
Vertex Similarity - A Basic Framework for

Matching Geometric Graphs

Ayser Armiti and Michael Gertz

Institute of Computer Science, Heidelberg University, Germany
{ayser.armiti,gertz}@informatik.uni-heidelberg.de

Abstract. Solutions to the graph matching problem play an impor-
tant role in many application domains, such as chemistry, proteomics,
or image processing. Especially in these domains, graphs have geometric
properties that describe the positions of the vertices in some 2- or 3-
dimensional space. Several exact and approximate approaches have been
proposed to address the problem of matching graphs, which is known to
be NP-hard in general. For this, most approaches depend on the concept
of vertex similarity to iteratively increase the matching quality.

In this paper, we study the vertex similarity problem for geometric
graphs. We formally define such a problem and prove that its complex-
ity is NP-hard. For geometric graphs in 2D, we propose an approximate
solution with polynomial runtime. For this, we utilize techniques under-
lying attributed cyclic string matching and customized edit operations
that consider spatial properties and labeling information. In our evalua-
tions, we show that our approach outperforms existing vertex similarity
approaches in terms of classification accuracy and matching quality.

1 Introduction

Searching for and exploring similar objects is an important task in many ap-
plication domains, such as in social networks, biology, or pattern recognition.
For such domains and many more, graphs are used as a powerful data structure
for the representation of objects and object relationships. By this, searching for
similar objects turns to be the tasks of finding similar (sub)graphs, which is esti-
mated by a graph matching algorithm [9]. Approaches to graph matching search
for correspondences between the vertices of two graphs such that the matched
vertices have similar labels and connectivity.

The problem of inexact graph matching, which is matching graphs in the
presence of noise and outliers, has been shown to be NP-hard [25]. As a conse-
quence, most of the approaches to solving the matching problem focus on finding

Copyright c© 2014 by the paper’s authors. Copying permitted only for private and
academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

111

approximate solutions, e.g., [11, 12]. These approaches follow an iterative contin-
uous optimization procedure. The objective function used by such optimization
procedures depends on the concept of vertex similarity [7, 26].

For many graph matching algorithms, vertex similarity means the similarity
of the labels assigned to the vertices and edges [25]. But in application domains
such as chemistry, proteomics, or image processing, vertex similarity is much
more complex and subjective. For such disciplines, it is critical to study the
spatial properties of vertices, in addition to their labels and connectivity [3].

In this paper, we study the vertex similarity problem for geometric graphs.
We build on our previous work [5, 6] and prove that such a problem is NP-hard in
general. For geometric graphs in 2D space (as common in many application do-
mains), we propose a novel approach to estimate the similarity between different
vertices. Our solution is based on the concept that two vertices are similar when
their direct neighboring vertices are similar. For this, we propose to extract a
feature for each vertex based on the properties of its neighborhood. We use string
edit distance to compute the similarity of two vertices using their features. To
realize this, we propose customized edit operations that utilize spatial properties
and labeling information. Comprehensive empirical studies using real geometric
graph datasets from different application domains are used to demonstrate the
accuracy of our proposed approaches compared to related work.

The remainder of the paper is organized as follows. In Section 2, we survey
related work. Section 3 discusses the problem settings. In Section 4, we propose
our novel approaches to solve vertex similarity for geometric graphs in 2D space.
In Section 5, we present experimental results of our proposed approach. Finally,
Section 6 summarizes the paper.

2 Related Work

Several graph matching algorithms use the Euclidean distance to estimate the
similarity between real-valued labels that are assigned to the vertices and edges
[19, 25]. For geometric graphs, the coordinates of the vertices cannot be simply
treated as real-valued attributes since they are measured with respect to the
particular reference axis frame for each graph. This makes the Euclidean distance
incapable of estimating the spatial distance between vertices of two graphs under
a geometric transformation. In addition to this, pure structural graph matching
approaches cannot be applied to geometric graphs because they do not consider
the spatial properties of a graph. Several other approaches have been proposed to
solve the vertex similarity problem for non-geometric graphs [27, 28]. However,
for geometric graphs, little can be found in literature. We believe that this is a
consequence of the complexity of the problem in the case of geometric graphs,
which will be discussed in later sections. In the following, we discuss current
approaches to estimate the similarity between vertices of geometric graphs and
divide them into two classes: global and local approaches.

