
SHrimp: Descriptive Patterns in a Tree

Sibylle Hess, Nico Piatkowski, and Katharina Morik

TU Dortmund University, 44227 Dortmund, Germany
sibylle.hess@tu-dortmund.de

http://www-ai.cs.tu-dortmund.de

Abstract. The appliance of the minimum description length (MDL)
principle to the field of theory mining enables a precise description of
main characteristics of a dataset in comparison to the numerous and
hardly understandable output of the popular frequent pattern mining
algorithms. The loss function that determines the quality of a pattern
selection with respect to the MDL principle is however difficult to analyze
and the selection is computed heuristically for all known algorithms.
With SHrimp, the attempt to create a data structure that reflects the
influences of the pattern selection to the database and that enables a
faster computation of the quality of the selection is initiated.

Keywords: Pattern Mining, MDL, Pattern Selection, Itemsets.

1 Introduction

The identification of interesting subsets and pattern mining in general is a fun-
damental concept when it comes to compute characteristics of large databases.
Patterns shall reflect the inherent structure of the dataset, particular interesting
or at least reoccurring parts of it. As described by Mannila and Toivonen [7]
the theory of the dataset, represented by the subsets that satisfy a given predi-
cate of interest, is required. The most common practice is the frequent pattern
mining [1], where the relevance of a pattern is identified with its frequency. The
monotonic property of frequent sets, that all subsets of a frequent pattern are
also frequent, results however in an output with highly redundant patterns. In
addition, the threshold that denotes the minimal frequency to be fulfilled, is hard
to set. A high threshold often results in a small set of patterns that reveals noth-
ing but common knowledge and a lower one lets the number of issued patterns
literally explode. These enormous amounts of patterns are hard to understand
and the connections or correlations between them are not given explicitly.

Another approach has been introduced by Siebes et al. with Krimp [12] where
the most interesting patterns are selected according to the minimum description
length (MDL) principle [3]. The best set of patterns is identified as the one that

Copyright c© 2014 by the paper’s authors. Copying permitted only for private and
academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

173

compresses the database best. This strategy reduces the number of returned
patterns drastically, e.g. from billions to less than 700 itemsets for the mushroom
database, and has a variety of applications [10,11,5]. Krimp has as input a
preferable large set of frequent patterns, the code word candidates, a set that
is likely to be very much larger than the input dataset. Krimp tries to find the
best selection of patterns from this candidate set with respect to the encoding
of the database in a greedy procedure. Every candidate pattern is regarded once
and the compression size with the considered pattern is computed. Since the
consequences for the encoding of the database when a single candidate is added
to the set of code words is difficult to derive, the whole database has to be
traversed for each of the candidates to identify affected parts of the database
such that their encoding can be recomputed.

The algorithm SLIM [9] encounters this problem by a candidate pattern
generation that follows directly from the current selection of code words. In every
iteration, candidates are generated and sorted by their estimated compression
gain and the first pattern that enhances the compression size indeed is accepted.
The estimation of the compression size requires however an identification of the
affected parts of the database and for some candidates the actual compression
size has to be computed as well. These operations are performed for most of
the time and the combinatorial possibilities for the candidate generation are
numerous, thus, an indexing structure that supports these operations and that
gives insight into the consequences of integrating a pattern into the encoding, is
desirable.

With SHrimp we introduce a tree structure that facilitates a fast identifi-
cation of the interesting parts of a dataset and enables a direct determination
of the consequences that result from a change of the current pattern selection.
In addition, the tree structure reflects the dependencies of mined patterns com-
pletely and can be used to get fundamental as well as more profound views of
the characteristics of the given dataset.

We proceed as follows: In section 2 we give a theoretical introduction to
the principles of Krimp and the algorithmic procedure. We proceed with an
explanation of the tree structure of SHrimp and its application concerning the
candidate selection in section 3. Runtime comparisons for some well studied
datasets are shown and discussed in section 4 and we conclude in section 5.

