 0.537
RandomF. 0.684 0.154 0.25 0.818
SMO 0.403 0.172 0.24 0.585

(b) v = 10, w = 5

Classifier Precision Recall F1-Score AUC
JRip 0.500 0.224 0.31 0.624
J48 0.586 0.148 0.24 0.633
RandomF. 0.832 0.345 0.49 0.926
SMO 0.620 0.384 0.47 0.691

(c) v = 30, w = 10

Classifier Precision Recall F1-Score AUC
JRip 0.750 0.690 0.72 0.843
J48 0.789 0.693 0.74 0.895
RandomF. 0.942 0.701 0.80 0.983
SMO 0.773 0.810 0.79 0.903

Table 6. Results for System Antenna Failure

(a) v = 5, w = 3

Classifier Precision Recall F1-Score AUC
JRip 0.568 0.292 0.39 0.668
J48 1.000 0.069 0.13 0.546
RandomF. 0.706 0.167 0.27 0.858
SMO 0.556 0.278 0.37 0.639

(b) v = 10, w = 5

Classifier Precision Recall F1-Score AUC
JRip 0.581 0.443 0.5 0.741
J48 0.652 0.155 0.25 0.591
RandomF. 0.800 0.412 0.54 0.957
SMO 0.556 0.361 0.44 0.680

(c) v = 30, w = 10

Classifier Precision Recall F1-Score AUC
JRip 0.766 0.695 0.73 0.867
J48 0.822 0.550 0.66 0.845
RandomF. 0.916 0.649 0.76 0.959
SMO 0.732 0.669 0.70 0.834

4.2 Results Experiment 2: Guiding System Failure

The results shown in Table 5 are similar to those of experiment 1. With a AUC value of
up to 0.983 and a F1-score of 0.8 in the widest timeframe (configuration (c)), the results
of RandomForest are the highest of all classifiers. SMO achieves the highest recall value
in all configurations, but the precision of 77.7 % is lower than RandomForests 94.2 %.
J48 and JRip show similar results with AUC values of 69 %.

The significant increase of the recall value with each step up is also evident for all
the classifiers. However, J48 has its best precision at the (a) configuration.

4.3 Results Experiment 3: System Antenna Failure

RandomForest shows high values in recall and precision in Table 6 which is also shown
by an AUC value of 0.959 for configuration (c). JRip achieves the highest recall value of
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Fig. 1. Results for Experiment 4: RandomForest Classifier; v = 30, w = 10

Table 7. Experiment 4: Confusion Matrix for RandomForest

classified as
normal warning1 warning2 warning3

normal 19753 25 16 7
warning1 128 209 2 0
warning2 107 1 226 1
warning3 44 0 0 107

69.5 % and the second highest AUC value of 0.867 while outperforming RandomForest
in F1-score at least in configuration (a). J48 has a similar AUC of 0.845 and SMO has
0.834.

The significant increase of recall with bigger timeframes is also present here. All
classifiers except J48, which shows a similar trend as before, achieve their best results
in configuration (c).

4.4 Results Experiment 4: Combining all three Failure Types

Figure 1 shows that all of the three different warning types could be predicted with a
high precision of 88.9 %, 92.6 % and 97.6 %, respectively while also the recall was
above 60 %. The F1-score never falls below 0.7. Therefore, we can conclude that our
hypothesis posed in Section 2.2 seems to be valid. In the confusion matrix depicted
in Table 7 it can be seen that only a total of 1.3 % of all normal cases are classified
incorrectly and that the actual warnings are predicted quite accurately. However, about
a third of them is falsely classified as normal, which explains the recall values of 60 %
to 70 %.

