
RankMerging: Learning to rank in large-scale

social networks

Lionel Tabourier1,2, Anne-Sophie Libert1, and Renaud Lambiotte1

1 naXys, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium
2 LIP6, University Pierre and Marie Curie, 4 Place Jussieu, 75252 Paris, France

Abstract In this work, we consider the issue of unveiling unknown links
in a social network, one of the difficulties of this problem being the small
number of unobserved links in comparison of the total number of pairs of
nodes. We define a simple supervised learning-to-rank framework, called
RankMerging, which aims at combining information provided by various
unsupervised rankings. As an illustration, we apply the method to the
case of a cell phone service provider, which uses the network among its
contractors as a learning set to discover links existing among users of
its competitors. We show that our method substantially improves the
performance of unsupervised metrics of classification. Finally, we discuss
how it can be used with additional sources of data, including temporal
or semantic information.

1 Introduction

Link prediction is a key field of research for the mining and analysis of large-scale
social networks. The reasons lie in its many practical applications: going from
recommendation strategies for commercial websites [20] to recovering missing
links in incomplete data [31]. Link prediction also has significant implications
from a fundamental point of view, as it allows for the identification of the el-
ementary mechanisms behind the creation and decay of links in time-evolving
networks [17]. For example, triadic closure, at the core of standard methods of
link prediction, is considered as one of the driving forces for the creation of links
in social networks [16].

In their seminal formulation, Liben-Nowell and Kleinberg [18] present link
prediction as follows: considering a snapshot of a network at time t, the problem
is to predict which links will be present at a future time t0 > t. A standard
way to solve this binary classification problem consists in ranking pairs of nodes
according to a scalar metric, correlated with the existence of interactions between
nodes. Most of these metrics are based on the structural properties of the network
of known interactions, either on local, e.g. the number of common neighbors, or
on global features, e.g. random walk or hitting time — see [22] for a survey. Other
sources of information can be considered, in particular node attributes, such as
age or gender [23,2] or geographic location [28]. In certain cases, for example
online networks, the users profiles may include rich semantic information as [4].

Interaction attributes, such as frequencies [29], or the time elapsed since the last
interaction [27], may also be used as an additional source of information.

However, these ranking features are known to be domain-specific (e.g., [8]).
Moreover, as links can play different roles in social networks, they are expected
to be surrounded by different types of environments and thus to be best iden-
tified by different topological features. For these reasons, schemes based on a
single metric are prone to misclassification. A way to circumvent this problem is
to combine different metrics for link prediction. Most of the available solutions
are unsupervised, such as Borda’s method or Markov chain ordering [11]. On
the other hand, supervised methods have proven efficient on specific link pre-
diction problems. For instance, the authors of [19] considered degree categories
to predict future links in a phonecall network; in both [14] and [8], supervised
frameworks are defined to predict links in multimodal networks. Recent works
have combined classic tools, such as classification trees, support vector machine,
or neural networks, which have been shown to outperform their unsupervised
counterparts for predicting links in biological networks and scientific collabo-
ration networks [3,26,8]. However, these methods do not allow the user to set
the number of predictions according to his needs, whereas ranking methods are
suited to this purpose. Supervised methods built to improve ranking systems
have mostly been designed in the context of information retrieval tasks, such as
document filtering, spam webpage detection, recommendation or text summa-
rization [21,30]. As such, they primarily aim at high precision on the top-ranked
items, and stress the relative ranking of two items [12,5,6].

Here, we propose a simple yet efficient learning-to-rank supervised framework
specifically designed to uncover links in social networks, by combining rankings
obtained from different sources of information. Throughout this article, our Ari-
adne’s thread is the examle of a mobile phone service provider (PSP). Because
PSPs only have access to records involving their own clients, they have an in-
complete view on the social network as a whole. In several practical applications,
however, this missing information is crucial. An important example is churn pre-
diction, that is the detection of clients at risk of leaving to another PSP. This risk
is known to depend on the local structure of the social network [7,25]. Therefore,
the knowledge of connections between subscribers of other providers is crucial
for the design of efficient customer retention campaigns. As we discuss further
below, a direct application of our method is the prediction of links on the other
side of the frontier accessible to a PSP.

