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� Céline Rouveirol
LIPN - UMR CNRS 7030

Institut Galilée - Université Paris-Nord
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- Baptiste Jeudy, Laboratoire Hubert Curien, St. Etienne, France

- Dino Ienco, IRSTEA UMR TETIS, France

- Mijung Kim, Arizona State University, USA

- Stefan Kramer, Johannes Gutenberg University Mainz, France

- Lei Li, Carnegie Mellon University, USA

- Sara Madeira, IST/INESC-ID, Portugal

- Luca Maria Aiello, Yahoo! Research, Spain

- Rosa Meo, University of Torino, Italy

- Tsuyoshi Murata, Tokyo Institute of Technology, Japan

- Mirco Nanni, ISTI-CNR Pisa, Italy

- Arlindo Oliveira, IST/INESC-ID, Portugal

- Fabio Pinelli, IBM Research, Ireland
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Foreword

Research in modeling, analyzing and mining large-scale networks has attracted
an increasing effort in the last few years. Two main reasons, at least, may
explain the rapid growth of interest in this field, as attested by the increasing
number of scientific publications about this topic:

• On one hand, many datasets studied in various different fields are best
described by graphs or linked collection of interrelated objects. Exam-
ples cover a wide variety of application fields including: biological system
studies, (protein interaction, gene/miRNA regulation, . . .,) the world wide
web, bibliographical networks (co-authoring, citation, . . .), P2P networks,
semantic networks, and of course the now very popular on-line social
networking and microblogging sites (e.g., Facebook, Twitter, Google+),
folksonomy-oriented sites (e.g., Foursquare, Delicious, Flickr) and social
media platforms (e.g., YouTube, last.fm). Far beyond sharing a networked
structure, many of these naturally arising graphs share some non-trivial
features (such as power-law node’s degree distribution, small separation
degree, high clustering coefficient, low density, . . ., etc). This fact has
boosted the research in analyzing and mining this class of networks since
findings in one field are expected to be easily applied to other analogue
fields.

• On the other hand, recent technological advances, in different areas, al-
low today generating, elaborating and tracking the spatial and tempo-
ral evolution of very large scale networks. For example, in systems biol-
ogy, continuous improvement of technologies has enabled to provide high-
throughput and heterogeneous datasets (genomic, proteomic, transcrip-
tomic and metabolomic) allowing to construct huge networks with both
rich node and edge meta-data. The possibility of repeating the same ex-
periment at different time points allows to track the evolution of obtained
networks, opening the way for understanding the causal relationships be-
tween nodes and how these interactions change over time. Purchase data
collected on e-commerce sites allow to build very large scale networks con-
necting customers to products they bought. Again, analyzing and mining
such networks would provide new directions for product recommendation
computation. On-line social network sites connecting millions of users
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and publicly available bibliographical databases featuring millions of en-
tries are some examples where a temporal sequence of large-scale networks
can be sampled. 107 nodes size networks are no more an exception. The
spatial evolution of social phenomena is another promising field of re-
search. For instance, investigating how memes diffuse geographically may
support the validation or even the discovery of new important sociological
hypotheses.

The second edition of our Workshop on Dynamic Networks and Knowledge
Discovery has received 15 submissions: 8 were only accepted as long presenta-
tions. These are organized into three main sessions:

Application session: This contains two papers. The first one by Shijaku et.al.
introducing the concept of dynamic embeddedness with an application to
the analysis of global pharmaceutical industry interaction network. The
second paper is proposed by Correa and Alves, in which they provide
a functional and visual analytic system for the exploration of enriched
metabolic pathways on microbial genetic network.

Large-scale network session: Three papers are included in this session. The
first, proposed by Tabourier et. al., tackles the problem of link prediction
applying an original rank merging approach. The second paper, by Grube
et. al., deals with large-scale network sampling. The last paper, proposed
by Geigl and Helic, presents a study on alternative approaches of decen-
tralized search, stemming from the very famous papers by Kleinberg and
Adamic on the same topic.

Dynamic network session: This session include also three papers. The first
one is by Redmond and Cunningham in which they propose a method to
detect over-represented temporal motif in time-evolving network. the basic
idea is to compare the frequency of temporal motif against that of a ran-
dom temporal network. The second paper, by Vukadinovic Greetham and
Ward, presents a study of dyadic and multi-actor conversations in twitter.
Lastly, Ben Abdrabbah et al. present a framework for recommendation
computations based on communities detected on time-stamped data.

We would like to thank authors, Program Committee members and all addi-
tional reviewers without whom the preparation of this program would not have
been possible. Our gratitude also goes to the Computer Science Lab of the
Paris-Nord University, the University of Torino and Istituto Nazionale di Alta
Matematica that co-supported our workshop through supporting our activities.

R. Kanawati
R. G. Pensa
C. Rouveirol
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Abstract. We analyze the global pharmaceutical industry network using a 
unique database that covers strategic transactions (i.e. alliance, financing and 
acquisition collaborations) for the top 90 global pharmaceutical firms and their 
ego-network partnerships totaling 4735 members during 1991-2012. The net-
work evolution is traced via a novel method based on the concept of dynamici-
ty that quantifies individual network members (i.e. actors) contribution to the 
longitudinal period. Specifically, we observe dynamic embeddedness defined 
for key network centrality measures, and capture the impact of the 2007-2008 
global financial crises and the subsequent global and Eurozone recession ef-
fects on the strategic transaction flows between the industry’s key players as 
well as their partners. Results suggest the feasibility of dynamicity as a dynam-
ic network indicator as well as the importance of constellation strategic trans-
actions in the study of large network perturbations.      
 
Keywords: longitudinal social network, strategic transaction, dynamicity, dy-
namic embeddedness 
 

1 Introduction 
 
Organizations are inherently embedded actors of social networks, whose 
structures evolve dynamically, and as a result of each actor’s involvement 
offer important clues on organizational strategic behavior. Inside a dynamic 
network, organizations exist as highly mobile entities with their relationships 
and positional structures continuously changing in time. As such, under-
standing organizational behavior involves first and foremost capturing organ-
izational dynamics often done by analyzing the longitudinal context where 
network dynamics is observed. While most literature on longitudinal net-
works focuses on a more holistic evolution of their structure [2, 4, 11], more 
recent studies have highlighted the contribution of each actor to the overall 
network dynamics [1, 6]. This actor-level approach embodied by the concept 
of dynamicity, relies on the assumption that capturing organization’s dynam-
ic behavior in a given network should be based on a combined analysis of 
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both static and dynamic network topologies [12]. Additionally, dynamicity 
enables researchers to study the effect of specific critical events (i.e. pertur-
bations) that greatly alter the structure of the panel network.  

However, quantifying actor involvement and contribution in longitu-
dinal networks, and modeling its behavior against specific perturbations has 
been limited, with research confined to the effect that organizational crisis 
has had on organizational communication networks [6, 13]. These few avail-
able longitudinal network studies on actor contribution have analyzed net-
work dynamic evolution relying on embeddedness, a well-known concept in 
social network analysis, long considered a highly strategic resource with im-
portant impacts on firm’s performance [5, 8]. On this matter, network litera-
ture has often relied on centrality-based embeddedness to provide a dynam-
ic image of social network evolution [9, 14]. 

Furthermore, the majority of research on embeddedness has ap-
proached the concept from a dyadic (i.e. a group consisting of only two ac-
tors) perspective, bypassing multiple types of firm interaction. Even those 
studies that focus on the so-called constellation (i.e. interactions between 
more than two actors) perspective [3, 7], miss out at the relevance of actors 
engaging in constellation ties of multiple kind, by considering only a single 
type of collaboration. Additionally, embeddedness’ studies have focused 
heavily on strategic alliance collaborations, a choice well-grounded by the 
interorganizational collaborations in any given industry, but that often fails 
to embrace the full picture of strategic interactions’ multitude.  

We fill these shortcomings by focusing on longitudinal networks gen-
erated from strategic transactions, a conceptualization of interorganizational 
collaborations engaged by a firm with its network partners including strate-
gic alliances, acquisitions and financing collaborations, analyzed under both a 
dyadic and constellation lens. By doing so, we contribute not only to the lit-
erature of alliance collaborations but enhance the currently undernourished 
network literature on acquisition and financing collaborations as well which 
play an important role in the dynamics of strategic organizational behavior.  

Our study addresses the above gaps by developing and testing a the-
oretical framework that links the concepts of dynamicity, embeddedness and 
strategic transactions. By doing so, we uncover the dynamic evolution of the 
global pharmaceutical industry chosen for its intensive collaboration envi-
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ronment. Given the novel nature of dynamicity as a concept, we attempt to 
examine some fundamental questions that develop a theory-based under-
standing of dynamicity and its relationship with embeddedness, as well as 
analyze the impact that strategic transactions have on such structure: How 
does dynamicity of centrality measures evolve in a longitudinal network? 
What is the role of strategic transactions in the evolution of such dynamicity? 
How does actor´s dynamicity behave in the presence of exogenous events 
that critically alter the network structure? 

Specifically, we expand the actor-level approach on dynamic networks 
by introducing the concept of dynamic embeddedness, defined as the indi-
vidual actor’s central position variability in a longitudinal network setting 
compared to its central position variability in a aggregated network. For the 
purpose of this paper, our focus is exclusively on the dynamicity of structural 
embeddedness and particularly on the dynamicity of key network centrality 
measures such as degree, betweenness and closeness. Specifically, we build 
on a dynamicity model [12] by exploring the critical impact that large exoge-
nous perturbations, such as the 2007-2008 financial crisis, the subsequent 
2008-2009 global recession and the more local Eurozone recession of 2011-
2013 have on longitudinal networks between top-level actors and their ties 
in the global pharmaceutical industry. 

 
2 Data and measures 
 
We conduct our analysis on a longitudinal dataset (t = 22 years, 1991-2012) 
comprising the strategic transactions of 90 leading firms from the pharma-
ceutical industry in Western Europe, United States, Asia, Africa and Australia. 
The sample is selected by identifying those firms that appear at least once in 
the top 50 of the Pharmaceutical Executive Magazine yearly editions for the 
period 2002-2013. We then use the Pharma and Medtech Business Intelli-
gence database to collect all the strategic transactions that involved the 
firms in question from 1991 to 2012. During this period, the 90 firms of the 
sample engaged in alliance, financing and acquisition collaborations with 
4645 other firms and institutions creating a total of 12055 strategic transac-
tions.  
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Due to our selection process, we consider two types of firms, the core firms 
comprised of the top 90 pharmaceuticals and the periphery firms including 
the rest of the actors, with a total population of 4735 firms whose full list is 
available from the authors. The obtained longitudinal data for both core and 
periphery firms presents missing actors, since some firms are acquired by 
others, or simply are not active for any particular year. Our analysis also in-
cludes financial data obtained from COMPUSTAT and DATASTREAM data-
bases, supplying missing data when possible using company annual reports. 
Since the financial data concerns firms from different countries, we convert 
all currencies to USD with an exchange rate based on the particular year the 
data is retrieved.  

We model each year over the sample period as a separate social 
network and analyze each network based on a similar approach for the glob-
al banking network analysis [10]: (i) the core network, referring to the ties 
between the top 90 actors; and (ii) the full network comprising all available 
data from a total of 4735 actors. In our analysis, we consider a weighted un-
directed tie approach, defined as an N x N “weight” matrix, whose generic 
entry wij = wji > 0 measures the interaction intensity between any two actors 
(zero if no link exists between actor i and j). Following this framework and 
using the software R, we build 22 symmetric 90 x 90 matrices to track the 
evolution of the core network and 22 symmetric 4735 x 4735 matrices to 
track the evolution of the full network for the period 1991-2012. Additional-
ly, for dynamicity calculation purposes, we build two matrices which include 
the aggregated strategic transactions of the entire 22 years period for both 
types of network. 

Network indicators. The network measures of our analysis include 
three centrality variables (degree, betweenness and closeness centrality) and 
the dynamicity variable representing the variability of the structural positions 
of an actor in all short-interval networks compared to its structural position 
in the aggregated network [12] as shown in equation 1: 

 
, 1

m

t t AN t
i t

OV OV
DDA

m

D � u �
 
¦

 (1) 
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where iDDA  is the degree of dynamicity shown by ith actor, ANOV  is the 

observed value (i.e. degree centrality) for the aggregated network, tOV  is 

the observed value (i.e. degree centrality) for tth yearly network for the ith 
actor, m  is the number of yearly networks considered in the analysis, and 

, 1t tD �  is a constant valued according to whether the actor is present or miss-

ing in the current and previous short-interval network. The presence of this 
constant is of crucial important to properly count for actors that disappear 
from the network due to simple inactivity or possible lack of presence due to 
network dynamics. The possible combination values that , 1t tD �  can take are 

given in Table 1. 
 

Table 1. Possible combination of presence and absence of an actor in two consecutive short-
interval networks (Source: Uddin et al. 2013) 

Current SIN 
(Present/Absent) 

Previous SIN 
(Present/Absent) 

 
ɲt,t-1 

Present Present ɲp,p= 1.0 
Present Absent ɲp,a= 0.5 
Absent Present ɲa,p= 0.0 
Absent Absent ɲa,a= 0.0 

 
For the first short-interval network (i.e. ,0iD  for t = 0) of our analysis, the 

value of the constant depends on the presence or absence of each actor (i.e. 
either 0 or 1) at that particular period. The dynamicity model [9] differenti-
ates between two types of dynamicity measures, the dynamicity of an actor 
represented by equation 1 and the average dynamicity shown by an actor of 
the tth short-interval network represented by equation 2: 

 
, 1

tw

t t AN t
t t

t

OV OV
DDN

w

D � u �
 
¦

  (2) 

where tDDN is the average degree of dynamicity shown by an actor of the 
tth short-interval network meaning the contribution of each actor to the 
short-interval network´s dynamicity, and tw  is the total number of actors in 

the tth short-interval (i.e. yearly) network. Therefore, our analytical approach 
is based on three variables: degree dynamicity, betweenness dynamicity and 

5



closeness dynamicity constructed by substituting each obtained centrality 
value to equations 1 and 2. 

Industry indicators. In order to analyze the effect of exogenous criti-
cal events such as financial crises and recessions on the global pharmaceuti-
cal industry, we construct two main effect variables: (i) global crisis repre-
senting the combined effect of the 2007-2008 financial crisis and the global 
recession of 2008-2009 that followed as a direct consequence, and con-
structed as a dummy variable that takes the value of 1 for the years 2007-
2009 and zero for the rest, and (ii) local crisis representing the exogenous 
effect of the Eurozone recession during 2011-2013, and constructed as a 
dummy variable that takes the value of 1 for the years 2011-2012 and zero 
for the rest. 

Control indicators. We use several actor-specific measures such as 
strategic transaction frequency, R&D intensity, profitability, headquarters 
(HQ) location and financial leverage age and size. Strategic transaction fre-
quency represents the relative frequency in percentage with which firms 
engage in strategic transactions. In the analysis, we differentiate between 
the frequency in percentage of firms engaging in alliance, financing and ac-
quisition collaborations. R&D intensity represents the firm’s R&D expendi-
ture scaled by total sales while profitability is measured for each firm by 
computing the ratio of net income to total assets (ROA). We define financial 
leverage as the debt-to-total assets ratio including both short- and long-term 
debt and control for the age of the firms, operationalized as the foundation 
year minus the year considered in the 2002-2012 panel analysis, and size 
operationalized as the natural logarithm of company’s employees. Finally, 
since our data consists of multinational firms and knowing that the majority 
of the top 90 firms are US- or EU-based, we control for headquarters (HQ) 
location based on two separate dummy variables representing whether firms 
are U.S. or EU-based.  

Model approach. By using a two-step approach to our analysis, first 
we assess the stability of dynamicity distributions in selected years to cap-
ture statistical differences throughout our data using Kolmogorov-Smirnov 
(henceforth, KS) tests for both core and full networks, second by controlling 
for firm-specific effects, we investigate the effect that the global crisis (in-
cluding the 2007-2008 financial crisis and the great 2008-2009 recession), 
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and the local crisis referring to the Eurozone recession, observed for 2011-
2012, have on degree, betweenness and closeness dynamicity. For our sec-
ond step, we run a panel regression model based on random effects (hence-
forth, RE) with robust estimations based on the model seen below: 

it k it i it itY X uE D H � � � ,  1,...,90,i   1,...,10,t   

where itY  is firm´s dynamic embeddedness considered as a dependent varia-

ble, itX is a vector of firm and industry-specific independent variables includ-
ing global and local crises, age, size, profitability, financial leverage, R&D in-

tensity, transaction frequency and firm location, iD  is the unknown intercept 

for each firm, itu is the between-firm error, itH is the within-firm error, kE  is 
the coefficient for each k independent variable, i is the number of firms (90 
in total) and t is period of time considered (10 years in total or +/- 5 years 
window before and after the offset of the 2007-2008 financial crisis).  
 
3 Results 
 
We describe the dynamics of the global pharmaceutical industry using four 
key estimates: (i) tracking dynamic embeddedness evolution based on aver-
age dynamicity estimate plots, (ii) monitoring the stability variation of actors’ 
dynamic embeddedness based on KS-tests, (iii) constructing the top five firm 
rankings based on yearly network average dynamicity estimates, and (iv) 
understanding the global and local crises causative effect on dynamic em-
beddedness based on panel regression estimates. Results (i) – (iii) concern 
the total panel period 1991-2012 while results (iv) concern the panel period 
2002-2012.  

We track dynamic embeddedness evolution by plotting the cross-
sectional averages of dynamic indicators during 1991-2012 as seen in Figure 
1. Both panels show that dynamicity values present relative stability before 
2007 for degree centrality but vary substantially for betweenness and close-
ness centrality throughout the study period. Specifically, for the core net-
work, degree and betweenness dynamicity drop respectively 20 percent and 
17 percent while closeness dynamicity is almost halved by 40 percent during 
the global crisis. The more local Eurozone crisis of 2011-2013 (of which we 
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analyze only one year due to sample structure) shows a similar pattern with 
both networks’ dynamicity severely reduced. An exception is closeness cen-
trality, whose dynamicity shows an upward trend for the core network, with 
signs of a more clustering-oriented tendency.  
 

 
 

 
Fig. 1. Core network (left) and full network (right) dynamic embeddedness evolution 

 
We monitor the stability of both core and full networks by comparing the 
dynamicity distribution in the first year of each decade including last availa-
ble year’s data (1991, 2001 and 2012) with subsequent years in the same 
decades, a procedure seen in global banking network analysis [10] and 
whose results are given in Table 2. 

Table 2. Empirical distribution stability for dynamic embeddedness  
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Table 2 shows the proportion of years when the dynamicity distribution is 
statistically different (at 5 percent level of significance) in each decade com-
pared to 1991, 2001 and 2012. Values of zero mean that the distribution of a 
particular year compared to a particular decade are statistically close, as is 
the case for degree and betweenness dynamicity for the years 1991 and 
2001 when compared with the 1991-2001 period. This means that in both 
core and full networks, the firms have kept a similar centrality structure. On 
the other hand, the distribution for the decade 2002-2012 is statistically dif-
ferent for almost all dynamicity variables in both core and full networks, 
meaning that the actors’ dynamicity has been highly unstable for the second 
decade. An exception concerns betweenness dynamicity for the full network, 
whose results show a relatively unaffected actors’ brokerage tendency, with 
only 18 percent of significant distribution change.  

Looking at Table 3, we observe that the top five ranking for both de-
gree and betweenness dynamicity includes the biggest pharmaceutical firms 
(based on their average total sales) which are not underlined, meaning that 
these firms score high in their centrality position during the core network 
evolution. Interestingly, closeness dynamicity shows only two big pharma-
ceuticals in the top five, with a clear tendency of smaller firms reducing their 
mutual proximities. However, big pharmaceutical firms’ hegemony is rein-
stated in the core network with big pharmaceuticals scoring high in all cen-
trality measures. 