The global approaches extract a feature for each vertex using the overall
graph structure. Algorithms that utilize graph spectra are classified as global

112

approaches. The main idea is to extract a feature for each vertex based on the
values of the Eigenvectors. Such features are then used by the Hungarian algo-
rithm for graph matching [22]. To use the same concept for geometric graphs, the
spectra of the weighted adjacency or the weighted Laplacian matrices are used.
The weight of an entry represents the length of an edge, which is computed using
the Euclidean distance between the coordinates of its incident vertices. Then,
eigen-decomposition is used to generate a spectral feature for each vertex, which
is represented by the values of the Eigenvectors with respect to that vertex. Since
graphs with different numbers of vertices create different numbers of Eigenvec-
tors, the spectral features for the vertices are truncated by keeping the values
with respect to the most dominant Eigenvectors [26], i.e., the Eigenvectors that
correspond to the largest Eigenvalues. Based on this, the distance between two
vertices equals the Euclidean distance between their spectral features. A major
drawback of the spectral approach is that it cannot handle labeling information.
Also, such an approach is sensitive to differences in the number of vertices, the
structure of the graph, and the lengths of the edges.

Another global vertex similarity approach is based on the landmark distance
concept [8]. First, a set of vertices from each graph is selected as landmarks.
Then, every vertex from the graph is represented by a feature vector containing
the distances to the landmarks. The distance is measured as the length of the
shortest path between the vertex and a landmark. Then, the distance between
two vertices is computed using the Manhattan distance between their landmark-
based features. The basis of such an approach is the selection of landmarks for
each graph. Cheong et el. [8] propose to use four landmarks as the extreme
vertices in the boundaries of the graph, i.e., peripheral vertices. However, such
an approach is incapable of matching graphs that differ in the number of vertices.

To overcome the problems of the global approaches, local features are ex-
tracted from the neighborhood of each vertex. One of the earliest approaches to
estimate the similarity of different vertices is the histogram-based approach [10,
13, 21]. A histogram is created from the spatial properties of the neighborhood
of each vertex. It stores the pair-wise relationships between the edges that are
incident to that vertex, which consists of the ratio of the lengths of the edges
in addition to the angle between them. As a result, the local-feature is a 2D
histogram of edge lengths and angle values. Based on this, the distance between
two vertices is estimated by the distance between their geometric histograms,
which is computed by the χ2 or the Bhattacharyya distances. Unfortunately, his-
togram approaches face problems in binning and normalization, especially when
dealing with real-valued attributes, i.e., the edge length and the angle value.

Notice that the above approaches extract features that are invariant to ge-
ometric transformations. Another approach to solve vertex similarity is to use
geometric hashing based on the coordinates of the vertices [24]. The basis of this
approach is to create several local frames for the neighborhood of each vertex,
which are defined again by that vertex and its direct neighbors. Then, the coor-
dinates of the vertices in the neighborhood of a vertex are measured with respect
to each local frame. After that, hashing is used to speed up the search for the

113

local frame that best estimates the distance between two vertices. Geometric
hashing is efficient in the case of matching vertices that have a homogeneous
transformation, i.e., rigid transformation. But, in the case of inexact matching,
such an approach fails to estimate the similarity of the vertices.

3 General Problem Setting

In our framework, we consider (non-)planar, labeled, undirected geometric graphs
that do not contain self-loops or multi-edges.

Definition 1. (Geometric Graph) A labeled undirected geometric graph G =
(V,E, l, c) consists of a finite set of vertices V , a finite set of edges E ⊆ V × V ,
a labeling function l : {V ∪E} → Σ, assigning a label to every vertex and every
edge from a label alphabet Σ, and a function c : V → R

d, assigning a coordinate
in R

d to every vertex.

Without loss of generality and throughout the rest of this paper, we represent
a geometric graph G as G = (V,E). The size |G| of a graph is the number of
vertices in G. The degree of a vertex v, denoted deg(v), is the number of vertices
that are directly connected to v. The set of direct neighboring vertices of a vertex
v is denoted by N(v).

In our framework, we follow a local-based vertex similarity approach, which
has been proved to give good results for general non-geometric graphs [19, 25].
It is based on the concept that two vertices are similar when their neighbors are
similar. For our framework, we call the neighborhood of a vertex its signature.

Definition 2. (Vertex Signature) Given a vertex vi in a graph G = (V,E),
the vertex signature S(vi) is a subgraph G

′

= (V
′

, E
′

) of G such that V
′

=
{vi ∪ {vj |(vi, vj) ∈ E}}. For each vertex vj ∈ V

′

, vj 6= vi, there exists an edge

(vi, vj) ∈ E
′

. vi is called the root vertex of S(vi).

