
Finding the Right Experts and Learning to
Rank Them by Relevance: Evaluation of a

Semi-automatically Generated Ranking Function

Felix Beierle1,2, Felix Engel2, Matthias Hemmje2

1 Service-centric Networking, TU Berlin; Telekom Innovation Laboratories
beierle@tu-berlin.de

2 Multimedia and Internet Applications, University of Hagen
{felix.engel,matthias.hemmje}@fernuni-hagen.de

Abstract. A framework for expert searching developed at the Univer-
sity of Hagen supports the use of contextual factors motivated in the field
of expertise seeking. A user can query the system with skills which the
person to be found should be an expert in. The result is a list of users
from the searched knowledge base, ranked by relevance for the given
query. In this paper, we address the semi-automatic generation of train-
ing data for the learning-to-rank library that does the relevance ranking.
We focus on evaluating the quality of the ranking function.

1 Introduction

In many business situations, it is essential to have the right experts at hand: For
instance, for an equipment rental company, failure of equipment is expensive
because either downtime has to be financially compensated for or replacements
have to be provided to the costumer. In order to do maintenance work on a
machine, an engineer needs expertise for a certain machine or device.

Finding such an expert is not a trivial task. Besides his knowledge about the
machine/device, the field of expertise seeking suggests that contextual factors
should be considered, most importantly the familiarity between searcher and
expert (e.g. [7]). Through feature vectors, potential experts can be represented
through numerical values. Learning to rank (LTR) can be used to rank those
feature vectors by relevance. To learn a ranking function, training data has to be
provided. As the generation of training data is expensive, in [6], it is suggested
to use a rule-based approach to semi-automatically generate such data. In [4],
we briefly reported about the development and implementation of a hierarchical
system of rules for the generation of training data. After presenting an overview
of this system, the focus of this paper is to evaluate the implemented approach
with respect to the quality of the ranking function.

Copyright c© 2014 by the paper’s authors. Copying permitted only for private and
academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

227

This paper uses results from [3] and is organized as follows: First, we re-
fer to related work (Sec. 2) and give details about the software framework
(Sec. 3) that was developed within the SMART VORTEX project (http://
www.smart-vortex.eu). We sketch the rule system (Sec. 4) introduced in [4]
and report about an evaluation (Sec. 5) of the implementation. In Sec. 6 we
conclude and point out further work.

2 Related Work

In the following, we will refer to related work in the field of expertise seeking and
we will present our concept of expert seeking parameters. When searching
for an expert, different expert seeking parameters have to be taken into account.
Information about the expert is needed to assess his/her relevance; while this in-
formation might be available in a company knowledge base, it may be unknown
to the searcher [10]. Quality-related relevance factors are about the formal quali-
fications of the potential experts [11]. Topic refers to direct links between a user
and the asked skills (a skill being, e.g., the knowledge about a specific machine).
We use the term approach bundling aspects regarding the expert’s perspective
on the asked field of expertise (e.g., engineer vs. construction worker). Up-To-
Dateness refers to temporal information like the last time an asked skill was
used for a project. Experience can include factors like the amount of time
someone has been working for the company, years of work experience, number of
projects, or the number of connections someone has in a semantically annotated
company knowledge base, etc. Studies in expertise seeking come to the conclu-
sion that the familiarity between searcher and expert is the most important
relevance factor (with about 10-20%) in the accessibility category [11] [7]. We
refer to space- and time-constraints with the parameter proximity and to other
relational aspects with closeness. In contrast to the quality-related factors, all
of the accessibility-related factors depend not only on the expert, but also on
the user that is performing the search.

Regarding the generation of training data for learning to rank processes, so
far, besides manual specification, crowd sourcing [5] and log analysis have been
suggested [8]. A less cost intensive approach is to use a rule-based system, as
motivated in [6], which we will elaborate in this paper.

3 OWIM SemSearch Framework

At the University of Hagen, the OWIM SemSearch Framework (Open Work-
bench for Information Management) was developed within the SMART VOR-
TEX project; its architecture is shown in Fig. 1. The general approach is as
follows: For every person that is modeled within a semantically annotated knowl-
edge base a feature vector (or feature value vector) is constructed, consisting of
several features (e.g. the number of finished related projects). Each feature is
represented through a feature value. Each expert seeking parameter consists of
a set of relevance aspects. One relevance aspect can consist of a single feature
(e.g. age). As motivated in [6], there can be dependencies between features,

228

and therefore, one relevance aspect can also consist of more than one feature
(e.g. number of projects and years of work experience). The framework uses
a pairwise LTR approach (different LTR libraries can be used, e.g., RankLib,
http://sourceforge.net/p/lemur/wiki/RankLib): Using a system of rules
that express relevance patterns, labeled training data is generated. This data
consists of pairs of feature vectors, along with the information which of the two
is to be considered more relevant. Using the training data, LTR is applied to
learn a ranking function by estimating the weight of every component of the fea-
ture vectors. The learned ranking model can be used to classify feature vectors
from future searches.

