A Comparison of Search Engine Technologies for a
Clinical Data Warehouse *

Georg Dietrich', Georg Fette'2, and Frank Puppe’

1 University of Wiirzburg, Department of Computer Science
{dietrich, fette, puppe}l@informatik.uni-wuerzburg.de
2 DZHI (Deutsches Zentrum fiir Herzinsuffizienz)

Abstract. A clinical data warehouse (DW) can be used to recruit patients for
clinical studies or statistical analysis. For improved user experience, it is crucial
that the search engine technology of the DW answers user queries quickly. In
this paper, we investigate the performance of the two most popular technologies
for regarding structured and unstructured data query answering: a database and a
search engine. Our empiric results show that search engines have advantages for
complex queries.

1 Introduction

A clinical data warehouse makes data available for a variety purposes, e.g., informa-
tion retrieval and statistical evaluations. The data consists of basic data, symptoms,
diagnoses and therapies. Use-cases are the retrieval of patients for clinical studies,
which have several inclusion and exclusion criteria, statistical analysis of frequencies
of patient groups, the search for risk factors for specific diseases and statistical quality
checks. For efficient usage, quick query answering is crucial. In this direction, we com-
pare the performance of two alternative techniques in a real world application featuring
a clinical data warehouse DWH utilized at the University of Wiirzburg.

Currently (June 2014) the data warehouse of the University Hospital of Wiirzburg
consists of basic data, diagnoses, laboratory findings and echocardiography data for
the years 2012 and 2013. There are about 700 000 cases with more than 25 million
facts available. To protect the privacy, all data has been pseudonymised. The mapping
of the pseudo-ids to the patient-ids is managed by a third party, which can approve
applications to e.g. recruit patients for studies with the data warehouse.

In order to work with the data warehouse, it must be able to answer queries quickly.
The response time of every query should be less than one second. Therefore it is nec-
essary to store the data in an efficient way. Furthermore intuitive usability is important.
The users should be able to work the tool without a big training period.

There are several ways to design such an information retrieval system. A basic ap-
proach is to use a database management system. As a first step, a schema has to be de-
signed. This is a non-trivial task, because the knowledge base consists of about 55 000

* Copyright © 2014 by the paper’s authors. Copying permitted only for private and academic
purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the LWA 2014 Work-
shops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014, published at http://ceur-
Ws.0rg

235

concepts like the laboratory finding of natrium, the age of a patient or the diagnosis
heart attack. After that, indices for the tables need to be created to speed up the system.
Finally, the algorithms, which automatically create queries for the database, have to be
implemented.

Another approach is to use a Resource Description Framework (RDF). Here, the
schema has to be specified first, too. The 25 million facts are then stored as RDF triples,
such as patient X has laboratory finding of natrium of 140 mmol/l. In this example,
patient X is the subject, a laboratory finding of natrium is the predicate and 140 mmol/l
is the object. The RDF data model can be queried with the SPARQL Protocol And
RDF Query Language [8]. A common framework for storing and querying RDF data
is Sesame [4]. The user queries contain usually about ten or more parameters. This is
quite a lot and the RDF storage did not scale for our challenges. (See section 5)

The third approach is to use a search engine. We used Apache Solr [2], which needs
a schema for the documents and their fields. This is similar to the database schema,
being flexible to new fields and changes.

Our data warehouse query should provide the following features: (i) An intuitive
usable graphical user interface to create easily queries, whose result is displayed in a
clear way, (ii) a search for hierarchical structures like a diagnosis-tree, (iii) span and
segment queries to search medical concepts, which consist of several words, (iv) the
system is able to use synonyms and abbreviations for medical query terms, and (v) very
fast response time for complex user queries.

2 Background

The clinical data consists of four data types: (i) Numeric values: Most Laboratory Find-
ings are floats with a few decimal places like haemoglobin = 16.58 g/d, (ii) Boolean
values: Diagnoses are represented as boolean values. When a disease is diagnosed it
is stored like hypertension = true, (iii) Text values: Several medical reports of findings
exist as texts like discharge letters or electrocardiogram reports, and (iv) Enumerations:
Many Attributes have a few values like sex (female, male) or type of treatment (resi-
dential, semi-residential, ambulant)

2.1 Data Schema

In our first approach all available facts were stored in a relational database. A simplified
model of the data schema with two basic tables is shown in Figure 1.