2 Preliminaries

Let P(X) denote the power set of X. Given a set of items I we define a database
D ⊆ P(I) as a set of transactions t ⊆ I. For a given minimum support minsup ∈
[0, 1] a set X ∈ I is called frequent if

sup(X) =
|{t ∈ D|X ⊆ t}|

|D|
≥ minsup.

The value sup(X) is called the support of an itemset X. We define F as the set
of all frequent patterns, the regarded candidates.

174

2.1 The MDL principle

MDL has been introduced by Rissanen et al. [8] as an applicable version of the
Kolmogorov complexity [6]. Given a set of modelsM, the best model is identified
as the one that minimizes the compression size

L(D,M) = L(D|M) + L(M),

whereby L(D|M) denotes the compression size of the database in bits, assuming
that model M is used for the encoding and L(M) is the description size in bits
of the model M itself.

2.2 Encoding the Database

We define a coding set CS ⊆ P(I) as a set of patterns that contains at least
all singleton itemsets {{x}|x ∈ I}. Let code : CS → {0, 1}∗ be a mapping from
patterns in the coding set to a finite, unique and prefix-free code. A code table
is denoted by a set of pairs

CT ⊆ {(X, code(X))|X ∈ CS}.

Code tables represent the compressing models in Krimp and can be interpreted
as dictionaries for code words. Once the code function is determined, the coding
set induces a code table. The problem can thus be formalized as the task of
finding the best compressing coding set of a database. The explicit code function
is introduced in section 2.3.

The function cover : P(I) → P(CS) selects the patterns of a coding set,
and with that the code words, that encode a specified transaction or itemset in
general. With respect to a given transaction t, the set cover(t) is called cover
set and the items x ∈ X ∈ cover(t) are called covered by X.

2.3 Computing the Compression Size

The codes are created such that the more frequently used patterns get the shorter
codes. The existence of such a code is guaranteed by Theorem 5.4.1 in Cover &
Thomas [2], that states for a given distribution P over a finite set X , that there
exists an optimal prefix-free code such that the length of the code L(code(X))
for X ∈ X is given by

L(code(X)) = − log(P (X)).

Codes that satisfy this property are e.g the Shannon-Fano or Huffman code. The
probability distribution over all itemsets in the code table is defined as follows.
Let CT be a code table and X ∈ CS an itemset of the respective coding set.
The probability of X to be used for the encoding in a given database is defined
as

P (X) =
usageCT (X)∑

Y ∈CT usageCT (Y)
,

175

where usageCT (X) denotes the number of transactions that use X for their
encoding. So, the usage of an itemset X ∈ CT is equal to the frequency of the
code code(X) in the encoded database. Now, the size of a database D compressed
by a code table CT can be computed as

L(D|CT) =
∑
t∈D

∑
X∈cover(t)

L(codeCT (X))

= −
∑

X∈CS

usageCT (X) · log(P (X)).

The latter formulation as a summation over the coding set allows a faster and
more incremental way of computation. Since the code table contains assumably
much less sets than transactions in the database exist, this sum is computed
with low expenses if the usage function is computed capably.

A code table CT is represented by means of the standard code table that
provides codes for singleton itemsets. The items in the coding set of CT are
represented by their codes from the standard code table ST , such that the de-
scription length of a code table is calculated as

L(CT) =
∑

X∈CS

(
L(codeCT (X)) +

∑
x∈X

L(codeST (x))

)

= −
∑

X∈CS

(
log (P (X)) +

∑
x∈X

log (sup({x}))

)
.

Applying the MDL principle, the total compression size is calculated as the sum
of the description sizes L(D|CT) + L(CT). We observe, that the compression
size depends mainly on the usage function. Thus, an understanding of usage
dependencies is likely to be a crucial point for all Krimp-related algorithms.

