
TELESUP
Textual Self-Learning Support Systems

Sebastian Furth1 and Joachim Baumeister1,2
1 denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany

2 University of Würzburg, Institute of Computer Science,
Am Hubland, 97074 Würzburg, Germany
{firstname.lastname}@denkbares.com

Abstract. The regular improvement and adaptation of an ontology is
a key factor for the success of an ontology-based system. In this pa-
per, we report on an ongoing project that aims for a methodology and
tool for ontology development in a self-improving manner. The approach
makes heavy use of methods known in natural language processing and
information extraction.

1 Introduction

Today, intelligent systems successfully provide support in many complex (pro-
duction) processes. Typical application areas of such systems are processes in
mechanical engineering and in the medical domain. The core of an intelligent sys-
tem is the knowledge base, that monitors the requirements and derives support
actions.

The development of the knowledge base is usually complex and time-consum-
ing, since complex correlations need to be considered for the derivation knowl-
edge. In domains with frequent changes of the knowledge, for instance, new
experiences in processes, it is necessary to frequently modify/adapt the knowl-
edge base. This continuous improvement/adaptation of the knowledge base is a
key factor for the long-term success of the system. As the original creation of the
knowledge the continuous adaptation is also a complex and time-consuming task.
The goal of the presented project is the implementation of a development tool
for support systems that includes self-learning capabilities to regularly adapt
the included knowledge base. In the general context of the project SELESUP
(Self-Learning Support Systems) various types of sources for learning can be
connected. The project SELESUP comprises the sub-projects STRUSUP (Struc-
tural Self-Learning Support Systems) and TELESUP (Textual Self-Learning
Support Systems) that exploit structured and textual data respectively.

Copyright c© 2014 by the paper’s authors. Copying permitted only for private and
academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

277



In the TELESUP sub-project we

1. define an ontology as the primary knowledge representation for the knowl-
edge base, and

2. use unstructured data, especially text, as the primary resource for the learn-
ing method.

The use of such a tool allows for a significant increase of efficiency concerning
the development and maintenance of intelligent support-systems.

2 The TELESUP Process

Fig. 1. The input, output and steps of the TELESUP process.

2.1 Problem Description (Distinction)

The TELESUP process, depicted in Figure 1, aims to support the effective de-
velopment of ontologies for support systems. The application scenario for the

278



developed ontologies is usually located in the context of technical support sys-
tems. In this domain, ontologies are often comprehensive and complex. There-
fore we consider the development of the core ontology structure as a manual
task that requires intensive coordination between multiple domain experts. In
order to ensure scalability we usually follow the model “less semantics, more
data”, i.e., we focus on the integration of data instead of the usage of heavy
semantics. Technical support systems usually need to consider a lot of domain
specific multi-modal resources. The pool of these knowledge resources usually
increases constantly over time, e.g., due to the introduction of new machines. As
the information contained in these resources should also be represented in the
ontology, the population must be considered highly volatile.

The scenario described above leads to a couple of requirements constituting
an ontology engineering process for textual self-learning support systems. As
multiple domain experts and ontology engineers are involved in the development
of the core structure of the ontology the process should support collaboration.
The integration of vast amounts of multi-modal knowledge resources is usually
a challenging, time- and cost-intensive task during the development of an on-
tology. Therefore we propose the (semi-)automatic population of the ontology
by exploiting these resources with methods adapted from the field of Informa-
tion Extraction and/or the broader field of Natural Language Processing. The
preservation of the ontology’s consistency is a major challenge when incorporat-
ing (semi-)automatic ontology population approaches in the ontology engineering
process. Additionally the multi-modal resources should be considered as valuable
sources for ontology refinement suggestions.

2.2 Specification of the Ontology Structure

The first phase of the ontology engineering process considers the collaborative
specification of the ontology’s core structure, i.e. identifying required classes
and relations between them. Requirements, scope, and the level of formaliza-
tion is specified in a semi-structured way. In addition to the core structure of
the ontology, tests for the validation and verification are specified. The perfor-
mance/technical specification known from classical software engineering is an
appropriate analogy.