All attributes, which a patient can have, are stored in the Catalog-table, which also
represents hierarchical relations. Examples for attributes are natrium (lab data), sex
(basic data) or 150.22 Chronic systolic heart failure (diagnostic data). The values for
the attributes are stored in the Info-table: The CaselD represents one “case” of a patient
including all data for that patient in that time period. The CaselD, AttrID and the Value
form a triple structure: For one case and one attribute exists one value, e.g. the patient
of a case has blood pressure of 125. It is possible that one attribute has several values,
like multiple measurements of one attribute at different time stamps. This is mapped
with several rows in the table.

236

Catalog Info
‘AtrID =— = InfFoTD
°Ilame *Caseld
°ParentAttrID *AttrID

*Value

*Timestamp

Fig. 1: Simplified relational model of the database with a triple structure in the Info-
table: CaselD, AttrID, Value and a timestamp

An alternative schema with one big table and a column for every attribute was tested,
but discarded, because only ca. 1 000 columns per table were allowed (just for the
diagnoses, we needed more than 16 000 columns).

2.2 Hierarchical search

A special function is the hierarchical search. Our terminology is hierarchically ordered,
like the ICD-10 coded diagnoses [1]. The international classification of diseases is a
catalog for epidemiology, health management and clinical purposes.

If a specific disease like 120.0 Instablile Angina pectoris is diagnosed, then the
“parent”’-disease (here: I20. Angina pectoris) exists, too. Usually, a very specific di-
agnosis like 120.0 is documented, which has a high depth in the catalog. But the data
warehouse user may search for a more general diagnosis like 720. To meet this require-
ment, new facts were generated by preprocessing, i.e. setting all parent diagnoses of a
diagnosis “’true”, thus propagating the diagnosis up in the tree.

2.3 Graphical user interface

The graphical user interface (GUI) consists mainly of three views. In the catalog view
(Figure 2a) all attributes are hierarchically sorted. After every attribute name the total
number of occurrences in the data warehouse is shown. Attributes can be dragged from
the catalog-view (Figure 2a) and dropped in the query view (Figure 2c). Operators
and constraints can be applied to these attributes in the query view, e.g. numeric range
selection. If one attribute has more than one value in one case, it is possible to specify
which one should be selected (first, last, min, max). Moreover the boolean operatores
”AND”, ”OR” and "NOT” are available for combinations. In the result view the query
matching cases are displayed tabularly (Figure 2b).

The GUI has not been systematically evaluated or compared with other tools, but is
was tested during the development stage by a group of users, who were very satisfied
and gave a positive feedback.

3 Evaluation: A speed-test between Solr and a DBMS

A database server and a search platform were tested as storage engine for the data
warehouse application.

237

=l I¥ ¢ Erankheiten des Kreislaufsystems (71355)
100-I02 ; Akukes rheumatisches Fieber (42)
105-109 : Chronische rheumatische Herzkrankheite
[=] T10-I15 : Hypertonie (46983)

[= 110 : Essentielle (primére) Hypertoniz (46113)
=] 110.0: Benigne essenticlle Hypertonie (45
110.0 ; Benigne essentielle Hypertonie
110.0 : Benigne essentielle Hypertonis
110.1 : Maligne essentielle Hypertonie {35,
110.9 : Essentielle Hypertonie, nicht naher
111 : Hypertensive Herzkrankheit {16423
[12 : Hypertensive Nierenkrankheit (165)

Es wurden 681 Falle gefunden.