This article is organized as follows. In Section 2, we describe the mobile phone
dataset and how it is processed in order to model the situation of a PSP con-
fronted to churn. In Section 3, we briefly present how classic unsupervised learn-
ing methods can be applied to the problem under consideration. In Section 4,
we develop a supervised machine learning framework, called RankMerging, which
improves the quality of predictions by aggregating the information from various
metrics. We also compare our results to those of standard supervised methods,
and show that RankMerging is particularly suited to social networks where in-
formation is partial and noisy.

2 Dataset

The dataset is a call detail record of approximately 14 · 106 phonecalls of anony-
mized subscribers of a European PSP during a one month period. Users are
described as nodes and an interaction between two users is a directed link. The
total number of phone calls between nodes i and j is denoted by the weight

w(i, j) of this link. In order to filter out calls which are not indicative of a
lasting social relationship, we only consider calls on bidirectional links, i.e. links
that have been activated in both directions. After this filtering has been applied,
interactions between users are considered as undirected. The resulting social
network is composed of 1,131,049 nodes, 795,865 links and 10,934,277 calls. From
now on, we denote W the activity of a node, that is the sum of the weights of
its adjacent links.

A PSP is usually confronted to the following situation: it has full access to
the details of phone calls between its subscribers, as well as between one of
its subscriber and a subscriber of another PSP. However, connections between
subscribers of other PSPs are hidden. In order to simulate this situation from
our dataset, we divide our data into two artificial PSPs, A and B. The link to
predict are selected in a random way: we split the users of the network into 3
sets (i) A1 and A2 nodes are nodes of the first PSP – links among A2 nodes
are links to discover during the learning task, (ii) B nodes belong to the second
PSP. Users have been randomly assigned to A1, A2 and B according to the
proportions 50, 25, 25%. During the learning process, links inside A2 [B are
removed. The resulting network (GLearn) contains 848,911 nodes and 597,538
links and we aim at predicting the links among A2 nodes (49,731 links). During
the test phase, the network GTest contains 1,131,049 nodes and 746,202 links. All
the links are thus considered, except for the 49,663 links inside B which we aim
at predicting. Notice that according to our simulation, the learning set and the
test set are derived from the same distributions, while it could not be the case in
situations involving several PSPs. However, this assumption is fair to compare
the performances of our method to other prediction techniques.

3 Unsupervised learning

3.1 Prediction evaluation

The quality of a ranking metric is assessed by measuring precision (Pr), recall
(Rc) and F-score. Previous works have emphasized the dramatic effect of class
imbalance (or skewness) on link prediction problems in social networks, especially
in mobile phone networks [19,6]. The fact that the network is sparse and that
there are many more pairs of nodes than links makes the prediction and its
evaluation tricky, the typical order of magnitude of the classes ratio for a social
network made of N nodes being O(1/N) [19]. In the case of unbalanced classes,
performance predictors such as the ROC curve are known to be inappropriate –
see [10]. In general, the definition of a good prediction and thus of an adequate
quality estimator depends on the purpose of the link prediction. For example,

the goal of an efficient search engine is to provide highly relevant information
on a small amount of items. In contrast, a PSP confronted to churn looks for an
appropriate trade-off between precision and recall, in order to detect potential
churners, without flooding clients with discount offers. For this reason, we aim
at improving both precision and recall over a large range so that a PSP would
be able to tune the prediction parameters according to its commercial strategy.

3.2 Ranking metrics and results

In this work, we focus on structural features where each pair of nodes is assigned
a score based on topological information, and then ranked according to this score.
A large number of metrics have been used in the past, see for example [18,22].
The goal of this paper is not to propose elaborate classifiers, but to present a
method that takes advantage of how complementary they are. We have therefore
chosen classic metrics and generalized them to the case of weighted networks
(other generalizations exist in the literature, e.g. [24]), denoted by index w.
Their unweighted version is recovered by setting all weights to 1.

Local features. A class of metrics are local (also called neighborhood rankers)
as they only rank links among nodes which are at most at distance 2. In the
following, N (i) denotes the set of neighbors of node i.

