
TweetSafa: Tweet language identification

TweetSafa: Identificación del lenguaje de tweets

Iosu Mendizabal
(IIIA) Artificial Intelligence

Research Institute
(CSIC) Spanish Council for

Scientific Research
iosu@iiia.csic.es

Jeroni Carandell & Daniel Horowitz
(UPC) Universitat PolitÃ¨cnica de Catalunya

(URV) Universitat Rovira i Virgili
(UB) Universitat de Barcelona

jeroni.carandell@gmail.com
daniel.horowitzzz@gmail.com

Resumen: Este art́ıculo describe la metodoloǵıa utilizada en la tarea propuesta en SE-
PLN 14 para la identificación de lenguaje de tweets (TweetLID), como se explica en (Iñaki
San Vicente, 2014). El sistema consta de un preprocesamiento de tweets, creación de dic-
cionarios a partir de N-Grams y dos algoritmos de reconocimiento de lenguaje.
Palabras clave: Reconocimiento de lenguaje, lenguaje de tweets.

Abstract: This paper describes the methodology used for the SEPLN 14 shared task of
tweet language identification (TweetLID), as explained on (Iñaki San Vicente, 2014). The
system consists of 3 stages: pre-processing of tweets, creation of a dictionary of n-grams,
and two algorithms ultimately used for language identification.
Keywords: Tweet identification, tweet language.

1 Introduction and objectives

Language identification is vital as a prelimi-
nary step of any natural language processing
application. The increasing use of social net-
works as an information exchange media is
making of them a very important informa-
tion center. Twitter has become one of the
most powerful information exchange mecha-
nisms and every day millions of users upload
tons of tweets.

The SEPLN 2014 TweetLID task focuses
on the automatic identification of the lan-
guage in which tweets are written, as the
identification of tweet language is arousing
an increasing interest in the scientific com-
munity (Carter, Weerkamp, and Tsagkias,
2013). Identifying the language will help to
apply NLP techniques subsequently on the
tweet such as machine translation, sentiment
analysis, information extraction, etc. Accu-
rately identifying the language will facilitate
the application of resources suitable to the
language in question.

The scope of this task will focus on the
top five languages of the Iberian Penin-
sula:Spanish, Portuguese, Catalan, Basque,
and Galician as well as English. These
languages are likely to co-occur along with
many news and events relevant to the Iberian
Peninsula, and thus an accurate identifica-
tion of the language is key to make sure that
we use the appropriate resources for the lin-

guistic processing.
The rest of the article is laid out as fol-

lows: Section 2 introduces the architecture
and components of the system: the pre-
processing state where the tweets are adapted
to a better comprehension for our algorithm
and the used algorithms. Afterwards, section
3 describes our results for the given problem.
To conclude, in section 4 we will try to draw
some conclusions and propose future works.

2 Architecture and components of
the system

We have presented two different approaches
to the problems which have been presented in
track one (constrained) and track two (un-
constrained). Both of these methods share
great part of the process in terms of the set
of tweets being used to learn from, as well
as the way incoming tweets are preprocessed
and learned.

2.1 Pre-processing

The first step of this process, is to identify
the noise present in all tweets regardless of
the language. There are common issues re-
lated to regular text, such as multiple space
characters, but also specific Twitter tokens
like the user name tag or emoticons. After
identifying this issues, we are able to remove
them using mostly regular expressions. We
have highlighted the main issues found in the



tweet domain and what our approach was to-
wards it:

• Different case characters: All characters
were lowercased, so they wouldn’t inter-
fere in the identification process, since
the same character with different cases
is treated as two different elements.

• Numbers, Emoticons: Since these kind
of characters are presented equally in
any language, they have been removed.

• Vowel repetitions: The vowel repeti-
tion is a common issue when dealing
with chatspeak. These kind repetitions
could damage the algorithm’s perfor-
mance, therefore they were completely
removed and reduced to a maximum of
two from the text using regular expres-
sions.