Table 3. Firm rankings (1991-2012) for both core and full networks 
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Table 4. Dynamic embeddedness during exogenous perturbations: regression estimates 

 
Looking at the main effects of the regression analysis, we observe the nega-
tive effect of the global crisis on dynamicity indicators except degree dy-
namicity, for which the effect is not significant, meaning that the combined 
effect of the 2007-2008 crisis and the subsequent global recession of 2008-
2009 have not significantly affected the number of strategic transactions 
originating from each of the core network members. Moreover, we find 
strong statistical significance for the negative effect that the local Eurozone 
crisis has had on firms’ dynamic embeddedness. Additionally, the type of 
strategic transaction is found to influence dynamic embeddedness. This ef-
fect is understandable considering the relatively high distribution of alliance 
transactions in the sample (about 75 percent). However, the positive and 
significant effect of acquisition transactions on degree dynamicity is interest-
ing considering that both acquisition and financing transactions show similar 
distributions in the sample (about 12.5 percent each). Finally, the observed 
low R-squared is not necessarily a drawback for the chosen model particular-
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ly if we consider that the results present statistically significant predictors 
and the regressors are used in a panel setting. 
 
4 Discussion and concluding remarks 
 
With respect to the analyses’ objective, the results on firm´s dynamic em-
beddedness suggest that prior to the global crises the global pharmaceutical 
industry has been relatively stable, with firms’ centrality reflecting their mar-
ket position. Specifically, the top pharmaceutical firms that rank high in 
terms of sales have a noticeable central position in both core and full net-
works as observed in the firm rankings. Dynamically speaking, the global 
pharmaceutical industry has reduced its activity to even lower levels than the 
beginning of our sampling data, year 1991. While the reduction varies for 
specific centrality measures, its effect is more prominent after 2007, which 
coincides with the offset of the 2007-2008 financial crises. The regression 
results confirm this by showing significant dynamicity reduction during both 
crises. Furthermore, the regression results indicate that the Eurozone reces-
sion has had a far deeper negative effect on global pharmaceutical industry 
than the global recession. 

This study also highlights the importance of acquisition transactions in 
the expansion of the firms’ importance as central hubs. Specifically, the sig-
nificant effect of acquisitions on degree dynamicity demonstrates the impact 
that different strategic transactions have on centrality indicators and further 
reinforces the reasoning behind our choice to study the centrality measures 
evolution via the dynamicity concept. However, this also raises questions as 
to why comparable effects of strategic transaction types (i.e. acquisitions and 
financings) respond differently to centrality-based dynamicity.  

Our study’s limitations could potentially provide interesting areas of 
future research. First, we should be careful when generalizing our results 
about the global pharmaceutical industry, knowing that not all firms in both 
core and periphery networks are dedicated to pharmaceuticals but come 
from other adjacent industries such as biotechnology and chemicals. Second, 
dynamicity measure calculation is based on a novel design which takes into 
account missing actors during network evolution using a specific constant 
which should be subject to further research for proper values’ assignment. 
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Finally, the dynamicity measure could be used for other centrality measures 
(i.e Eigenvector, Bonacich Power) or be included in the analysis of network 
measures such as actor’s structural similarity, structural holes and brokerage 
elasticity. 
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Abstract. Microorganisms abound everywhere. Though we know they
play key roles in several ecosystems, too little is known about how these
complex communities work. To act as a community they must interact
with each other in order to achieve such community stability in which
proper functions could help to adapt and survive to unbearable condi-
tions. Thus, to e�ectively understand microbial genetic networks it is
necessary to explore them by means of systems biology. An important
challenge in systems biology is to determine the structures and mech-
anisms by which these complex networks control cell processes. In this
paper, we present the FUNN-MG pipeline for functional and visual an-
alytics of microbial genetic networks allowing to uncover strong interac-
tions inside microbial communities.

Keywords: systems biology, gene and pathway enrichment analysis, graph represen-
tation, graph visualization, metagenomics

1 Introduction

Microorganisms abound in every part of the biosphere including soil, hot springs,
on the ocean floor, high in the atmosphere, deep inside rocks within the Earth’s
crust and in human tissues. They are extremely adaptable to conditions where
no one else could be able to survive.

Their adaptability is mainly due to the fact that they live in complex commu-
nities. Interactions inside the microbial networks plays essential functions for the
maintenance and survival of the community. Unfortunately, too little is known
about microbial interactions.

With the recent advent of High-Throughput Sequencing (HTS) technologies,
metagenomic 1 sequencing approaches have been applied to investigate charac-
terizations of diverse microbial communities, including target sequencing of the
phylogenetic marker gene encoding 16S rRNA and whole-metagenome shotgun
1 Metagenomics is a discipline that enables the study of the (meta)genomes of uncul-

tured microorganisms [5].
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sequencing [1]. Additionally, the rapid development of numerous computational
tools and methodologies have been explored for e�ective interpretation and vi-
sualization of taxonomic and metabolic profiling of complex microbial communi-
ties. Putting into perspective applications in several domains such as agriculture
[2], medicine [3] and biomineralization [4].

Despite the large advance in computational technologies for metagenomics
analysis there is still a lack of proper tools to highlight the key interactions
in microbial communities, and consequently the genes associated to essential
metabolic pathways [5]. This task is usually referred as functional analysis of
microbial genetic networks and most of the available pipelines deal with a list
of microbial genes rather than interactions. Thus, the genomics highlight the
“static” view of the genes available in a metagenome, but the interaction as
well as the function that will be performed must be evaluated by an enrichment
analysis over a proper database of metabolic pathways such as KEEG.

Metagenomics data analysis poses challenges that could be handled by the
utilization of Machine Learning (ML) techniques. In fact, ML has been applied
succesfully in several genomics problems. In the context of functional analysis it
can provide new ways to explore graphs by using robust statistics, dealing with
uncertainty in the data and boosting the search for "hot spots" in large microbial
genetic networks.

In this work we propose a computational pipeline to evaluate functional en-
richment of microbial genetic networks. A weighted graph is built with its basis
on the genes and pathways properly induced from the relative abundance of the
metabolic pathways enriched by the associated metagenomic data. In addition,
non-supervised ML is applied to enumerate network components (clusters) of
microbial genes presenting strong evidence of both interaction and functional
enrichment.

The main contribution of the proposed strategy are:

– A functional enrichment analysis which takes into account microbial gene
interactions;

– A new visual analytics system to explore interactively the enriched metabolic
pathways in microbial genetic networks;

– the FUNN-MG R pipeline for the identification of network components (clus-
ters) having strong functional enrichment in microbial communities.

2 Metagenomic pathway-centric network analysis

Metagenomic data analysis is a complex analytical tasks in both biological and
computational senses. In sequence-based metagenomics, researchers focus on
finding the entire genetic sequence, the pattern of the four di�erent nucleotide
bases (A, C, G, and T) in the DNA strands found in a sample. The sequence
can then be analyzed in many di�erent ways. For instance, researchers can use
the sequence to analyze the genome of the community as a whole, which can
o�er insights about population ecology, evolution and functioning. In this work,
we propose the FUNN-MG pipeline (Figure 1) which provides a functional and
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visual analytic system for the identification and exploration of the key functions
of a microbial community.

The pipeline has four main tasks (the rounded rectangles in Figure 1) that
must be executed sequentially: i) identification of the metabolic pathways, ii)
evaluation of the enriched pathways, iii) detection of strong components (clus-
ters) and iv) visualization of the microbial gene-pathway network. The first three
steps are related to the ML part of the strategy while the remaining step deals
with the visual analytics of the graph patterns extracted in the previous steps.
Next section we discuss each one of these steps, leaving one particular section
to the visualization strategy.

Fig. 1. Metagenomic pathway-centric network pipeline for functional and visual ana-
lytics of microbial communities.

3 Materials and Methods

3.1 The metagenomic experimental data

The metagenomic data selected for our experimental study is the Acid Mine
Drainage (AMD) biofilm [6], freely available at the site of NCBI 2. This biofilm
sequencing project was designed to explore the distribution and diversity of
metabolic pathways in acidophilic biofilms. Acidophilic biofilms are self-sustaining
communities that grow in the deep subsurface and receive no significant inputs
of fixed carbon or nitrogen from external sources. While some AMD is caused
by the oxidization of rocks rich in sulfide minerals, this is a very slow process
2 http://www.ncbi.nlm.nih.gov/books/NBK6860/
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and most AMD is due directly to microbial activity. The AMD metagenome was
assembled into 2425 contigs distributed along five main species (see Table 1).

More information regarding the AMD study as well as environmental se-
quences, metadata and analysis can be obtained at [7].

Species name Number of contigs

Ferroplasma acidarmanus Type I 412
Ferroplasma sp. Type II 118
Leptospirillum sp. Group II 5-way CG 79
Leptospirillum sp. Group III 959
Thermoplasmatales archaeon Gpl 857

Table 1. The distribution of assembled contigs per species in the AMD metagenome.

3.2 Preprocessing of the metagenomic sequences

We have used the KAAS tool [8] for the identification of 477 microbial genes.
This identification was based on the nucleotide percent homology of the groups
of orthologous genes 3 found in the KEGG database [9].

The search for microbial genes was carried out in several steps. First, the
metagenomic data was split into several groups accordingly to (Table 1), followed
by a validation stage of each group within the corresponding species in the KEGG
database [7]. KAAS tool was employed sequentially in four steps (Table 2) to
obtain the final set of 477 genes:

– Step 1, finding groups of orthologous genes: for each specie in the
AMD sample we search all its orthologous genes in the KEGG database. For
example, the AMD species Ferroplasma acidarmanus Type I and Type II are
named in KEGG as Ferroplasma acidarmanus. So, we use the 530 contigs
of the associated AMD species as a reference into the KASS tool, retrieving
290 orthologous genes;

– Step 2, identifying associated species in KEGG: it basically filters out
orthologous genes that are not associated to the reference species. Taking
the previous example in Step 1 only 226 genes were kept for the Ferroplasma
acidarmanus species;

– Step 3, getting functional annotation in KEGG: it retrieves the genes
associated to pathways in KEGG by using the gene list obtained in Step
2. For instance, 149 genes were retrieved for the Ferroplasma acidarmanus
specie;

– Step 4, eliminating duplicated genes: since pathways are usually associ-
ated to one or more genes we deduplicate these genes found in Step 3. So,
for the Ferroplasma acidarmanus specie we obtained 119 genes.

3 Orthologous genes are genes in di�erent species that originated by vertical descent
from a single gene of the last common ancestor (Homology section on Wikepedia)
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All the steps above were executed for all reference species in the AMD sam-
ple, taking into account its associated target species in the KEGG database. In
(Figure 2) we present this association as well as the distribution of the genes
found in the related metagenome.

Id Species identified Step 1 Step 2 Step 3 Step 4

fac Ferroplasma acidarmanus 290 226 149 119
lfc Leptospirillum ferrooxidans 450 351 327 217
lfi Leptospirillum ferriphilum 44 33 25 23
tac Thermoplasma acidophilum 26 26 8 8
tar Thermoplasmatales archaeon 412 192 125 107
tvo Thermoplasma volcanium 11 11 3 3

Genes 1233 839 547 477

Table 2. The total number of genes found on each preprocessing step.

Fig. 2. The dendrogram on the top highlights the association between species in the
AMD metagenome and its target species in the KEGG database. In the bottom, a pie
chart of the distribution of the 477 genes identified.

3.3 Identifying metabolic pathways

The “KEGGREST” R package [10] was applied using as reference the list of 477
genes identified, highlighting 95 pathways for the AMD metagenome. Though
at this step we cannot assume any strong evidence of functional enrichment
regarding to the genes identified.
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3.4 Functional enrichment analysis

We devised a functional enrichment strategy based on [11], in which contigency
tables are properly set to further apply Fisher’s exact test for statistical sig-
nificance of the enriched metabolic pathways. Fisher’s exact test4 is one of a
class of exact tests, so called because the significance of the deviation from a
null hypothesis (e.g.: P-value) can be calculated exactly, rather than relying on
an approximation that becomes exact in the limit as the sample size grows to
infinity, as with many statistical tests.

The main challenge in evaluating the enrichment of a metabolic pathways
is the calculation of the probability of finding species covered on each pathway
across samples, given that, eventually, only a selected group of species will have
an associated pathway. This is also due to the fact that species play distinct roles
in the microbial community. As an example, the metabolic pathway Glutathione
metabolism is annotated for five out of six species identified in the samples (Ta-
ble 2): Ferroplasma acidarmanus, Leptospirillum ferrooxidans, Leptospirillum
ferriphilum, Thermoplasma acidophilum e Thermoplasma volcanium. So, KEG-
GREST will only take into account these five species for the enrichment score
(Fisher’s exact test).

Gene associated
with a pathway

Gene not associated
with a pathway

Total
gene

Sample a
(6)

b
(364)

a+b
(370)

Population c
(15)

d
(2768)

c+d
(2783)

Total in KEGG a+c
(21)

b+d
(3132)

n
(3153)

Table 3. The contigency table of the Glutathione metabolism pathway which is required
for the calculation of the enrichment score.

In Table 3 we present the contigency table required to calculate the enrich-
ment of the Glutathione metabolism pathway with respect to the microbial genes
found in the samples and its corresponding annotations in KEGG. Having this
table, we use the phyper function in the “stats” R package for the enrichment
score, followed by a test of significance using the “Firsher’s exact test for count
data” R package. Finally, we obtained an enrichment score of 0.0077 (p-value =
0.0292) for the the Glutathionemetabolism pathway.

After completing the functional analysis for the 95 metabolic pathways, we
obtained a list with only 11 enriched pathways (see Table 4) (p-value Æ 0.05)
corresponding to 329 genes. Furthermore, we explore functional modules pre-
senting strong gene interactions by the utilization of a bipartite graph struc-
ture MGP = (G,P,E). We called this bipartite graph Microbial Gene Pathway
(Figure 3. a). MGP vertices are divided into two disjoint sets (G)enes and
4 http://en.wikipedia.org/wiki/Fishers_exact_test
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function Enrichment p.value
Purine metabolism 0.033 0.04
Geraniol degradation 6.95e-05 0.01
Cyanoamino acid metabolism 0.008 0.05
Glutathione metabolism 0.007 0.02
Porphyrin and chlorophyll metabolism 0.023 0.03
Metabolic pathways 0.0002 0.0003
Microbial metabolism in diverse environments 0.042 0.05
Carbon metabolism 0.039 0.05
Biosynthesis of amino acids 0.017 0.02
RNA degradation 0.01 0.03
Nucleotide excision repair 0.01 0.03

Table 4. The eleven most significant enriched pathways.

Fig. 3. a) The MGP bipartite graph with (G)enes and (P )athways . b) the associated
community matrix with the gene-to-gene interaction augmented with the enrichment
score.

(P )athways, such that every edge (E) connects a vertex in (G) to one in (P ).
The enrichment score is annotated in the vertice (P ).

3.5 Finding gene clusters

Several groups of genes interact in microbial communities, and some of these
interaction are stronger than others. In addition, these interactions usually cor-
relate to the environment in which they are living. We called these strong gene
interactions community patterns, and potentially they may play a key role in
the stability of the microbial genetic network. We have a hypotheses that any
perturbation in such patterns could impact directly in the maintenance of the
network. We propose a structural graph clustering strategy which takes into ac-
count a bipartite graph (MGP ).

The structural graph clustering uses a community matrix (Figure 3.b) based
on the genes and its enriched pathways represented in MGP . The community
matrix observes three main aspects regarding gene-to-gene interactions:

– The existence of one or more metabolic pathways shared by the genes;
– The amount of metabolic pathways in which genes play;
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– The enrichment score associated to each metabolic pathway.

TheMGP bi-partite graph is an interesting computational structure for both
the application of ML techniques and interactive visualization of the microbial
genetic network [12]. The community patterns are obtained directly through the
utilization of a hierarchical clustering (hclust() R function) technique over the
community matrix. The hierarchical clustering solution (Figure 4) requires an

Fig. 4. The hierarchical clustering solution of the community matrix. Two clustering
solutions are calculated i) Dynamic Hybrid and ii) Dynamic Tree. Each solution takes
into account a distinct cut scheme to form clusters (colored).

euclidean distance matrix that can be built directly through the community ma-
trix. From a biological perspective, the identification of these strong interactions
allows for a better understanding of the mechanisms by which these complex
networks control cell processes, making it possible to interfere in such processes
[13].

The branches of the hierarchical clustering dendrogram correspond to com-
munity patterns and can be identified using one of a number of available branch
cutting methods, for example the constant-height cut or two Dynamic Branch
Cut methods. One drawback of hierarchical clustering is that it can be di�cult
to determine how many (if any) clusters are present in the data set. We employed
the Dynamic Tree Cut R package to obtain robust clusters [14]. Although the
height and shape parameters of the Dynamic Tree Cut method provides im-
proved exibility for branch cutting and module detection, it remains an open
research question how to choose optimal cutting parameters or how to estimate
the number of clusters in the data set. Two cutting strategies were explored with
the Dynamic Tree Cut:

– Dynamic tree: the algorithm implements an adaptive, iterative process of
cluster decomposition and combination and stops when the number of clus-
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ters becomes stable. To avoid over-splitting, very small clusters are joined
to their neighboring major clusters;

– Dynamic hybrid: the algorithm can be considered a hybrid of hierarchical
clustering and modified Partitioning Around Medoids (PAM), since it in-
volves assigning objects to their closest medoids.

Given that we were looking for compact clusters we decided to use the cutting
result obtained with the Dynamic hybrid approach. Thus, 9 clusters and 10
nested subclusters were enumerated. All clusters have the prefix “NT" followed
by a sequential number (Table 5). The nested subclusters were calculated with
the guide of the RedeR R package, and it o�ered an interesting alternative for
the interactive visualization of the microbial genetic networks.

In summary, 308 genes were clustered, corresponding to 96.61% of the en-
riched pathways related to AMD biofilm. These clusters enclose on average 30
genes, having 6 genes in the most compact cluster and 128 in the largest one.
Next, we explore the visual analytic systems over the MGP bipartite graph al-
lowing free manipulation of the community patterns as well as the exploration
of key hub genes and pathways inside this microbial network.

4 Results and discussion

4.1 Visual analytics system

Given the linked information associated with the concept of microbial commu-
nities, it is strongly advised to explore it by graph visualization [15]. The MGP
bipartite graph fits properly the graph structure required for visualization by
the RedeR R package. This network visualization system allows several interac-
tive and graph functions such as: zoom, pan, neighborhood highlighting, search,
flows, labeling, addition and deletion of graph components.

The structural visualization of the enriched Microbial Gene Pathway is pre-
sented in Figure 5. The visualization model allows the identification of genes
across species and pathways, depicted in distinct colors. It is also possible to ex-
plore the degree of connectivity by inspecting the size of the vertices; key players
are identified by neighborhood highlighting while clicking on a particular node
in the graph network. Such interactive experience allows one to explore resilient
aspects of the enriched microbial gene pathway.

The community patterns are explored through the visualization of the graph
components associated with the clusters and subclusters (Figure 6). Further-
more, it is also possible to inspect particular spots as well as identify either hub
genes, modules or pathways within the network. As an example, the modules
are explored as (nested) clusters detected by the proposed pipeline. The Sub-
group row in Table 5 identifies these nested clusters. Thus, if one looks to the
Group “NT2” we observe a total of 22 genes distributed along the six species
(The headers previously described above). NT1 is an example of nested cluster
having 1 gene plus 22 genes from NT2, summing up to a total of 23 genes. The
symbol “–” shows the there is no nested cluster for that Group.
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Fig. 5. The enriched Microbial Gene Pathway Network. At the bottom left the legend
of the species and associated pathways are represented. Nodes (circles) are related to
either species genes or pathways. At the upper left the degree connectivity scale of
all nodes. The nodes in highlighting (yellow) are all genes associated to the Carbon
metabolism pathway (direct orange arrow).