F'.Iterl P.o—rootl Wurzel = ektal I71: P.ortenal Geschlecht=M
65 41 ® x
ki) 42 X

4 42 X
kL 41 ¥ kS
38 41 ¥ ®
61 42 k4 k-
7o 44 ® ® kS
45 43 Y kS
&0 44 S
) 41 * x

(b) In the result view of the data warehouse

(a) The catalog view displays inter alia the hi- query hits are shown in a tabular style. Nu-
erarical structure of the ICD-10 catalog. meric values are displayed and boolean values
are represented with a x.

Mame Oper ator I Werk I Oder IBezug I
Alter (499575) v
An-rook Werk {mm) {17103} - 40 ¥ ersker Werk
aeschlecht=M (240359) v
Geschlecht=\y {Z59010) o
171 : portenaneurysma und -dissekkion (1429 +
Wurzel = ekkatisch (998) * vorhanden

(c) In the query view of the data warehouse properties of the attributes can be set. For every
attribute (1st column) an operator (2nd column) and arguments (3rd column) can be defined.

Fig. 2: The main views of the of the graphical user interface of the data warehosue query

tool (in German).

3.1 Setting

For this test, various queries have been made
to the systems and the response time was
measured. The database system is a Microsoft
SQL Server [6] and the search platform is
Apache Solr 4.8 [2]. The database schema is
shown in Figure 3. It has been extended to
the Example 1 with the columns ValueDec,
which is a decimal(8,2) column, and the four
columns (first, last, min and max), which can
have the values ”1” or null. Because some at-
tributes can have more than one value in a
case, these four columns mark, if the current
is e.g. the first occurrence in the case. String
values are stored in the normal value-field and
numbers are stored in the decimal-field for a
quicker access. The Info-table has in the first
runs, shown in Table 1, just a small index on
the two columns CaselD and AttrID. In the

238

Catalog
*AttrID
°Name
*ParentAttrID

Fig.3: The relational model of the
database with the triple structure in the
Info-table and additional flags for the
first, last, min or max value of one at-
tribute for one case.

last test-runs, shown in Table 2, the index is extended to the columns CaselD, AttrID,
ValueDec and First, Last, Min, Max. In our test, the database did not use caching.

Solr has a document centered approach, so all facts of one case are pooled into one
document and these documents are then indexed. The Solr-schema consists of dynamic
fields for every attribute, which means, that every attribute has got its own index. An
example query with a conjunction of two conditions looks as follows. (Natrium: [*
TO 15] AND A Brief:Grippe)

This query returns all documents/cases containing a value less than 150 in the nu-
meric field Nat rium and the term Herzinfakrt in the textfield A Brief.

In our application, the first 100 hits and the total count of hits are displayed. For
these two pieces of information are two requests in the database necessary, a top-100-
query and a count(*)-query, Solr provides these two information in one query response.

14 settings were tested, three with boolean attributes, eight with numeric attributes
and three with a text field. For every setting five queries have been send to the server
and the response time has been measured. In Table 1 and 2, the average values of every
five queries are shown in milliseconds.

Several diagnostic-attributes were used for the queries with the boolean-values. The
average occurrence of an attribute was about 30 000 times, but some attributes had a
occurrence of a few thousand, others had up to 100 000 occurrences. For the numeric
tests, laboratory findings, which had about 100 000 occurrences, were queried. If a
condition was applied to a numeric value, it was always a range query with a lower- and
an upper-bound. 25 000 texts were used for the word-queries, which were realized with
the like-operator. In the first word-test a single word was requested, in the second test
a word with the wildcard * (search for a substring in word) and in the third test three
AND-connected words were tested.

3.2 Results

Overall, it has been found, that a fully indexed database is faster than Solr, except the
DB must join tables, then Solr is faster. If the DB is not fully indexed, Solr is always
faster. As it is shown in Table 1 and 2 the database is only faster, if one attribute was
queried and the index covered all used columns. The query for one boolean attribute
is on the DB fast, because for a diagnosis query the value column does not need to be
checked, because only positive records are stored in the database. So the query can be
answered by only using the columns AttrID and CaselD, which are contained in the
small index of the table and this is very effective.