• Multiple spaces: This is also a common
issue when dealing with tweets. The
regular expression formats the text from
multiple spaces into one space character.

When working with N-grams, it is important
to observe that not all special characters are
to be removed from the text, since they could
interfere in the identification process. Char-
acters like the apostrophe, are more likely to
appear in English and Catalan than in oth-
ers, therefore this kind of special characters
must not be considered as noise, and we save
them for a better result.

2.2 N-GRAM distribution

To classify the tweets into languages using
N-grams we have to extract meaningful dis-
tributions from each language. To do so,
we created documents of concatenated tweets
for each language: English, Spanish, Cata-
lan, Portuguese, Galician, Basque, other and
undetermined. Mixed labelled tweets such
as the ones with ’en+es’ as well as those
with ambiguous languages ’en/es’ are added
to both languages they contain (in this case
to both Spanish ’es’ and English ’en’). Then
we extract N-gram distributions in a dynamic
way so that we can choose the number of N
we wish.

2.3 Algorithms

Once we have N-gram distributions for each
language, given a new tweet we want to clas-
sify we are going to find the most possible
language by extracting the tweet’s N-gram

distribution and comparing it with the lan-
guages distributions. To do so, we took two
different approaches.

2.3.1 Linear Interpolation

The first method tries to find out what the
probability is of a sentence being generated
by each language by multiplying the prob-
ability of the consecutive N-Grams of the
sentence in their respective languages. The
problem appears when we deal with a small
finite dataset and there are therefore not
enough instances to reliably estimate the
probability, in other words, the sparse data
problem appears. This means that if a corpus
of a certain language does not have a certain
N-Gram, a sentence with the latter would au-
tomatically have a probability of zero.

To avoid this problem in the computation
of the probabilities of each tweet for the lan-
guages of our N-Gram distribution we use the
linear interpolation smoothing method, also
known as the Jelinek-Mercer smoothing (Je-
linek, 1997),(Huang, Acero, and Hon, 2001).
To be able to use this smoothing method
we have to make a computation with our
N-Gram corpus, the one generated with the
14991 tweets for the training purpose, to cal-
culate the λ values. We create a dynamic
program to compute as many λ values as the
N-Grams we extracted from the training set.
For instance, if we consider up to 5 N-Gram
distributions for English we will compute 5
λ’s for each N-Gram up to 5, so all λi corre-
sponding to the i-Gram where i ∈ {1, ..., 5}.
The probability of an N-Gram will be com-
puted as follows:

P(tn|t1, t2, ..., tn−1) =
n∑

i=1
λiP̂ (tn |

i−1⋂
j=1

tn−j)

(1)

For any n and where P̂ are maximum like-
lihood estimates of the probabilities and
n∑

i=1
λi = 1, so P represent probability distri-

butions.
The values of λ are computed by deleted

interpolation (Brants, 2000). This technique
successively removes each max-gram (biggest
n-gram) from the training corpus and esti-
mates the best values for the λ’s from all
other n-grams in the corpus by adding a con-
fidence to the lambdas for the most propor-
tionally seen N-Gram . The algorithm is



given in Algorithm 1.

set λ1 = λ2 = λ3 = ... = λn = 0;

foreach MAX-Gram (t1, ..., tn) with
count (t1, ..., tn) > 0 do

depending on the maximum of the
next values:

case count(tn)−1
N−1 : increment λ1 by

count(t1, ..., tn)

end

case count(tn−1,tn)−1
count(tn−1)−1 : increment λ2

by count(t1, ..., tn)

end

case count(tn−2,tn−1,tn))−1
count(tn−2,tn−1)−1 : increment

λ3 by count(t1, ..., tn)

end
...

case count(t1,...,tn)−1
count(t1,t2,...,tn−1)−1 : increment

λn by count(t1, ..., tn)

end
end

Algorithm 1: Deleted interpolation Algo-
rithm.