– Common Neighbors index (CN), based on the weighted number of common
neighbors shared by nodes i and j:

s

CNw (i, j) =
X

k2N (i)\N (j)

w(i, k).w(j, k)

– Jaccard index (Jacc):

s

Jaccw (i, j) =

P
k2N (i)\N (j)

w(i, k) + w(j, k)

W (i) +W (j)

– Adamic-Adar index (AA):

s

AAw (i, j) =
X

k2N (i)\N (j)

1
log(W (k))

Global features. Another class of features are global (or path rankers), since they
are calculated by using the whole structure of the network, and allow for the
ranking of distant pairs of nodes:

– Katz index (Katz) [15], computed from the number of paths from node i to
node j of length l, i.e. ⌫ij(l) according to the following expression (� is a
bounded parameter):

s

Katz

(i, j) =
1X

l=1

�

l

⌫

ij

(l)

Note that in the weighted case, the number of paths is computed as if links
were multilinks.

– Random Walk with Restart index (RWR), sRWRw(i, j) is defined as the prob-
ability that a random walker starting on node i, going from a node k to a
node k0 with probability p.w(k, k0)/W (k) and returning on i with probability
1� p, is on j in the steady state of the process.

– Preferential Attachment index (PA), based on the observation that active
nodes tend to connect preferentially in social networks [13]:

sPAw (i, j) = W (i).W (j)

Both Katz and RWR are computed using infinite sums, which will be ap-
proximated by keeping only the dominating four first terms to reduce the com-
putational cost, meaning that we can only predict links between pairs of nodes
at a maximum distance of 4. Moreover, in order to address the problem of class
imbalance, known to hinder the performance of PA (e.g. [19]), we have restricted
the ranking in this case to pairs of nodes at a maximum distance of 3. Notice
that with larger maximum distances, we can increase the maximum recall that
can be reached, but at the cost of a very low precision for these predictions.

3.3 Borda’s method

The main purpose of this work is to develop a framework to exploit a set of ↵
rankings for link prediction. As we will show in the next section, this problem
can be solved in a supervised setting by identifying regions of a ↵-dimensional
space associated to a high performance. Here, we present an unsupervised way
to merge ranking features based on social choice theory [11,26]. Borda’s method
is a rank-then-combine method originally proposed to obtain a consensus from
a voting system [9]. Each pair is given a score corresponding to the sum of the
number of pairs ranked below, that is to say:

s

B

(i, j) =
↵X

=1

|r

|� r

(i, j)

where |r| denotes the number of elements ranked in r. This scoring system
may be biased toward global predictors by the fact that local rankings have less
elements. To alleviate this problem, unranked pairs in ranking r but ranked in
r0 will be considered as ranked in r on an equal footing as any other unranked
pair and below all ranked pairs. Borda’s method is computationally very cheap,
which is a highly desirable property in our case. A comprehensive discussion on
this method can be found in [11].

3.4 Results

We plot the results obtained on GLearn to predict A2 � A2 links for the above
classifiers. For the sake of readability, we only represent a selection of them on
Figure 1. The evolution of the F-score significantly varies from one classifier to
another. For example, it increases sharply for CN, and then more slowly until
reaching its maximum, while RWRw rises smoothly before slowly declining. As
expected, Borda’s aggregation improves the performance of the classification,

especially considering the precision on the top-ranked pairs. Given the difficulty
of the task, Pr is low on average: for instance, when Rc is greater than 0.06, Pr

is lower than 0.3 for all estimators.

 0

 0.05

 0.1

 0.15

 0.2

 0 50000 100000 150000

F
-s

co
re

number of predictions

AA,w
CN,w
CN

PA,w
RWR,w
Borda

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

P
re

c
is

io
n

Recall

AA,w
CN,w
CN

PA,w
RWR,w
Borda

Figure 1. Results on the learning set for various structural classifiers. Left: F-score as
a function of the number of predictions. Right: Pr versus Rc curves.