2.3 Conceptualizing the Specification

Baumeister et al. [3] proposed the Knowledge Formalization Continuum, i.e.
informal knowledge gets subsequently refined into explicit knowledge. Follow-
ing this idea the specification of the ontology’s core structure is formalized in
this phase. The continuum allows for the stepwise conceptualization of the on-
tology specification, e.g. by first collecting relevant terms for a domain that
subsequently get formalized to concepts, which then are described further by
using domain specific properties. The formalization follows the level defined
in the specification document and uses a standardized ontology language like
RDF(S) [21] or OWL [12]. Additionally the phase allows for the integration of

279



(meta-)ontologies, e.g. SKOS [19] or specific upper ontologies for the application
scenario. The conceptualization also covers the test specification, i.e., concrete
test cases need to be formulated that are able to validate and verify the ontol-
ogy. There exist various ontology evaluation methods that can be utilized, e.g.
data-driven [5] or task-based [15] ontology evaluation. We consider the concep-
tualization of a complex ontology specification a rather manual task that needs
a lot of coordination between ontology engineers and domain experts. Ontol-
ogy Learning [6] techniques might facilitate the conceptualization by providing
suggestions that can be used as basis for discussions between the experts.

2.4 Integration of Multi-Modal Knowledge Resources

Multi-Modal Knowledge Resources Knowledge usually exists in a variety
of forms, ranging from highly structured documents (e.g. XML) to completely
unstructured resources (e.g. scanned texts, images, videos etc.). We call these
documents multi-modal knowledge resources. In technical support systems rele-
vant examples are all forms of technical documentation, e.g. handbooks, repair
manuals, service plans or schematics. Additionally documents created for the
production process contain valuable information, e.g. a bill of material can be
exploited to suggest a component hierarchy of a product.

Resource Preprocessing The various kinds of multi-modal knowledge re-
sources usually need to be preprocessed to improve accessibility for the subse-
quent information extraction tasks, e.g., when confronted with PDF documents.
In general the goal of this phase is to incrementally add structure to previously
unstructured documents. Despite the conversion of the file format (e.g. PDF to
XML) typical preprocessing tasks from the field of Natural Language Processing
are applied, i.e. segmentation, tokenization, part-of-speech tagging, and the de-
tection of structural elements (e.g. tables, lists, headlines). Another important
topic in this phase is data cleaning, i.e., preprocess the data in a way that the
results are free from noisy data that might affect the information extraction
results.

Extracting Relevant Information One of the main challenges during the
integration of multi-modal domain knowledge is the extraction of the relevant
information from the different sources. After the resources have been prepro-
cessed they are accessible for information extraction methods, e.g., extraction
rules that are typically used in rule-based Information Extraction. In general
extraction rules can either be formulated by domain experts or automatically
learned using Machine Learning algorithms, e.g. LP2 [7], WHISK [17] or Tra-
BaL [9]. The process presented here allows both the manual formulation as well
as the (semi-)automatic learning of rules. For the latter one, terminology created
during the specification and/or conceptualization phase might be exploited, i.e.,
used to annotate documents that then serve as training data for the Machine
Learning algorithms. The extraction rules are mainly used to extract candidates

280



for the population of the core ontology structure. Additional information that
could potentially serve for refinements of the ontology structure might be con-
sidered.

Ontology Alignment An important question when handling the extracted
candidates for ontology population is whether they are really new concepts or
just synonyms for existing concepts. There exist a variety of metrics that can be
utilized to measure the similarity between concepts. Besides the well-established
string similarity metrics, e.g., Levenshtein distance [13], more elaborated meth-
ods exist that use statistics or even consider the semantic relatedness. A combi-
nation of several methods can also be used in an ensemble method, as proposed
by Curran [8].