Fig. 6. The representation of the community patterns as clusters (NT1, NT3) and sub-
clusters (NT2, NT4). At the right the expanded subnetwork corresponding to elements
clustered in NT4.
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Group name NT1 NT2 NT3 NT4 NT5 NT6 NT7 NT8 NT9 NT10

Subgroup NT2 — NT4 — NT17; NT8 NT7 — — NT10 —
fac 1 6 0 9 0 0 5 29 0 3
lfc 0 7 0 14 0 1 3 56 1 5
lfi 0 1 0 2 0 0 0 5 0 0
tac 0 0 0 1 0 0 0 4 0 0
tar 0 8 1 3 0 0 0 24 0 0
tvo 0 0 0 0 0 0 0 0 0 1
Total of genes 23 22 30 29 128 9 8 118 10 9

Group name NT11 NT12 NT13 NT14 NT15 NT16 NT17 NT18 NT19 Total

Subgroup NT12 — NT14 — NT16 — — NT19 — 10
fac 0 9 0 7 0 2 1 0 8 80
lfc 0 13 0 12 0 4 5 0 15 136
lfi 0 2 0 2 0 0 2 0 2 16
tac 0 0 0 0 0 0 0 0 0 5
tar 1 10 1 7 1 0 5 1 8 70
tvo 0 0 0 0 0 0 0 0 0 1
Total of genes 35 34 29 28 7 6 10 34 33 —

Table 5. Number of species genes associated to each cluster (Group) and subcluster
(Subgroup) calculated by the Dynamic Hybrid cutting strategy.

As an illustration of the visualization, the nested cluster “NT3” having 30
genes is depicted in the middle of Figure 6. As it can be observed the nested
cluster “NT3” has 1 gene plus the 29 genes (from “NT4”). The most abundant
specie is the “lfc” (colored in brown). Finally, it is presented the eleven enriched
pathways (colored in green) connecting all the enumerated nested clusters.

5 Conclusions
The enrichment analysis of microbial genetic networks poses an interesting com-
putational challenge. It is not practical to enumerate all gene-to-gene interaction
of a microbial community, so the pathway-centric analysis sound a promising
strategy to smooth this combinatorial problem. This strategy has it basis on
non-supervised machine learning over a bipartite graph properly built to evalu-
ate the enriched microbial gene pathways.

Interactive visualization of the resulting microbial gene pathway networks
allows for the exploration of network metrics enhancing the enrichment anal-
ysis. Once all the topological network aspects are understood for a particular
metagenome, we envisage the possibility of using such profiles for metagenome
comparison as well as classification of unknown microbial genetic network.
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Abstract In this work, we consider the issue of unveiling unknown links
in a social network, one of the difficulties of this problem being the small
number of unobserved links in comparison of the total number of pairs of
nodes. We define a simple supervised learning-to-rank framework, called
RankMerging, which aims at combining information provided by various
unsupervised rankings. As an illustration, we apply the method to the
case of a cell phone service provider, which uses the network among its
contractors as a learning set to discover links existing among users of
its competitors. We show that our method substantially improves the
performance of unsupervised metrics of classification. Finally, we discuss
how it can be used with additional sources of data, including temporal
or semantic information.

1 Introduction

Link prediction is a key field of research for the mining and analysis of large-scale
social networks. The reasons lie in its many practical applications: going from
recommendation strategies for commercial websites [20] to recovering missing
links in incomplete data [31]. Link prediction also has significant implications
from a fundamental point of view, as it allows for the identification of the el-
ementary mechanisms behind the creation and decay of links in time-evolving
networks [17]. For example, triadic closure, at the core of standard methods of
link prediction, is considered as one of the driving forces for the creation of links
in social networks [16].

In their seminal formulation, Liben-Nowell and Kleinberg [18] present link
prediction as follows: considering a snapshot of a network at time t, the problem
is to predict which links will be present at a future time t0 > t. A standard
way to solve this binary classification problem consists in ranking pairs of nodes
according to a scalar metric, correlated with the existence of interactions between
nodes. Most of these metrics are based on the structural properties of the network
of known interactions, either on local, e.g. the number of common neighbors, or
on global features, e.g. random walk or hitting time — see [22] for a survey. Other
sources of information can be considered, in particular node attributes, such as
age or gender [23,2] or geographic location [28]. In certain cases, for example
online networks, the users profiles may include rich semantic information as [4].
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Interaction attributes, such as frequencies [29], or the time elapsed since the last
interaction [27], may also be used as an additional source of information.

However, these ranking features are known to be domain-specific (e.g., [8]).
Moreover, as links can play different roles in social networks, they are expected
to be surrounded by different types of environments and thus to be best iden-
tified by different topological features. For these reasons, schemes based on a
single metric are prone to misclassification. A way to circumvent this problem is
to combine different metrics for link prediction. Most of the available solutions
are unsupervised, such as Borda’s method or Markov chain ordering [11]. On
the other hand, supervised methods have proven efficient on specific link pre-
diction problems. For instance, the authors of [19] considered degree categories
to predict future links in a phonecall network; in both [14] and [8], supervised
frameworks are defined to predict links in multimodal networks. Recent works
have combined classic tools, such as classification trees, support vector machine,
or neural networks, which have been shown to outperform their unsupervised
counterparts for predicting links in biological networks and scientific collabo-
ration networks [3,26,8]. However, these methods do not allow the user to set
the number of predictions according to his needs, whereas ranking methods are
suited to this purpose. Supervised methods built to improve ranking systems
have mostly been designed in the context of information retrieval tasks, such as
document filtering, spam webpage detection, recommendation or text summa-
rization [21,30]. As such, they primarily aim at high precision on the top-ranked
items, and stress the relative ranking of two items [12,5,6].

Here, we propose a simple yet efficient learning-to-rank supervised framework
specifically designed to uncover links in social networks, by combining rankings
obtained from different sources of information. Throughout this article, our Ari-
adne’s thread is the examle of a mobile phone service provider (PSP). Because
PSPs only have access to records involving their own clients, they have an in-
complete view on the social network as a whole. In several practical applications,
however, this missing information is crucial. An important example is churn pre-
diction, that is the detection of clients at risk of leaving to another PSP. This risk
is known to depend on the local structure of the social network [7,25]. Therefore,
the knowledge of connections between subscribers of other providers is crucial
for the design of efficient customer retention campaigns. As we discuss further
below, a direct application of our method is the prediction of links on the other
side of the frontier accessible to a PSP.

This article is organized as follows. In Section 2, we describe the mobile phone
dataset and how it is processed in order to model the situation of a PSP con-
fronted to churn. In Section 3, we briefly present how classic unsupervised learn-
ing methods can be applied to the problem under consideration. In Section 4,
we develop a supervised machine learning framework, called RankMerging, which
improves the quality of predictions by aggregating the information from various
metrics. We also compare our results to those of standard supervised methods,
and show that RankMerging is particularly suited to social networks where in-
formation is partial and noisy.
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2 Dataset

The dataset is a call detail record of approximately 14 · 106 phonecalls of anony-
mized subscribers of a European PSP during a one month period. Users are
described as nodes and an interaction between two users is a directed link. The
total number of phone calls between nodes i and j is denoted by the weight
w(i, j) of this link. In order to filter out calls which are not indicative of a
lasting social relationship, we only consider calls on bidirectional links, i.e. links
that have been activated in both directions. After this filtering has been applied,
interactions between users are considered as undirected. The resulting social
network is composed of 1,131,049 nodes, 795,865 links and 10,934,277 calls. From
now on, we denote W the activity of a node, that is the sum of the weights of
its adjacent links.

A PSP is usually confronted to the following situation: it has full access to
the details of phone calls between its subscribers, as well as between one of
its subscriber and a subscriber of another PSP. However, connections between
subscribers of other PSPs are hidden. In order to simulate this situation from
our dataset, we divide our data into two artificial PSPs, A and B. The link to
predict are selected in a random way: we split the users of the network into 3
sets (i) A1 and A2 nodes are nodes of the first PSP – links among A2 nodes
are links to discover during the learning task, (ii) B nodes belong to the second
PSP. Users have been randomly assigned to A1, A2 and B according to the
proportions 50, 25, 25%. During the learning process, links inside A2 [ B are
removed. The resulting network (GLearn) contains 848,911 nodes and 597,538
links and we aim at predicting the links among A2 nodes (49,731 links). During
the test phase, the network GTest contains 1,131,049 nodes and 746,202 links. All
the links are thus considered, except for the 49,663 links inside B which we aim
at predicting. Notice that according to our simulation, the learning set and the
test set are derived from the same distributions, while it could not be the case in
situations involving several PSPs. However, this assumption is fair to compare
the performances of our method to other prediction techniques.

3 Unsupervised learning

3.1 Prediction evaluation

The quality of a ranking metric is assessed by measuring precision (Pr), recall
(Rc) and F-score. Previous works have emphasized the dramatic effect of class
imbalance (or skewness) on link prediction problems in social networks, especially
in mobile phone networks [19,6]. The fact that the network is sparse and that
there are many more pairs of nodes than links makes the prediction and its
evaluation tricky, the typical order of magnitude of the classes ratio for a social
network made of N nodes being O(1/N) [19]. In the case of unbalanced classes,
performance predictors such as the ROC curve are known to be inappropriate –
see [10]. In general, the definition of a good prediction and thus of an adequate
quality estimator depends on the purpose of the link prediction. For example,
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the goal of an efficient search engine is to provide highly relevant information
on a small amount of items. In contrast, a PSP confronted to churn looks for an
appropriate trade-off between precision and recall, in order to detect potential
churners, without flooding clients with discount offers. For this reason, we aim
at improving both precision and recall over a large range so that a PSP would
be able to tune the prediction parameters according to its commercial strategy.

3.2 Ranking metrics and results

In this work, we focus on structural features where each pair of nodes is assigned
a score based on topological information, and then ranked according to this score.
A large number of metrics have been used in the past, see for example [18,22].
The goal of this paper is not to propose elaborate classifiers, but to present a
method that takes advantage of how complementary they are. We have therefore
chosen classic metrics and generalized them to the case of weighted networks
(other generalizations exist in the literature, e.g. [24]), denoted by index w.
Their unweighted version is recovered by setting all weights to 1.

Local features. A class of metrics are local (also called neighborhood rankers)
as they only rank links among nodes which are at most at distance 2. In the
following, N (i) denotes the set of neighbors of node i.

– Common Neighbors index (CN), based on the weighted number of common
neighbors shared by nodes i and j:

sCNw (i, j) =
X

k2N (i)\N (j)

w(i, k).w(j, k)

– Jaccard index (Jacc):

sJaccw (i, j) =

P
k2N (i)\N (j)

w(i, k) + w(j, k)

W (i) + W (j)

– Adamic-Adar index (AA):

sAAw (i, j) =
X

k2N (i)\N (j)

1

log(W (k))

Global features. Another class of features are global (or path rankers), since they
are calculated by using the whole structure of the network, and allow for the
ranking of distant pairs of nodes:

– Katz index (Katz) [15], computed from the number of paths from node i to
node j of length l, i.e. ⌫ij(l) according to the following expression (� is a
bounded parameter):

sKatz(i, j) =

1X

l=1

�l⌫ij(l)

Note that in the weighted case, the number of paths is computed as if links
were multilinks.
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– Random Walk with Restart index (RWR), sRWRw(i, j) is defined as the prob-
ability that a random walker starting on node i, going from a node k to a
node k0 with probability p.w(k, k0)/W (k) and returning on i with probability
1 � p, is on j in the steady state of the process.

– Preferential Attachment index (PA), based on the observation that active
nodes tend to connect preferentially in social networks [13]:

sPAw (i, j) = W (i).W (j)

Both Katz and RWR are computed using infinite sums, which will be ap-
proximated by keeping only the dominating four first terms to reduce the com-
putational cost, meaning that we can only predict links between pairs of nodes
at a maximum distance of 4. Moreover, in order to address the problem of class
imbalance, known to hinder the performance of PA (e.g. [19]), we have restricted
the ranking in this case to pairs of nodes at a maximum distance of 3. Notice
that with larger maximum distances, we can increase the maximum recall that
can be reached, but at the cost of a very low precision for these predictions.

3.3 Borda’s method

The main purpose of this work is to develop a framework to exploit a set of ↵
rankings for link prediction. As we will show in the next section, this problem
can be solved in a supervised setting by identifying regions of a ↵-dimensional
space associated to a high performance. Here, we present an unsupervised way
to merge ranking features based on social choice theory [11,26]. Borda’s method
is a rank-then-combine method originally proposed to obtain a consensus from
a voting system [9]. Each pair is given a score corresponding to the sum of the
number of pairs ranked below, that is to say:

sB(i, j) =

↵X

=1

|r|� r(i, j)

where |r| denotes the number of elements ranked in r. This scoring system
may be biased toward global predictors by the fact that local rankings have less
elements. To alleviate this problem, unranked pairs in ranking r but ranked in
r0 will be considered as ranked in r on an equal footing as any other unranked
pair and below all ranked pairs. Borda’s method is computationally very cheap,
which is a highly desirable property in our case. A comprehensive discussion on
this method can be found in [11].

3.4 Results

We plot the results obtained on GLearn to predict A2 � A2 links for the above
classifiers. For the sake of readability, we only represent a selection of them on
Figure 1. The evolution of the F-score significantly varies from one classifier to
another. For example, it increases sharply for CN, and then more slowly until
reaching its maximum, while RWRw rises smoothly before slowly declining. As
expected, Borda’s aggregation improves the performance of the classification,
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especially considering the precision on the top-ranked pairs. Given the difficulty
of the task, Pr is low on average: for instance, when Rc is greater than 0.06, Pr
is lower than 0.3 for all estimators.
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Figure 1. Results on the learning set for various structural classifiers. Left: F-score as
a function of the number of predictions. Right: Pr versus Rc curves.

4 RankMerging framework

The ranking methods presented in the former section use structural information
in complementary ways. In systems such as social networks, where communica-
tion patterns of different groups, e.g. family, friends, coworkers etc, are different,
one expects that a link detected as likely by using a specific ranking method may
not be discovered using another one. This intuition is supported by measuring the
correlation between rankings. For example, the rankings produced with sCN and
sJacc,w scores have a 0.052 Spearman correlation coefficient on the test set, which
means that some pairs are highly ranked according to one method, but not to the
other one. In this section, we design a supervised machine learning framework
to aggregate information from various ranking techniques for link prediction in
social networks. In a nutshell, it does not demand for a pair to be highly ranked
according to all criteria (like with a consensus rule), but at least one. The whole
procedure is referred to as RankMerging. An implementation and user guide of
the algorithm are available on http://lioneltabourier.fr/program.html.

4.1 Principle

We first consider the training set to learn the parameters. Let’s suppose that
we have ↵ different rankings r1, ..., r↵ from the unsupervised learning phase.
Each ranked pair is either a true or false positive prediction (tp or fp). We are
looking for the combination of rankings that brings the maximum number of
tp predictions. Let ⌃i(⇢i) be the number of tp for pairs ranked from position 1
to ⇢i, ⇢i will be named sliding index of ri. Now if we consider simultaneously
the ↵ rankings, our goal is to compute the optimal values of the ⇢i for a fixed
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number of predictions n so that the total number of tp, denoted S(⇢1, ..., ⇢↵), is
maximum. It is important to note that a link can only be predicted once: if a pair
has been predicted using ranking ri and then included in the solution associated
to S, it cannot be predicted by rj . It means that we have to consider the links
already predicted to guess the future ones, which makes this problem hard to
solve exactly. For this reason, the problem is solved heuristically, by using the
training algorithm described in Algorithm 1.

The central idea is to find at each step the ranking with the highest number
of true predictions in the next g coming steps. For that purpose, we define the
window Wi as the set of links predicted according to ranking ri in the next g
steps. Note that links already predicted are not considered in Wi. The number
of tp in Wi is its quality, denoted �(i). The ranking corresponding to the highest
quality value is selected (in the case of a tie, we choose randomly), and we add its
next top-ranked pair to the output ranking of the learning phase rL

M . Throughout
the process, the sliding indices ⇢i are registered, these values are the essential
outputs of the training phase, as they record which ranking contributed to the
merged ranking. Then, the indices �i which indicate the end of the windows are
updated so that Wi contain exactly g pairs, �(i) are updated too, and the process
is iterated until rL

M contains a predefined number of pairs T . To summarize,
we are looking for a maximum number of true predictions S by local search.
An important benefit of our learning algorithm is that it needs to go through
each ranking only once, so if we have ↵ rankings, it implies a O(↵N) temporal
complexity. A brute force algorithm demands to consider all possible rankings
combinations, meaning that ↵ different possibilities for each prediction must be
considered, that is O(↵N ) complexity.

Table 1 gives an example of the two first steps of the merging process between
two rankings rA and rB with g = 5. Pairs in the windows are represented with a
gray background. Initially, there are 4 tp in WA and 3 tp in WB , it means that
�A > �B , so the first link selected is the top-ranked pair available in WA: (1, 2)
(green background). This pair is therefore excluded from the ranking rB (barred
item on red background). At the next step, we have �A = �B = 4, the ranking
with highest quality is then selected randomly, we suppose here that rB has been
selected so that the next link included in rL

M is (5, 18). At this step, according
to the previously defined notations, ⇢1 = 1 and ⌃1(⇢1) = 0, while ⇢2 = 1 and
⌃2(⇢2) = 1.

The test phase of the procedure consists in combining rankings on the test
network GTest according to the ⇢i learned on the training network GLearn. This
process does not demand to define sliding windows. The practical implemen-
tation is simple: at each step, we look up for the ranking chosen according to
the learning process and select the corresponding ranking ri on the test set. Its
highest ranked pair is then added to the merged ranking of the test phase rT

M

if it has not been included previously; if it is already in rT
M , then we go to the

next highest ranked pair of ri until we have found one which is not in rT
M . The

number of pairs that can be predicted is different in GLearn and GTest (resp. nL

and nT ). The implementation should then take into account a scaling factor:
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Algorithm 1: RankMerging method: training algorithm.
inputs : table of rankings R (ri = R[i]); real edge list E;

maximum number of predictions T ; g;
outputs: sliding index table ⇢; merged ranking rL

M ;
// initialization:
begin

W[i] g first links in R[i]; // pairs in window i
�[i] |W[i] \ E|; // quality of window i
⇢[i] 0; // sliding index of ri = start index of window i
�[i] g; // end index of window i
n 0; // counter of the number of predictions

while n  T do
imax  index corresponding to maximum �[i];
rL

M [n] R[imax][⇢[imax]];
n  n+1;
⇢[imax] ⇢[imax] + 1;
8i Update(W[i],�[i], ⇢[i],�[i], rL

M [n]);

Procedure: Update(W[i],�[i], ⇢[i],�[i], rL
M [n]):

begin
if rL

M [n] 2W[i] then
W[i] W[i] \ rL

M [n]

while |W[i]|  g do
l R[i][�[i]];
�[i] �[i] + 1;
if l /2 rL

M then
W[i] W[i] + l;

�[i] |W[i] \ E|;

rA tp rB tp

(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)

�!

rA tp rB tp

(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)

�!

rA tp rB tp

(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)

Table 1: Two steps illustrating the merging algorithm with rankings rA and
rB (g = 5). Pairs predicted (i.e. 2 rL

M ) have green backgrounds. Pairs with gray
backgrounds are in the windows WA and WB . Barred pairs with red backgrounds
have already been predicted and cannot be selected anymore.

if ranking ri has been selected at step s on the learning set, then ri should be
selected at step

h
s · nT

nL

i
on the test set.
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4.2 Benchmarks for comparison

In order to assess the efficiency of RankMerging, we compare its performances
to existing techniques. The first one is Borda’s method, introduced above. We
also consider classic supervised techniques. As we aim at handling large net-
work datasets, we restricted ourselves to computationally efficient ones, namely
nearest neighbors (NN ), classification trees (CT ) and AdaBoost (AB). We have
used implementations from Python scikit learn toolkit1. These techniques are
not specifically designed for ranking tasks, so we obtain different points in the
precision-recall space by playing with the algorithms parameters, respectively the
number of neighbors (NN ), the minimum size of a leaf (CT ), and the number
of trees (AB).