After defining the meaning of locality, the similarity between two vertices
is estimated by computing the similarity of their vertex signatures. A function
that quantifies the similarity between two vertex signatures must satisfy geomet-
ric transformations, i.e., two vertex signatures are considered spatially identical
if there is a geometric transformation (rotation, translation, and scaling) that
makes the coordinates of one vertex signature identical to the coordinates of the
other [16]. In addition to this, and for many scientific applications, two similar
objects are often represented by two non-identical graphs. In pattern recognition
applications, acquisition methods often introduce noise in the number of vertices
and their locations. Also, the structure and connectivity of vertices often vary
between graphs representing similar objects. As a result, two vertex signatures
representing similar vertices have differences in the number of neighbors, labeling
information, the lengths of the edges, and the distances between the neighbor-
ing vertices. This leads to the concept of inexact vertex similarity, which will be
detailed in the following section.

114

3.1 Vertex Edit Distance

To compute the inexact similarity between two vertex signatures, we adopt the
edit distance concept that is been used in matching strings and graphs [20,
23]. It is defined as the minimum amount of changes that is needed to make a
string or a graph identical to another. We call the edit distance of two vertex
signatures the vertex edit distance (VED). For two vertex signatures S(v) and
S(u), the key idea of the VED is to delete some vertices and edges from S(v),
re-label some other vertices and edges, change the coordinates of some vertices,
and insert some vertices and edges into S(u) such that the two vertex signatures
become identical. For this, we adopt three edit operations: substitution (re-label),
insertion, and deletion. A sequence of edit operations that transfer one vertex
signature to be identical to another is called an edit path. Obviously, there are
many possible edit paths from one vertex signature to another. As a result, the
VED is defined as the distance with the minimum cost of all of them:

Definition 3. (Vertex Edit Distance) Let φ(S(v), S(u)) be the set of all geo-
metric transformations between the coordinates of S(v) and S(u), Υφi

(S(v), S(u))
be the set of all edit paths between S(v) and S(v) after applying the geometric
transformation φi, then the vertex edit distance is defined as:

d(v, u) = min
φi∈φ(S(v),S(u)),pj∈Υφi

(S(v),S(u))
cost(pj) (1)

where cost(pj) is the total cost of all edit operations of the path pj

The cost of an edit path depends on the cost of its edit operations, which we
define as the following. The cost of a substitution between two vertices is defined
by the Euclidean distance between their coordinates, the distance between their
labels, and the substitution costs of their edges. The substitution cost between
two edges is defined as the distance between their labels in addition to the
distance between their lengths. The cost of vertex insertion or deletion equals to
a constant α.

Lemma 1. The problem of vertex edit distance for geometric graphs in the R
d

space is NP-hard such that d ≥ 2.

In the following, and without loss of generality, we give a sketch proof for the
above lemma in the case of unlabeled geometric graphs.

Proof Sketch: For two unlabeled geometric graphs, we reduce the problem of
inexact point set matching to the problem of vertex edit distance. Let P =
{p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} be two point sets in R

d, d ≥ 2. The
two point sets are reduced to two vertex signatures in polynomial time as follows.
All points from the point set P become vertices directly connected to a dummy
root vertex vp. The coordinate of vp is computed as the center of the point set P .
In the same way, the points from Q create a vertex signature with a dummy root
vertex vq. The optimal match between P and Q is the optimal mapping of the
neighbors of vp and the neighbors vq. Non-matched points (vertices) represent

115

the insertion and deletion operations. A substitution operation is indicated by a
correspondence from one point to another.

The problem of inexact point set matching in the R
d space is proved to

be NP-hard [4] where d ≥ 2. As result, the problem of computing the optimal
solution of vertex edit distance for geometric graphs in R

d space is also NP-hard.
✷

4 Vertex Similarity for 2D Geometric Graphs

In this section, we propose an approximate solution to the VED problem for
geometric graphs in 2D space, which can be computed in O(mn log n), such
that n and m are the numbers of edges for two vertex signatures. For this, we
require that the edges of a vertex signature are sorted in counter-clockwise order
around the root vertex. As a result, the feature that is extracted from each vertex
signature is a cyclic string that is defined as follows:

Definition 4. (Spatial Feature) Given a geometric graph G = (V,E, l, c),
the spatial feature Fv for the vertex signature S(v) is a cyclic string Fv =
[f1, f2, . . . , fn], n = deg(v), such that each token fi is defined as:

fi := (|ei|,∠eiei−1, l(ei), l(vi))

where |ei| denotes the length of the edge ei, ∠eiei−1 denotes the angle between
the edges ei and ei−1 in counter-clockwise order, l(ei) is the label of edge ei, and
l(vi) is the label of the neighboring vertex incident to edge ei.

