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Abstract. Common approaches to human action recognition from im-
ages rely on local descriptors for classification. Typically, these descrip-
tors are computed in the vicinity of key points which either result from
running a key point detector or from dense or random sampling of pixel
coordinates. Such key points are not a-priori related to human activi-
ties and thus of limited information with regard to action recognition.
In this paper, we propose to identify action-specific key points in images
using information available from videos. Our approach does not require
manual segmentation or templates but applies non-negative matrix fac-
torization to optical flow fields extracted from videos. The resulting basis
flows are found to to be indicative of action specific image regions and
therefore allow for an informed sampling of key points. We also present
a generative model that allows for characterizing joint distributions of
regions of interest and a human actions. In practical experiments, we
determine correspondences between regions of interest that were auto-
matically learned from videos and manually annotated locations of hu-
man body parts available from independent benchmark image data sets.
We observe high correlations between learned interest regions and body
parts most relevant for different actions.
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1 Introduction

Research on recognizing human activities from still images is motivated by
promising applications in automatic indexing of very large image repositories
and also contributes to problems in automatic scene description, context depen-
dent object recognition, or human pose estimation [4, 13, 25, 28].

Currently, approaches to action recognition can be categorized into two main
classes: (a) pose-based and (b) bags-of-features (BoF) methods. Stirred by the
idea of poselets [3], a notion of part-based templates, pose-based approaches have
recently been met with rekindled interest [21, 25]. However, the construction of
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Fig. 1. Examples of still images in which we can easily recognize human activities even
if neither image shows all of the human body.

poselets requires cumbersome manual annotations which impede their use in
BIG DATA settings. BoF approaches are known for their good performance in
object recognition and have therefore been adapted to action recognition [5].
Yet, local image descriptors are typically computed in the vicinity of key points
that result from low-level signal analysis or dense or random sampling and are
therefore uninformative or independent of the activity depicted in an image.

Most physical activities of people show characteristic articulations and move-
ments of different body parts. Yet, although activities are inherently dynamic,
the human visual system easily infers human activities from still images that
show posture or limb configurations. Consider, for instance, the images in Fig. 1
which we can interpret even without a full view of the human body. This raises
the question if it is possible to automatically learn or identify action-specific, in-
formative, regions of interest in still images without having to rely on exhaustive
mining of low-level image descriptors or labor-intensive annotations?

In an attempt to answer this question, we propose an efficient approach to-
wards automatically learning of action specific regions of interest in still images.
Considering the fact that activities are temporal phenomena, we make use of
information available from videos. Given videos that show human activities, we
compute optical flow fields and consider the magnitudes of flow vectors in each
frame. Given a collection of frame-wise flow magnitudes, we apply non-negative
matrix factorization (NMF) and obtain basis flows. These basis flows are in-
dicative of the position and configuration of different limbs or body parts whose
motion characterizes certain activities. Viewed as images, the basis flows indicate
action specific regions of interest and therefore allow for an informed sampling of
key points for subsequent feature extraction. We also devise a generative prob-
abilistic model that characterizes joint distributions of regions of interest and
human actions. To evaluate our approach, we consider correspondences between
regions of interest that were automatically learned from videos and manually an-
notated locations of human body parts that are available from independent data
sets of still images. Our empirical results reveal a high correlation between ex-
tracted interest regions and those body parts that are most relevant for different
actions.
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2 Related Work

Approaches that rely on the idea of bags of visual words (BoWs) are popular
because BoWs are known for their simplicity, robustness, and good performance
in content-based image or video classification. Corresponding work treats an
image as a collection of independent visual descriptors computed at key point
locations. Computing key points is crucial within the BoW framework since it
preselects image patches subsequent classification. Naturally, one would like to
focus only on those patches that are most discriminative.