2.4 The Algorithm Krimp

Krimp (Alg. 1) has as input a database D and the frequent patterns of a prefer-
ably low minimum support F . The frequent patterns are sorted in standard
candidate order that is first decreasing on support, second decreasing on cardi-
nality and at last lexicographically (line 2). The code table is initialized to the
standard code table (line 3) and each candidate pattern is regarded in the speci-
fied order. A candidate is added to the code table if this reduces the compression
size (lines 4-9). Since the compression size decreases monotonically in the num-
ber of regarded candidates, the best compression in this procedure is achieved
if the minimum support is set to 1

|D| . This results however in an extremely large

candidate set due to the pattern explosion. A speed-up of the usage calculation
that is carried out for each of the frequent item sets would thus accelerate the
whole process significantly.

176

Algorithm 1 Krimp [12].

1: procedure Krimp(D,F)
2: F ← sort(F) . in standard candidate order
3: CT ← StandardCodeTable(D)
4: for fp ∈ F \ I do
5: CTc ← CT ∪ fp
6: if L(D, CTc) < L(D, CT) then
7: CT ← CTc

8: end if
9: end for

10: end procedure

Computing the Usage. The usage calculation relies on the method Stan-
dardCover (Alg. 2). It is invoked for every transaction that contains the cur-
rently regarded candidate pattern. Assuming that the code table is sorted by a
total order, the algorithm traverses the code table and selects the first pattern
that is contained in the specified transaction (line 2). The used order for this
procedure is called standard cover order that is first decreasing on cardinality,
second decreasing on support and at last lexicographically. If the transaction is
covered completely by elements of the code table, the algorithm stops (line 3),
otherwise the procedure is called recursively for the uncovered part of the trans-
action (line 6). The identification of those transactions that contain a specified

Algorithm 2 Standard Cover [12].

1: procedure StandardCover(t, CT)
2: X∗ ← min{X|X ⊆ t ∧X ∈ CT}
3: if t \X∗ ← ∅ then
4: return {X∗}
5: else
6: return {X∗} ∪ StandardCover(t \X∗)
7: end if
8: end procedure

candidate pattern is not trivial, the implementation of transactions as bit vectors
improves the process significantly, but the question arises if there exists some
representation of the database that enables an identification of affected parts
without a scan of the whole database.

3 SHrimp

With Shrimp we present a tree structure, called SH-tree, that reflects the en-
coded database and enables a faster computation of the usage function. The
tree is similar to to the FP-tree introduced by Han et al. [4], except that nodes

177

contain sets of items and not only single items. Each branch from the root to
a leaf represents a transaction and provides the information about all possible
and the current encoding for a given coding set. More precisely, the nodes fulfill
the following properties.

Definition 1 (SH-tree). Given a total order on itemsets �, a SH-tree is a tree
structure with the following properties

1. The root of the tree is labeled as null.

2. Each node n 6= null is described by a pattern (n.pattern), a set of inac-
tive items (n.inact), a counter (n.freq) and the pointers to its children
(n.children) and the parent node (n.parent). n.freq denotes the number
of transactions represented by the branch from the root to that node.

3. For a node n and the parent node np = n.parent 6= null it holds that

np.pattern � n.pattern

The meaning of the field inact requires a more detailed explanation.

Definition 2. Let n be a node with |n.pattern| ≥ 2 and let anc(n) denote the
ancestor nodes of n. For an item x ∈ n.pattern it holds that

x ∈ n.inact⇔ ∃na ∈ anc(n) : na.inact = ∅ ∧ x ∈ na.pattern.

Items of a node n occurring in the set n.inact are called inactive, otherwise
active. Accordingly, nodes that have inactive items are called inactive, otherwise
active.

Inactive nodes denote patterns that would be used for a transaction if some
of their items were not already encoded by another pattern. The application
of these nodes may reduce the complexity of the tree, because singletons that
occur in inactive nodes must not be displayed explicitly, but it may also enlarge
the complexity due to the reflection of redundant information. Inactive nodes
are however integrated into the tree because they define the consequences of a
pattern selection change and enable thereby a fast computation of usage impacts
if a certain pattern is removed or added. To get now a fundamental understanding
of the algorithm, we examine an example of a tree first.