But this does not work for the numeric queries, because it must be checked for every
record if the value was in the selected range or if the flag was set in the First, Last, Min,
Max field. In Table 2 the response times are shown for the small and the extended
index for the DB. In the small index not all columns are included, which are required to
answer the query. In contrast, the extended index contains all relevant columns. As you
can see in Table 2, there is a big difference in the response time, if the DB can use an
index or it can’t. Solr can use its index on the numeric field to answer quickly, too.

If more than one attribute is queried, the database must join the Info-table with
itself, because the facts are stored in a triple structure in the database. This is quite
expensive and it explains, why Solr is faster, when more than one attribute is queried.

239

DB top 100 DB count | DB sum Solr

Mean| SD|Mean| SD|Mean| SD|Mean|SD
1 Bool 40| 30| 32{ 25| 73| 34| 115| 67
3 Bool And|2 267|1 665| 140| 62|2407|1 696| 48| 55
3 Bool OR |6 465| 4464| 143| 97|6 608|4 537| 235| 49

1 Word 18 2|3 280 839(3248| 840/ 218|101
1 Word * 2332 68]2399| 166(4 731 225| 155| 82
3 Words 39 916 579|3 454|6 645|3 454| 445|133

Table 1: Response time (Mean and Standard Deviation SD) in milliseconds for various
queries. A comparison between a MS SQL DB and Apache Solr for querying boolean
values or words in text fields. The boolean attributes were ORed and ANDed.

DB with small index DB with extended index Solr

top 100|count sum top 100{count sum
Mean|Mean| Mean| SD| Mean|Mean|Mean| SD|Mean| SD
1 Num. 692(3 423| 4 115|3 641 4] 50| 54| 18] 167| 62
1 Num. with cond. 403| 966| 1369|1083 5| 184 189 56| 242|140

3 Num. with cond. AND 590|1904| 2494 642 52| 253| 305| 70| 136| 34
3 Num. with cond. OR | 104385 086(15 524|2 028| 7207| 378|7 585|2 723| 234(106

Table 2: Response time (Mean and Standard Deviation SD) comparison between a MS
SQL DB and Apache Solr for querying numeric values with and without conditions.
The attributes were ORed and ANDed. All results are in milliseconds. The small DB-
index does not contain all required columns, the extended index contains all.

Even the index of the DB doesn’t help, which can be seen in the tests with three boolean
or numeric attributes.

The database is quite fast with fetching the first 100 results for a single or a multiple
word-query, but it is quite slow for a word-*-expression. The DB does not have to join
tables to answer the 3-word-query, but the respond time is twice as long. Solr is much
faster for text queries, because the texts are indexed here and in the DB they are not
indexed.

It can be also observed, that the database is much slower, when the attributes are
ORed and not ANDed.

But the main finding is, that Solr is on average drastically faster than the database
system. It looks like, Solr doesn’t take significant longer, if more attributes were queried.

If the tests are considered, where all necessary data was indexed, Solr is a bit slower,
if one attribute was requested only, but if three attributes were queried, Solr is nearly
ten times faster than the DB.

4 Additional Features of the Search Engine

By using the search engine, some new text query features are now possible.

240

Segment and span search Text fields can be efficiently searched. It is not only possible
to search by multiple terms, but it is also possible to make span queries. A span query
can be used to find multiple terms near each other, without requiring the terms to appear
in a specified order. This can be a powerful tool for searching concepts, which consist
of several words, like heart failure. Consider the following sentence:

(1) Heart: left ventricular failure.

It is possible to set the maximum distance, the two terms may be away from each other.
The words heart and failure have a distance of three words, so this technique works
well here. But it won’t work in the next two examples:

(2) Kidney: renal failure. Heart: normal after transplantation.

(3) Heart: sinus rhythm, normal large left ventricle, aortic root normal width, right
ventricular failure.

In example 2, the context of failure is kidney not heart. While this can be covered in the
tool by determining an order for the terms, the span query approach is not suitable for
the third example. The distance of the two terms is too far and the context can not be
safely resolved.