4 RankMerging framework

The ranking methods presented in the former section use structural information
in complementary ways. In systems such as social networks, where communica-
tion patterns of different groups, e.g. family, friends, coworkers etc, are different,
one expects that a link detected as likely by using a specific ranking method may
not be discovered using another one. This intuition is supported by measuring the
correlation between rankings. For example, the rankings produced with sCN and
sJacc,w scores have a 0.052 Spearman correlation coefficient on the test set, which
means that some pairs are highly ranked according to one method, but not to the
other one. In this section, we design a supervised machine learning framework
to aggregate information from various ranking techniques for link prediction in
social networks. In a nutshell, it does not demand for a pair to be highly ranked
according to all criteria (like with a consensus rule), but at least one. The whole
procedure is referred to as RankMerging. An implementation and user guide of
the algorithm are available on http://lioneltabourier.fr/program.html.

4.1 Principle

We first consider the training set to learn the parameters. Let’s suppose that
we have ↵ different rankings r1, ..., r↵ from the unsupervised learning phase.
Each ranked pair is either a true or false positive prediction (tp or fp). We are
looking for the combination of rankings that brings the maximum number of
tp predictions. Let ⌃i(⇢i) be the number of tp for pairs ranked from position 1
to ⇢i, ⇢i will be named sliding index of ri. Now if we consider simultaneously
the ↵ rankings, our goal is to compute the optimal values of the ⇢i for a fixed

number of predictions n so that the total number of tp, denoted S(⇢1, ..., ⇢↵), is
maximum. It is important to note that a link can only be predicted once: if a pair
has been predicted using ranking ri and then included in the solution associated
to S, it cannot be predicted by rj . It means that we have to consider the links
already predicted to guess the future ones, which makes this problem hard to
solve exactly. For this reason, the problem is solved heuristically, by using the
training algorithm described in Algorithm 1.

The central idea is to find at each step the ranking with the highest number
of true predictions in the next g coming steps. For that purpose, we define the
window Wi as the set of links predicted according to ranking ri in the next g
steps. Note that links already predicted are not considered in Wi. The number
of tp in Wi is its quality, denoted �(i). The ranking corresponding to the highest
quality value is selected (in the case of a tie, we choose randomly), and we add its
next top-ranked pair to the output ranking of the learning phase rLM . Throughout
the process, the sliding indices ⇢i are registered, these values are the essential
outputs of the training phase, as they record which ranking contributed to the
merged ranking. Then, the indices �i which indicate the end of the windows are
updated so that Wi contain exactly g pairs, �(i) are updated too, and the process
is iterated until rLM contains a predefined number of pairs T . To summarize,
we are looking for a maximum number of true predictions S by local search.
An important benefit of our learning algorithm is that it needs to go through
each ranking only once, so if we have ↵ rankings, it implies a O(↵N) temporal
complexity. A brute force algorithm demands to consider all possible rankings
combinations, meaning that ↵ different possibilities for each prediction must be
considered, that is O(↵N) complexity.

Table 1 gives an example of the two first steps of the merging process between
two rankings rA and rB with g = 5. Pairs in the windows are represented with a
gray background. Initially, there are 4 tp in WA and 3 tp in WB , it means that
�A > �B , so the first link selected is the top-ranked pair available in WA: (1, 2)
(green background). This pair is therefore excluded from the ranking rB (barred
item on red background). At the next step, we have �A = �B = 4, the ranking
with highest quality is then selected randomly, we suppose here that rB has been
selected so that the next link included in rLM is (5, 18). At this step, according
to the previously defined notations, ⇢1 = 1 and ⌃1(⇢1) = 0, while ⇢2 = 1 and
⌃2(⇢2) = 1.

The test phase of the procedure consists in combining rankings on the test
network GTest according to the ⇢i learned on the training network GLearn. This
process does not demand to define sliding windows. The practical implemen-
tation is simple: at each step, we look up for the ranking chosen according to
the learning process and select the corresponding ranking ri on the test set. Its
highest ranked pair is then added to the merged ranking of the test phase rTM
if it has not been included previously; if it is already in rTM , then we go to the
next highest ranked pair of ri until we have found one which is not in rTM . The
number of pairs that can be predicted is different in GLearn and GTest (resp. nL

and nT). The implementation should then take into account a scaling factor:

Algorithm 1: RankMerging method: training algorithm.
inputs : table of rankings R (r

i

= R[i]); real edge list E;
maximum number of predictions T ; g;

outputs: sliding index table ⇢; merged ranking r

L

M

;
// initialization:

begin

W[i] g first links in R[i]; // pairs in window i

�[i] |W[i] \ E|; // quality of window i

⇢[i] 0; // sliding index of r

i

= start index of window i

�[i] g; // end index of window i

n 0; // counter of the number of predictions

while n T do

i

max

 index corresponding to maximum �[i];
r

L

M

[n] R[i
max

][⇢[i
max

]];
n n+1;
⇢[i

max

] ⇢[i
max

] + 1;
8i Update(W[i],�[i], ⇢[i],�[i], rL

M

[n]);

Procedure: Update(W[i],�[i], ⇢[i],�[i], rL
M

[n]):
begin

if r

L

M

[n] 2W[i] then

W[i] W[i] \ rL
M

[n]

while |W[i]| g do

l R[i][�[i]];
�[i] �[i] + 1;
if l /2 r

L

M

then

W[i] W[i] + l;

�[i] |W[i] \ E|;

r

A

tp r

B

tp

(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)

�!

r

A

tp r

B

tp

(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)

�!

r

A

tp r

B

tp

(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)

Table 1: Two steps illustrating the merging algorithm with rankings rA and
rB (g = 5). Pairs predicted (i.e. 2 rLM) have green backgrounds. Pairs with gray
backgrounds are in the windows WA and WB . Barred pairs with red backgrounds
have already been predicted and cannot be selected anymore.

if ranking ri has been selected at step s on the learning set, then ri should be
selected at step

h
s · nT

nL

i
on the test set.

4.2 Benchmarks for comparison

In order to assess the efficiency of RankMerging, we compare its performances
to existing techniques. The first one is Borda’s method, introduced above. We
also consider classic supervised techniques. As we aim at handling large net-
work datasets, we restricted ourselves to computationally efficient ones, namely
nearest neighbors (NN), classification trees (CT) and AdaBoost (AB). We have
used implementations from Python scikit learn toolkit1. These techniques are
not specifically designed for ranking tasks, so we obtain different points in the
precision-recall space by playing with the algorithms parameters, respectively the
number of neighbors (NN), the minimum size of a leaf (CT), and the number
of trees (AB).

4.3 Protocol and results

Protocol. According to the description in 4.1, ⇢i are computed on GLearn to
discover links among A2 nodes, and then used to merge rankings on GTest to
discover links between B nodes, applying the scaling factor nT /nL ⇡ 1.5 to
adapt the ⇢i learnt to the test set and cross-validation is therefore made through
a simple hold-out strategy. Determining adequate parameters is not an issue
here. The user may indeed aggregate as many rankings as he wants: the merging
process is such that the addition of a supplementary ranking is computationally
cheap2, and if a ranking does not bring additional information, it will simply be
ignored during the learning process. This property helps RankMerging to avoid
strong overfitting effects. As of the value of g, our numerical experiments show
that the performance of the algorithm is robust over a large range of values (see
Table 2), and we extrapolate the best g value on GLearn for the aggregation on
GTest.

Results. We plot on Figure 2 the evolution of the F-score and the precision-recall
curve obtained with RankMerging, for g = 200, aggregating the rankings of the
following classifiers: AAw, CNw, CN , Jaccw, Katzw (� = 0.01), PAw, RWRw

(p = 0.8) and Borda’s method applied to the seven former ones. We observe
that RankMerging performs better than Borda, especially for intermediary re-
call values. This was expected, as RankMerging incorporates the information of
Borda’s aggregation here. In fact, the method has been designed so that any

unsupervised ranking can be aggregated without any performance loss, so that
it should outperforms any unsupervised method taken into account during the
learning phase. We measure the area under the Pr-Rc curves to quantify the
performances with a scalar quantity. RankMerging increases the area by 8.3%
compared to Borda. Concerning the supervised benchmarks, we observe that
they perform well, but only for a low number of predictions (comparable to
Borda for approximately 1000 to 2000 predictions). Unsurprisingly, AdaBoost is

1
http://scikit-learn.org/

2 Here, the running time is a few seconds on a standard personal computer.

an ensemble method and outperforms Decision Trees and Nearest Neighbors for
an optimal parameter choice, but the performances are of the same order of mag-
nitude, in line with the observations in [1]. As formerly stated, these methods
are not designed to cover a wide range of the precision-recall space, and there-
fore perform very poorly out of their optimal region of use. On the minus side,
RankMerging has been designed for classification problems with large number
of predictions. The window size g implies an averaging effect which causes the
method to lack efficiency on the top-ranked items, as can be seen on Fig. 2. As
a consequence, it is not suited to problems with low number of predictions, as it
is often the case for information retrieval tasks for example.