So far, BoW approaches [18, 22] based on key points detection [2, 12, 20, 23],
though generally discriminative, do not regard task specific objectives in key
point localization. Rather, key point locations are determined from low-level
properties of the image signal. Moreover, corresponding approaches typically
assume key points to be independent and therefore fail to explain characteristics
of spatial layouts. The work in [15] therefore proposes a representation that
encodes spatial relationships among key points. The authors of [11] employ data
mining to build high-level compound features from noisy and over-complete sets
of low-level features and the work [24] uses a triangular lattice of grouped point
features to encode spatial layouts. Still, these approaches, too, center around
low-level signal properties which do not necessarily provide an accurate account
of the characteristics of an activity.

Sampling techniques such as random sampling have shown good perfor-
mances, too. The authors of [7] empirically demonstrate that random sampling
provides equal or better activity classifiers than sophisticated multi-scale interest
point detectors; yet, their work also illustrates that the most important aspect of
sampling is the number of sample points extracted. The authors of [27] claim that
dense sampling outperforms all point detectors in realistic scenarios and. Yet,
at the same time, recent work in [10] shows that state-of-the-art performance in
action recognition can also be obtained from only a few randomly sampled key
points. It therefore appears that the jury is still out on whether to use dense or
random sampling and methods which mark a middle ground, namely informed
sampling, seem to merit closer investigation. It is, however, obvious that the
success of dense sampling is bought at the expense of memory- and runtime effi-
ciency whereas random sampling methods do not provide statistical guarantees
as to the adequacy for the task at hand.

Part-based approaches, too, are popular in research on action recognition
and have been shown to successfully cope with the PASCAL challenge. The au-
thors of [9] describe a deformable model which achieves good performance on
benchmark data sets [5]. The work in [3] introduces exemplar-based pose repre-
sentation, or poselets, for human detection. This term denotes a set of patches
with similar pose configurations. The work in [21] utilizes poselets for identifying
human poses and actions in still images and the authors of [25] propose an artic-
ulated part-based model for human pose estimation and detection which adapts
a hierarchical (coarse-to-fine) representation. Despite their recent success, it is
still questionable if these methods can make use of the favorable statistics of
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(a) Bend (b) Clap (c) Jack (d) Punch (e) Run (f) Walk (g) Wave

(h) Examples of basis vectors obtained from NMF

Fig. 2. (a–g) Examples of training videos from the Weizmann and KTH data sets; (h)
examples of basis flows obtained from applying NMF to optical flow fields.

present day large scale data sets because the construction of suitable poselets
requires extensive human intervention and manual labeling in the training phase.

The authors of [26] consider non-negative matrix factorization (NMF) for
action recognition and apply it to learn pose- and background primitives. In
[1], the authors estimate the human upper body pose through NMF and [16,
17] apply non-negative factor models to recognize activities from videos. The
authors of [29] empirically evaluate human action recognition using pose- or
appearance-based features and conclude that, even for rather coarse pose rep-
resentations, pose-based features either match or outperform appearance-based
features. However, they acknowledge that appearance-based features still rep-
resent an ideal resort for cases of considerable visual occlusion. Accordingly, it
appears worthwhile to study methods that combine both approaches into a single
framework.

Next, we discuss how the approach proposed in this paper indeed provides
a method for the informed sampling of key points for appearance-based action
recognition as well as an approach to learning descriptors of body poses.

3 Learning Action-specific Interest Regions from Videos

Our approach identifies discriminative regions in an image and subsequently
learns the relative importance of those regions for different actions. In order to
identify interesting spatial locations, we apply NMF to optical flow fields ob-
tained from videos. Furthermore, we exploit NMF mixture coefficients to derive
a generative probabilistic model that features joint distributions of regions of
interest and human actions.
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3.1 Learning NMF Bases

Given videos of different actions, we determine optical flow magnitudes at each
pixel in a box of constant size surrounding a person visible in the video. Each
frame can be transformed into an m dimensional non-negative vector v. Let ni

represent the number of frames for an action ai ∈ A = {a1, a2, ..., ar} and let
n =

∑r
i=1 ni. We build an m× n data matrix V containing the flow magnitude

vectors of all frames. Computing NMF yields k basis vectors, or basis flows, such
that V ≈WH where the columns of Wm×k are non-negative basis elements and
the columns of Hk×n encode non-negative mixing coefficients.