4.3 Protocol and results

Protocol. According to the description in 4.1, ⇢i are computed on GLearn to
discover links among A2 nodes, and then used to merge rankings on GTest to
discover links between B nodes, applying the scaling factor nT /nL ⇡ 1.5 to
adapt the ⇢i learnt to the test set and cross-validation is therefore made through
a simple hold-out strategy. Determining adequate parameters is not an issue
here. The user may indeed aggregate as many rankings as he wants: the merging
process is such that the addition of a supplementary ranking is computationally
cheap2, and if a ranking does not bring additional information, it will simply be
ignored during the learning process. This property helps RankMerging to avoid
strong overfitting effects. As of the value of g, our numerical experiments show
that the performance of the algorithm is robust over a large range of values (see
Table 2), and we extrapolate the best g value on GLearn for the aggregation on
GTest.

Results. We plot on Figure 2 the evolution of the F-score and the precision-recall
curve obtained with RankMerging, for g = 200, aggregating the rankings of the
following classifiers: AAw, CN w, CN , Jaccw, Katzw (� = 0.01), PAw, RWRw

(p = 0.8) and Borda’s method applied to the seven former ones. We observe
that RankMerging performs better than Borda, especially for intermediary re-
call values. This was expected, as RankMerging incorporates the information of
Borda’s aggregation here. In fact, the method has been designed so that any
unsupervised ranking can be aggregated without any performance loss, so that
it should outperforms any unsupervised method taken into account during the
learning phase. We measure the area under the Pr-Rc curves to quantify the
performances with a scalar quantity. RankMerging increases the area by 8.3%
compared to Borda. Concerning the supervised benchmarks, we observe that
they perform well, but only for a low number of predictions (comparable to
Borda for approximately 1000 to 2000 predictions). Unsurprisingly, AdaBoost is

1 http://scikit-learn.org/
2 Here, the running time is a few seconds on a standard personal computer.
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an ensemble method and outperforms Decision Trees and Nearest Neighbors for
an optimal parameter choice, but the performances are of the same order of mag-
nitude, in line with the observations in [1]. As formerly stated, these methods
are not designed to cover a wide range of the precision-recall space, and there-
fore perform very poorly out of their optimal region of use. On the minus side,
RankMerging has been designed for classification problems with large number
of predictions. The window size g implies an averaging effect which causes the
method to lack efficiency on the top-ranked items, as can be seen on Fig. 2. As
a consequence, it is not suited to problems with low number of predictions, as it
is often the case for information retrieval tasks for example.
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Figure 2. Results of RankMerging on the test set (g = 200), compared to benchmarks.
Left: F-score as a function of the number of predictions. Right: Pr versus Rc curves.

We evaluate the influence of the structural metrics in Table 2. As can be seen,
the addition of a ranking does not decrease the quality of the merging process
– except for small variations which are considered as statistical fluctuations. A
user may therefore aggregate any ranking whatever the source of information is.
The dependency on the value of g is also shown in Table 2, and results indicate
that the performances are close to the maximum within the interval [100; 300]
on both the learning and test sets. This observation suggests the possibility of
tuning g in the testing phase from the values of g during the learning process.

AAw CNw CN Jaccw Katzw PAw RWRw Borda imp.(%)

x x x x x x x x 8.3
x x x x x x x 3.2
x x x x x x -0.7
x x x x x -1.0
x x x x -2.0

x x x x x x x 8.2
x x x x x x 8.1

x x x x x 3.7
x x x x 3.8

g imp.(%)
10 -0.8
100 5.5
200 5.4
300 5.2
400 5.0
500 4.7
1000 4.0
2000 2.7

g imp.(%)
10 2.7
100 8.2
200 8.3
300 7.9
400 7.4
500 7.2
1000 6.4
2000 5.6

Table 2: Left: Improvement (in %) to Borda’s method of the area under the curve
in the precision-recall space, for the aggregation of different rankings. Right:
Improvement to Borda’s method of the area under the curve in the precision-
recall space, for different values of g; left: learning set, right: test set.
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5 Conclusion

We presented RankMerging, a supervised machine learning framework which
combines rankings from any unsupervised classifier to improve the performance
of link prediction. This method is straightforward and computationally cheap
as its complexity is O(n.↵), where ↵ is the number of rankings aggregated and
n the number of predictions. It is adapted to prediction in social networks, as
n can be tuned according to the users’ needs. On the other hand, the precision
on top-ranked items is not as high as the results yielded by supervised methods
designed for information retrieval. In the case of a PSP, considered in this paper,
this parameter would adjust the number of predictions to its commercial strategy.

So far, we have exclusively focused on structural information in order to pre-
dict unknown links. However, the framework is generic and any feature providing
a ranking for likely pairs of nodes can be incorporated. Additional structural clas-
sifiers are an option, but other types of attributes can also be considered, such
as the profile of the users (age, hometown etc.), or timings of the interactions.
In the latter case, for instance, if i and j are both interacting with k within a
short span of time, it is probably an indication of a connection between i and
j. From a theoretical perspective, RankMerging provides a way to uncover the
mechanisms of link creation, by identifying which sources of information play a
dominant role in the quality of a prediction. The method could be applied to
other types of networks, especially when links are difficult to detect. Applications
include network security, for example by detecting the existence of connections
between machines of a botnet, and biomedical engineering, for screening combi-
nations of active compounds and experimental environments in the purpose of
medicine discovery.
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Abstract. Determining the graph-theoretic properties of large real-world networks like
social, computer, and biological networks, is a challenging task. Many of those networks
are too large to be processed e�ciently and some are not even available in their entirety. In
order to reduce the size of available data or collect a sample of an existing network, several
sampling algorithms were developed. They aim to produce samples whose properties are
close to the original network. It is unclear what sample size is su�cient to obtain a sample
whose properties can be used to estimate those of the original network. This estimation
requires sampling algorithms that produce results that converge smoothly to the original
properties since estimations based on unsteady data are unreliable. Consequently, we eval-
uate the monotonicity of sampled properties while increasing the sample size. We provide
a ranking of common sampling algorithms based on their monotonicity of relevant network
properties using the results from four nework classes.

1 Introduction

Today’s networks are quite large, in many cases too large to understand the net-
work or to compute its properties. We have to reduce the complexity and therefore
the size of networks to use the network for analyses and research. We can reduce
the size by using graph coarsening or sampling techniques. Graph coarsening and
some sampling techniques require the availability of the complete network. This
constraint is rarely satisfied. Sampling by exploration allows to gain knowledge
about the unavailable network, but it usually distorts properties as the sampling
process can be biased. There are two large classes of sampling algorithms, we can
sample using a breadth first sampling (BFS) approach, constructing the sample
from the local area first, or we can use a random walk (RW) approach, traversing
along random paths of nodes and constructing the sample with nodes from deeper
areas of the network. The convergence behavior of network properties like the de-
gree distribution depends highly on the underlying network and the used sampling
algorithm.

? This research was funded by the MSIP (Ministry of Science, ICT & Future Planning), Korea in the
ICT R&D Program 2014 and the Software Campus by the German Federal Ministry of Education
and Research (BMBF) under grant no. “01IS12054”
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Many work has been done to overcome these biases and many specialized algo-
rithms were developed. These algorithms produce samples, whose properties con-
verge faster to the original networks properties, but as the properties of the original
network are typically unknown, it is undecidable whether the quality demands or
original properties are met.

Our approach is another way to solve this problem. We are proposing a new met-
ric, which allows to develop an estimator for network properties in future work.
This estimator should deliver the properties of the original network if it gets the
network properties of the sample, the specification of the sampling algorithm, and
the assumed size of the original network. For the development of such an estimator,
we need the sampling algorithm to produce a sample with monotone converging
network properties. In this paper, we are investigating the convergence monotonic-
ity of the network properties on sampled networks.

The rest of the paper is structured as follows: Section 2 presents the related work
about sampling and the evaluation of newly developed sampling algorithms. We
present in Section 3 the desired behavior of sampling algorithms. We present the
results and the discussion of our work in Section 4 and conclude with a summary
and outlook in Section 5.

2 Related Work

The related work lists two typical classes of sampling techniques. The first one is
the deletion of nodes or edges. Node deletion techniques use the complete network
as basis and are deleting nodes until the network size is reduced to the desired
size. Edge deletion uses a similar technique, instead of removing nodes, these algo-
rithms remove edges and perhaps the attached nodes. The complete network has
to be available to apply these two techniques. The second technique is sampling
by exploration, using this technique, the sampling algorithm traverses from a start
node into the network and collect the nodes to the sample. This technique is inter-
esting for at least two reasons: First, it is easy to use by instrumenting crawlers.
Second, we do not have this dependency on the availability of the complete net-
work. Sampling by exploring is the common technique to reduce the complexity
of networks and gain an excerpt of the whole network.

A lot of research has been done into the direction of developing more sophisti-
cated sampling algorithms in this area. These algorithms are developed to pro-
duce samples, whose property values converge faster towards the property values
of the original network. The sampling algorithms can be classified into breadth
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first approaches and random walk ones. Table 1 shows the classification, based on
the type of walking, and the abbreviations of the analyzed algorithms.

Breadth First Sampling

The BFS algorithms traverse through the network by focusing on the local neigh-
borhood first. The simplest implementation is a classical BFS which visits all the
neighbors of node. Krishnamurthy, Leskovec and Stutzbach [4,7,13] use the BFS
in their work. Goodman et al. [2] introduced snowball sampling (SS), which is
a variation of the BFS and visits only a specifiable number of new, still unseen
neighbors. Lee et al. [6] have evaluated this variation. Similar to SS, respondent-
driven sampling (RDS) is developed by Heckarthorn et al. [3] and analyzed by
Rasti and Kurant [10,5]. RDS visits a specifiable number of random neighbors,
ignoring whether these neighbors are already known. Forest fire (FF), introduced
by Leskovec et al. [7], is the last BFS derivate. It collects all neighbors with a
certain probability into a walking queue.

Random Walk Sampling

The second class is the one of the random walk algorithms. The simplest one is
the random walk sampling (RW). This algorithm traverses through the network
by exploring along random neighbors. This sampling algorithm is well studied,
e.g. by Stutzbach, Leskovec and Ribeiro [13,7,11]. Intuitively, and mathematically
proveable, the RW sampling is biased towards nodes with higher degrees in the
network. To overcome this bias, and to collect a representative sample of the
network, two methods of correcting the probability for the next node were intro-
duced. Stutzbach et al. [13] called their version random walk with degree correction
(RW-DC). Rasti et al. [10] proposed a slightly di↵erent correction and named it
metropolized hastings random walk (RW-MH). Both approaches depend on the
degree of the potential next node on their exploration path.

Stutzbach et al. [13] showed two further variations of the RW: The first one is the
random stroll (RS). This variation is moving like the RW but skips intermediate
nodes from adding them to the sample. The second algorithm is the combination
of RS and RW-DC. Random stroll with degree correction (RS-DC) skips interme-
diate nodes like the RS and moves with a degree correction like the RW-DC.

Leskovec et al. [7] introduced another variation of the RW. In particular, they
introduced a jump probability in the random jump (RJ). This probability allows
to move to a farther area of the network to avoid getting caught in a small area
of the network.

39



Ribeiro et al. [11] developed a variation of a random walk with multiple instances.
Since a simple parallel execution would su↵er from the same problems like the
classical RW, they introduced a dependency between the instances. Only one in-
stance, in the default setting the one with the highest node degree on the current
position, is allowed to move through the network. The active instance is picked
every round again. This sampling algorithm is called frontier sampling (FS).

Another algorithm, similar to the RW, is the depth first sampling (DFS). This
algorithm moves to the first neighbor and collects the remaining neighbors in a
queue. This queue a↵ects the behavior if the algorithm is getting caught. Even
though there are similarities between RW and DFS, the results are quite di↵erent
due to the impact of the queue in DFS. This algorithm is often used as a kind of
baseline, e.g. by Krishnamurthy and Leskovec [4,7].

Table 1. Analyzed sampling algorithms.

Class Algorithm Abb. Related Work

Breadth First Sampling

Breadth First Sampling BFS [4,7,13]
Forest Fire FF [7]
Respondent-driven Sampling RDS [3,10,5]
Snowball Sampling SS [2]

Random Walk Sampling

Depth First Sampling DFS [4,7]
Frontier Sampling FS [11]
Random Jump RJ [7]
Metropolized Hastings Random Walk RW-MH [10]
Random Stroll RS [13]
Random Stroll with Degree Correction RS-DC [13]
Random Walk RW [13,7,11]
Random Walk with Degree Correction RW-RDC [13]

Network Properties

We analyze the common network properties. The earlier introduced sampling al-
gorithms are partially evaluated with these metrics in their corresponding papers.
There are two types of properties: The first one is a single scalar value, for ex-
ample a floating-point number or an integer. The second type is a distribution,
which provides for each possible value a certain probability to find this value in
the network. We concentrate our work in this paper on the single scalar values.

The assortativity coe�cient (AC) is a measure for the correlation of connected
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nodes. We use the definition from Newman et al. [9,8]. We analyze the cluster-
ing coe�cient (CC) in both characteristics, the transitivity which is for example
used by Chakrabarti et al. [1] and the average clustering coe�cient which is for
example used by Krishnamurthy et al. [4]. The degree distribution (DD) allows
the derivation of multiple single scalar values. We inspect the average node de-
gree, the average in-degree, the average out-degree and the maximum degree of
the networks. We are deriving multiple single scalar values from the shortest path
length distribution (SP), too. The characteristic path length is a measure for the
expected path length in the network, the diameter is the maximum shortest path
length in the network. As the diameter is prone to distortions, we are analyzing
the e↵ective diameter of the 90% quantile. This metric computes the maximum
shortest path length for the part of 90% connected nodes in the network. We use
the definition from Chakrabarti et al. [1] in our implementation. By ignoring the
end of the heavy tail, we remove the sensitivity for deformed networks. Table 2
lists the used metrics, submetrics and abbreviations for the metrics.

Table 2. Evaluated network properties, analyzed submetrics.

Metric Submetrics Abb.

Assortativity Assortativity Coe�cient AC

Clustering
Average Clustering Coe�cient

CC
Transitivity

Degree

Average Degree (avg)

DD
Average In-Degree (avgin)
Average Out-Degree (avgout)
Maximum Degree (max)

Shortest Path
Characteristic Path Length (cpl)

SPDiameter (diam)
E↵ective Diameter, 90% (e↵ectiveDiam)

3 Monotonicity

We propose a new approach to circumvent the nescience of the original networks
properties. Instead of evaluating the sampling algorithms with respect to the speed
of convergence, we evaluate the monotonicity of the property convergence along
increasing sample sizes. The monotonicity is an important property to support
the development of estimators to project the properties of the sampled network
to the original network. We rank the well known and commonly used explorative
sampling algorithms with respect to the monotonicity properties of their samples.
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The looked-for algorithm produces smoothly approximating properties among in-
creasing sampling sizes. We count the direction changes of the property conver-
gence while sampling with increasing sample sizes. Figure 1 shows the aggregrated
AC of a webgraph, sampled 100 times with DFS (in blue) and RW (in red). The
original networks assortativity coe�cient is plotted as a green line. The AC sam-
pled with RW is obviously slower converging than the AC sampled with DFS, even
though, the smooth progression allows develop a simpler estimator for the original
property values. We are computing the monotonicity by comparing the property
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Fig. 1. Monotonicity of the AC on a webgraph, sampled with DFS (blue) and RW (red), original value
(green).

values of consecutive samples according to Eq. (1). vi are the values of a network
property in the sample i, the sample i+1 is the next larger sample, the last vi

yields the property value of the original network.

monotonicityi =

8
><
>:

"i : vi < vi+1

=i : vi = vi+1

#i : vi > vi+1

(1)

Intuitively, a change of monotonicity is defined as a change in the direction of con-
vergence as in Eq. (2) at position i to i+1 . An intermediate equality of successive
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property values does not cause a change in monotonicity.

"1 ... "i #i+1 #i+2 ... (2)

A good sampling algorithm approximates the inspected properties with as few
changes in the monotonicity progress as possible. This property definition of a
good sampling algorithm is also intuitive as it matches the perception of a good
approximation.

4 Evaluation

We used GTNA [12] to implement and compute the sampling process. GTNA
allows to integrate the network generation, the application of the sampling al-
gorithms and the computation of the graph-theoretic metrics. We initialized the
sampling algorithms with random start nodes, and executed 100 runs for the net-
works with  500, 000 nodes and 20 runs for the networks with > 500, 000 nodes
to reduce the impact of randomness in the sampling process. We sampled 1% -
10% in 1% steps and 15% on all networks, networks with  500, 000 nodes are
also sampled with 20% and 25%.

We selected networks based on the related work, which is presented in Section
2. The analyzed networks are listed in Table 3. The networks are available at the
SNAP project3. We identified four groups of networks based on their network type:
social networks in a directed and undirected form, directed p2p networks and a
directed webgraph. We calculated the earlier presented network properties (AC,

Table 3. Evaluated networks, classified by their context.

Class Type Network Nodes

social directed
cit-HepPh 34,546
cit-HepTh 27,770

soc-Epinions1 75,879

social undirected
ca-GrQc 5,242

com-Youtube 1,134,890

p2p directed
p2p-Gnutella30 36,682
p2p-Gnutella31 62,586

webgraph directed web-Google 875,713

CC, DD, and SP) to provide a useful evaluation for the property monotonicity of

3 Stanford Large Network Dataset Collection, available at http://snap.stanford.edu/data/
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the sampled networks. We show the results in Table 4. The sampling algorithms
are ranked according to their monotonicity properties. We ignored the transitiv-
ity in this evaluation, since all algorithms perform very good with respect to the
monotonicity of the progression of this metrics values. As introduced in Section 3,
we are concentrating on single scalar properties, and therefore we are deriving the
submetrics as listed in Table 2. These single scalar values are combined as in Eq.
(3) to have a single value per property. To avoid an overweighting of one of these
submetrics, we are normalizing by the number of submetrics.

SP =
(cpl + diam + e↵ectiveDiam)

3
; DD =

(avg + avgin + avgout + max)

4
(3)

We expect to provide a recommendation of sampling algorithms for the complete
network class. Therefore, we sum up the single network properties of each network
instance in a group to have a cumulated monoticitiy value per network property. To
be able to compare these values over the borders of a group, we are normalizing
the values by the number of networks within the group. This is formulated in
Eq. (4) (group represents the network groups, listed in Table 3). The function
M returns the value of a certain metric, computed on the given network. Mgroup

collects the normalized, added values of the analyzed metrics. M is a placeholder
for the computed metrics, listed in Table 2.

Mgroup =
1

|group|
X

nw2group

M(nw) ; M 2 {AC, CC, DD, SP} (4)

To be able to provide a recommendation not only on the basis of a single property
but for a monotone sampling of the complete network, we cumulate the values of
the single network properties of a group and are normalizing them by the number
of metrics. This is shown in Eq. (5) and described by ⌫.

