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Abstract. Item Tree Analysis (ITA) can be used to mine determinis-
tic relationships from noisy data. In the educational domain, it has been
used to infer descriptions of student knowledge from test responses in or-
der to discover the implications between test items, allowing researchers
to gain insight into the structure of the respective knowledge space. Ex-
isting approaches to ITA are computationally intense and yield results
of limited accuracy, constraining the use of ITA to small datasets. We
present work in progress towards an improved method that allows for
efficient approximate ITA, enabling the use of ITA on larger data sets.
Experimental results show that our method performs comparably to or
better than existing approaches.

1 Introduction

Systematic implications between variables in datasets arise whenever the gener-
ating variables are correlated and are at the heart of almost any data analysis
procedure. For instance, in the analysis of sales data, knowledge about which
products are usually bought together is beneficial in deducing marketing strate-
gies, in the social sciences hierarchical relations in questionnaire data can un-
cover structures of underlying traits, and in the field of educational data mining
knowledge requirements for solving test items can be revealed. We consider the
case where the underlying variables form a strict hierarchy, that is, there are de-
terministic implications between variables. For instance, in educational testing,
a testee who solves a difficult test item is very likely to solve all easier items
as well. Similarly, in the case of questionnaires in the social sciences, items are
often formulated as statements that relate to a latent trait. Here it is natural
to expect that agreement with a strong statement implies agreement with all
weaker statements.

When responses to test or questionnaire items are observed in a realistic set-
ting, due to random errors in the measurement process, guessing and careless
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mistakes by testees, response data invariably exhibits answers that are incon-
sistent with the item hierarchy, making the implications impossible to observe
directly. The challenge is then to reconstruct implications from noisy data.

Formally, the problem statement is the following: Consider a finite set I of
n binary items, taking values in {0, 1}. If it holds that variable j = 1 whenever
variable i = 1, we say that i implies j and write i v j. We require the implications
to be logically consistent, that is, the assertion of transitivity holds:

i v j and j v k =⇒ i v k (1)

As each item implies itself, i v i for all items i, the relation v is a quasi-order
on I. During the measurement process, patterns that obey v are perturbed by
random noise. The implication mining algorithm aims to reconstruct the original
quasi-order as closely as possible.

The problem has first been considered by Van Leeuwe [10], who introduced an
algorithm called Item Tree Analysis (ITA). Schrepp [6, 8] suggested to construct
implications inductively, showing that his method was more accurate than the
original algorithm. Sargin and Ünlü [5] also proposed improvements to the induc-
tive ITA algorithm. Still, the state-of-the-art algorithms for item tree analysis
are limited in terms of accuracy and computational feasibility for large datasets.
In this paper, we present modifications to the inductive ITA algorithm that lead
to significantly reduced execution times and increased accuracy.

Association rule mining (e.g. [1], [2]) is related to ITA, as both methods seek
to uncover asymmetric relations between items. Association rule mining aims
at finding local hierarchies in the data, while ITA builds a global one, meaning
that implications need to hold for all cases in the data set, with exceptions being
attributed to random noise. In contrast, association rules can be acceptable if
they hold for a minimum fraction of cases. Consequently, the difference is what
criterion is used to evaluate the relations. The reliability of an ITA implication
i ⇒ j is given by the probability P (¬i ∨ j), while for an association rule i → j
the confidence criterion is related to the probability P (i ∧ j | i), which can be
expressed as P (i∧j |i) = P (¬i∨j |i). We compare the results of our algorithm to
association rules mined using the apriori algorithm [2] of the arules package
for R [4].

2 Inductive Item Tree Analysis

We will proceed by explaining the current approach as used by [5] based on the
algorithm described by [6]. In section 3 we show how both steps can be improved
and introduce our algorithm. First, let us set some notation that will be used in
the rest of the paper.
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2.1 Preliminaries

A binary matrix, Q, is a matrix with coefficients equal to 0 or 1. For example,
the incidence matrix of a relation is a binary matrix. A pattern p from such a
matrix is defined by :

p =
n∑

i=1

aiqi

where qi are the lines of the matrix and (ai) ∈ {0, 1}n. The set of all possible
patterns, pattern(Q), is obtained by considering all the possible values of the
binary vector (ai). However the duplicates are considered only once.