Example 1 (SH-tree). Let D be the sample database displayed in Table 1, � the
standard cover order and the coding set be given by the patterns {b, d, e} �
{a, c} � {a, g} besides of the singleton itemsets. The resulting cover sets of
D computed by the standard cover function are displayed in the right column
of Table 1. The corresponding tree representation of the database is shown in
Fig. 1. We can see that each transaction is represented by a branch, every leaf is
marked by the number of the equivalent transaction. Inactive nodes and items
are greyed out.

178

TID transaction cover set

1 a, b, d, e, f, g {b, d, e}{a, g}{f}
2 a, b, c, d, e, g {b, d, e}{a, c}{g}
3 a, c, e, f {a, c}{e}{f}
4 a, b, c, d, e, f {b, d, e}{a, c}{f}
5 a, c, e, g, f {a, c}{e}{g}{f}
6 a, b, d, e, g {b, d, e}{a, g}

Table 1: A sample transactional database
and the resp. cover sets.

∅

b, d, e : 4

a, c : 2

a, g : 1

2

f : 1

4

a, g : 2

f : 1

1

6

a, c : 2

a, g : 1

e : 1

f : 1

5

e : 1

f : 1

3

Fig. 1: The tree representation of the cov-
ered database.

The question arises how this structure can be utilized to compute the usage
function after a pattern is integrated. For this occasion we further examine our
running example.

Example 2 (Usage Computation). We imagine that the regarded candidate is the
pattern {c, e, f}, and {b, d, e} � {c, e, f} � {a, c} � {a, g}. The computation of
emerging usage differences starts with an identification of branches that use the
designated pattern for their encoding. The algorithm examines the smallest child
of the root node, i.e. the node with the pattern {b, d, e} first. Since b and e would
be encoded by this child furthermore, the candidate pattern is not used in this
sub tree. The algorithm proceeds with the right sub tree, finds that transactions
5 and 3 would use the candidate and stores the corresponding leaves with the
singleton {e}. In these branches, the effects of the encoding by the candidate
are calculated, i.e. {a, c} is not used anymore, but the node with {a, g} becomes
active again. If the resulting usage function gives a better compression size, the
pattern is integrated into the tree. The consequent tree is displayed in Fig. 2.

∅

b, d, e : 4

a, c : 2

a, g : 1

2

f : 1

4

a, g : 2

f : 1

1

6

c, e, f : 2

a, c : 2

a, g : 1

5

3

Fig. 2: The SH-tree of Example 1 when the pattern {c, e, f} is inserted.

179

3.1 The Algorithm SHrimp

The procedure of SHrimp (Alg. 3) is similar to that of Krimp. The input set of
frequent patterns is sorted (line 2) and the tree is initialized (line 3). Since the
initial code table is the standard code table that contains only singleton patterns,
the initial tree equals the FP-tree. For every candidate pattern, the transactions
that would use the candidate are computed and stored by the corresponding
leaves called fpLeaves (line 6) and the resulting usage function is computed
(line 7). If the inclusion of the pattern improves the compression, the pattern is
integrated into the tree (line 10).

Algorithm 3 SHrimp.

1: procedure SHrimp(D,F)
2: sort(F) . in Standard Candidate Order
3: tree← initTree(D)
4: usage← {(item, item.frequency)|item ∈ D}
5: for fp ∈ F \ I do
6: fpLeaves← UsingTransactions(fp, tree)
7: usagec ← UsageIncluding(fp, fpLeaves, tree)
8: if L(usagec) < L(usage) then
9: usage← usagec

10: Insert(fp, fpLeaves, tree)
11: end if
12: end for
13: end procedure

The method UsingTransactions(fp, tree) (line 6) identifies the using trans-
actions in a depth-first like search, exploiting the order of the tree as described
in Example 2. For each of the returned leaves, the method DiffUsage (Alg. 4)
is called. This procedure considers a branch as an ordered sequence of ancestor
nodes of the specified leaf that are succeeding to the candidate pattern fp with
regard to the standard cover order (line 4). The set bounded (line 5) collects all
items that are covered now and the set freed (line 6) those that are not covered
anymore if fp is inserted. By means of these sets, it is checked for every node of
the branch whether it would change its status of activity and the usage function
is adapted accordingly (line 7-15).