⌫group =
ACgroup + CCgroup + DDgroup + SPgroup

4
(5)

The Uniform Sampling (US), which is a random node selection algorithm, is used
as ground truth. This algorithm is not practicable in real world applications, but
as it produces a real random sample it is a good baseline to compare the mono-
tonicity of the analyzed algorithms with. We are providing in Table 4 the by ⌫
sorted ranking of sampling algorithms. Table 4 shows the domination of the ran-
dom walk algorithms on the directed social network and the webgraph, the BFS
algorithms are dominating the undirected social network and the P2P networks.
An interesting fact is the stable presence of the US in the upper half of the rank-
ing. Besides the webgraph, the simple algorithms are not far behind the forefront.
There is typically either BFS or RW within the best five sampling algorithms. We
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Table 4. Summed monotonicity rankings per network group

Rank ⌫ - directed social ⌫ - undirected social ⌫ - p2p ⌫ - webgraph

1 RW 0.74 US 1.63 BFS 1.44 RW-DC 0.83
2 RW-DC 0.94 DFS 1.69 US 1.79 RS-DC 0.83
3 RJ 1.01 RDS 1.71 RS-DC 1.83 RJ 0.83
4 RW-MH 1.13 FS 1.91 FF 1.88 RW-MH 0.96
5 FS 1.51 BFS 1.98 RW-MH 1.92 FS 1.42

6 US 1.58 RS-DC 2.08 RS 2.04 RW 1.58
7 RS 1.63 SS 2.10 RJ 2.13 US 1.83
8 RS-DC 2.13 RS 2.43 RW-DC 2.21 RS 1.92
9 DFS 2.25 RJ 2.63 DFS 2.58 FF 2.69
10 SS 2.28 RW-MH 2.71 RDS 2.71 SS 3.27

11 RDS 2.42 RW 3.17 SS 3.17 BFS 3.52
12 FF 2.46 RW-DC 3.25 FS 3.33 RDS 3.69
13 BFS 2.92 FF 3.28 RW 3.96 DFS 3.71

are showing in Figure 2(a) the plotted values of the results for the directed social
network. We have built groups for AC, CC, DD, and the SP, the last group is
showing the ⌫-values of the column from Table 4. The AC is completely monotone
sampled by the RW and the RW-MH, the other algorithms are including changes
in the monotonicity, a high amount of changes is especially visible at the group of
BFS algorithms. The plot of the CC values showing similar results, the advantage
of the random walk group is even higher, besides the DFS, all algorithms are bet-
ter than the BFS algorithms. The monotonicity analysis of the DD metric shows
similar monotonicity values for all sampling algorithms. The advantage of the RW
algorithms is not distinctly present. The SP metric is well preserved by the BFS,
the advanced algorithms of the BFS group and the group of RW algorithm pro-
duce similar monotonicity values. The advantage of the BFS is intuitive, as the
shortest path properties are constantly converging by extending the exploration of
the direct neighborhood in rings. The RW algorithms are traversing into the deep
of the network and are usually producing longer paths. Beside the SP property, the
results for the webgraph are similar. Figure 2(d) shows the plot for the webgraph.
The advantage of the BFS on the SP property is not present on the webgraph.

The undirected social network, shown in Figure 2(b), is similarly sampled with
all algorithms. The monotonicity of all samples is similar for the combined metrics
of the network, DD and SP. The CC has a negative outlier with RW-DC which
is not monotonously converging. The AC has two positive outliers BFS and RDS,
which produce very monotone AC values.

The P2P network, shown in Figure 2(c), is the only network with di↵erent mono-
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tonicity results, as shown in Table 4. The advantage of the RW algorithms is not
present. The AC is dominated by BFS and FF, while the CC is dominated by BFS,
RS and RS-DC. The DD is nearly equal monotone for all sampling algorithms, only
the BFS has a change in the monotonicity but these values can be neglected with a
value of 0.25. The SP property is slightly dominated by RW algorithms. Combined
to the ⌫ value, the algorithms perform with similar monotonicity for the complete
network. There is no predominant algorithm for this group of P2P networks.

5 Conclusion

Today’s networks are large, often too large to understand and process them di-
rectly. The computation of graph-theoretical properties on these large networks is
a challenging task. We need to reduce the networks complexity and therefor the
size of the network. The main technique for achieving this reduction of complexity
is sampling by exploration. These sampling algorithms traverse through the net-
work and collect the sample. Due to the network structure, some algorithms distort
the networks properties. Many improved sampling algorithms were introduced to
overcome these biased sampling processes. The properties of the sampled network
are highly depending on the underlying network and the used sampling algorithm.

As the original networks properties are mostly unknown, we are not able to com-
pare the sample properties with them. Therefore, it is undecidable if or when the
quality demands are met. We propose another way to overcome this problem. We
evaluate the convergence monotonicity to support the development of an estimator
for the common original network properties. The common properties are e.g. the
degree distribution, and the shortest path distribution. To be able to provide a use-
ful monotonicity evaluation, we chose networks based on the related work, which
analyzes the newly developed sampling algorithms. To evaluate the convergence
monotonicity, we sampled multiple times and compute the properties of the sam-
ples. The convergence along increasing sample sizes is collected and aggregated.
We rank the sampling algorithms with respect to the monotonicity values of their
samples.

The main results of our evaluation are as follows: the complex algorithms en-
hancing the simple basic algorithms are not necessarily better in our monotonicity
metric. Moreover, the simple algorithms random walk and breadth first sampling
are the best algorithms of their group or at least at the forefront of their groups.
The random walk algorithms are typically outperforming their breadth first sam-
pling counterparts. The breadth first sampling algorithms are only as good as the
random walk algorithms on the P2P and undirected social networks. The shortest
path properties are well preserved by the breadth first sampling, they are inferior
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(a)

(b)

(c)

(d)

Fig. 2. Results of the monotonicity of the analyzed sampling algorithms: (a) directed social networks,
(b) undirected social networks, (c) p2p networks, (d) webgraphs.
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compared to the random walk ones on the webgraph and the P2P networks only.
An interesting fact is that the monotonicity of the uniform sampling which is used
as ground truth: The uniform sampling is never the most monotone algorithm but
is in the better half of the ranking on all networks.

In the future work, we will develop a metric to measure the monotonicity of net-
work properties which are not describable with a single scalar value, but with a
distribution. The open question regarding this metric is: What is a monotonely
converging distribution and how to measure this monotonicity? After answering
this question, we want to develop estimators to assess the properties of the original
network by analyzing sampled networks.
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Abstract. When searching for specific nodes in a network an agent hops
from one node to another by traversing network links. If the network is
large, the agent typically possesses partial background knowledge or cer-
tain intuitions about the network. This background knowledge steers the
agent’s decisions when selecting the link to traverse next. In previous re-
search two types of background knowledge have been applied to design
and evaluate search algorithms: homophily (node similarity) and node
popularity (typically represented by the degree of the node). In this pa-
per we present a method for evaluating the relative importance of those
two features for an e�cient network search. Our method is based on
a probabilistic model that represents those two features as a mixture
distribution, i.e. as a convex combination of link selection probabilities
based on the candidate node popularity and similarity to a given tar-
get node in the network. We also demonstrate this method by analyzing
four networks, including social as well as information networks. Finally,
we analyze strategies for dynamically adapting the mixture distribution
during navigation. The goal of our analysis is to shed more light into ap-
propriate configurations of the background knowledge for e�cient search
in various networks. The preliminary results provide promising insights
into the influence of structural features on network search e�ciency.

Keywords: Networks, Decentralized Search, Homophily, Search Algo-
rithms

1 Introduction

Nowadays, in many aspects of our daily life we, knowingly or unknowingly, deal
with networks. For instance, we participate in large o✏ine and online social net-
works, we often deal with information networks such as Wikipedia and the Web,
or with file sharing peer-to-peer networks. All of these networks are constantly
growing and sometimes consist of billions of connected nodes. In many situa-
tions we, or some other kind of autonomous agents, have to search for specific
nodes in those networks. Apart from being large, these networks also constantly
change. For example, friendship connections in a social network are created and
removed, or new Web sites are created and connected to old ones. Therefore,
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search in such large and ever changing networks is a complex and hard task.
The task becomes even harder in networks without a global index such as the
Google index for the Web. For example, peer-to-peer networks do not rely on
the existence of a global index but base their search strategies on the local prox-
imity of a candidate node to a specific target. More recent examples include
autonomous swarms of drones building up ad hoc networks. In those systems,
information has to be passed from one drone to another, while the network is
constantly changing and therefore no central search or routing engine can be
built. In such decentralized networks the search performance heavily relies on
finding resources within as few hops as possible.

In previous research several decentralized search algorithms have been de-
signed. Among others, these include:

– Kleinberg’s algorithm (based on homophily): Informed greedy search works
well on small world networks with a clustering exponent of 2. In his exper-
iments the clustering exponent determined the probability of a connection
between two nodes as a function of their similarity. The simulation was
steered by homophily, i.e. the geographic distance on a network model was
used. [4], [5], [6].

– Adamic’s algorithm (based on popularity): Power-law graphs can be locally
searched by moving to the neighbor node with the highest degree. The costs
of the search scale sub-linearly with the graph size. This property makes this
algorithm interesting when dealing with large networks [1].

– Jensen’s algorithm (based on a fixed combination of homophily and popular-
ity): Using homophily and degree disparity as background information, the
authors construct a simple algorithm for decentralized search. In a couple of
synthetic and real-world networks they were able to outperform Adamic’s as
well as Kleinberg’s algorithm [9].

All of these algorithms perform remarkably well and are typical heuristic
algorithms based on intuitive assumptions on the nature of features needed to
e�ciently search in networks. In this paper we set out to analyze these assump-
tions in greater detail, with a final goal of learning more about the influence of
those two features (homophily and popularity) on the search performance. Thus,
we aim to answer the following research questions:

1. How much information is provided by node homophily and node popularity
and how well can this information be used for e�cient search in networks?

2. How should we mix node homophily and node popularity to maximize the
search performance? Can an adaptive approach to information mixture out-
perform a static mixture that remains constant throughout navigation.

To answer these questions we simulate a decentralized search approach, informed
by a combination of two di↵erent local features, which serve as proxies for node
popularity and node homophily – degree and cosine similarity to the target node.
Additionally, we introduce and analyze adaptive mixing strategies. To evaluate
the navigation performance we create a framework, which allows us to exam-
ine the impact of di↵erent mixtures. Our preliminary results show that in the
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majority of analyzed networks homophily provides, on average, more important
and more useful information for e�cient search. However, the optimal results
are only achieved in situations where small amount of popularity information is
also available to the search agent.

Thus, our work makes the following contributions:

1. Methodological : We provide a framework for analyzing various features to
inform search in networks. The framework allows to investigate a wide range
of feature combinations and to assess their search performance by simulating
an agent navigating through a network.

2. Empirical : We apply our framework on real networks and learn about the
importance of homophily and node popularity as features for informing net-
work search.

Outline: The rest of the paper is organized as follows. We summarize investi-
gations done by other researchers in the field in Section 2. Thereafter we shortly
describe the methodology used in the paper in Section 3 followed by the experi-
ments in Section 4 and their results in Section 5. A brief discussion of the results
can be found in Section 6. Finally, we wrap up the paper with an outlook for
the future work in Section 7.

2 Related Work

The research on decentralized search in networks was initiated by the famous
Milgram experiment in the 1960s [10]. In this experiment individuals had to
forward a letter to an unknown person – a stockbroker from Boston. The partic-
ipants were only allowed to send the letter to somebody whom they know by the
first name, i.e. to a friend who possibly can reduce the distance or even knows
the target person. Remarkably, the average number of hops for the successful
letter chains was less then six. Thus, a famous outcome of the experiment was
the so-called ”Six degrees of separation” phenomenon, which states that people
in a large society such as the USA, are connected by friendship chains not longer
than six. Later, Leskovec and Horvitz [7] analyzed a messaging network, namely
MSN Messenger. Their result were similar as Milgram’s – the average length of
connection chains between all pairs of the users is only 6.6.

Another interesting result from the Milgram’s experiment is the fact, that
although they posses only local knowledge of the network, humans are capable
of finding those short connection chains even in a large social network. Various
researchers put more e↵ort into investigation of this phenomenon and developed
so-called decentralized navigation methods.

For example, Kleinberg [4] showed that in small world networks (with small
average shortest path and highly connected groups of similar nodes) homophily
(node similarity) can be exploited to e�ciently find random target nodes. He
observed that small world networks having a clustering exponent of 2 are navi-
gable using a homophily feature. In his research the homophily feature was the
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geographic distance on the lattice of the Watts and Strogatz model as defined
in [11].

Later, Adamic [1] showed that networks whose degree distribution follows a
power-law distribution can be e�ciently navigated with knowledge about node
popularity (degrees) only. The algorithm moved in each step to the unvisited
neighbor node with the highest degree. In situation where all neighbors where
already visited a random neighbor was chosen. Compared to a random walk,
which moves in each step to a random node, the algorithm was able to find
nodes within just a few hops. Additionally, the average number of hops scales
sub-linearly in the number of network nodes.

Simsek and Jensen [9] combined homophily and popularity in their algorithm
called expected-value navigation (EVN). For EVN degree and attribute values
of neighbors of the current as well as neighbors of the target node were needed.
Additionally, they assumed that already visited nodes can be identified as such.
In synthetic networks EVN was able to outperform both previously named al-
gorithm.

3 Methodology

In this paper we set out to assess the importance and the role of homophily and
popularity for informing decentralized search in networks. We base our approach
on simulations of an agent that navigates through a network in search for a given
target node. At each simulation step the agent needs to select one node from
the list of neighboring candidate nodes. The selection is based on the available
information about the candidate nodes and follows di↵erent navigation models.
In detail, the simulation is based on three elements:

1. The available information, which we represent in the form of probability
distributions over two features (homophily and popularity) and a particular
mixture distribution of the corresponding probability distributions.

2. A background knowledge model, which defines the mixture distribution and
its adaptation during the simulation.

3. A navigation model, which defines the candidate selection strategy.

Next we describe those three elements in more details.

3.1 Features & Mixture

To create probability distribution we use homophily and popularity as basic
measures. We assume that the networks are undirected and without multiple
links.
Degree: In our paper we use the degree as representation of popularity. Having a
network with A as adjacency matrix (with Aij = 1 if nodes i and j are connected
by a link and Aij = 0 otherwise), the degree is defined as follows:

ki =
nX

j=1

Aij . (1)
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Fig. 1: Convex combination: The plot shows two discrete probability distri-
bution p and q. p is uniform distributed, whereas q is non uniform. Varying ↵
(0.25, 0.5, 0.75) one can observe the resulting mixture distributions.

Cosine Similarity: This feature serves as a proxy for homophily. Equation 2
defines the number of common neighbors of nodes i and j. Using this definition
we compute the cosine similarity �ij of two nodes as defined in Equation 3.
Cosine similarity results in a non-zero value between two nodes if they share at
least one common neighbor.

nij =
X

k

AikAkj . (2)

�(i, j) =
nijp
kikj

. (3)

Mixture Distribution: For the purpose of creating mixtures of these two
features we convert them to probability distributions. Therefore, we calculate a
probability mass function by dividing each feature value by the sum of all values.
Thus, we need only local information for normalization. Precisely for each feature
we divide the value of a node by the sum of all values corresponding to the same
feature (all neighbors). Hence we get for each feature a probability distribution.
For example, the degree normalization we define as following:

qi =
kiPn
i=1 ki

. (4)

Afterwards we apply a convex combination to generate a mixture distribution.
Equation 5 defines the steps necessary to calculate the mixtures, where wl is the
weight of a probability distribution l.

fi =
nX

l=1

wlpi where
nX

l=1

wl = 1 . (5)
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We denote the probability distribution of cosine similarity and degree as p and q.
Furthermore we set w1 = ↵ and w2 = 1�↵ since we only have two distributions.
This allows us to configure the mixture distribution over ↵ only. Equation 6
defines the mixture distribution of p and q using ↵.

fi = ↵pi + (1 � ↵)qi . (6)

For instance, Figure 1 visualizes di↵erent mixture distributions of p and q. Note
that setting ↵ to 0 results in a mixture distribution equal to q. On the opposite
if ↵ is set to 1, the resulting mixture distribution equals p.

3.2 Background Knowledge Models

Static Mixture: In our first analysis we use a constant ↵ to create mixture
distributions as defined in section 3.1. Recollect ↵ defines the impact of cosine
similarity p and degree p onto the mixture distribution. From now on we refer
to this model as static mixture.

Static Switch: Inspired by human navigation strategies we generate a back-
ground knowledge model, which imitate human behavior. Scientists have dis-
covered that humans have two phases when navigating in a network from one
random node to another [3], [12].

In the first phase, also known as zoom out phase, humans try to reach a
popular and thus highly connected node. As a consequence one characteristic of
this phase is that nodes having a higher degree than the current one are chosen.
Adamic presented such an algorithm in her work and showed that power-law
graphs can be e�ciently searched with it [1]. Setting ↵ to 1 for the mixture
distribution, allows us to mimic this strategy.

Contrary, the second phase of humans, the zoom in phase, is steered by the
similarity of neighbors to the target node. Kleinberg mimicked this behavior and
proved that small networks with a clustering exponent of 2 can be searched by
doing so [4]. We simulate this behavior using the cosine similarity. By setting
↵ to 0, we generate a mixture distribution equal to p. Thus the agent is only
influenced by the similarity.

Recollect that the cosine similarity is always 0 if no neighbor has at least
one common neighbor with the target node. Hence p can be a discrete, uniform
distribution. This case increases the uncertainty of the mixture distribution if ↵
is greater than 0. One can observe this e↵ect in Figure 1. To tackle this problem,
we imitate human behavior again and switch from the zoom out to the zoom in
phase at a fixed point. We simulate this by initializing ↵ to 0 and change the
value to 1 at a certain point. We name this model static switch.

Dynamic Switch: However, the last method lacks of a dynamic transition
point, since network size as well as the degree distribution influence the position
of the optimal transition point. Thus we initialize the simulation with a certain
↵ and set ↵ to 1�↵ as soon as p is not uniformly distributed any more. In other
words this model switches the weights of p and q in the mixture distribution the
moment it reaches a part of the network near to the target node. We call this
background knowledge model dynamic switch.
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3.3 Navigation Models

Greedy Search: The simplest node selection mechanism is a greedy selection.
In this strategy the algorithm traverse the network by moving always to the
node with the highest probability of all unvisited neighbors. We reference this
strategy as greedy search.

Stochastic Search: However, the greedy search model never selects nodes with
a slightly lower probability in the mixture distribution than the maximum. To
tackle this we select the next node by drawing randomly from the mixture dis-
tribution. We refer to this as stochastic search. Consequently this model results
in a random walk if the mixture is uniformly distributed. On the other side it
selects the same node as greedy search if one neighbor has a probability of 1 in
the mixture distribution.

Softmax Search: Nevertheless, the randomness of mixture distributions can
vary. To either increase or decrease the uncertainty of a distribution we use a
softmax function. The softmax function we apply onto our mixture distributions
is defined as following:

gi =
e�fi

P
i e�fi

. (7)

This function increases the randomness of a distribution if � is smaller than
1, whereas it decreases the uncertainty using values greater than 1. Figure 2
demonstrates the impact of various values for �. Consequently we have the ability
of continuous varying our navigation model. For example, a high � results in
greedy search, � = 1 in stochastic search, and setting � to zero produces a
random walk. We refer to this model as softmax search with � as a parameter.

4 Experiments

4.1 Dataset

For our experiments we use four networks:
Wikipedia for Schools is a subset of Wikipedia articles especially designed

for the education of school children. It consists of 4.6 thousand articles (ver-
tices) connected by 119.8 thousand hyper links (edges). The network is directed
and belongs to the category of information networks. A power-law distribution
provides the best fit for the degree distribution.

Furthermore we use a subset of Facebook created out of so called ego-networks
where user represents vertices. Additionally, friendship between two users creates
an edge in the network between those users. This dataset contains 3.9 thousand
users, 88.1 thousand friendships and can be categorized as social network. Its
degree distribution follows a log-normal distribution.

As a second social network we test our algorithm on a subset of Twitter con-
sisting of 76.2 thousand users and 126.9 thousand edges. Contrary to Facebook,
this dataset is directed. This is due the fact that in this social network user A
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Fig. 2: Softmax function: One can see the impact of di↵erent values for � of
the softmax function defined in Equation 7. Values smaller than 1 have a flatting
e↵ect, whereas values higher than 1 concentrate more probability mass around
modes – thus reducing the uncertainty. � = 0 results in a uniform distribution.
Setting � = 1 does not modify the distribution.

can follow user B without the requirement that B follows A. The best fit for the
degree distribution is a log-normal distribution.