Let us consider a set I of n properties and D = {d1, ..., dm} a data set of m
observations of these properties. It can be seen as a n×m binary matrix. From
an educational point of view, the columns are the items of a test and the rows
represent answers of the students. We define pi = |{s|ds[i] = 1}| as the number
of observations having the property i, and bi,j := |{s|ds[i] = 1∧ds[j] = 0}| as the

number of observations contradicting ¬i∨ j. Denote by (βL)
n2

L=1 the sequence of
bi,j in ascending order.

The data generation process is the following: Starting with a quasi-order Q on
a fixed number of items, first the exhaustive set of possible pattern, pattern(Q),
is constructed. As Q is reflexive, pattern(Q) contains the n-vectors 1n and 0n.
The data set is then generated from a collection of patterns by adding noise,
that is, flipping coefficients with a prescribed probability τ .

An implication between two properties i and j can be written as a disjunctive
logic expression : i =⇒ j is equivalent to ¬i ∨ j and its negation is i ∧ ¬j. The
more the relation is satisfied in the data set, the more the implication is likely
; or by duality : the more the negation is contradicted, the more it is likely. As
the dual formulation is a conjunctive expression, it is easier to extract, which
is why it is commonly used to evaluate the confidence in the relation. For two
items i, j the number of times the implication i =⇒ j is contradicted is given
by bi,j . So the smaller is bi,j , the more likely is the relation i =⇒ j.

2.2 Inductive ITA Algorithm

The inductive approach to ITA due to [8] is a two-step procedure:

1. Generate candidate set C
2. Select the best fitting quasi-order

The first step given by Schrepp [6] is a recursive algorithm, as it uses the
relation vL in the generation of vL+1, finally returning the exhaustive set of up
to n(n− 1) + 1 candidate quasi-orders.
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Original Candidate Set Generation

– Initialisation : v0= {(i, j) | bi,j = 0} which is a quasi-order.
– Suppose vL is a candidate quasi-order.

• Build AL+1 = {(i, j) | bi,j ≤ βL+1 and (i, j) 6∈vL.
• Remove all elements of AL+1 causing intransitivity in vL ∪AL+1.

– Set vL+1=vL ∪AL+1.

The second step is the selection of a relation according to a measure of
goodness of fit. In [5] the authors suggested the following method based on a
supposed expected numbers of contradictions b∗i,j , then the quasi-order fitting
best to the observations is selected as follows:

Original Fit

For each quasi-order v in the candidate set.

– Compute γ =

∑
ivj
i6=j

bi,j
pj

| v | − n
.

– For each pair (i, j), determine b∗i,j :

• if i v j, then b∗i,j = γpj
• if i 6v j and j v i, then b∗i,j = pj − pi + piγ
• if i 6v j and j 6v i, then b∗i,j = (1− pi/m)pj

– Evaluate diff (v) =

∑
i6=j(bi,j − b∗i,j)2

n(n− 1)
.

– Return argmindiff (v)

3 Critique and Refinements

Up to now, only the step 2 has been criticized and improved by [5], although at
least two points of the first step also need consideration. There are three points
that we will address: First, the number of candidates can be reduced by only
selecting the most salient quasi-orders, for which we propose a principled way.
Second, the way transitivity is enforced in the original algorithm by removing
offending pairs depends on the order of removal which is not controlled. We
propose a modification to reduce the dependency on the order by reintegrating
previously removed pairs. Third, concerning the asymmetry of the fitting coeffi-
cient has even been reinforced by the modifications proposed in [5]. To overcome
this problem, we propose a new fitting coefficient. To support the discussion, we
consider an example using a dataset of size m = 1000 created from a synthetic
quasi-order on 9 items as described above.