The method Insert(fp, tree) in Alg. 3 (line 10) creates the nodes of the
candidate pattern and alters the tree accordingly. The integration of a node
induces bounds and branches. Singletons that are covered by the inserted node
are removed and a branch might appear more bound as in Example 2. Generally
speaking, the concerning branch is divided into these transactions that contain
the candidate pattern and the remaining ones. For this reason, the branch of
transactions containing the specified pattern has to be split from the original
one. The method Modifications(fp, fpLeaves) (Alg. 5) computes thereby the
arising structural changes that come with the insertion of fp. This algorithm

180

Algorithm 4 Computing the resulting usage differences concerning the inclusion
of the pattern fp.

1: procedure UsageIncluding(fp, fpLeaves, tree)
2: usagec ← usage(tree)
3: for fpLeaf ∈ fpLeaves do
4: branch← {n ∈ anc(leaf)|fp ≺ n} . sorted in Standard Cover Order
5: bounded← fp
6: freed← ∅
7: for n ∈ branch do
8: if ∅ = n.inact ∧ (bounded ∩ n.pattern 6= ∅) then
9: usagec(n.pattern)← usagec(n.pattern)− u

10: freed← freed ∪ n.pattern
11: else if (∅ 6= n.inact ⊆ freed) ∧ (bounded ∩ n.pattern = ∅) then
12: usagec(n.pattern)← usagec(n.pattern) + u
13: bounded← bounded ∪ n.pattern
14: end if
15: end for
16: end for
17: return usagec
18: end procedure

traverses the tree from the specified leaves up to the first node that is preceding
to fp, the prospective parent node (lines 4-10). For each of the regarded nodes,
the modifications of their fields in the branch with the integrated pattern are
computed (line 6,7). Accordingly to the gained information, the nodes are created
and the tree altered. Inactive nodes are integrated by the same procedure.

4 Experiments

The experiments are invoked as RapidMiner1 processes, based on the JAVA
programming language. The implemented operator Krimp is modelled after the
original C++ implementation2, i.e. transactions are represented as bit vectors,
the code words are stored as a list of lists, that enables an immediate access to the
insertion point of a candidate pattern, etc. The frequent patterns are mined by
the available FP-Growth operator from RapidMiner. Due to storage limitations,
the minimum support for the mined candidates differs in dependence of the
dataset, which was mainly dependent on the performance of the FP-Growth
algorithm. Table 2 shows the basic characteristics of the used datasets and the
parameters for the candidate generation. The datasets were taken from the FIMI
repository3 and a collection of prepared UCI datasets4.

1 http://rapidminer.com
2 http://www.patternsthatmatter.org/implementations/#krimp
3 http://fimi.ua.ac.be/data
4 https://dtai.cs.kuleuven.be/CP4IM/datasets

181

Algorithm 5 Computes the modifications of the tree resulting from the inte-
gration of the pattern fp.

1: procedure Modifications(fp, fpLeaves)
2: fpParents← ∅
3: for fpLeaf ∈ fpLeaves do
4: n← fpLeaf
5: while fp ≺ n do
6: mod(n.freq)← mod(n.freq) + fpLeaf.freq
7: mod(n.parent.children)← mod(n.parent.children) ∪ n
8: n← n.parent
9: end while