In order to compute the factors W and H, we apply the algorithm according
to Lee and Seung [19]. This method is known to yield sparse basis elements for
it converges to vectors that lie in the facets of the simplicial cone spanned by
the data (see the discussions in [6, 14]). Accordingly, we can expect the resulting
basis flows to be sparse in the sense that most elements of a basis element wl will
be (close to) zero and only a few entries will have noticeable values. Figure 2
(h) shows that this is indeed the case. It depicts pictorial representations of
exemplary basis vectors wl resulting from NMF. Note that for each basis element
only a few pixels are larger than zero; in each case, these pixels apparently form
distinct, more or less compact patches in the image plane.

3.2 Learning the Action-specific Importance of Basis Flows

Different actions are characterized by articulation and movements of different
body parts. The NMF basis vectors determined through factorization of frame-
wise optical flow magnitudes appear to indicate image regions of importance for
different activities. Here, we propose to learn the relative importance of different
basis elements with respect to different actions. To this end, we consider the
matrix H since its entries encode linear mixing coefficients required to recon-
struct the vectors in V from the basis flows in W. Consequently, the columns
of H encode the relevant importance of a basis for a given frame. Normalizing
them to stochastic vectors allows us to estimate a joint probability distribution
of actions and bases. The conditional probability of basis wl given an action ai
is determined as

p(wl|ai) =

∑
f

hlf∑
j,f

hjf
(1)

where the summation index f indicates all columns vf in V that show activity
ai and index j ranges from 1 to k.

Figure 3 plots the resulting distribution. Note that this probability distribu-
tion, i.e. the set of weights of a basis element w.r.t. an action, again is sparse.
The distribution in equation (1) immediately allows us to determine how char-
acteristic a certain basis flow is for an activity.
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Fig. 3. Relative importance of bases w.r.t. different actions according to p(wl|ai). Note
that actions flows can be approximated by a small number of basis vectors.

(a) Bend (b) Clap (c) Jack (d) Punch (e) Run (f) Walk (g) Wave

Fig. 4. Examples of action signatures resulting from equation (2).

The probability distribution p(wl|ai) in (1) also allows us to consider action
signatures which we define to be the conditional expectations

si =
k∑

l=1

p(wl|ai) wl. (2)

Computing and plotting action signatures si for different actions ai, we find
that characteristically different regions in the image plane are intensified for
different actions. Figure 4 shows examples of action signatures which we obtained
from basis flows extracted from the Weizmann1 and KTH2 data sets. Apparently,
action signatures like these may serve two purposes. On the one hand, they
provide us with a prior distribution for the sampling of interest points from
still images showing people in order to compute action specific local features
for activity classification. On the other hand, action signatures may be used as
templates or filter masks for pose-based activity recognition.

3.3 Evaluation Methodology

To evaluate as to how far regions of interest extracted by our approach match
the locations of human body parts in real images, we consider the manually
annotated positions of limbs that are available in the H3D3 and VOC20114 data
sets. In particular, we determine the joint probability distribution of actions,

1 www.wisdom.weizmann.ac.il/˜vision/SpaceTimeActions.html
2 www.nada.kth.se/cvap/actions/
3 www.eecs.berkeley.edu/˜lbourdev/h3d/
4 pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/
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interest regions, and body parts. Given the locations of a body part bj in an
image of action ai, we assume the following conditional independence model

p(bj ,wl, ai) = p(bj |ai) p(wl|ai) p(ai). (3)

Using (1) and taking the prior p(ai) to be uniform, allows for solving for p(bj |ai)
which can be understood to encode the relative importance of different body
parts for different actions ai.

4 Experimental Results

In order to learn action specific regions of interest, we considered the Weizmann
and KTH data sets. As these video collections show little variations of back-
ground and view-point, they allow us to focus on estimating the importance of
different body parts for different actions. In particular, we focused on the fol-
lowing actions Bend, Clap, Jack, Punch, Run, Walk, and Wave. We used the
bounding boxes provided by [30] and resized them to size 88× 64. To determine
optical flows, we considered the method due to Farnebäck [8]. Finally, all of the
results reported below were obtained using 200 basis flows wi.