208



3.1 Selecting the Candidates

In a naive approach, the exhaustive set of up to n(n − 1) + 1 quasi-orders are
included in the candidate set. We propose to reduce the candidate set by consid-
ering only the most salient quasi-orders. These are the ones where the number
of contradictions rises significantly. Looking at the sequence βL in the example,
there are pronounced steps followed by almost level parts. The problem is now to
detect the ”steps” in the curve. We do so by computing the standard deviation
to the cumulative sets of differences of two consecutive terms of (βL) and denote
the resulting sequence by (σL), thus

σL = σ({βl+1 − βl, 1 ≤ l ≤ L}, for 1 ≤ L ≤ n2.

As it is evident in Figure 1, where βL (contradictions, black curve) and σL (cu-
mulative std., red curve), taking the cumulative standard deviation effectively
magnifies the gap between two steps; moreover, the sequence only increases be-
tween each steps and then decreases. Therefore, the steps can easily be identified
as the indices where an increase of σL occurs. We use the last value of each group,
as the algorithm will also include all the values on the same level and those on
previous levels.

Fig. 1. Number of contradictions and the evolution of the cumulative standard devia-
tion.

Based on this observation, we propose the following method for selecting the
candidates:

Selection of Sparse Candidates

– Determine the sequence (βL) of the ascending bi,j .
– Compute the cumulative standard deviation sequence (σL).
– If σL+1 > σL, the quasi-order vL is built.

Using the sparse quasi-order selection algorithm, less quasi-orders are generated,
consequently, for step 2, less computation time is needed. As we will show in the
experiments, still the good quasi-orders are captured as long as noise levels are
reasonable.
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We now address the issue of transforming a relation to a transitive one. In
Schrepp’s algorithm the couples leading to intransitivity are simply removed.
We propose to reintegrate these rejected pairs by the following procedure:

Reintegration

– Define AL = {(i, j) | bi,j ≤ βL}.
– The set AL is sorted by increasing value of corresponding bi,j .
– As long as AL is not transitive, the last element of AL is removed and stored

in RL.
– Repeat:
• For each element r in RL.

If AL ∪ {r} is transitive, remove r from RL and reintegrate it into AL.
• If no change of RL occurs, break.

We conjecture that the result of this algorithm is in fact the biggest quasi-
order included in the set {(i, j)|bi,j ≤ βL}. As βL is strictly increasing, producing
the same relation occurs less frequent as in Schrepp’s algorithm.

3.2 Fit coefficient

As said before, the fit criterion has been the center of attention in the evolution of
the method. The state-of-the-art fit coefficient (see ”Original fit” in the previous
section) has been proposed by Sargin and Ünlü [5] to improve the one given by
Schrepp [8] with regard to quasi-orders with fewer relations. However, there are
two problematic aspects to be considered:
Firstly, the formula is not symmetric : for the equivalent cases i 6vL j and j 6vL i,
the coefficient b∗i,j takes completely different forms. Also, the formulae for b∗i,j
for the three cases do not allow for an intuitive interpretation.
The second point arises from the later. The fit function diff is not consistent,
meaning that given the set of quasi-orders resulting from the first step, there are
cases where even if the correct quasi-order has been computed, it is not the one
that will minimize the diff coefficient. Consequently, the wrong quasi-order will
be returned.
An example is presented in Figure 2. The red curve represents the diff coefficient
for each quasi-order produced by the first step, while the black curve is the
number of coefficient that differs from the original relation. The correct and
original quasi-order is the 29th. It is indicated with a black vertical line. The one
minimizing the diff is the 26th and is indicated with a red vertical line.

To get rid of this asymmetry, we will build another coefficient based on simple
considerations. The probability P (i =⇒ j|D) that an implication i =⇒ j is
latently included in the data is related to bi,j by

P (i =⇒ j|D) = 1− bi,j
m
.
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Fig. 2. The correct quasi-order (black vertical line) does not always minimize (red
vertical line) the fitting coefficient.