Ontology Debugging When using automatic information extraction methods
on large sets of resources usually a huge amount of candidates is generated. A
major challenge when automatically deploying these candidates to the existing
ontology is keeping the ontology in a consistent state. We define a consistent
ontology as an ontology that is not only valid in terms of special semantics
(e.g. OWL’s consistency check) but also pass predefined test cases represent-
ing knowledge about the domain (e.g. the tests specified and conceptualized in
the preceding phases). When deploying a set of candidates leads to an incon-
sistent ontology, then abandoning the complete change set is as unrealistic as
tracing down the failure cause manually. Consequently, a method for isolating
the fault automatically is necessary. We propose the usage of an ontology debug-
ging mechanism, that is able to find the failure-inducing parts in a change set.
The faulty parts should be isolated and manually reviewed by a domain expert
and/or ontology engineer.

2.5 Continuous Integration

In addition to the debugging mechanisms applied during the integration of multi-
modal knowledge resources we propose the use of continuous integration (CI) for
the development of knowledge systems, enabling the application of automated
tests to avoid breaking an ontology. While the main purpose of the ontology de-
bugging mechanism is tracing down the failure-inducing parts in a large change,
CI ensures that the ontology is always in a consistent state. Again the test cases
formulated on basis of the test specification can be used in CI.

2.6 Documentation

As in Software Engineering the documentation of the developed ontology is a
critical success factor as it is the basis for the deployment of the final ontology.
When following the phases described so far one can yield not only an ontology
but also huge parts of the documentation. Starting with the specification of
the ontology the described phases propose the continuous formalization of the

281



ontology. As this specification is the basis for the development of the ontology’s
structure it can also serve as a basis for the documentation. Additionally we
proposed exploiting multi-modal knowledge resource for the population of the
ontology. As the employed information extraction techniques are usually able
to hold references to the relevant text occurrences huge parts of the ontology
population can be documented by providing links to the original text source. The
tool used for the development of the ontology should provide an export feature
for the documentation in order to ensure convenient distribution/delivery.

3 Tool Support

3.1 KnowWE

Most of the steps in the ontology engineering methodology described above re-
quire tool support. We envision an integrated tool that supports the entire pro-
cess. KnowWE [4] is a semantic wiki that has recently encountered a significant
extension of it’s ontology engineering capabilities. Besides the ontology engineer-
ing features KnowWE also offers an elaborated plugin mechanism that allows
for the convenient extension of KnowWE. Thus KnowWE provides a reasonable
platform for the implementation of the tool support.

3.2 Ontology Engineering

KnowWE provides the possibility to define and maintain ontologies together
with strong problem-solving knowledge. As outlined in the following it provides
the typical features of an ontology management component [6]. Ontologies can
be formulated using the RDF(S) or OWL languages. KnowWE provides differ-
ent markups for including RDF(S) and OWL: proprietary markups and stan-
dardized turtle syntax [20]. In addition, KnowWE already offers possibilities
to import (meta-)ontologies, e.g., SKOS. The ontologies are attached to wiki
pages, referenced in a special import markup, and can then be used for the de-
velopment. Besides these ontology management and editing features KnowWE
offers a variety of ontology browsing and explanation features. For each con-
cept an info page gives information about the usage of the concept in focus,
e.g. which statements or SPARQL queries reference the concept. Additionally
arbitrary SPARQL queries can be formulated and even visualized. Besides this
a variety of other ontology visualizations are available which are usually used to
support the manual ontology engineering, e.g., to explain the existing structure.
The ontology engineering process is already supported by the use of continuous
integration (CI) as described in [2], enabling the application of automated tests
to detect the regression of an ontology.