The last network is a co-authorship network, namely DBLP, which consists of
317 thousand authors (vertices) and 1 million co-authorship connections (edges).
The degree distribution of the network can be fit best with a log-normal distri-
bution.

We calculated the best fit for the degree distribution of these networks with
the method proposed by Clauset [2]. The plot containing the degree distributions
of all four networks can be found in Figure 3c.

4.2 Experimental Set-up

For each network we generate as many missions as there are nodes in the network.
Each mission consists of two randomly chosen nodes reachable from each other.
The hop plot and a plot of the shortest path lengths for all missions are shown
in Figure 3.

The task of the algorithm is to navigate from one node to the other within
as few hops as possible. We consider paths longer than 20 hops or containing
revisits of nodes as unsuccessful. Furthermore our framework tries to avoid al-
ready visited nodes in each navigation by removing them from the candidate
nodes. In our experiments we combine each navigation model with each back-
ground knowledge model once. This results in 9 experiments for each network.
As evaluation metrics we gauge the success rate and stretch. The success rate
is the fraction of successful solved missions, whereas the stretch is the length
of the produced paths divided by their corresponding shortest paths lengths. In
other words the stretch defines the factor of how much longer produced paths
are compared to their shortest path.
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(a) Hop Plot (b) Shortest Distances (c) Degree Distributions

Fig. 3: Properties of Networks & Missions : Figure 3a shows the hop plots
of all missions. Lengths of shortest distances of all missions for each network are
plotted in Figure 3b. Notice how long shortest distances of missions in the DBLP
are compared to Wiki for Schools. Figure 3c shows the degree distributions of
the networks.

5 Results

Figure 4 shows all results of our experiments. We exclude plots presenting the
stretch, since they only emphasize the outcome of the success rate. Rows in
Figure 4 are ordered by navigation models, whereas columns refer to the used
background knowledge model.

The most interesting result is, that the cosine similarity p seems to be more
important for an e�cient navigation than the degree information q. Independent
of the navigation model and network a fixed value for ↵ near 0.9 seems to be a
good choice. As imagined the optimal amount of hops after witch to switch from
0 to 1 for ↵ depends on the network. For instance, the static switch model applied
onto the DBLP - which is a sparse network with a high diameter - benefits from
more steps to nodes with higher degrees during the first phase of the navigation.
Additionally, for the DBLP, this holds for all navigation models. On the other
side in Wikipedia for Schools the best performance is reached by switching to
↵ = 0 before the first hop is made. However, the dynamic switch model in
combination with a low value for ↵ outperforms all other strategies. This applies
to all networks independent of the navigation model. This emphasizes, that in
the first steps the uncertainty of mixture distributions with ↵ greater than 0 is
increased by the cosine similarity. Additionally, in the zoom in phase the degree
information q likely steers in the opposite direction than the cosine similarity q.
Consequently the zoom in phase also benefits from the dynamic switch model.
This is due to the circumstance, that in power-law or log-normal networks a
random selected node is likely to have low degree. Thus most missions have a
low degree target node.

Anyhow, the di↵erence between greedy search, stochastic search, and soft-
max search shows how determined the mixture distributions are. Using softmax
search we can continuously adapted the uncertainty of the mixture distribution.
In the last row of Figure 4 the parameter � of the softmax function is set to 50.
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greedy search

stochastic search

softmax search

Fig. 4: Results: The figure shows the results of our simulations. Each row cor-
responds to one navigation model. We use the success rate as evaluation metric.
The left column contains the results produced by the static mixture model. In
this plot the x-axis defines the ↵ parameter as specified in section 3.1. The cen-
ter column ↵ shows the outcome of the static switch model, where the transition
point is on the x-axis. In the right column results of the dynamic switch model
can be found. The initial value of ↵ corresponds to the x-axis.

Consequently navigation behavior between greedy search and stochastic search
is obtained.

Additionally to the success rate we gauge the normalized entropy of the
mixture distributions. A normalized entropy of 1 is produced by uniform mixture
distributions. On the other side, mixture distributions containing a value of 1,
induce a normalized entropy of 0. Figure 5 shows the average normalized entropy
for value of ↵ between 0 and 1. Moreover on the left side � is set to 1, whereas
on the right a value of 50 is used. Notice the high normalized entropy of the
DBLP at ↵ = 1 on both plots. This may be due the low density of the network
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Fig. 5: Normalized entropy of mixtures: These plots depict the average nor-
malized entropy of the mixture distributions produced during the simulation for
each network. The left plot contains the gauged normalized entropy of unmod-
ified mixture distributions. Contrary, the on the right the softmax function of
Equation 7 is applied - using 50 as � - onto the mixture distributions. Definitely
the normalized entropy on the right plot is lower than on the left. This is a
consequence of the reduced uncertainty of the mixture distributions through the
applied softmax function.

which consequently results in situations where only a small amount of candidate
nodes are available. Moreover this nodes are likely to have a high di↵erence in
the probability distribution. This is especially the case for cosine similarity.

6 Discussion

In our experiments the cosine similarity plays a more important role (best ↵ =
0.9) than the degree information. We believe that this is caused by the properties
of the networks we use. All of them are small and have low diameters (3 - 8). Due
to these properties the probability of having a neighbor which has a common
neighbor with the target node is higher than it would be in larger networks with
bigger diameters. Additionally, even if the cosine similarity of all neighbors is
zero, the resulting navigation behavior - a random walk - has a high probability
of moving to high degree nodes. For example, the famous page-rank algorithm
takes advantage of this e↵ect to identify popular nodes in a network [8]. Thus,
a uniform mixture distribution favours high degree nodes.

Therefore, we strongly believe that simulations steered by cosine similarity
- in power-law or log-normal networks - naturally include a zoom out phase.
Nevertheless, additional information of the degree of neighbors may cut down
the hops needed for the zoom out phase. Moreover, this intuition is supported
by the observation, evident in our experiments where the dynamic switch model
in combination with a low initial ↵ outperformed all other models.

7 Future Work

One limitation of our research is that the cosine similarity is not a complete local
measure of homophily. It includes information about the neighbors of both the
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current and the target node. Hence we are working on a metric more suitable as
a proxy for local homophily. For example, a measure which can only determine
if the target is in it’s neighborhood or in the neighborhood thereof. This would
also allow us to adjust the scope of local knowledge. Furthermore, we plan on
applying our framework onto synthetic - especially non power-law/log-normal -
networks in future work.
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Abstract. Temporal networks encode interactions between entities as
well as the time at which the interactions took place, allowing us to
identify systematic processes within the network. We can identify sub-
processes or temporal motifs that recur frequently across a large network.
In this paper, we present a strategy that allows us to identify which of a
given set of temporal processes are over-represented. This highlights pe-
culiarities of behaviour in the network. Our strategy involves construct-
ing a set of interesting temporal processes, counting their embeddings
in the network through subgraph matching, and then comparing this
against counts in a temporally random version of the network. The net-
work is randomized by shu✏ing the time-stamps in the original network.
We present an evaluation on data from Prosper.com, a peer-to-peer lend-
ing website. Prosper.com was closed for regulatory reasons in 2009 and
our evaluation shows interesting di↵erences between the pre- and post-
closure networks. In particular, temporal motifs indicating arbitrage are
over-represented pre-closure and under-represented afterwards.

1 Introduction

Increasingly, temporal information is included with complex network data sets.
Thus, instead of examining a set of static interactions between individuals, a
finer-grained understanding of those interactions is now possible. Temporal net-
works have been used to represent a wide variety of social phenomena, from
person-to-person communication to contagious disease spread by physical con-
tact between people. The notion of spreading in a network can be more accurately
identified when the times at which interactions took place are recorded.

When analyzing the processes that give a complex network its structure,
recurring patterns of interaction often come to light. These frequent patterns
are referred to as motifs, and are considered the building blocks of networks
[16]. When temporal information is incorporated into the search for motifs, the
results can have a clearer interpretation. For example, the initiator of a conta-
gion may be easier to identify, since the first interaction in the contagion would

? This work was supported by Science Foundation Ireland [08/SRC/I1407,
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have originated from that individual. Likewise, the potential reach of a piece of
information in a communication network may be easier to isolate, given that
propagation is time-dependent in the network.

The network we analyze in this paper comes from Prosper.com [20], a peer-
to-peer lending platform. Members of the website can register to borrow and
lend, and act without a bank as an intermediary. The loans among members are
unsecured, so there is a risk that a member to whom you lend may default on
their repayments. Temporal information is available with the data, which allows
us to examine the structure and temporal dimension of some interesting motifs.

Given the wide range of credit ratings that the members have, and the abil-
ity for members to both borrow and lend, the opportunity for arbitrage arises.
Members with a good credit rating can borrow money at a low interest rate,
and lend the same amount at a high interest rate to members with lower credit
ratings, aiming to profit from the di↵erence in rates. The website may also pro-
vide an opportunity for members to engage in money laundering. In a simple
example, money could be lent to from one member to another, and the borrow-
ing member could default, hence completing the transfer of funds without the
regulation of a bank. More complicated examples could also be imagined, involv-
ing intermediate members. In both scenarios, the network structure representing
the behaviour must be composed of time-respecting paths, in which interactions
occur in a non-decreasing temporal order.

The purpose of our current study is to examine the extent to which these
time-dependent behaviours occur in the Prosper network to a greater extent than
might be expected. To do this, we first count the embeddings of a set of time-
respecting network patterns that represent this behaviour, using a subgraph
matching algorithm. It is important to note that the patterns are not mined
automatically - rather they are specified a priori and sought in the network.
Then, we repeatedly re-assign the time-stamps on the interactions randomly,
counting the embeddings again each time. It turns out that the presence of the
time-respecting patterns is highly dependent on the timing of the interactions
in the real network. This demonstrates the importance of temporal analysis for
understanding behaviour in networks.

The paper is organized as follows. Section 2 presents related work, in the
areas of temporal network analysis, subgraph matching and modularity. Section
3 introduces our methods for performing the matching and temporal analysis.
Our results are discussed in Section 4. Section 5 concludes the paper and suggests
future work.

2 Related Work

In order to asses the frequency of temporal motifs in networks, this paper draws
on work from the fields of temporal network analysis and subgraph matching.
To asses the significance of certain motifs in a network, we use methods from
the area of network modularity.
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2.1 Temporal Network Analysis

Given the prevalence of temporal information available with network data, ideas
associated with static networks are being revised to take this new aspect into
account. A comprehensive review [8] details these concepts. A fundamental con-
cept in this paper is that of a time-respecting path, defined as a sequence of
contacts which occur at non-decreasing times [10].

In a reachability graph, there must be a time-respecting path between nodes
i and j for a directed edge to exist between them. Reachability graphs reveal the
nodes which are reachable from a single root node [17]. Analysis of the reacha-
bility graph within a dating network of high-school students reveals interesting
behaviour in relationships [2]. A time-respecting subgraph [22] is a generalization
of a reachability graph, since it does not require a root node, but insists on
reachability along each directed path.

The lifespan of a piece of information in a temporal communication network
may be specified by a time window [25], which measures the time between the
end of one communication and the beginning of the next. The closer in time
the contacts take place, the higher the likelihood that the subject is the same.
Similarly, the relay time of an interaction captures the time taken for a newly
infected individual to spread the infection further via the next interaction they
participate in [11]. The spread of information through a temporal network can
also be modeled by a cascade. The structure of cascades can reveal spreading
and community development [7]. The importance of time-constrained cascades
is emphasized for understanding contagion [1].

Temporal motifs, as defined by Kovanen et al., are connected subgraphs com-
posed of similar event sequences, where similarity is measured in terms of the
topology and temporal ordering of the events [12]. All adjacent events in a tem-
poral motif must occur within time �t of each other, and the events connected
to a node must be consecutive in time. So if a node n in a temporal motif partic-
ipates in events at times t0 and t2, then if an event exists involving n at time t1,
it must also be included in the motif so that the motif is valid. This is distinct
from a flow motif, in which directed events that meet head-to-tail must be con-
secutive in time. Kovanen et al. propose an algorithm to find temporal motifs,
which do not have the flow requirement. In contrast, the aim of our approach
is to e�ciently find subgraphs in which interactions occur within a specified
time of each other, and in which events meeting head-to-tail are consecutive in
time. In subsequent work, Kovanen et al. explored temporal motifs in a mobile
communication network [13]. By including other attributes of the data, interest-
ing mechanisms were found such as gender-related di↵erences in communication
patterns, and a tendency for similar individuals to communicate more often than
might be expected.

2.2 Graph and Subgraph Isomorphism

The subgraph isomorphism problem determines whether a given graph contains
a subgraph which has the same topological structure as another given graph.
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Subgraph isomorphism is an NP-complete problem [6], so the time complexity
of brute force matching algorithms increases exponentially with the size of the
graphs and query graphs to be matched. This makes the problem prohibitively
expensive to solve for large graphs.

Algorithms were developed which restrict the topology of the graphs and
hence constrain the complexity. Such methods include the enforcement of pla-
narity [9] or bounded valence [14]. Other approaches depend on deriving associ-
ated graphs, and on topological features such as strong regularity [5]. Another
type of derived graph used is the canonical form of the graph, as in the Nauty
algorithm [15].

Ullmann proposed a backtracking approach to solve the graph and subgraph
isomorphism problems [24]. In an extension to the popular algorithm, the search
space is pruned based on the degree of nodes in the graphs to be matched. An
algorithm by Schmidt et al. [23] also employs backtracking, but uses the distance
matrix representation of a graph to inspire the pruning steps.

The VF algorithm of Cordella et al. presents a depth-first search strategy
for graph and subgraph isomorphism [3]. The matching process is described by
a state space representation, in which each state of the process is associated
with a partial solution. The partial solution includes the elements of the two
graphs which match each other so far. The algorithm tries to extend each partial
solution based on neighbouring nodes in the query graph and the network graph
which maintain the match. The speed of the algorithm compares favourably with
Ullmann’s popular backtracking approach. An enhanced version, VF2, provides
further performance gains [4] by substantially reducing memory requirements.

2.3 Network Motifs

Network motifs are patterns of connected nodes that occur at higher frequencies
in real networks than in randomized networks [16]. Detecting network motifs
gives insight into the processes that networks encode. Milo et al. discovered
that classes of networks which performed similar functions had similar network
motif profiles. For example, information processing networks from such di↵erent
application areas as biomolecules within a cell and synaptic connections between
the neurons in Caenorhabditis elegans were comprised of similar network building
blocks.

To make this finding, the authors computed the occurrence frequency of a
collection of motifs in a network. The structure of the network was then ran-
domized, although each node in the randomized network maintained the same
in- and out-degree as in the original network. The motifs were counted again
in the randomized network. This randomization and counting was performed
repeatedly, and the mean of the motif occurrences was computed. When the
number of embeddings of a given motif is much lower in a randomized network,
its frequency in the original network is therefore indicative of the functionality
encoded by that network.

In contrast to the work of Milo et al., we aim to unearth significant tem-
poral structures of the network, rather than structural properties in isolation.
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To achieve this, we count the time-respecting embeddings of query graphs that
we specify. We then randomize the temporal information associated with the
network, following a methodology described in Section 3. We then count the
time-respecting embeddings in the randomized network. After repeating this
step a number of times, we compute the average number of embeddings in the
randomized networks. This reveals an interesting set of structures whose preva-
lence depends on processes encoded in the original version of the network.

3 Methods

This section describes our problem framework. We present our methodology for
matching time-respecting subgraphs and identifying their prevalence in random-
ized versions of real temporal networks.

3.1 The Problem Framework

To find subgraphs embedded in a network which match the query graphs we
specify, we must solve the subgraph isomorphism problem in the context of
temporal networks. The definition of subgraph isomorphism for static networks
may be presented as follows [24]:

Definition 1. A graph G2 is isomorphic to a subgraph of a graph G1 if and only
if there is a one-to-one correspondence between the node sets of this subgraph and
of G2 that preserves adjacency.

Instead of referring to an “edge” between two nodes, we use the term “inter-
action” to specify a triplet, made up of two nodes and the time of their contact.
We define a directed temporal graph as follows:

Definition 2. A directed temporal graph G consists of a set V of nodes and a
set E of three-tuples denoting interactions. An interaction ei 2 E is represented
by ei = (ui, vi, ti), in which ui is the source node, vi is the target node and ti is
the initiation time of the interaction.

In order for a flow of information or a disease contagion to take place in a
temporal network, adjacent interactions must be time-respecting.

Definition 3. Let ei and ej be interactions in a directed temporal graph. The
interactions are time-respecting if they are adjacent and 0  |tj � ti|  d, for
some threshold d. If the interactions do not share a source node or a target node,
then either vi = uj and ti  tj, or vj = ui and tj  ti must be true.

Time-respecting paths describe a non-decreasing sequence of interactions
[19]. A path can be thought of as a mechanism for passing information from
a source, along a sequence of intermediaries, to a target. We aim to find sub-
graphs composed of these paths in temporal networks.
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With traditional time-slicing, the specified time window determines the inter-
actions examined, between a minimum and maximum interaction time. However,
a time-respecting path has no such bounds in reality. In fact, given the right con-
nectivity and timing of interactions, a path might be initiated when the network
is first created, and continue until the latest point in the data set. Under such
circumstances, time-slicing can lose a lot of important context and information.

We define a time-respecting subgraph in terms of time-respecting interac-
tions. We seek query graphs that are connected, so we require that the embedded
subgraphs are connected.

Definition 4. A time-respecting subgraph S = (V 0, E0) of a temporal graph
G = (V, E) is composed of a set of nodes V 0 ✓ V , from which any pair of nodes
is connected via a set of interactions E0 ✓ E such that the nodes comprising in-
teractions in E0 are in V 0, and every adjacent interaction pair is time-respecting.

In our implementation, embedded subgraphs are induced. So, given any pair
of nodes in an embedded subgraph, all interactions between them are included
in the embedding. So, if a potential embedding includes more interactions than
specified by the query graph, the embedding will not be returned.

Fig. 1. An example of a time-respecting subgraph. Here, t0  t1  t2  t3. All inter-
actions which are incident to the same node must occur within time d of each other.
Thus, we require that |t3 � t0|  d. All incoming edges to a node n must precede all
outgoing edges from node n. So, we must have that t0  t2, t0  t3, t1  t2 and t1  t3.

3.2 The Matching Algorithm

We retain the notation used in the description of the recursive VF2 algorithm
by Cordella et al. [4]. The matching process is described by a state space rep-
resentation, in which each state s of the process represents a partial mapping
solution. In a state s, a portion of the query graph G2 matches a portion of the
network graph G1. The portion of G1 in the mapping is induced. So, given a set
of nodes in the mapping, any interactions between them are also present in the
mapping.

Given such an intermediate state s, the mapping is extended by first comput-
ing candidate node pairs (one node each from G1 and G2). The candidate node
from G2 is selected from the set of neighbours of the nodes in G2 that are cur-
rently in the mapping. This guarantees that the node is connected to the portion
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of the query graph currently matched. The candidate node from G1 is selected
in the same way, from the neighbours of the nodes currently matched in the
embedding from G1, so the embedding will be connected. Once the new nodes
are included in the mapping, all interactions between them are also included.
The two new, extended portions in the mapping must be graph isomorphic in
order to be considered a feasible match. If they are not graph isomorphic, the
candidate nodes are discarded as a matching pair, and the process then continues
with a new node pair.

If a topological match is confirmed, a semantic match is considered. In our
setting, we utilize the dates on which the interactions occur in G1. Given an em-
bedding of the subgraph G2 in the graph G1, we don’t require that the dates on
each paired interaction match each other, but rather that the partial embedding
of G2 in G1 is time-respecting.. Since we are interested in the actual times at
which interactions occurred in the network data, only the semantic feasibility of
G1 is checked.