Now the issue is determining which of the candidates fits the data best. Let
us call M the incidence matrix of a retained relation v. From this, the set of
possible patterns, P = pattern(M) is determined. If no noise was involved and v
was the correct quasi-order, every observation would be included in pattern(M).
And if every possible pattern had the same probability to happen, then P (i =⇒
j|D) = P (i =⇒ j|P). The closer the relation v is to the data, the closer are
P (i =⇒ j|P) and P (i =⇒ j|D). This observation motivates the coefficient
diff which is computed as follows:

diff new(v) =
√∑

i6=j (P (i =⇒ j|D)− P (i =⇒ j|P))
2

=

√∑
i6=j

(
bi,j
m
−
b∗i,j
mP

)2

where mP = |P| and b∗i,j is the number of patterns of P where the implication
i =⇒ j is contradicted :

b∗i,j := |{p ∈ P | p[i] = 1 ∧ p[j] = 0}|

Corrected Fit

For each quasi-order in the candidates set.
– Build the set of possible patterns P.
– Compute the numbers b∗i,j of patterns contradicting the implication i =⇒ j.
– Evaluate the fit coefficient diff new(v).

Return argmindiff (v)

4 Experimental setup and results

We test combinations of our proposed modifications to fit coefficient and gen-
eration of candidate set against the original versions using synthetic data. The
same setting is used for all three comparisons : 100 of different quasi-orders on
9 elements are built, for each 1000 data sets with 1000 observations lines are
created with varying noise rate τ .
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4.1 Experiment 1

This first set of experiments focuses on the modification of the first step of
the procedure. For each data set, the original quasi-order is searched in the list
resulting from the first step. The problem of finding it, is not an issue yet. For
three different error rates τ ∈ {0.05, 0.1, 0.15}, we compare the following three
algorithms: Original , Original with Reintegration, Selection with Reintegration.
The minimum distance to the correct quasi-order is then computed. If it is equal
to 0, it means the correct relation is included in the candidates set. The results
are reported in Table 1. These are means over the 100× 1 000 = 100 000 loops.

τ = 5%

Original Selection
Original Reintegration Reintegration

Minimum 0 0 0

Mean 0.02 0.02 0.05

Maximum 0.45 0.46 0.74

Standard Dev. 0.06 0.06 0.11

Contains Correct 98.4% 98.7% 96.7%

τ = 10%

Original Selection
Original Reintegration Reintegration

Minimum 0 0 0.08

Mean 0.56 0.54 1.14

Maximum 2 2 5

Standard Dev. 0.40 0.41 0.74

Contains Correct 69.8% 70.5% 59.2%

τ = 15%

Original Selection
Original Reintegration Reintegration

Minimum 0.11 0.09 0.40

Mean 1.38 1.44 4.21

Maximum 3.75 4.21 15.51

Standard Dev. 0.68 0.78 2.68

Contains Correct 41.4% 42.0% 27.0%

Table 1. Comparison of three first step algorithms for different noise levels.

When noise increases all the algorithms behave badly. The algorithms Orig-
inal with Reintegration and Original tolerate higher noise levels, even though
the mixed algorithm performs better across all noise levels. It is important to
point out that the mean distances stay around 1. The algorithm Selection Rein-
tegration quality drops rapidly. Particularly the maximum distance goes up to
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around 15, but remarkably, the standard deviation and the mean stay quite low
: if Selection does not contain the correct quasi-order, it is still close. This shows
that the selection of the sparse candidate set works in most cases.

4.2 Experiment 2

Here the interest is put on the second step, which means to compare the differ-
ent fit coefficients. Again three combinations of algorithms are compared. The
original diff coefficient is combined with the original first step algorithm to re-
produce the original procedure, and with the Selection Reintegration. Finally
the corrected diff new is combined with the Selection Reintegration to show the
performance of both combined. The settings of the experience is the same as
previously. The results are reproduced in Table 2. The row Found Correct is the
percentage of times the algorithm has found the correct quasi-order, and Found
Closest is the percentage of times it has found the one in the possible set that
is the closest (or equal) to the original one.