To evaluate the suitability of the resulting interest regions for still image
based action recognition, we considered limb or joint annotations available in the
H3D and VOC2011 data sets. We used 240 annotated images and determined
the joint distribution of actions, interest regions, and body parts. For each of
the selected action classes, we considered the location of 13 body parts or joints
including, for example, head, feet, knees, hips, shoulders, elbows, and hands.

We compared our interest regions to key points extracted by the popular
Harris [12] and SIFT [20] key point detectors. In each case, we selected key
points with the highest response in every image, assigned them to their nearest
annotated body part, and normalized the resulting histogram. For each action,
we obtained a stochastic vector by iterating over all images of that action thus
representing the conditional distribution p(bj |ai) discussed above.

Figure 5 compares results due to our approach of extracting interesting re-
gions from video data to the ones obtained from using Harris and SIFT key
points. It shows the relative importance of different body parts for different ac-
tions. In case of Harris and SIFT key points, head and feet dominate other limbs
regardless of the action (Fig. 5 (a) and (b)). Furthermore, the probabilities for
other body parts are almost uniform and do not convincingly relate to the differ-
ent actions. For example, body parts naturally characterizing Clap, i.e. elbows,
and hands, achieved rather low scores.

On the other hand, our approach exhibits logically coherent relationships
between body parts and actions (Fig. 5(c)). Compare, for instance, the varying
importance of different body parts for clapping and running. Clearly the lower
body parts are dominant for the action of running while the arms are of higher
importance for the action of clapping. From the perspective of body parts observe
that, for instance, the head is less relevant for actions such as Clap or Run as
compared to Bend. Figure 6 visualizes these results using stick figures where
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(a) Importance of body parts using spatial distribution of Harris cor-
ners

(b) Importance of body parts using spatial distribution of SIFT key
points

(c) Importance of body parts using our approach

Fig. 5. Conditional probabilities of body parts w.r.t actions. Our approach (c) ex-
hibits logically coherent relationships between body parts and actions as compared to
appearance based sampling using Harris corners (a) and SIFT interest points (b).

the size of plotted body parts correspond to their relevance for an activity. In
general these results suggest that the regions of interest which we obtain from
factorizing flow fields are well correlated with the locations of action specific
body parts available from independent sets of manually annotated images.
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(a) Bend (b) Clap (c) Jack (d) Punch (e) Run (f) Walk (g) Wave

Fig. 6. Stick figures depicting the relevance of different body parts for different actions.
Important key points computed using the Harris detector (first row) and SIFT detector
(second row) hardly correlate to action-specific body parts; interest regions from our
approach correlate better (third row).

5 Conclusion and Future Work

We presented an approach to the automatic detection of regions of interest for
human action recognition in still images. Since human activities are inherently
dynamic in nature, we proposed to learn interest regions from optical flow fields
extracted from video sequences of human actions. Using non-negative matrix
factorization, we obtained sets of basis flows which were found to be indicative
of the location of different limbs or joints in different activities. Our approach
fundamentally differs from existing pre-processing approaches for action recog-
nition in still images. First, although we consider rather low-level properties of
videos of activities, the characteristics of optical flow enable us to identify lo-
cations of body parts whose articulation define an action. Consequently, unlike
common bag-of-features approaches, our approach facilitates informed sampling
of key points in the image plane. Second, the proposed concept of action sig-
natures provides probabilistic templates for pose-based recognition. Compared
to common approaches based on distributed pose representations, our approach
does not require meticulous manual annotation of images or frames and thus
offers more scalability and convenience for large data sets. Also, compared to
conventional part based approaches, our approach does not assume an under-
lying elastic model of body but provides priors even for cluttered or occluded
images. This paper therefore established a baseline for video-based feature se-
lection towards action recognition in still images.

145



The logical next step for future work is, of course, to build activity classifiers
based on information available from action specific regions of interest. To this
end, we currently consider standard descriptors(e.g. HOG, SIFT, SURF) which
are computed at locations determined according to the probabilities encoded in
action signatures.
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