The feature is created by selecting an edge from the vertex signature and
going over the rest of the edges in a counter-clockwise order. For a vertex signa-
ture of n edges, there will be n different ways to represent its feature. However,
all of them are considered equivalent with a cyclic shift from one to another.

Once the spatial features are represented as cyclic strings, the VED between
two vertex signatures is estimated by the cyclic string edit distance (CS) [17],
which is a natural extension to the string edit distance. A naive approach to
solve it runs in O(nm2), where n and m are numbers of edges for two vertex
signatures. This is done by applying the algorithm by Wagner and Fisher [23]
to the first spatial feature and all cyclic shifts of the second one. Maes in [17]
proposed a faster solution to the cyclic string edit distance that runs in time
O(nm logm). So, the cyclic string edit distance gives an approximate solution
to the VED problem with a runtime complexity of O(nm logm).

To utilize the CS approach, we define three edge edit operations: substitu-
tion, insertion, and deletion. We propose edit operations that combine spatial
attributes and labeling information. In the following we discuss two sets of edit
operations. The first one computes the edit operations based on the absolute
values of the edge length and the angel value. The second one uses a polar dis-
tance based on the lengths of two edges and the angle between them.

116

Edit operations using the Manhattan distance

Given two vertex signatures S(v) and S(u) such that n = |S(v)| and m =
|S(u)|, let edge ei ∈ S(v), edge ej ∈ S(u), fi = (|ei|,∠eiei−1, l(ei), l(vi)), fj =
(|ej |,∠ejej−1, l(ej), l(uj)), then, the substitution γ(fi → fj) is defined as:

γ(fi → fj) := dL(fi, fj) + dS(fi, fj) (2)

In the case of labeled graphs, the function dL(fi, fj) computes the distance
between the label of edge ei and the label of ej in addition to the distance
between the labels of the vertices that are incident to them, i.e., vi and uj . The
function dS(fi, fj) calculates the spatial distance based on the angle and the
edge length. For an edge e, let θe and le denote the angle and edge length, as
defined earlier in Definition 4. The function dS is formally defined as follows:

dS(fi, fj) :=
|θei − θej |

2π
+

∣

∣

∣

∣

∣

lei
∑n

k=1 lek
−

lej
∑m

k=1 lek

∣

∣

∣

∣

∣

(3)

The angles and edge lengths at a vertex signature are normalized, as can be
seen by the denominators used in the above equation. An angle is normalized
by 2π since the sum of angles at a local signature sums up to this value. Also,
an edge length is normalized by the sum of edge lengths at a local signature.
For example, for a local signature S(v), the edge length normalization factor is

lei∑
n
k=1

lek
, where n is the number of edges connected to v.

In the following, we define the insertion and deletion operations. Let λ rep-
resent the null (non-existent) edge, then the insertion γ(λ → fi) and deletion
γ(fi → λ) with respect to fi are defined as follows:

γ(λ → fi) = γ(fi → λ) := c(fi) +

(

θei
2π

+
lei

∑n

k=1 lek

)

(4)

The cost of edge insertion or deletion is computed based on the angle value,
edge length, and labeling information. For labeled graphs, the function c defines
the cost of inserting or deleting the label assigned to that edge in addition to
the label assigned to its incident vertex.

For unlabeled graphs, the cost of an edit operation lies in the range [0,2].
This is because each of the angle value and edge length is normalized to the
range [0,1]. For labeled graphs, the range increases depending on the range of
the function dL for the substitution operation and c for the insertion and deletion.