The results are clearly in favor of the improvements proposed in the article.
The inductive ITA as described by Schrepp [8] and with the fit function proposed
by Sargin & Ünlü [5] is able to detect the correct relation hardly 1 time over 3.
This is not related to the Original first step, because as Table 1 shows, the correct
quasi-order has a probability to be in the candidate set varying between 98% and
41% depending on the noise. The combination of the original second step and
the proposed first step supports our critique of the original fit coefficient. Indeed,
as there is less choice for the fit coefficient, the percentage of correct is bigger
than the Original-Original combination. Moreover, the Selection Reintegration
contains the correct quasi-order less frequently . On the other hand, the mix
Corrected and Selection Reintegration produces the best results. It finds the
closest relation in the candidates set more than 82.5% of time. This is interesting,
because this algorithm for the first step often does not contain the correct relation
for higher noise but it is still close to it.

4.3 Experiment 3

In this final set of experiments, we explore to what extent association rule mining
can be used to mine implications. Albeit association rule mining targets n-ary
antecedents and obviously will not produce transitive relations, we test whether
implications are recovered as first order rules, i.e. rules of the form i ⇒ j. For
this purpose we mine association rules with the R-package arules developed by
M. Hahsler et al., and only extract first order rules. As the package does not
allow for easy computation of the incidence matrix, only the number of pairs
included in a relation will be considered.

The comparison is done with the proposed combination Corrected diff - Se-
lection Reintegration. For the apriori method we select rules with confidence
greater than 75% and a support greater than 1%, as this gave the best results.
The noise level is set to τ = .5 and .1. Results are presented in Table 3. The
comparison is quite rough, as we do not check whether the correct relations are

213



τ = 5%

diff Original Original Corrected

Selection Selection
First Step Original Reintegration Reintegration

Minimum 0.03 0.01 0.00

Mean 1.48 0.71 0.07

Maximum 5.41 5.35 1.58

Standard Dev. 1.19 1.07 0.19

Found Correct 35.3% 66.4% 96.1%

Found Closest 36.3% 69.1% 98.3%

τ = 10%

diff Original Original Corrected

Selection Selection
First Step Original Reintegration Reintegration

Minimum 0.01 0.08 0.08

Mean 2.23 1.77 1.43

Maximum 7 10 12

Standard Dev. 1.38 1.51 1.39

Found Correct 19.3% 43.7% 56.6%

Found Closest 31.2% 76.6% 90.7%

τ = 15%

diff Original Original Corrected

Selection Selection
First Step Original Reintegration Reintegration

Minimum 0.18 0.40 0.40

Mean 3.77 6.21 5.89

Maximum 11.74 23.65 26.63

Standard Dev. 1.98 4.74 4.54

Found Correct 8.4% 21.9% 23.4%

Found Closest 28.0% 79.1% 82.5%

Table 2. Comparison of three diff coefficients for different noise level.

recovered, but only if their number is correct. The results show that arules is
outperformed by our ITA algorithm. While ITA gives 98% of good answers, the
arules only reaches 18%.

5 Conclusion and directions of future work

We proposed three modifications on Item Tree Analysis as presented by [8] and
[5]. The first affects the way the transitivity is obtained. This leads to better can-
didates sets but worsens the computation time. To improve this, we proposed
an algorithm that generates a sparse set of candidates containing only the most
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τ = 5%

Algorithm
Selection

Reintegration
Corrected

Association
Rules
arules

Minimum 0 0

Mean 0.12 3.68

Maximum 6 15

Standard Dev. 0.58 2.72

Found Correct 93.9% 12.3%

Table 3. Comparison between ITA and Association Rules.

salient quasi-orders. Calculation are much faster but the results do not always
behave correctly when noise levels are high. The last contribution is a new defi-
nition of the fit coefficient, diff new. We showed that our improved fit coefficient
outperforms the old definition. It also compensates the weakness of the Selection
algorithm by finding the closest quasi-order.

Both Selection algorithm and diff new new coefficient need to be improved
to tolerate high noise levels better. Effort should be put on the candidate set
generation, as it conditions the results of the second. Theoretical work should
also be done such as estimating the probability that the candidates set con-
tains the correct quasi-order. This will surely reveal new directions for further
improvement.

In our setting, association rule mining does not apply directly, but a deeper
study should be done to reveal the ties between association rules mining and
ITA to leverage ideas behind advanced algorithms for association rule mining
for implication mining and ITA.
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