 0

 0.05

 0.1

 0.15

 0.2

 0 50000 100000 150000 200000 250000

F
-s

co
re

number of predictions

Borda
RankMerging

AB
CT
NN

 0

 0.05

 0.1

 0.15

 0 10000 20000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

P
re

c
is

io
n

Recall

Borda
RankMerging

AB
CT
NN

Figure 2. Results of RankMerging on the test set (g = 200), compared to benchmarks.
Left: F-score as a function of the number of predictions. Right: Pr versus Rc curves.

We evaluate the influence of the structural metrics in Table 2. As can be seen,
the addition of a ranking does not decrease the quality of the merging process
– except for small variations which are considered as statistical fluctuations. A
user may therefore aggregate any ranking whatever the source of information is.
The dependency on the value of g is also shown in Table 2, and results indicate
that the performances are close to the maximum within the interval [100; 300]
on both the learning and test sets. This observation suggests the possibility of
tuning g in the testing phase from the values of g during the learning process.

AAw CNw CN Jaccw Katzw PAw RWRw Borda imp.(%)
x x x x x x x x

8.3

x x x x x x x

3.2

x x x x x x

-0.7

x x x x x

-1.0

x x x x

-2.0

x x x x x x x

8.2

x x x x x x

8.1

x x x x x

3.7

x x x x

3.8

g imp.(%)

10 -0.8

100 5.5

200 5.4

300 5.2

400 5.0

500 4.7

1000 4.0

2000 2.7

g imp.(%)

10 2.7

100 8.2

200 8.3

300 7.9

400 7.4

500 7.2

1000 6.4

2000 5.6

Table 2: Left: Improvement (in %) to Borda’s method of the area under the curve
in the precision-recall space, for the aggregation of different rankings. Right:
Improvement to Borda’s method of the area under the curve in the precision-
recall space, for different values of g; left: learning set, right: test set.

5 Conclusion

We presented RankMerging, a supervised machine learning framework which
combines rankings from any unsupervised classifier to improve the performance
of link prediction. This method is straightforward and computationally cheap
as its complexity is O(n.↵), where ↵ is the number of rankings aggregated and
n the number of predictions. It is adapted to prediction in social networks, as
n can be tuned according to the users’ needs. On the other hand, the precision
on top-ranked items is not as high as the results yielded by supervised methods
designed for information retrieval. In the case of a PSP, considered in this paper,
this parameter would adjust the number of predictions to its commercial strategy.

So far, we have exclusively focused on structural information in order to pre-
dict unknown links. However, the framework is generic and any feature providing
a ranking for likely pairs of nodes can be incorporated. Additional structural clas-
sifiers are an option, but other types of attributes can also be considered, such
as the profile of the users (age, hometown etc.), or timings of the interactions.
In the latter case, for instance, if i and j are both interacting with k within a
short span of time, it is probably an indication of a connection between i and
j. From a theoretical perspective, RankMerging provides a way to uncover the
mechanisms of link creation, by identifying which sources of information play a
dominant role in the quality of a prediction. The method could be applied to
other types of networks, especially when links are difficult to detect. Applications
include network security, for example by detecting the existence of connections
between machines of a botnet, and biomedical engineering, for screening combi-
nations of active compounds and experimental environments in the purpose of
medicine discovery.

Acknowledgements

We thank E. Viennet, M. Danisch and anonymous reviewers for useful bibliographi-
cal indications. This paper presents research results of the Belgian Network DYSCO,
funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office. The scientific responsibility rests with its authors. We also
acknowledge support from FNRS and the European Commission Project Optimizr.