3.3 Ontology Population

KnowWE already provides possibilities for the basic knowledge engineering,
management, and browsing, it thus covers the tool support necessary to specify

282



and conceptualize the ontology structure. However, it lacks support for automat-
ically populating an ontology by exploiting multi-modal knowledge resources. As
described above for the exploitation of these resources, the access to preprocess-
ing and information extraction algorithms is necessary. In the TELESUP project
we extend KnowWE with connectors to preprocessing and information extrac-
tion algorithms. These connectors allow the configuration and the execution of
the specific algorithms and provide potential candidates for the population of
the ontology. In order to provide a convenient processing of the resources it
will be possible to define pipelines of preprocessing and information extraction
algorithms. For each pipeline the resources they shall process will be selectable.

3.4 Ontology Evaluation and Debugging

As described before KnowWE already offers different features for evaluating and
debugging an ontology. The continuous integration extension of KnowWE allows
to test an ontology continuously against specified test cases. Currently these test
cases are mostly based on explicitly defining the expected results of SPARQL
queries. We already proposed the usage of these test cases in order to find failure-
inducing statements in a change set [11]. Therefore we developed a debugging
plugin (see Figure 2) that is based on the Delta Debugging idea for software
development proposed by Zeller [22]. Within the scope of the TELESUP project
we will extend KnowWE’s evaluation and debugging features in order to allow
for constraint-based and/or task-based evaluation and debugging. For the latter
we will also improve KnowWE’s revision handling of formal knowledge, e.g. by
introducing a time-machine plugin for different knowledge representations that
allows the access of specific snapshots of an ontology.

Fig. 2. KnowWE’s delta debugger presenting a failure-inducing change.

4 Related Work

We presented an ontology engineering methodology that proposes to (1) manu-
ally specify and conceptualize the core ontology structure, (2) semi-automatically
populates the ontology by exploiting multi-modal knowledge resources and (3)
strongly emphasizes the quality management. The idea of guiding the ontology

283



engineering process with a methodology is not new. The presented method-
ology is loosely related to METHONTOLOGY [10]. METHONTOLOGY is a
methodology that starts with a formal specification of the ontology, and then
acquires and conceptualizes relevant knowledge. It concludes with explicit im-
plementation, evaluation and documentation steps and also allows for the inte-
gration of (meta-)ontologies. The major difference to the presented methodology
is that TELESUP is able to analyze multi-modal knowledge resources and then
automatically populates the ontology. Additionally TELESUP provides more
sophisticated evaluation and debugging approaches. Pinto et al. [14] proposed
DILIGENT, a methodology that strongly emphasizes the coordination in a dis-
tributed ontology engineering process. The methodology proposed by [18] is a
five step approach that starts with a feasibility study, specifies the requirements
in a kickoff and then continuously refines, evaluates and evolutes the ontology.
While the continuous refinement and evaluation of the ontology is comparable
to TELESUP, we do not focus on the continuous evolution of the ontology, as
we consider the ontology structure to be rather static.

There is a lot of related work regarding the automatic population of ontolo-
gies using information extraction technologies. As the identification and selection
of appropriate information extraction techniques is subject of the TELESUP
project and we focus on the underlying methodology in this paper we do not
give a detailed description of related work in this field, but the BioOntoVerb pro-
posed by Ruiz-Martnez et al. [16] is an example for a framework that transforms
un-structured, semi-structured and structured data (i.e. multi-modal knowledge
resources) to instance data.

Parts of the presented methodology can also be considered related to ap-
proaches known from Case-Based Reasoning (CBR) [1], e.g. the specification of
the ontology structure and its subsequent conceptualization correspond to the
definition of a vocabulary and similarity measures in CBR, while populating the
ontology is similar to creating cases.