Therefore, another approach was implemented: The segment search. Many text doc-
uments are structured like the examples above. One text consists of an enumeration of
concepts like heart or kidney. Every concept is followed by a colon and list of findings.
Therefore, it make sense to split these texts in segments, like in example 1 and 3. Ex-
ample 2 would be split in two segments. This procedure is a preprocessing step, which
makes it possible to search in these segments quickly. A query searches only in individ-
ual segments and doesn’t mix them up. So, if you query example 2 with the terms heart
and failure, you will get no hit.

Synonym search Another feature of the search engine implementation is, that queries
are complemented with synonyms. Every term of a query is analyzed if it is a medical
term, which has synonyms or abbreviations, these terms are added to the query. All
synonyms are put in a OR-condition, which is satisfied, when one term appears in a
document. An alternative approach is to handle the synonyms at index-time and not at
query-time. With this feature, a higher recall can be achieved.

5 Related Work

An experimental comparison of RDF data management approaches in a SPARQL bench-
mark scenario showed, that none of the tested RDF schema was competitive to a com-
parable purely relational encoding [7].

An empirical study on performance comparison of Lucene and a relational database
has been made by Jing et al. [5]. Apache Solr uses the Apache Lucene search library
for building and querying the index. Jing tests a MS SQL Server, too, but with a full-
text-index. Unfortunately, this feature was not available to us. Furthermore they query
only one table and they don’t make any joins. But their results also say, that Lucene

241

is faster than an unindexed database. Except, if combinational queries, with more than
one where-clause, which could be ORed or ANDed, were tested, Lucene was on av-
erage quicker. Jing uses synthetic generated data and tested only queries without join
operations, while we had real data with many joins.

The Léon Bérard Cancer Center in France [3] implemented their information re-
trieval systems also with Solr, but only as full-text search engine and not for structured
data.

6 Conclusions

In this paper, we presented a brief overview over the main functions and the GUI of
our clinical data warehouse query tool. We described the setting for our storage engines
and our requirements. We showed and explained in several tests the advantages and
disadvantages of relational database and Solr for query answering. It has been found,
that Solr is faster than an unindexed database. If the DB was fully indxed, then it is
faster as Solr, except when the DB must join tables. In that case, Solr is faster again.

References

1. World Health Organization (WHO) : International Classification of Diseases (ICD). http:
//www.who.int/classifications/icd/en/ (2014), [Online; accessed 20-June-
2014]

2. Apache Software Foundation: Apache Solr. http://lucene.apache.org/solr/
(2014), [Online; accessed 20-June-2014]

3. Biron, P., Metzger, M.H., Pezet, C., Sebban, C., Barthuet, E., Durand, T.: An information
retrieval system for computerized patient records in the context of a daily hospital practice:
the example of the 1éon bérard cancer center (france). Applied clinical informatics 5(1), 191-
205 (2014)

4. Broekstra, J., Kampman, A., Harmelen, F.v.: Sesame: A generic architecture for storing and
querying rdf and rdf schema. In: Proceedings of the First International Semantic Web Confer-
ence on The Semantic Web. pp. 54-68. ISWC ’02, Springer-Verlag, London, UK, UK (2002)

5. Jing, Y., Zhang, C., Wang, X.: An empirical study on performance comparison of lucene and
relational database. In: Communication Software and Networks, 2009. ICCSN ’09. Interna-
tional Conference on. pp. 336-340 (Feb 2009)

6. Microsoft: Microsoft ~ SQL Server. http://msdn.microsoft.com/en—
us/library/bb545450.aspx (2014), [Online; accessed 20-June-2014]

7. Schmidt, M., Hornung, T., Kiichlin, N., Lausen, G., Pinkel, C.: An experimental comparison
of rdf data management approaches in a sparql benchmark scenario. In: Proceedings of the
7th International Conference on The Semantic Web. pp. 82-97. ISWC °08, Springer-Verlag,
Berlin, Heidelberg (2008)

8. W3C: W3C, SPARQL 1.1 Protocol. http://www.w3.org/TR/sparqlll-
protocol/ (2014), [Online; accessed 20-June-2014]

242