References

1. M. Al Hasan et al. Link prediction using supervised learning. In SDM’06: Workshop
on Link Analysis, Counter-terrorism and Security, 2006.

2. L. Backstrom and J. Leskovec. Supervised random walks: predicting and recom-
mending links in social networks. In WSDM’11, pages 635–644. ACM, 2011.

3. N. Benchettara et al. Supervised machine learning applied to link prediction in
bipartite social networks. In ASONAM’10, pages 326–330. IEEE, 2010.

4. C. Bliss et al. An evolutionary algorithm approach to link prediction in dynamic
social networks. arXiv:1304.6257, 2013.

5. C.J.C. Burges et al. Learning to rank using an ensemble of lambda-gradient models.
Journal of Machine Learning Research-Proceedings Track, 14:25–35, 2011.

6. P.M. Comar et al. Linkboost: A novel cost-sensitive boosting framework for
community-level network link prediction. In ICDM’11, pages 131–140. IEEE, 2011.

7. K. Dasgupta et al. Social ties and their relevance to churn in mobile telecom
networks. In EDBT’08, pages 668–677. ACM, 2008.

8. D. Davis et al. Supervised methods for multi-relational link prediction. Social
Network Analysis and Mining, 3(2):127–141, 2013.

9. J.C. de Borda. Mémoire sur les élections au scrutin. 1781.
10. C. Drummond and R.C. Holte. Explicitly representing expected cost: An alterna-

tive to roc representation. In KDD’00, pages 198–207. ACM, 2000.
11. C. Dwork et al. Rank aggregation methods for the web. In WWW’01, pages

613–622. ACM, 2001.
12. Y. Freund et al. An efficient boosting algorithm for combining preferences. Journal

of machine learning research, 4:933–969, 2003.
13. H. Jeong et al. Measuring preferential attachment in evolving networks. EPL,

61(4):567, 2003.
14. H. Kashima et al. Link propagation: A fast semi-supervised learning algorithm for

link prediction. In SDM’09, volume 9, pages 1099–1110. SIAM, 2009.
15. L. Katz. A new status index derived from sociometric analysis. Psychometrika,

18(1):39–43, 1953.
16. G. Kossinets and D.J. Watts. Empirical analysis of an evolving social network.

Science, 311(5757):88–90, 2006.
17. J. Leskovec et al. Microscopic evolution of social networks. In KDD’08, pages

462–470. ACM, 2008.
18. D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.

JASIST, 58(7):1019–1031, 2007.
19. R.N. Lichtenwalter et al. New perspectives and methods in link prediction. In

KDD’10, pages 243–252. ACM, 2010.
20. G. Linden et al. Amazon. com recommendations: Item-to-item collaborative filter-

ing. Internet Computing, 7(1):76–80, 2003.
21. Y.T. Liu et al. Supervised rank aggregation. In WWW’07. ACM, 2007.
22. L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A,

390(6):1150–1170, 2011.
23. Z. Lu et al. Supervised link prediction using multiple sources. In ICDM’10, pages

923–928. IEEE, 2010.
24. T. Murata and S. Moriyasu. Link prediction of social networks based on weighted

proximity measures. In ICWI, pages 85–88. IEEE, 2007.
25. B. Ngonmang et al. Churn prediction in a real online social network using local

community analysis. In ASONAM’12, pages 282–288. IEEE, 2012.
26. M. Pujari and R. Kanawati. Supervised rank aggregation approach for link pre-

diction in complex networks. In WWW’12 Companion. ACM, 2012.
27. T. Raeder et al. Predictors of short-term decay of cell phone contacts in a large

scale communication network. Social Networks, 33(4):245–257, 2011.
28. S. Scellato et al. Exploiting place features in link prediction on location-based

social networks. In KDD’11, pages 1046–1054. ACM, 2011.
29. T. Tylenda et al. Towards time-aware link prediction in evolving social networks.

In SNA-KDD’09, page 9. ACM, 2009.
30. F. Wei et al. irank: A rank-learn-combine framework for unsupervised ensemble

ranking. JASIST, 61(6):1232–1243, 2010.
31. T. Zhou et al. Predicting missing links via local information. EPJB, 2009.