2.3.2 Out-of-place measure

For this next method, for every n we will only
consider a ranking list of n-grams ordered by
most to least frequent and where only the
order is preserved as opposed to the exact
frequencies. We decided to do this because
when it comes to comparing a single tweet
(documents of only 140 characters) to distri-
butions of each language, we cannot consider
that the frequency distribution of the tweet
n-grams will resemble the ones in the con-
catenated document. We can however, say
that the most frequent have a higher proba-
bility of appearance, but not necessarily with
proportional frequencies as in the document.
For this reason, we used the out-of-place mea-
sure.

We decided to send this method as uncon-
strained because two of the parameters which
we used, that will be discussed later on, were
extracted from a previous work we did with
a self downloaded corpus of tweets of differ-
ent languages. We did this because it would
take too long if we had to find the new values
because of the huge search space.

This measure is a distance which will tell
us approximately how far the tweet is from a

language for a fixed n-gram. Given the tweet
ranking {Tn

i }i and a language L n-gram rank-
ing {Ln

j }j , the distance is computed by the
sum of the number of indexes that an element
of T has been displaced in list D. So we sum
| i−j | for every Tn

i in the tweet that is equal
to Ln

j . In the case that an element in {Tn
i }i

does not exist in list {Ln
j }j , we suppose the

best case, i.e. that the non appearing ele-
ment is in the bottom of the list. This as we
will discuss in section 4 might not have been
such a good idea. Finally, to be able to com-
pare different distances we need some kind of
proportion of the out-of-place measure that
we describe as:

outOfP laceMeasure

length(Tn
i i) ∗ length(Ln

j j
)

(2)

As we can see in Figure 1, the out-of-place
measure is calculated for a tweet from an En-
glish dataset. The m and n parameters give
us the maximum number of elements we al-
low for each list so that computational time
does not get compromised by an unnecessary
whole search of all the n-grams in a language
(Cavnar, Trenkle, and others, 1994). This
is the part of this algorithm that makes it
unconstrained, since the parameters we used
came from a previous similar project we did
using self downloaded tweets and where we
found that the values of m=80 and n=50
were best. To avoid possible divisions by

Figure 1: Example of an out-of-place measure

zero in equation 2, given that tweets are
sometimes zero or very close (especially af-
ter the cleaning of html’s, punctuation, etc),
we supose that if the number of characters
is smaller than three, the tweet is undeter-
mined. Again, a bold affirmation which needs
to be fine-touched in future work.

Finally, in the training process, we are
going to reward each n-gram if it correctly



guessed a tweet. So if for example, a trigram
labels a tweet correctly but the unigrams and
bigrams do not, we reward the trigrams with
one point where the others don not get any.
We do this with all the tweets in the train-
ing set and in the end we get frequency of
reliability of each n-gram. When the test is
done on a tweet, a weighted voting is done us-
ing these confidence parameters so that the
most voted languages counting the reliability
weight wins.

3 Setup and evaluation

The official result of our approach are the
next ones: In the constrained category us-
ing the linear interpolation algorithm, section
2.3.1, we obtained a precision of 0.777, a re-
call of 0.719 and a F-measure of 0.736.

In the unconstrained category we used the
out-of-place measure algorithm, section 2.3.2,
and obtained the next results: precision of
0.598, recall of 0.625 and F-Measure of 0.578.

3.1 Empirical settings

Before submitting the final results we made
different executions with different maximum
N-Grams to know which was the one with the
best results. Also because of the ambiguity
of tweets with more than one language, for
instance es+en, to compute this we take av-
erage value of all the probabilities of all the
languages and then create a threshold. For
the linear interpolation we used:

Threshold =
maxProbability −Average

α
(3)

Where themaxProbability refers to the max-
imum of the probabilities of the languages
and α < 0 is the value of restriction that tol-
erates more or less the number of languages
that may be suggested. The bigger the α,
the less tolerance to ambiguity of predicted
languages for each tweet yet the more precise
the result, while the smaller the alpha, the
higher the recall yet smaller the precision.