Search Configuration

End UserDomain Expert

Rule System

Controller

RankerFeature Vector
Generation

Learning to Rank
Library

Knowledge Base /
Ontology

Fig. 1. Architecture

Before the software can
be used, a domain expert
has to configure the sys-
tem. Similar to the idea of
an application context in
[2] we propose that a do-
main expert with knowl-
edge about the ontology
configures the search. In
the feature vector configu-
ration, he defines the fea-
tures and how the feature
values are calculated. He
also defines rules for all rel-
evance aspects, for exam-
ple: If a person A has com-
pleted more projects re-
lated to queried skills, and
has more years of work ex-
perience than person B,
then A is more relevant with respect to the relevance aspect ’work experience.’
Once the configuration, e.g. for skill, of the vector and the rule system is com-
pleted, a user may enter a query for a particular set of skills and gets a list of
the company’s employees sorted by relevance with respect to the queried skills;
this list is sorted by the previously learned ranking function. Details about the
implemented algorithms for retrieving data from the ontology, as well as how
they are used in the configuration, are given in [3].

4 Rule System for Relevance Labeling in Pairwise LTR

Single-Feature Relevance Aspect Comparison A relevance aspect can
consist of one single feature (e.g. number of publications). For comparing a
and b with respect to such a single-feature relevance aspect, the corresponding
feature values ai, bi ∈ R≥0 are compared (the index i indicating the position
in the feature vector). Besides providing the two basic comparison operators,
greater (>) and lesser (<), another requirement could be to consider only values
that are higher than a certain threshold t ∈ R≥0. For instance, looking for an

229

expert with many publications, the comparison operator is >. A threshold can
be used to disregard employees that have not published at least a certain number
of papers. If a company wants to support their younger employees, the relevance
aspect ’age’ could be used with the comparison operator <, using a threshold to
disregard employees that are too young.

The comparison yields either T (if ai is considered more relevant than bi), F
(if bi is more relevant than ai), or 0 (neither of ai, bi is more relevant than the
other one). Thus, the comparison function c�(ai, bi, t) for single-feature relevance
aspects with � being > or < and with threshold t has the target set {T, F, 0}
and is defined as follows:

c>(ai, bi, t) =

T ai ≥ t ∧ ai > bi

F bi ≥ t ∧ ai < bi

0 otherwise

c<(ai, bi, t) =

T ai ≥ t ∧ ai < bi

F bi ≥ t ∧ ai > bi

0 otherwise

Note that both single feature value comparison functions are complementary in
the first two arguments, i.e., c�(ai, bi, t) = T ⇔ c�(bi, ai, t) = F , and c�(ai, bi, t) =
0 ⇔ c�(bi, ai, t) = 0, for � ∈ {<,>} and for all non-negative values ai, bi, t.

Multi-Feature Relevance Aspects Comparison Following the example of
’work experience,’ a person has to have both more years of work experience and
a higher number of finished projects to be considered more relevant. In order
to compare such multi-feature relevance aspects, several single feature value
comparisons have to be taken into account. For this we introduce a three-value
logic for the conjunction of two values in {T, F, 0}: T ∧T = T and F ∧F = F and
all other conjunctions are evaluated to 0. The idea of this conjunction is that one
feature vector has to be more relevant for all single comparisons of the multi-
feature comparison to be more relevant with respect to the given multi-feature
relevance aspect.

Comparison with Respect to Sets of Relevance Aspects For an expert
seeking parameter E, let x be the number of comparisons of relevance aspects in
E that determine a more relevant and let y be the number of comparisons that
determine b more relevant. If x > y, a is considered more relevant, if y > x, b
is considered more relevant, otherwise they are regarded to be equally relevant
with respect to that expert seeking parameter.

Feature Vector Comparison For the comparison of two feature vectors, there
is one further level: the aggregation of the results of the comparison with respect
to a set of expert seeking parameters. A value between 0 and 1 is assigned to each
expert seeking parameter, signifying the percentage of relevance the parameter
should take up. The percentages considering a feature vector more relevant are
accumulated, and the person with the feature vector rated at a higher cumulated
percentage value is labeled as the more relevant person for the given search.

5 Evaluation

The goal of the evaluation is to test the framework with a company knowledge
base to determine the factors that play a role regarding the quality of the rank-

230

ing function, and to check how well the ranking function ranks after learning.
Because there is no manually specified ground truth available, the ground truth
generated by the rule system will serve as evaluation data. The evaluation is
done with the given company knowledge base which has 48 users and 194 skills.