Edit operations using polar coordinate

The second set of edit operations shares many similarities with the previously
defined edit operations. However, the spatial distance between two vertex signa-
tures is computed based on the polar distance between the neighboring vertices

117

of two vertex signatures. Given two vertex signature S(v) and S(u), let edge
ei ∈ S(v) and edge ej ∈ S(u). The substitution cost γ(fi → fj) is defined as:

γ(fi → fj) = dL(fi, fj) + dS(fi, fj) (5)

In the case of labeled graphs, the function dL(fi, fj) computes the distance
between the label of edge ei and the label of ej . It also computes the distance
between the label of the neighboring vertex connected to ei to the label of the
one connected to ej . The function dS(fi, fj) calculates the spatial distance based
on the angles and the lengths of the edges. For an edge e, let θe denote the angle
between e and the previous edge in a counter-clockwise order, and let le denote
the edge length. The function dS is defined as:

dS(fi, fj) =
√

l2ei + l2ej − 2 lei lejcos(|θei − θej |) (6)

The substitution cost is defined as the distance needed for the neighboring
vertex of edge ei to align with the neighboring vertex of ej . This can be seen
as the polar distance between them such as the polar axis for each vertex is the
edge that precedes it in the counter-clockwise order. Analogously, we define the
insertion and deletion operations. Let λ represent the null (non-existent) edge.
Then, the insertion γ(λ → fi) and deletion γ(fi → λ) with respect to fi are
defined as:

γ(λ → fi) = γ(fi → λ) = c(fi) + lei (7)

The cost of edge insertion or deletion is computed based on the edge length
(lei). For labeled graphs, the function c defines the cost of inserting or delet-
ing the label assigned to the edge ei in addition to the label assigned to the
neighboring vertex connected to ei.

5 Evaluation

In this section, our proposed approach to the vertex similarity problem and its
usage for graph matching is empirically evaluated. We use three different data
sets: 1) Chinese characters [1], 2) the COIL-100 image data set [18], and 3)
the CMU house and hotel image data sets [2]. Besides coming from different
application domains, our data sets vary in many aspects such as the size of the
data set, the number of classes (in case geometric graphs have been assigned to
classes), as well as the number of vertices and edges.

We compare our algorithms (CSv1), which uses the first set of edit opera-
tions, and (CSv2), which uses the second set of edit operations, with three other
approaches: a graph spectral approach (SP) [22, 26], a geometric histogram of
the pair-wise relations between the edges in the neighborhood of a vertex (GH)
[14, 21], and a unary vertex distance function based on only the coordinates of
the vertices (CO) such as neither global nor local structural information is used.
We test such an approach to evaluate the effect of using the coordinates of the
vertices on their similarities.

118

To evaluate the different approaches, we embed them in a unified graph
matching algorithm. It consists of two steps. First, a vertex-to-vertex distance
matrix is created using any of the previous approaches. Second, the Hungarian
algorithm [15] is used to select the best match between the two graphs. Since all
the approaches use the Hungarian algorithm for graph matching, the differences
in the matching results are affected only by the approach that is used to estimate
the similarity between two vertices.

To evaluate the performance of a vertex similarity approach, we use two cri-
teria. The first one is the effect of vertex similarity on a graph similarity metric.
This is evaluated by embedding the graph matching algorithm in a classifica-
tion task. The higher the classification accuracy the better the vertex similarity
approach. To create a graph distance metric, we follow a graph edit distance
approach. This means that the distance between two graphs consists of the cost
of the match between them, i.e., the substitution cost, in addition to the cost of
inserting the unmatched vertices. The second criterion is the selectivity power,
which means that a vertex similarity approach reflects the similarity notion of
an application domain. This is measured by the quality of the match computed
by the graph matching algorithm.

5.1 Graph Similarity and Classification

In this section, we evaluate the relation between different vertex similarity ap-
proaches and graph similarity in general. To measure this, we test the different
approaches in a graph classification task. In our experiments, we used the first
nearest neighbor classifier (1-NN) based on the similarities of the graphs. For this
experiment, we use the COIL-100 data set [18], which consists of images of 100
different objects taken at different degrees. A geometric graph is then extracted
from each image. From 3900 graphs, we select 2900 for training, 29 graphs for
each object. For testing, we select 1000 graphs, 10 graphs for each object. We
also use the Chinese data set [1], which contains a total of 9384 characters that
belong to 6 different fonts, i.e., 1564 characters from each font. A test data set of
1564 graphs is extracted from the Dotum Korean font. The remaining five fonts
build a training data set of 7820 graphs. Ideally, for a query character, its most
similar character from the train data set should have the same Unicode.