For the ranking-based method, the thresh-
old is chosen by running a search from 0 to
0.3 with intervals of 0.05. The most optimum
found on the data set is 0.05.

3.2 Empirical evaluation

We ran experiments with different N-Gram
values, from 1 to 8, and we set the α value
to 10 which gave us the best results in the
validation set.

In figure 2 we can see the results of the
experiments we made using the linear inter-
polation method. We can observe how the
results are going better while the N-Grams
are going bigger, but the peak of the results
are achieved with the 5-gram, from there on
the results are slightly worst each gram we
sum.

Figure 2: Results obtained for the training
set with: Linear interpolation method.

Because of these results, we decided to
send the 5-gram results for the test set given
for the SEPLN 2014 task.

In the case of the ranking based method,
we do not have to test different n-gram com-
binations since we obtain a reliability for each
n-gram to be truthful. So if a certain n-gram
were systematically wrong it would have a
very low confidence which would not make it
so influential. Finally we decided for compu-
tational reasons to use only 6 n-grams.

4 Conclusions and future work

In this paper we have described our approach
for the SEPLN 2014 shared task of tweet lan-
guage identification (TweetLID). Our system
is based on a pre-processing part taking into
account the different accents can appear in
different languages using language codifica-
tions in the N-Gram distribution state with-
out erasing them.

Also we have two different algorithms the
linear interpolation smoothing and the out-
of-place measure. These algorithms obtain
an F-measure of 0.736 and 0.578 respectively
in the given test corpus of 19993 tweets. Our
system ranked in the 3rd best place among



the participants of the constrained track, us-
ing the linear interpolation algorithm, and
6th in the unconstrained track, using the out-
of-place measure.

Among the mistakes we made was to un-
derestimate numerical digits in languages,
which we removed. In the English language,
numbers are often used to shorten text, thus
making us lose great part of words for exam-
ple; ”to forgive someone” might be written
as: ’2 4give som1’. This is true in many in-
ternet alphabets which are emerging such as
Arabizi(the arabic chat language).

For possible future work for the ranking-
based method it might be interesting to con-
sider the distribution of the length of words in
each language since it can be a very determin-
ing characteristic. Also in this method, the
out of place measure should have penalized
more severely the non non-appearing charac-
ters in the document list instead of supposing
it could be found on the last element of the
list.

Finally we have to stress the importance
the pre-processing of tweets as one of the key
parts in the project.

References

Brants, Thorsten. 2000. Tnt: A statisti-
cal part-of-speech tagger. In Proceedings
of the Sixth Conference on Applied Natu-
ral Language Processing, ANLC ’00, pages
224–231, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Carter, Simon, Wouter Weerkamp, and
Manos Tsagkias. 2013. Microblog lan-
guage identification: Overcoming the lim-
itations of short, unedited and idiomatic
text. Lang. Resour. Eval., 47(1):195–215,
March.

Cavnar, William B, John M Trenkle, et al.
1994. N-gram-based text categorization.
Ann Arbor MI, 48113(2):161–175.

Huang, Xuedong, Alex Acero, and Hsiao-
Wuen Hon. 2001. Spoken Language Pro-
cessing: A Guide to Theory, Algorithm,
and System Development. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st
edition.

Iñaki San Vicente, Arkaitz Zubiaga, Pablo
Gamallo José Ramom Pichel Iñaki Ale-
gria Nora Aranberri Aitzol Ezeiza VÃ-
ctor Fresno. 2014. Overview of tweet-

lid: Tweet language identification at sepln
2014. In In TweetLID @ SEPLN 2014.

Jelinek, Frederick. 1997. Statistical Methods
for Speech Recognition. MIT Press, Cam-
bridge, MA, USA.