4.5 Results Experiment 5: Extended Timeframes

In the last experiment, different configurations for the days taken into account (v) and
the number of days before the failure that are labeled as failure (w) were examined.
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Table 8. Results for Extended Timeframes

(a) AUC
w=50 w=40 w=30 w=20 w=10

v=100 0.991 0.995 0.994 0.984 0.982
v=90 0.992 0.995 0.99 0.992 0.989
v=80 0.999 0.996 0.993 0.995 0.992
v=70 0.997 0.997 0.996 0.995 0.992
v=60 0.992 0.989 0.995 0.99 0.99
v=50 0.99 0.989 0.988 0.99 0.972
v=40 0.982 0.984 0.991 0.988 0.981
v=30 0.978 0.979 0.978 0.976 0.968
v=20 0.966 0.97 0.973 0.972 0.967

(b) F1-score
w=50 w=40 w=30 w=20 w=10

v=100 0.999 0.998 0.998 0.999 0.998
v=90 0.998 0.998 0.998 0.998 0.998
v=80 0.999 0.999 0.998 0.999 0.999
v=70 0.998 0.998 0.998 0.998 0.999
v=60 0.997 0.997 0.998 0.998 0.998
v=50 0.996 0.996 0.997 0.998 0.998
v=40 0.995 0.995 0.996 0.997 0.997
v=30 0.994 0.994 0.994 0.996 0.996
v=20 0.991 0.992 0.993 0.994 0.995

Table 8 (a) shows that an increase of the v and w values can further improve the AUC.
The highest result is given at v = 80 and w = 50 with an AUC of 0.999 compared to the
original value achieved in experiment 1 (cf. Section 4.1) which was 0.968. Interestingly
a different picture manifests when inspecting the F1-score. Here, there is no single best
configuration but a total of seven ones achieved the highest value (cf. Table 8 (b)).
Among them, also the best one for AUC is present, but, however, it seems that F1-score
is not so sensitive to these two parameters.

5 Related Work

This section will provide an overview of work that was used directly or as an inspiration
for the methods described in this paper. There are certain parallels, so some of the
methods were adapted and adjusted to fit the specific problems. However, related work
is rather rare as usually the algorithms are tied to a specific problem and it is hard to
generalize to arbitrary scenarios.

Fulp, Fink and Haack [1] proposed a method based on the evaluation of system
logfiles to predict hard disc failure. The logfile data was used to train a support-vector
machine to recognize sequences or patterns in the messages which implied an impeding
failure. With a sliding window method subsequences of the log were evaluated and clas-
sified as fail or non-fail. The training data consisted of the actual system log of a linux
computing cluster. The results showed promising results with up to 73 % recognition
rate up to two days ahead of the failure.

The work of by Létourneau, Famili and Matwin [4] originated from the aircraft
domain. The authors examined the problematics of large amounts of data generating
systems in an airplane. They addressed the issues of data gathering, labeling, and model
integration and presented an approach to learn models from the data to predict issues
with components of the aircraft.

In a Phd. thesis of Lipowsky [5], the author focused on condition monitoring of
gas turbines. The differences between handling gradually occurring degradations and
spontaneous failures were elaborated. An integrated system to deal with both cases
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was developed, one based on a least-squares solution, the other based on nonlinear
optimization.

6 Conclusions

In this paper we proposed a method to predict component failures based on system
logs. The results show, that such a type of prediction indeed is possible. However, the
effort to reach this goal is high. For every type of failure a separate classifier has to
be trained, although the results of experiment 4 (cf. Section 4.4) show that a combined
classification is possible. Nevertheless, such a combination still is prone to result in a
reduced classification performance compared to treating each problem separately. Also,
and perhaps most importantly, the requirement for methods such as proposed in this
paper, namely data quality is not yet met. To assure a consistent data environment for
the training, the data needs to be complete for the whole fleet. The data used for this
research had huge gaps in the recorded timespan. This is a problem DB Schenker Rail
has to solve, before methods like this can be used in a real-world environment. We also
assume that the prediction quality will significantly increase given the data quality is
improved.

Also, the problem of imbalanced classes is certainly present in domains such as
failure prediction as usually cases of failure are quite rare compared to the regular cases
where everything is fine. The results show that the RandomForest classifier seems to
work well on imbalanced data, but, if tackled appropriately the performance will even
increase.

For future work it is planned to carefully tune the parameters of the machine learn-
ing algorithms for each single problem. Also, given the data quality is enhanced, the
approach has to be re-run on the new data. Another interesting topic is to inspect the
effects of the values v and w also for the other experiments and figure out whether or
not similar trends are present.
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