Figure 1(a) shows the classification accuracies for the COIL-100 data set
for the different approaches. The lowest classification accuracy is for the SP
approach. This is because spectral approaches are sensitive to the changes in the
number of vertices in addition to their spatial properties. We conclude that a
local-based vertex similarity approach is better than a global-based one. The best
classification accuracy is for the CSv2+CS approach, followed by the CSv2
approach. Notice that the use of invariant spatial features by our approaches
(CSv1 and CSv2) gives better results than using the coordinates of the vertices
(CO). However, combining both of them gives the best result.

The classification accuracy for the Chinese data set is shown in Figure 1(b).
Also, for this data set, the best results is for the CO+CSv2 approach. On the

119

CO CSv1 CSv2 CO+CSv2 SP GH

Algorithm

M
a
tc

h
in

g
 a

c
c
u
ra

c
y
 %

0
2
0

4
0

6
0

8
0

1
0
0

a) COIL-100 data set

CO CSv1 CSv2 CO+CSv2 SP GH

Algorithm

M
a
tc

h
in

g
 a

c
c
u
ra

c
y
 %

0
2
0

4
0

6
0

8
0

1
0
0

b) Chinese data set

Fig. 1: Classification accuracy for different vertex similarity approaches.

other hand, the CSv1 and CSv2 approaches are much better than CO alone.
The lowest classification accuracy is for SP and GH.

From these two data sets we conclude that using invariant spatial features is
better than using only the coordinates of the vertices. However, still the coordi-
nates of the vertices can be used to give good graph matching results for many
applications. Also, using the second set of edit operations, i.e., CSv2, gives bet-
ter results that the first set. i.e., CSv1. This is justified since CSv1 gives the
same weight for the differences in the angle value and the edge length.

5.2 Graph Matching

In this section, we evaluate the quality of the match computed by the graph
matching algorithm. Higher matching quality indicates higher selectivity power
for a vertex similarity approach. We use the matching accuracy to estimate the
quality of a match. It is defined as the number of correct matches, computed by
a matching algorithm, over the actual total number of correct matches. For this
test, we use the CMU hotel and house data sets. They contain images for a toy
house and hotel, subjected to rotation in 3D. For each data set, we match all
images spaced at 10, 20, 30, 40, 50, 60, 70, 80, and 90 in the rotation sequence,
and compute the average matching accuracy.

From Figures 2(a) and 2(b), one can see that for all the approaches, the
matching accuracy decreases when the distance in the rotation sequence between
the images increases. This is a consequence of the increase in the structural
differences between the geometric graphs. The lowest matching accuracy is for
the SP approach, which is sensitive to the changes in the structure of the graphs.
The best matching accuracy is for the CSv2 and CO. However, CO+CSv2 is
not always better than using each of the single approaches alone. Also, the
matching accuracy of CSv2 is better than the one of CSv1. This means that
using the polar distance gives better results than using just the absolute values
of the length of the edge and the angle value.

120

0
2
0

4
0

6
0

8
0

Seperation between frames

A
ve

ra
g
e
 a

c
c
u
ra

c
y
 %

10 20 30 40 50 60 70 80 90

CO
CSv1
CSv2
CO+CSv2
SP
GH

a) Hotel data set

0
2
0

4
0

6
0

8
0

Seperation between frames

A
ve

ra
g
e
 a

c
c
u
ra

c
y
 %

10 20 30 40 50 60 70 80 90

CO
CSv1
CSv2
CO+CSv2
SP
GH

b) House data set

Fig. 2: Matching quality for the CMU hotel/house data sets.

6 Conclusions

In this paper, we discussed the problem of vertex similarity for geometric graphs.
Our focus is on local-based vertex similarity approaches, which use the proper-
ties of the neighborhoods of the vertices to estimate their similarities. One of the
main results that we introduced is the sketch proof that the problem of vertex
similarity for geometric graphs is NP-hard in general. On the other side, we pro-
posed an algorithm to approximate the similarity between vertices for geometric
graphs in 2D space. Our solution utilizes the property that the direct neighbors
of a vertex has a total order, which is a consequence of the embedding of the
neighboring vertices in 2D space. To find the similarity between two vertices,
first, a spatial feature is extracted, which is a cyclic string of the lengths of the
edges in addition to the angles between them. After that, the cyclic string edit
distance is used to estimate the similarity of different vertices. For this, we pro-
posed edit operations that utilize spatial properties and labeling information.
We demonstrated the accuracy of our approach using different real-world data
sets from image processing and character recognition. We also showed that our
approach compares favorably to existing vertex similarity techniques.