5 Conclusion

We proposed an ontology engineering methodology that is based on the Knowl-
edge Formalization Continuum and incorporates information extraction tech-
niques for the automatic population of an ontology structure by exploiting
multi-modal knowledge resources. The underlying process emphasizes the quality
management using Continuous Integration and the ability to trace down failure-
inducing changes automatically. We presented the actual state of KnowWE and
it’s already available ontology engineering abilities. In order to ensure proper
tool support for the proposed methodology, we have also outlined the extensions
to KnowWE that will be implemented as part of the TELESUP project. Besides
the actual implementation of the presented extensions to KnowWE an extensive
case study will be the main subject of our future work. The goal of the case
study will be to evaluate whether the methodology and the tool support can sig-

284



nificantly increase the efficiency concerning the development and maintenance
of intelligent support-systems.

Acknowledgments

The work described in this paper is supported by the Bundesministerium für
Wirtschaft und Energie (BMWi) under the grant ZIM KF2959902BZ4 ”SELE-
SUP – SElf-LEarning SUPport Systems”.

References

1. Althoff, K.D.: Case-based reasoning. Handbook on Software Engineering and
Knowledge Engineering 1, 549–587 (2001)

2. Baumeister, J., Reutelshoefer, J.: Developing knowledge systems with continuous
integration. In: Proceedings of the 11th International Conference on Knowledge
Management and Knowledge Technologies. p. 33. ACM (2011)

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering Intelligent Systems on
the Knowledge Formalization Continuum. International Journal of Applied Math-
ematics and Computer Science (AMCS) 21(1) (2011), http://ki.informatik.uni-
wuerzburg.de/papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf

4. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a Semantic Wiki for knowl-
edge engineering. Applied Intelligence 35(3), 323–344 (2011)

5. Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology eval-
uation (2004)

6. Cimiano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Handbook
on ontologies, pp. 245–267. Springer (2009)

7. Ciravegna, F.: (LP )2: Rule Induction for Information Extraction Using Linguistic
Constraints (2003)

8. Curran, J.R.: Ensemble methods for automatic thesaurus extraction. In: Pro-
ceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10. pp. 222–229. Association for Computational Linguistics
(2002)

9. Eckstein, B., Kluegl, P., Puppe, F.: Towards learning error-driven transformations
for information extraction (2011)

10. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontolog-
ical art towards ontological engineering (1997)

11. Furth, S., Baumeister, J.: An Ontology Debugger for the Semantic Wiki KnowWE.
In: under review (2014)

12. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation (27 October
2009), available at http://www.w3.org/TR/owl2-primer/

13. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics-Doklady 10(8), 707–710 (1966)

14. Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: Towards a fine-grained method-
ology for Distributed, Loosely-controlled and evolvInG. In: Ecai 2004: Proceedings
of the 16th European Conference on Artificial Intelligence. vol. 110, p. 393. IOS
Press (2004)

285



15. Porzel, R., Malaka, R.: A task-based approach for ontology evaluation. In: ECAI
Workshop on Ontology Learning and Population, Valencia, Spain. Citeseer (2004)

16. Ruiz-Martinez, J.M., Valencia-Garcia, R., Martinez-Bejar, R.: BioOntoVerb frame-
work: integrating top level ontologies and semantic roles to populate biomedical
ontologies. In: Natural Language Processing and Information Systems, pp. 282–
285. Springer (2011)

17. Soderland, S.: Learning information extraction rules for semi-structured and free
text. Machine learning 34(1-3), 233–272 (1999)

18. Sure, Y., Staab, S., Studer, R.: Ontology engineering methodology. In: Handbook
on ontologies, pp. 135–152. Springer (2009)

19. W3C: SKOS Simple Knowledge Organization System Reference – W3C Recom-
mendation: http://www.w3.org/TR/skos-reference (August 2009)

20. W3C: RDF 1.1 Turtle – W3C Recommendation. http://www.w3.org/TR/turtle/
(February 2014)

21. W3C: RDF Schema 1.1 – W3C Recommendation. http://www.w3.org/TR/rdf-
schema/ (February 2014)

22. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Software
EngineeringESEC/FSE99. pp. 253–267. Springer (1999)

286