The memory requirements of the VF2 algorithm are constrained through the
use of data structures which are maintained at each recursion level. We keep
track of both topological and temporal information in the same way. A map
data structure named core 1 contains the nodes in the current mapping from
G1 to G2. This provides an e�cient way for us to test that a candidate node for
inclusion in the mapping will maintain the time-respecting property we require
for all of the induced edges.

Before testing the legitimacy of a candidate node G1 node, we construct a
set of data structures. The list pred contains the predecessors of G1 node in G1
which are also in core 1, and thus part of the current mapping. Analogously,
succ contains the successors of G1 node in G1 which are also in core 1. The
lists pred dates and succ dates contain the dates, in increasing order, on which
connections between G1 node and the relevant predecessor or successor nodes,
respectively, were made. The list dates combines these dates, sorted in increasing
order.

As described in Definition 4, a pairwise comparison of adjacent interactions
must ensure that each pair is time-respecting. Accordingly, a candidate node
must fulfil these criteria when included in a potential embedding of G2 in G1.

3.3 Re-assigning Time-stamps

We aim to discover the extent to which the number of embeddings of a query
graph in the network is uniquely a property of the temporal aspect of the net-
work. To ascertain this, we repeatedly re-assign the time-stamps on the interac-
tions, and count the number of embeddings again each time. The re-assignment
is performed by first stripping all of the time-stamps o↵ the interactions. We
then shu✏e the order of this time-stamp collection using the shu✏e algorithm
from Python’s built-in random module. We then iterate over the entire set of
interactions, assigning a time-stamp to each interaction. Thus, the re-assignment
is global in scale.
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4 Results

To find out whether certain types of time-respecting subgraph are characteristic
of real networks, we constructed a temporal network and a set of query graphs
in order to perform our experiments. This section details the network data used,
the query graphs, our analysis and the results.

4.1 Network Data

The website at Prosper.com [20] provides a forum for prospective borrowers and
lenders to connect and exchange funds. Prosper.com allows members to borrow
and lend without the presence of a bank. This means that borrowers with low
credit-worthiness have a better chance to get loans, since the requirements for
being funded are lower. It also gives people a chance to invest smaller amounts,
to experiment with lending.

For the purpose of our experiments, we constructed a directed temporal net-
work of lenders and borrowers, connected via loans. An interaction is composed
of a source (the lender) and a target (the borrower) and represents the money
sent in contribution to a loan request. An interaction also contains the time at
which the money was transferred. We set the d-value (maximum time allowed
between interactions) to 6 days, to reflect the time-scale at which the network
operates.

Since the Prosper.com marketplace closed for a period in 2009 due to regu-
latory issues, we extracted two portions of the network; one before and one after
the temporary closure. This allowed us to compare the social behaviours that
occurred in the network as a result of di↵erent levels of regulation. The details
of these networks are listed in Table 1. An important point to note is that the
duration of each network is the same, as is the size of each network. So, when the
time-stamps are randomly re-assigned, there is the same amount and variation
in the time-stamps.

Network Start Date End Date Order Size

Pre-closure 1st November 2006 31st December 2006 8,690 72,215
Post-closure 1st September 2009 31st October 2009 7,201 77,026

Table 1. The pre-closure network spans the last three months of 2006, while the post-
closure network runs from the beginning of September to the end of October in 2009.
Both networks have a similar number of interactions, and occur over the same amount
of time. This means that shu✏ing the time-stamps on the interactions ought to have a
similar e↵ect in both networks, since the distribution of time-stamps and interactions
is comparable.
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4.2 Query Graphs

We enumerate some small directed query graphs that have clear interpretations
in the context of the Prosper network, illustrated in Fig. 2. These only encode
the topological structure of the patterns we are interested in. When we examine
their topological embeddings in the network, we also check that the embeddings
are time-respecting, so the notion of non-decreasing activations along the paths
in the query graphs is maintained.

(a) 2-path (b) 2-out-star (c) 2-in-star (d) feed-forward (e) 3-path

Fig. 2. The query graphs sought in the Prosper network. Each node represents a mem-
ber of the Prosper marketplace, and each interaction represents a sum of money being
transferred via a loan. These queries were chosen since their structure is clear in the
context of the network data.

4.3 Analysis

The experiments were performed on a Linux server with a 2 GHz processor,
limited to 5GB of physical memory. The algorithms we proposed for performing
the subgraph matching and the re-assignment of time-stamps were implemented
in the programming language Python [21], using the NetworkX library [18].
The VF2 algorithm is included in this library, and was implemented as part
of a project at the Complexity Sciences Center and Physics Department, UC
Davis. We extended this implementation to process temporal networks and use
temporal information during the matching process. Our implementation can
handle directed graphs as well as directed multigraphs (graphs with multiple
interactions between nodes).

The results of our experiments are listed in Table 2. In both the pre- and
post-closure network, the 2-in-star and 2-out-star queries had the highest number
of embeddings. This is likely to be a result of how the Prosper marketplace is
used; by members who either exclusively borrow or lend. Borrowers have a high
in-degree, since the loans they request are funded from many sources, who all
give relatively small amounts. Lenders have a high out-degree, since they need
to distribute their lending portfolio over a range of borrowers in order to make
a more reliable profit.

When the time-stamps are randomly re-assigned in the pre-closure network,
the number of embeddings of the query graphs drops between 20% and 89.1%.
This strongly suggests that the actual timing of the interactions was important
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Network Structure Count Mean Std. Dev. Decrease

Pre-closure

2-path 15,061 11,717.8 166.4 22.2%
2-out-star 1,083,154 819,451.4 3,826.1 24.3%
2-in-star 5,209,926 1,083,642.2 2,215.9 79.2%
feed-forward 1,130 123.0 12.5 89.1%
3-path 1,584 1,267.5 181.5 20.0%

Post-closure

2-path 6,237 6,411.4 179.8 -2.8%
2-out-star 1,064,034 786,908.3 2,784.4 26.0%
2-in-star 17,900,180 3,806,272.3 9,061.4 78.7%
feed-forward 1,516 217.0 20.7 85.7%
3-path 825 847.0 219.7 -2.7%

Table 2. Comparing the number of embeddings found in the pre- and post-closure
networks. The count lists the number of embeddings with the original time-stamps
in place. The mean shows the average over 100 separate counts of the number of
embeddings after randomly re-assigning the time-stamps every time. In the pre-closure
network, embedding counts dropped after shu✏ing the time-stamps. The same was
true in the post-closure network, except for the path query graphs, indicating that
their presence in the network is not necessarily a property of the original network.

for the processes to take place. The greatest drop in the number of embeddings
occurs with the queries containing a higher in-degree. This makes sense, since a
borrower needs to get funds from multiple lenders at around the same time for
a loan to go ahead. If the time-stamps are shu✏ed, this condition may not be
met. This demonstrates the e↵ectiveness of our strategy; real social behaviour
in the network is shown to be dependent on interaction timing.

The most interesting results relate to the path queries in the post-closure
network. An intermediate node in a path may represent an arbitrageur. An
arbitrageur aims to profit from the di↵erence in interest rates between the loan
taken on and the loans given to borrowers. The timing of this sequence of loans
is important for the arbitrage to be successful. The di↵erent results for the pre-
and post-closure network indicate the influence of greater regulation within the
marketplace. Specifically, the number of embeddings of path queries does not
decrease when the time-stamps are re-assigned. Thus, the existence of the time-
respecting paths in the original network does not reveal a process that is unique
to the network. This is consistent with the fact that stronger regulation may
have discouraged arbitrage. In the case of money laundering, the existence of
intermediate individuals is also a possibility. So, this result also indicates that
if attempts at money laundering occurred in the pre-closure network, it was
discouraged by greater regulation.

5 Conclusions and Future Work

The primary aim of this work is to evaluate the importance of temporal in-
formation in a network for identifying the processes that underly the network
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topology. Specifically, we examined the network from Prosper.com to see if the
existence of some suspicious patterns was dependent on the time at which the in-
teractions which made up the pattern took place. To do this, we specified some
query graphs to search for in the network and counted their time-respecting
embeddings. Then, we randomly re-assigned the time-stamps and counted the
embeddings again. We did this latter step 100 times, and took the average of the
counts. Almost all the counts dropped in comparison with the actual network.

Since Prosper.com closed due to regulatory issues in 2009, we compared a
portion of the pre- and post-closure network to see if there was a change in
behaviour. The query graphs associated with arbitrage or potentially money
laundering behaviour were prevalent in the pre-closure network, but not so in
the post-closure network. This was revealed by the fact that, after temporal
randomization, the number of embeddings dropped in the pre-closure network,
but did not change in the post-closure network. This is likely to be an e↵ect of
increased regulation on the lending platform.

The time at which interactions take place is a key component of network
formation, and can help to explain many types of emergent social behaviour. In
future, we aim to apply these methods to other networks which contain temporal
information, especially networks which operate at a finer temporal grain. This
will help to validate the performance of our algorithm, and may give an insight
into which processes play a significant role in the networks in question. Given our
prior knowledge of the Prosper network, our validation of what constitutes an
interesting pattern is intuitive. In future, a method for automatically extracting
over-represented patterns would overcome this dependency and potentially yield
unforeseen network behaviour.
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Abstract. Twitter is both a micro-blogging service and a platform for
public conversation. Direct conversation is facilitated in Twitter through
the use of @’s (mentions) and replies. While the conversational element
of Twitter is of particular interest to the marketing sector, relatively few
data-mining studies have focused on this area. We analyse conversations
associated with reciprocated mentions that take place in a data-set con-
sisting of approximately 4 million tweets collected over a period of 28
days that contain at least one mention. We ignore tweet content and
instead use the mention network structure and its dynamical properties
to identify and characterise Twitter conversations between pairs of users
and within larger groups. We consider conversational balance, meaning
the fraction of content contributed by each party. The goal of this work
is to draw out some of the mechanisms driving conversation in Twitter,
with the potential aim of developing conversational models.

Keywords: Twitter mentions networks, conversations models, maximal
cliques

1 Introduction

The rapid uptake of online social media, combined with consumer behavioural
changes around television and news broadcasting, has instigated a sea change
in attitudes within the advertising and marketing sectors. A frequently encoun-
tered adage is that “everything is about conversation and not about broadcast-
ing” [10,6]. By facilitating public addressability through the @ sign (so called
‘mentions’) and enabling private messages, Twitter has confirmed their inten-
tion to function as a communication channel as well as a broadcasting tool.
Access to large quantities of data produced by Twitter users has resulted in a
surge of interest from the academic community [20], who have largely focused
on Twitter’s information flow and retweet behaviour, and hence implicitly the
underlying network of ‘followers’ (e.g. [22,21]). While broadcasting short mes-
sages, or micro-blogging, remains an important component of Twitter use, to
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our knowledge comparatively little work has addressed the mining of (public)
conversations on a large scale [3,19,14]. Consequently, we focus in this paper
on analysing the network of communication patterns resulting from mentions in
Twitter.

Although it may not always be clear, even from message content, what in-
tention a user had in mind when posting—information seeking or information
sharing, broadcasting or conversation—we have tried to specifically extract con-
versations by focusing our data-analysis on reciprocated tweets. Moreover, we
have completely ignored the content of conversations and concentrated on struc-
tural and dynamic properties of the underlying mentions network. Our main
objective was to mine actionable insights that could inform our knowledge of
conversational mechanisms and the frequency/timings of tweets. Our hope is
that empirical observations and quantifiable insights from this analysis could
inform a simple, data driven model of the timing and structure of Twitter con-
versations. One possible application would be for automated recommendations
of conversation trends, as discussed in [3,1].

A large number of registered Twitter accounts are operated by automated
software scripts, known as bots [18]. While such accounts are encouraged for
the purpose of developing applications and services, bots whose functions vio-
late Twitter policy (e.g. spammers) are common. The analysis of conversational
patterns and the development of associated models have potential application
for those trying to develop algorithms that can identify nuisance bots. Further-
more, the identification of groups of Twitter users who, through conversational
behaviour, are particularly influential on a specific topic would be particularly
attractive in the marketing sector. Thus, understanding conversational struc-
ture could impact the design and implementation of social media campaigns
and potentially provide a quantitative comparison between Twitter discourse
and other channels of communication, such as face-to-face, telephone, SMS, fo-
rums or email. In addition, curating and recommending conversational trends,
for both Twitter and more generally in online social media, is crucial for social
networking sites as it is one of the main characteristics of user experience. We
believe that a better understanding of the structure, dynamics and balance of
multi-user conversation is key to improving such automated curation systems.
Ultimately, we hope that studying Twitter conversation can ultimately improve
user experience.

In Section 2, we give an account of previous work in this space. Our results
of pairwise and multiple conversations and the Twitter dataset we used are
presented in Section 3. Finally, in Section 4 we summarise and describe possible
directions of future work.

2 Previous work

The phenomenal uptake of Twitter over the last few years has resulted in a
rapidly growing interest in mining Twitter data and particularly sentiment anal-
ysis of tweets. A recent study analyzing a large amount of Twitter and Face-

2
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book data [12] found correlations between friendship/follower relations and pos-
itive/negative moods of Twitter users. Diurnal and seasonal mood rhythms that
are common across di↵erent cultures have also been identified in cross-cultural
Twitter data [5], shedding light on the dynamics of positive and negative a↵ect.

A study of conversations within a sample of 8.5k tweets collected over an hour
long period [9] found that the @ sign appeared in about 30% of the collected sam-
ple, its function was mostly for addressing (as intended) and it was relatively well
reciprocated—around 30% of messages containing an @ were reciprocated within
an hour. The majority of these conversations were short, coherent exchanges be-
tween two people, but longer exchanges did occur, sometimes consisting of up
to 10 people. They found that

“...Tweets with @ signs are more focused on an addressee, more likely
to provide information for others, and more likely to exhort others to do
something—in short, their content is more interactive. ”

Twitter conversations also contain both momentarily salient or ‘peaky’ topics,
signified by increased word-use frequency of specific terms, as well as more ‘per-
sistent conversations’, in which less salient terms recur over longer periods [14].
In addition, words that relate to negative emotions are less persistent [22].

In [3], several algorithms for recommending conversations based on the lengths,
topic and ‘tie-strength’3 of conversations were compared. Their results showed
that the di↵erent uses of Twitter (social vs. informational) had a big influence
on the algorithm’s performance — recommendations based on tie strength were
preferred by social users, whilst those based on topic were preferred by informa-
tional users. Related work considered automated curation of online conversations
to present discussion threads of interest to users in e.g. Facebook and Google+.
[1]. Key to this was the prediction of conversation length around a topic and
re-entry of interlocutors. In another work concerning Twitter conversation [13],
a relatively large corpus and content (topic) analysis of 1.3 million tweets was
used to develop an unsupervised model of dialogue from open-topic data.

In our work we completely ignore content, instead focusing on timing, struc-
ture and balance of conversation between pairs of individuals as well as multi-user
conversations. Our contribution is an attempt to map the structure of Twitter
exchanges over a relatively large dataset, while o↵ering some new methods to
mine conversation data and improve statistical models of dialogue.

3 Analysis

3.1 Data

The Twitter data-set investigated in this paper was collected on our behalf
by Datasift, a certified Twitter partner, allowing us to access the full Twitter

3 Tie-strength is an increasing function of the number of exchanged messages between
two people and the number of messages exchanged between them and their mutual
friends.

3
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firehose rather than being rate-limited by the API. The data-set consists of all
UK based4 Twitter users that sent tweets with at least one mention between
8 Dec 2011 and 4 Jan 2012 (28 days in total). In the remainder of the paper,
use of the word ‘tweet’ will specifically mean tweets containing at least one
mention. Mentions are messages that include an @ followed by a username.
Thus if person a puts “@b”, it designates that a is addressing the tweet to b
specifically. Mentions are not private messages and can be read by anyone who
searches for them. A tweet can be addressed to several users simultaneously using
@ repetitively. Any Twitter user can mention any other Twitter user, they don’t
have to be related in any way. Since conversational characteristics are influenced
by many factors, including language, culture, community membership etc., one
has to keep in mind the natural limitations of the results of our analysis.

We preprocessed the data, removing empty mentions and self-addressing5

and created a directed multigraph, or mentions network, containing 3, 614, 705
timestamped arcs (individual mentions) from a total of 819, 081 distinct user-
names, or nodes. Of these distinct usernames, 732, 043 were “receivers”, i.e. to
whom a message was addressed, and 137, 184 were “tweeters”, i.e. people who
tweeted a message with a mention. There were approximately 50k nodes that
appeared both as tweeters and receivers. Note that our graph is a multigraph,
meaning that multiple arcs are allowed between pairs of nodes, each having a
direction and timestamp.

3.2 Conversations

An important feature of both face-to-face conversation [16,15] and computer-
mediated communication [8], is the process of turn-taking. Thus in sequences of
mentions between pairs of users, say a and b, we might expect that sequences
like ABABAB would be more common than say AAABBB, where we use A
to denote that party a mentions party b and likewise B to denote that party b
mentions party a.

To establish if this is the case, we assume the null hypotheses that contri-
butions are independent events with probability PA that party a contributes to
a conversation and thus probability PB = 1 � PA that party b contributes. For
a given interaction sequence of length N between parties a and b, we are inter-
ested in the number of occurrences of B following A and vice-versa. We call these
transitions, thus the sequence ABAABBA of length N = 7, has 4 transitions.
Note that we focus on reciprocated interactions, meaning that each party makes
at least one contribution and consequently that there is by default at least one
transition in all interactions that we consider. We call the remaining transitions
the excess transitions. For any sequence of length N , the maximum possible
number of excess transitions is clearly N � 2. Under the null hypotheses, excess

4 All Twitter users appearing in our data-set had selected the UK as their location.
5 Self-mentioning was surprisingly common in the data-set: 12,680 di↵erent users cre-

ated a total of 44,319 self-mentions, with the maximum being 5,586 from an auto-
mated service that advertises itself at the end of each tweet.

4
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transitions occur with probability PT = 2PA(1 � PA). Since we assume that
transitions are independent, the probability distribution of a given number of
excess transitions is binomial, and thus the expected number is ET = (N �2)PT

with variance VT = (N � 2)PT (1 � PT ).

To test the null hypothesis, we consider all reciprocated pairwise interaction
sequences in our Twitter data-set. For each sequence having nX contributions
from party X 2 {A, B}, we assume that the probability of party a contributing
is simply nA/(nA + nB). This does not yield any problematic probabilities (i.e.
0 or 1) since both parties always make at least one contribution.

Each sequence may have a di↵erent number of interactions and a di↵erent
transition probability, but assuming that the pairwise interactions are indepen-
dent, the expectation and variance of the ensemble is simply equal to the sum of
the interaction expectations and variances respectively. Doing this, we find that
the expected number of transitions is 85,390 with a standard deviation of 226.3,
but we observe 88,758 transitions in practice, more than 15 standard deviations
above the expected value. We take this as strong evidence that we can reject
the null hypothesis and thus infer that the data contains a significant level of
turn-taking and hence conversation.

Each sequence of pairwise interactions may constitute a number of di↵erent
conversations, but ascertaining when one conversation ends and another begins
may be an extremely di�cult task, especially when the goal is to apply an
automated processes to a large data-set. Instead of using a time-intensive lexical
analysis, we investigate whether we can detect conversations by applying a simple
threshold rule to the time gap between responses, where we assume that a time
gap that is larger than the threshold indicates the start of a new conversation.