References

1. CJK Fonts: Chinese, Japanese, and Korean Fonts. http://bookr-mod.

googlecode.com/files/cjk-fonts-1.zip. Accessed: 01/12/2011.
2. CMU house and hotel data sets. http://vasc.ri.cmu.edu/idb/html/motion. Ac-

cessed: 16/02/2012.
3. C. Aggarwal and H. Wang. Managing and mining graph data. Springer, 2010.
4. T. Akutsu, K. Kanaya, A. Ohyama, and A. Fujiyama. Point matching under non-

uniform distortions. Discrete Applied Mathematics, 127(1):5–21, 2003.
5. A. Armiti and M. Gertz. Efficient Geometric Graph Matching Using Vertex Em-

bedding. In SIGSPATIAL, pages 234–243, 2013.
6. A. Armiti and M. Gertz. Geometric Graph Matching and Similarity: A Probabilis-

tic Approach. In SSDBM, pages 27:1–27:12, 2014.
7. T. Caetano, J. McAuley, L. Cheng, Q. Le, and A. Smola. Learning graph matching.

IEEE Trans. Pattern Anal. Mach. Intell., 31(6):1048–1058, 2009.

121

8. O. Cheong, J. Gudmundsson, H. Kim, D. Schymura, and F. Stehn. Measuring the
Similarity of Geometric Graphs. Experimental Algorithms, pages 101–112, 2009.

9. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty Years Of Graph Matching
In Pattern Recognition. IJPRAI, 18(3):265–298, 2004.

10. X. Gao, B. Xiao, D. Tao, and X. Li. Image categorization: Graph edit dis-
tance+edge direction histogram. Pattern Recognition, 41:3179–3191, 2008.

11. X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern
Anal. Appl., 13(1):113–129, 2010.

12. S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching.
IEEE Trans. Pattern Anal. Mach. Intell., 18(4):377–388, 1996.

13. B. Huet and E. Hancock. Inexact graph retrieval. In IEEE Workshop on Content-
Based Access of Image and Video Libraries, pages 40–44, 1999.

14. B. Huet and E. R. Hancock. Relational Object Recognition from Large Structural
Libraries. Pattern Recognition, 35:1895–1915, 2002.

15. H. Kuhn. The Hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

16. M. Kuramochi and G. Karypis. Discovering Frequent Geometric Subgraphs. In
ICDM, pages 258–265, 2002.

17. M. Maes. On a cyclic string-to-string correction problem. Information Processing
Letters, 35(2):73–78, 1990.

18. S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-
100). Technical report, Feb 1996.

19. K. Riesen and H. Bunke. Approximate graph edit distance computation by means
of bipartite graph matching. Image and Vision Computing, 27(7):950–959, 2009.

20. A. Sanfeliu and K.-S. Fu. A Distance measure between attributed relational graphs
for pattern recognition. IEEE Trans. Syst., Man, Cybern., Syst., 13(3):353–362,
1983.

21. N. Thacker, P. Riocreux, and R. Yates. Assessing the completeness properties of
pairwise geometric histograms. Image and Vision Computing, 13(5):423–429, 1995.

22. S. Umeyama. An eigendecomposition approach to weighted graph matching prob-
lems. IEEE Trans. Pattern Anal. Mach. Intell., 10(5):695–703, 1988.

23. R. Wagner and M. Fischer. The string-to-string correction problem. Journal of
the ACM (JACM), 21(1):168–173, 1974.

24. X. Wang, D. Shasha, B. Shapiro, I. Rigoutsos, and K. Zhang. Finding Patterns in
Three-Dimensional Graphs: Algorithms and Applications to Scientific Data Min-
ing. IEEE Trans. on Knowl. and Data Eng., 14(4):731–749, July 2002.

25. Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing Stars: On
Approximating Graph Edit Distance. PVLDB, 2(1):25–36, 2009.

26. Y. Zhu, L. Qin, J. X. Yu, Y. Ke, and X. Lin. High efficiency and quality: large
graphs matching. In CIKM, pages 1755–1764, 2011.

27. G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently Indexing Large Sparse Graphs
for Similarity Search. IEEE Trans. Knowl. Data Eng., 24(3):440–451, 2012.

28. C. Xiao, X. Lin, X. Zhao, and W. Wang. Efficient Graph Similarity Joins with
Edit Distance Constraints. In ICDE, pages 834–845, 2012.

122