The evaluation is done using k-fold cross validation with Kendall’s Tau-b [1].
Kendall’s Tau-b is used for the comparison of rankings returned by the rule sys-
tem and by the learned ranking function, and yields a number between −1 and 1.
The value 1 indicates completely concordant rankings, 0 indicates no specific re-
lationship between the two rankings, and −1 indicates completely discordant
rankings. The k-fold cross validation yields the evaluation value. The higher this
value, the better the relevance pattern expressed in the training data could be
generalized by the learning to rank library.

First, we will give detailed information about the design of the evaluation
and about the factors that have to be considered when evaluating the framework
(Section 5.1). Then, we will present and analyze the results of the evaluation in
Section 5.2.

5.1 Design

It is expected that the amount of training pairs has the single most significant
impact on the evaluation value. In order to show causality and not just corre-
lation, we will take into consideration all factors that could have an impact on
the evaluation value. We can distinguish two phases in which variable factors
that could impact the evaluation value have to be considered. Firstly, there is
the generation of queries with which to generate ground truth. Here, we will in-
troduce four factors ((Q1)-(Q4)) to consider. Secondly, for the evaluation itself,
we will introduce three factors to consider ((E1)-(E3)).

Creating Queries For creating queries, the first three factors to consider are:

(Q1) the number of skills in one query
(Q2) the skill(s) in a query
(Q3) the logged-in user who queries the system

To be able to control the amount of created data, we need to limit the amount
of users for which feature vectors will be constructed. If there are n users, there
are 1/2 ∗ n ∗ (n − 1) possible pairs of users. When generating ground truth,
one user will be logged in and will thus not be in the resulting list of experts.
Further considering the number of queries, the following equation (1) shows, how
the number of users for which feature vectors are constructed is related to the
number of queries and the number of possible training pairs3:(

number of
queries

)
∗ 1

2
∗
((

number of
users

)
− 1

)
∗
((

number of
users

)
− 2

)
=

(
number of

training pairs

)
(1)

Since the used knowledge base contains 48 users, a maximum of 1 ∗ 1/2 ∗ (48−
1) ∗ (48 − 2) = 1081 training pairs can be calculated with one query. To get

3 Both those factors - number of queries and number of training pairs - will be con-
sidered later, after the queries are created.

231

lesser amounts of training data, or to be able to use multiple queries with a fixed
amount of pairs to calculate, we will need to limit the number of users to create
feature vectors for. This gives us an additional item to consider in the creation
of queries:

(Q4) the users to create feature vectors for

Macdonald et al. report about sample selection bias when choosing samples that
are used as training data [9]. Choosing specific data as samples, e.g., data known
to be relevant, might influence the learned ranking function to prefer the chosen
sample data in subsequent searches. To avoid the sample selection bias, we will
choose the factors from the four points (Q1), (Q2), (Q3), and (Q4) completely
randomly. The idea of the expert seeking framework is that it should work on
any company ontology and regardless of who uses the system. The number of
skills per query (Q1) is chosen randomly from 1 to 5. This seems like a reasonable
range of skills per query a user will generate.

The queries themselves (the skills used in them) (Q2) and the logged-in user
(Q3) are chosen randomly for the evaluation as well. When randomly choosing
the logged-in user for the calculation of ground truth, the picked user will be
remembered by the framework to pick the same one when comparing the results.
In dependence on given amounts of queries and of training pairs, the needed
amount of users to calculate feature vectors for is calculated with equation (1)
above. After calculating the needed amount of users to calculate feature vectors
for, the users are chosen randomly (Q4).

Evaluating For the second phase, the actual evaluation after the creation of
ground truth, the first two factors to consider are:

(E1) number of queries
(E2) number of training pairs

To measure a possible impact on the quality of the ranking function, these two
factor have to be analyzed. All generated pairs, the ground truth, are split into k
groups. Depending on the number of groups, the number of training pairs varies.
The number of training pairs is not only dependent on the number of evaluation
groups, but also on the number of pairings for which the rule system considers
neither feature vector to be more relevant - those pairings cannot be used for
training. Both items, the number of queries and the number of training pairs,
will be considered in the analysis of the results of the evaluation.

In [9], Macdonald et al. show that too little training data will yield bad
results, and that too much training data will take longer to process. Thus, the
goal must be to find the lowest number of training pairs that yields good results
for the given knowledge base.

Additionally, there is another factor to be considered regarding the configu-
ration of the tests:

(E3) the length of the feature vector

According to the concept presented in Section 2, a minimum of six features will
be required to be able to represent every expert seeking parameter. We eval-
uate three different feature vector configurations, with 6, 9, and 12 features.