10: fpParents← fpParents ∪ {n}
11: end for
12: end procedure
13: return mod

The runtime results, comparing Krimp and SHrimp, are displayed in Fig-
ure 3. We can see that SHrimp has an exceptionally better performance on the
FIMI datasets (Mushroom, Chess and Connect). For these datasets, the mini-
mum support was very hard to set, because a small decrease in the threshold
resulted in an enormous growth of frequent patterns that caused the pattern gen-
eration process to crash due to an available memory capacity of about 100GiB.
Regarding the Soybean dataset, the results are assimiable well. For about 20%
of the first regarded candidates, SHrimp is slightly faster, but the trend reverses
with time. For the rather small Tic-tac-toe and the Tumor dataset, Krimp is
however eminently faster than SHrimp. It might be noted, that the amount of
time spent on the insertion of patterns into the tree is negligible small in com-
parison to the time needed for the usage calculation of all candidates. Further
insights into node dependencies and the usage calculation in general might thus
improve the algorithm thoroughly.

Dataset |D| |I| density minsup |F|

Tic-tac-toe 958 27 33% 0 250985

Soybean 630 50 32% 0.01 2613499

Primary-tumor 336 31 48% 0.01 1290968

Mushroom 8124 119 18% 0.1 574431

Chess(k-k) 3196 75 50% 0.6 254944

Connect 67557 129 33% 0.9 27127

Table 2: Basic characteristics of examined datasets.

182

0 20 40 60 80 100

0.2

0.4

Proceeded candidates [%]

T
im

e
[m

in
]

SHrimp

Krimp

0 20 40 60 80 100
0

0.5

1

1.5

Proceeded candidates [%]

T
im

e
[m

in
]

0 20 40 60 80 100
0

10

20

30

Proceeded candidates [%]

T
im

e
[m

in
]

0 20 40 60 80 100

5

10

Proceeded candidates [%]

T
im

e
[m

in
]

0 20 40 60 80 100
0

5

10

Proceeded candidates [%]

T
im

e
[m

in
]

0 20 40 60 80 100

10

20

30

40

Proceeded candidates [%]

T
im

e
[m

in
]

Fig. 3: Runtime for Krimp (blue triangle marks) and SHrimp (red square marks)
in relation to the percentage of examined patterns for the Tic-tac-toe (left above),
Soybean (right above), Primary-tumor (left middle), Mushroom (right middle), Chess
(left below) and Connect (right below) dataset.

183

5 Conclusion

A first attempt to create a data structure that reflects the possibilities of summa-
rization due to the inherent structure of the dataset has been substantiated with
the development of SHrimp. A prototype implementation facilitates a much
faster computation of influences on the compression size when the coding set
changes, for at least some well known datasets. This data structure might be
applied to other MDL approaches, e.g. SLIM, as well. The structure offers the
possibility of a human readable understanding of the main characteristics of the
dataset. We can think of an output that reveals only the treetop, e.g. all nodes up
to a certain level, where the composition of the most priorized codes in relation
to the standard cover order is displayed.

Further exploitations of the order of the code table, respectively the nodes,
and a less redundant representation of codes that are subsets of other codes are
likely to improve the results and are worth to be explored.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

2. Cover, T., Thomas, J.: Elements of information theory. Wiley-Interscience (2006)
3. Grünwald, P.: Minimum Description Length Principle. MIT press, Cambridge, MA

(2007)
4. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.

SIGMOD Rec. 29(2), 1–12 (2000)
5. van Leeuwen, M., Bonchi, F., Sigurbjörnsson, B., Siebes, A.: Compressing tags to

find interesting media groups. In: CIKM. pp. 1147–1156. ACM (2009)
6. Li, P.V.M.: An Introduction to Kolmogorov Complexity and Its Applications.

Springer (1997)
7. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge

discovery (1997)
8. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
9. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: SDM. pp.

236–247. SIAM / Omnipress (2012)
10. Vreeken, J., van Leeuwen, M., Siebes, A.: Characterising the difference. In: KDD.

pp. 765–774. ACM (2007)
11. Vreeken, J., van Leeuwen, M., Siebes, A.: Preserving privacy through data gener-

ation. In: ICDM. pp. 685–690. IEEE Computer Society (2007)
12. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.

Data Min. Knowl. Discov. 23, 169–214 (2011)

184