232

The framework is evaluated with two different LTR libraries, RankLib (cf. Sec-
tion 3) and SVMRank (http://www.cs.cornell.edu/people/tj/svm_light/
svm_rank.html). The two LTR libraries only show negligible differences.

5.2 Results

Regarding the number of queries used to generate the ground truth, no corre-
lation can be found between that number and the evaluation value. A higher
or lower number of queries does not contribute to a better or worse ranking
function.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Training Pairs

E
va

lu
a
ti

o
n

V
a
lu

e

6 features

9 features

12 features

Fig. 2. Num-
ber of Train-
ing Pairs and
Evaluation
Value (using
SVMRank)

Figure 2 shows the dependencies between the number of training pairs and
the evaluation value. Each point in the scatter plot indicates the result of an
evaluation. For all given feature vector lengths, roughly the same distribution
of points is shown. On the left hand side, for few training pairs, the evaluation
value is basically anywhere between 0 and 1. The explanation for this is that
with few training pairs, the relevance pattern cannot be properly expressed and
overfitting occurs: The learned ranking function is too specific for the training
data and does not perform well when classifying unseen data.4 The more training
data is available, the narrower the range of the distribution of points. With
enough training data, the relevance pattern properly expressed in the training
data can be generalized by the learning to rank library. Generally speaking, for
the given knowledge base, at around 150 to 200 training pairs, the evaluation
value is always around 0.8.

The length of the feature vector seems to barely have an impact on the
evaluation value. For the vector with 12 features, the range of the evaluation
value is larger compared to the other feature vector lengths. An explanation for
this observation is that the more features are used, the higher the probability
for overfitting becomes.

4 Note that with very few training pairs, occasionally the evaluation value was below
0 while the figure shows only positive results.

233

6 Conclusions and Future Work

In this paper, we addressed the problem of generating training data for LTR
processes in an expert seeking application. The implemented framework can be
used to semi-automatically generate training data through a hierarchical system
of rules. The evaluation shows that the single most important factor for the qual-
ity of the ranking function is the number of training pairs that are used to learn
the ranking function. Future work that can be addressed is the implementation
of online-learning, where the ranking function is updated through user feedback
from previous searches. Our future work also includes using our software with
other company knowledge bases, and testing and evaluating the framework with
respect to standard information retrieval evaluation methods.

Acknowledgments. This work has been partly supported by the FP7 EU
project SMART VORTEX.

References

1. Agresti, A.: Analysis of ordinal categorical data. Wiley series in probability and
mathematical statistics: Applied probability and statistics, Wiley (1984)

2. Albertoni, R., De Martino, M.: Semantic similarity of ontology instances tailored
on the application context. In: OTM Conferences. pp. 1020–1038. LNCS Vol. 4275,
Springer (2006)

3. Beierle, F.: Using a System of Rules to Generate Training Data for Learning-to-
Rank Processes in an Expert Seeking Application. Master’s thesis, University of
Hagen (2014)

4. Beierle, F., Engel, F., Hemmje, M.: Generation of training data for learning-to-
rank processes in an expert seeking application. In: Informatiktage 2014 - Fach-
wissenschaftlicher Informatik-Kongress. Lecture Notes in Informatics (LNI), vol.
S-13, pp. 97–100. Köllen Druck+Verlag (2014)

5. Dali, L., Fortuna, B., Tran, T., Mladenić, D.: Query-independent learning to rank
for RDF entity search. The Semantic Web pp. 484–498 (2012)

6. Engel, F., Juchmes, M., Hemmje, M.: Expert search in semantic annotated en-
terprise data: integrating query- dependent and independent relevance factors. In:
LWA 2013 - Lernen, Wissen & Adaptivität. Workshop Proceedings. pp. 41–44.
Bamberg (2013)

7. Hofmann, K., Balog, K., Bogers, T., Rijke, M.d.: Contextual factors for finding
similar experts. Journal of the American Society for Information Science & Tech-
nology 61(5), 994–1014 (2010)

8. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 133–142. KDD ’02, ACM, New York, NY, USA (2002)

9. Macdonald, C., Santos, R.L.T., Ounis, I.: The whens and hows of learning to rank
for web search. Inf. Retr. 16(5), 584–628 (2013)

10. Nevo, D., Benbasat, I., Wand, Y.: The knowledge demands of expertise seekers
in two different contexts: Knowledge allocation versus knowledge retrieval. Decis.
Support Syst. 53(3), 482–489 (2012)

11. Woudstra, L., van den Hooff, B., Schouten, A.P.: Dimensions of quality and acces-
sibility: Selection of human information sources from a social capital perspective.
Information Processing & Management 48(4), 618–630 (2012)

234