This method requires that we can identify a suitable threshold. To achieve
this, we divide each sequence of pairwise interactions up according to a given
threshold, then define distinct conversations to be reciprocated sub-sequences,
i.e. sequences containing a contribution from both parties. Thus the number of
sub-sequences nI is always larger than the number of distinct conversations nC.
In Fig. 1(a) and (b) we plot the mean number of sub-sequences and the mean
number of distinct conversations respectively over a range of threshold values.
The number of distinct conversations nC has a peak value at approximately
9hrs. This peak is expected, since we only count reciprocated interactions as
distinct conversations. Thus small threshold values, which split an interaction
sequence up into a large number of short sub-sequences (see Fig. 1(a)), result in
relatively few distinct conversations because many of the sub-sequences feature
contributions from only one party. High threshold values also result in a small
number of conversations, but this is simply because they do not split the sequence
up into many sub-sequences. Thus the maximum at 9hrs is a natural choice
of threshold and corresponds to one’s intuition that conversations may reflect
diurnal patterns.

The mean and median number of tweets during conversations were 13.09 and
4 respectively, but the distribution was heavy tailed (see Fig. 2).
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Fig. 1: Panel (a): Mean number of subsequences for a range of threshold values.
Panel(b): Mean number of distinct conversations for a range of threshold values.
Note that T , time threshold in hours, is normalised on the x-axis.
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Fig. 2: Distribution of conversation length.

We now consider whether the number of contributions from each party are
similar, or ‘balanced’ within pairwise interactions and conversations. For a given
sequence of tweets, there are two ways to compute balance, we can either con-
sider the ratio of means b = hmax(nA, nB)i/hmin(nA, nB)i or the mean of ra-
tios � = hmax(nA, nB)/ min(nA, nB)i. We will use the subscripts ‘I’ and ‘C’
to denote whether these have been calculated for interactions or conversations
respectively. Since we only consider reciprocated interactions, both quantities
are well-defined and we would generally expect b < �. For the total number of
interactions between pairs, we find that bI = 2.424 and �I = 3.457. Thus on
average, one party contributes around 3 times as much as the other. For the
sub-set of conversations, we find that bC = 1.148 and �C = 1.425. These are
much closer to 1, and hence more what we would expect from typical, balanced
conversations. The distribution of conversation contribution ratios is plotted in
Fig. 3(a), which illustrates that conversations are most likely to be balanced,
but some extremely unbalanced conversations do occur. In Fig. 3(b), for each

6

78



Balance

C
ou

n
t

100 101 102
100

105

n
m
ax

nmin
0 50 100 150
0

50

100

150

(a) (b)

Fig. 3: Panel (a): Distribution of conversation balance. Panel (b): Mean maxi-
mum conversation contribution as a function of minimum contribution.

minimum conversation contribution nmin = 1, 2, 3, . . . , we compute the mean of
the maximum contribution nmax. There is a roughly linear trend (the grey line
is nmax = 1.148nmin + 1), which further illustrates conversational balance.

3.3 Multi-user conversations

By allowing multiple @ signs in one message, a Twitter user could send a tweet
to several recipients simultaneously, facilitating multi-user conversations or mul-
ticasting. Note that because of the 140 character limit there is a physical limit
on how many users each message can be multicast to.

In this part of analysis, our aim is to

– Identify multi-users exchanges;
– Determine how many users typically engage in them;
– Identify their time-frame, pace and how balanced they are.

In addition, are all users equally involved, or do some dominate the discussion?
Are the same people at the heart of di↵erent multi-user conversations? What
are the enablers and inhibitors of conversation flowing in the sense of pauses
between consecutive contributions?

3.4 Identification of multi-users conversations

The reciprocated mentions data represents a directed multi-graph G (where
an edge from A to B implies at least one edge from B to A), thus multi-
user exchanges correspond to strongly-connected6 subgraphs of G with k > 2
participants. We ran a non-recursive version of Tarjan’s algorithm [17,11], as

6 A directed graph is called strongly-connected if there is a path from each vertex in
the graph to every other vertex. This means that for two vertices a and b there is
a path in both directions, i.e. from a to b and also from b to a. Strongly-connected
components of a graph are maximal subgraphs that are strongly-connected.
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implemented in NetworkX [7], to get a list of the strongly-connected compo-
nents of G. Pairwise conversations were discussed in Section 3.2, so we excluded
all strongly-connected components of size 2 from the present analysis. Each
strongly-connected component of at least three vertices was then transformed
into an undirected multi-graph and we ran the NetworkX implementation of the
modified Bron’s algorithm [2] to find all maximal cliques7. We then disregarded
all cliques of size two. We found in total 2190 cliques of size 3, 4, 5 and 6. The
total number of users in these cliques was 3275 which is around 20% of users
who reciprocated mentions.

In order to take the time elapsed between consecutive messages into account,
we use the same threshold method explained in subsection 3.2, this time demand-
ing for an exchange to be a“conversation” that there is a contribution from all
parties and got relatively similar results (see Fig 4). The number of exchanges
which had contribution from all parties was at peak around 9 and 11 hours. We
took a threshold of 9 hours which gave us 334 multiuser conversations of sizes
3, 4, and 5 (see Fig 5a).

(a) (b)

Fig. 4: Panel (a): Mean number of subsequences for a range of threshold values.
Panel (b): Mean number of distinct conversations for a range of threshold values
(threshold T in hours).

Most users (out of 646) in our dataset were involved in just one multi-user
conversation, but a small number were involved in multiple conversations. The
users’ involvement in multi-user conversation is illustrated in Fig 5b.

When examining the time-frame of multi-user exchanges, we found that the
correlation coe�cient between the total number of exchanges between clique
members and the average di↵erence between consecutive exchanges was �0.244
(see Fig 6a). This was not surprising, since we would expect lively conversations
(with lots of exchanged messages) to have a relatively fast pace, in contrast to
a casual exchange of messages with longer di↵erences inside our chosen 9 hour
time-window. The same picture is obtained from looking at the median time
di↵erences between consecutive messages across di↵erent clique sizes (see Fig

7 Maximal cliques are the largest complete subgraphs containing a given node.
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(a) (b)

Fig. 5: Panel (a): A size of cliques versus a number of instances (log y-axis).
Panel (b):Number of cliques individual users were involved in (log x axis).

6b). We also investigated how balanced multi-user exchanges were, although

(a) (b)

Fig. 6: Panel (a): Average di↵erence in seconds between two consecutive messages
in clique versus total number of exchanges. Panel (b): Histogram of medians of
di↵erences in seconds between two consecutive messages for cliques of size 3,
top, size 4, middle and size 5 bottom.

this situation is more complicated than in the pairwise case.

Firstly, we looked at the di↵erence between the number of tweets received and
sent by individual clique members. For each node, we computed the di↵erence
of their in-degree and out-degree. We summed up the positive values8 and to
normalise, we divided by the total number of exchanged messages. In this way,
we obtained a percentage of ‘unreciprocated’ messages, where reciprocity is not

8 Clearly the number of sent and received messages within a group are equal, thus
summing the di↵erences between in- and out-degree over individual members in the
group is by definition equal to zero.

9

81



toward a sender but toward a whole group. We show the histograms for the
di↵erent sizes of cliques in Fig. 7a. Across all clique sizes and in most of the
multi-user conversations around 30% messages were unreciprocated. In a small
number of conversations of 3 or 4 users a larger percentage were unreciprocated,
i.e. they were dominated by certain members, but also a large number of cliques
were very balanced (with unreciprocated messages at 0 � 10%), meaning every
individual received and sent a similar number of tweets.

Finally, we looked at so-called ‘floor-gaining’ [4], i.e. how much input each
user had over the course of a group exchange9. We compared the out-degree of
each user within a clique, (remember that each clique is a directed multigraph)
with the mean number of edges r = |nE|/|nV|, where nE is the total number of
edges within the clique and nV is the total number of vertices within the clique. In
a ‘round robin’ group conversation, with balanced turn taking, each user would
send out r messages, i.e. be responsible for an equal percentage p = 100r/e of
the total number nE of exchanged messages. For each clique size, we looked at
how many users’ representations were greater than or equal to p, i.e. those users
who ‘dominate’ the conversation. On Fig 7b below, we present the histogram for
a number of dominant users in the cliques of size 3, 4 and 5. This shows that in

(a) (b)

Fig. 7: Panel(a): The percentage of ‘unreciprocated’ messages for cliques of size
3, top, size 4, middle and size 5 bottom. Panel (b): A number of dominant users
in cliques of size 3, top, size 4, middle and size 5 bottom.

most of the cliques of size 3 and 4, one user was responsible for the majority of
communication, whilst in cliques of size five, 2 users were dominant. However in
about 13% of all cliques of size 3 no users dominated, confirming that Twitter
is used for multi-user conversations and not just pairwise conversations.

9 We argue that the action of tweeting in multiuser exchanges can be regarded as floor-
gaining, since tweets with mentions can in principal be read by a wider audience than
the group conversing.
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4 Conclusions

We looked at conversations in Twitter, based on the underlying structure and
timings in approximately 4 million UK tweets with mentions over a period of
28 days. We structured the data as a multigraph to make use of graph algo-
rithms. We proposed a simple method of identifying conversations between pairs
of users, based on a time-threshold on the time-to-next tweet, and found evi-
dence that a threshold of 9hrs gives a good indication of distinct conversations.
We observed that the conversations detected using this method appeared to be
balanced, meaning that each party involved contributed approximately equally
to the conversation. This was not the case within more general interactions, in
which one agent typically contributed around three times as much as the other.

Although finding cliques in graphs is computationally demanding, because
of the sparsity of interactions patterns within the data-set, extracting multi-
user exchanges was feasible and relatively fast. We were able to find all cliques
within the graph and, using the threshold method, identify conversations for
up to a maximum of 5 users. Most of those exchanges were fast-paced. We also
found that the number of messages in multi-user exchanges was reciprocal to the
average time di↵erence between them. When looking at the balance of multi-user
conversations, we found that most exchanges are dominated by just one or two
users, with some evidence of well-balanced group exchanges in between 3 users.
Regarding the number of received and sent messages by each individual in a
group, we found that some were dominated by one or two users, but also some
were well balanced.

Further work needs to be done using content information to explore how
topics flow through multi-user exchange and if there is any relationship between
time-di↵erences between messages and topic. We hope that the insights gained
from our analysis could help to develop an understanding of the mechanisms and
dynamics of Twitter conversations, with potential scope for generating models
of micro-blogging behaviour.
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Abstract. With the increase of time-stamped data, the task of recom-
mender systems becomes not only to fulfill users interests but also to
model the dynamic behavior of their tastes. This paper proposes a novel
architecture, called Dynamic Community-based Collaborative filtering
(D2CF), that combines both recommendation and dynamic community
detection techniques in order to exploit the temporal aspect of the commu-
nity structure in real-world networks and to enhance the existing community-
based recommendation. The e�ciency of the proposed D2CF is dealt with
a comparative study with a recommendation system based on static com-
munity detection and item-based collaborative filtering. Experimental re-
sults show a considerable improvement of D2CF recommendation accu-
racy, whilst it addresses both of scalability and sparsity problems.

Keywords: Recommendation systems, Collaborative filtering, Dynamic
community detection, Time varying graphs

1 Introduction

Several types of recommenders have been proposed and can be categorized into
three major categories [16], namely content-based filtering, collaborative filter-
ing, and hybrid approaches.

In this work, we focus on collaborative filtering which predicts users inter-
ests/preferences from those of remaining users sharing similar tastes. Collabora-
tive filtering is considered as one of the most used techniques due to its e�ciency
and its high accuracy . Typically, the recommendation process for this technique
starts when users express their preferences by rating items. The system analyzes
these ratings to determine the exact preferences of the user, then, matches the
active user’s preferences and the preferences collection to discover the category of
users having similar taste with the active user. Finally, the system recommends
a set of items for the active user according to the preferences of their similar
users.

From another side, the community detection presents a growing interest for
many researchers, especially in web applications. A panoply of community detec-
tion algorithms exist in literature and most of them focus on static community
detection, but recently the dynamic aspect of networks has sparked a new line of
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research. Static community detection algorithms have been explored in collab-
orative filtering, based on the idea that community structure will enhance the
performance of recommendations [1, 3–6]. Nevertheless, these ones are not able
to deal with the dynamic aspect of real-world networks.

The purpose of this paper is to model the dynamic behavior of users in
recommender systems. We assume that users behaviors are learned from users’
ratings data and more specifically by looking firstly at the items which have been
rated by each user and then finding how to link items to each other over time in
order to build the dynamic network of items. Our major contribution consists in
presenting a novel approach named Dynamic Community-based Collaborative
Filtering (denoted D2CF for short) capturing dynamic communities of items
which present the evolution of users interests and preferences over time to over
recommendations more suitable for real-world networks.

This paper is organized as follows: Section 2 presents the basic concepts of
recommendation and community detection. Related work is provided in Sec-
tion 3. Our proposed architecture D2CF is presented in Section 4. Section 5 is
dedicated to the experimental study.

2 Basic concepts for recommendation and community
detection

This section gives a brief overview on both recommendation systems and com-
munity detection.

2.1 Recommendation

Recommender systems have been proposed to address the information overload
problem by filtering the relevant data and suggesting items of potential interest
to users. Formally, in a typical recommendation system, there is a set of users
U and a set of items I. The task of recommender system is to predict user’s
preferences P for each item in I. The output is a list L containing items with
the highest preference values. Content-based filtering, collaborative filtering and
hybrid approaches are three major categories of recommendation methods:

– Content-based approach selects items based on their content along user’s
profile. Its principle is to recommend items similar to the ones that the user
has preferred in the past.

– Collaborative filtering approach infers user’s preferences from remaining users
having similar tastes. Methods pertaining to this approach can be divided
into user-based and item-based methods.

– Hybrid approach combines content-based and collaborative filtering methods,
in other words it takes into account both the users and the items properties.

In this work, we will focus on the most widely used recommendation method,
namely Item-based Collaborative Filtering [19]. In such a case, the user’s pref-
erence is predicted on an item using the average ratings of similar items by the
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same user as expressed in Equation (1) where S represents the most similar
items to the item i, s(i, j) denotes the similarity degree between items i and j
and ru,j corresponds to the rating of user u on item j.

Pu,j =

P
j2S s(i, j) ru,jP

j2S |s(i, j)| (1)

The similarity value can be calculated in many ways. Common methods are
Cosine similarity and Pearson Correlation [19].

Due to the nature of the data used in collaborative filtering, this approach
su↵ers, as the case of all methods, from one or more weaknesses such as the
cold start problem when a new user starts with an empty profile, the sparsity
problem occurring when available data are insu�cient for identifying similar
users, and the scalability problem when there is an excessive information of users
and items. To overcome these problems, several recommendation methods have
been implemented using di↵erent techniques. We cite in particular, clustering
techniques [13], Bayesian techniques [12] and community detection techniques
[1–4].

2.2 Community detection

Community detection techniques aim to find subgroups where the amount of
interactions inside the group is more than the interaction outside it, and this
can help to understand the collective behavior of users.

The communities identification process depends on the nature of networks,
either static or dynamic. Static networks are basically constructed by aggregat-
ing all observed interactions over a period of time and representing it as a single
graph. Dynamic networks, also called time varying graphs can be either a set of
independent snapshots taken at di↵erent time steps [7, 8] or a temporal network
that represents sequences of structural modifications over time [9]. In what fol-
lows, we present both static and dynamic community detection.

Static community detection: A panoply of community detection algorithms
exists in literature. The first idea using static networks was proposed by Girvan
and Newman [15]. It is based on a modularity function representing a stopping
criterion, aiming to obtain the optimum partitioning of communities. In the
same context, Guillaume et al. [11] have proposed Louvain algorithm to detect
communities using the greedy optimization principle that attempts to optimize
the gain of modularity. Rosvall and Bergstrom [17] have presented Infomap,
considered as a solution to the simplest problem of static and non-overlapping
community detection. The mentioned algorithms are not able to detect overlap-
ping communities where a node can belong to more than one community in the
same time. To ensure this basic property, Palla et al. [14] have proposed the
Clique-Percolation Method (CPM) to extract communities based on finding all
possible k-cliques in the graph. This method requires the size of the cliques in
input.
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Dynamic community detection: Several researchers explored the dynamic
aspect of networks to identify communities structure and their development
over time. Hopcroft et al. [7] have proposed the first work on dynamic com-
munity detection which consists in decomposing the dynamic network into a set
of snapshots where each snapshot corresponds to a single point of time. The
authors applied an agglomerative hierarchical method to detect communities in
each snapshot and then they matched these extracted ones in order to track their
evolution over time. Palla et al. [8] have used the (CPM) method of static com-
munity detection to extract communities from di↵erent snapshots. Then, they
tried to look for a matching link between them to detect their structural changes
over time. Methods applying static algorithms on snapshots cannot cover the
real evolution of communities structures over time because it seems harder for
these methods to recognize the same community from two di↵erent time steps
of network.

To overcome this problem, new studies have exploited another representation
of data that takes into account all temporal changes of the network in the same
graph. We cite, in particular, the intrinsic Longitudinal Community Detection
(iLCD) algorithm proposed by Cazabet et al. [9]. The algorithm uses a longi-
tudinal detection of communities in the whole network presented in form of a
succession of structural changes. Its basic idea was inspired from multi-agent sys-
tems. In the same context, Nguyen et al. [10] have proposed AFOCS algorithm to
detect overlapping communities in a dynamic network N composed of the input
network structure N0 and a set of network topology changes {N1, N2, ..., Nn}.

3 Related works

There has recently been much research on merging community detection and
recommender systems in order to provide more personalized recommendations
related to users belonging to the same community. In fact, community-based
recommendation is a two-step approach. The first step consists in identifying
groups in which users should share similar properties and the second step uses
the community into which the target user pertains to recommend new items.

Using static community detection algorithms, Kamahara et al. [2] have pro-
posed a community-based approach for recommender systems which can reveal
unexpected user’s interests based on a clustering model and an hybrid recommen-
dation approach. In the same context, Qin et al. [3] have applied CPM method
on the Youtube Recommendation Network of reviewers to detect communities of
videos. These latters are used to provide the target user by a local recommenda-
tions which consists in recommending videos pertaining to the same community
of the video watched by him. This approach aims to propose a more diverse list
of items for target user. Another aim behind incorporating community detec-
tion to recommendation is to provide a solution to the cold start problem, and
this idea was proposed by Sahebi et al. [4] while applying Principal Modularity
Maximisation method to extract communities from di↵erent dimensions of social

88



networks. Based on these latent communities of users, the recommender system
is able to propose relevant recommendations for new users.

Qiang et al. [1] have defined a new method of personalized recommenda-
tion based on multi-label Propagation algorithm for static community detection.
The idea consists in using the overlapping community structures to recommend
items using collaborative filtering. More recently, Zhao et al [5] proposed the
Community-based Matrix Factorization (CB-MF) method based on communi-
ties extracted using Latent Dirichlet Allocation method (LDA) on twitter social
networks. In [6], authors focused on community-based recommendation of both
individuals and groups. They used the Louvain community detection method on
the social network of movies building from the Internet Movie Database (IMDb)
in order to provide personalized recommendations based on the constructed com-
munities.

These methods only deal with static networks, derived from aggregating data
over all time, or taken at a particular time. The accumulation of an important
mass of data in the same time and in the same graph can lead to illegible graphs,
not able to deal with the dynamic aspect of real-world networks. To take into ac-
count the evolution of users behaviors over time using a kind of community-based
dynamic recommendation, a first attempt was established by Lin et al. [16]. The
main idea consists in providing a dynamic user modeling method to make rec-
ommendations by taking into consideration the dynamic users’ patterns and the
users’ communities. This approach is limited since it uses a manual method to
identify communities, which is not e�cient especially when we deal with strongly
evolving and large networks. More recently, Abrouk et al. [20] proposed to use
the fuzzy k-means clustering from time to time to dynamically detect the users’
interests over time. Then, they exploited these formed communities to determine
user’s preference for new items with regard to the updated users’ ratings. In [21],
author proposed an article recommender system to recommend documents for
users based on the same members of communities which are identified accord-
ing to their interests while browsing the web. The detection of users’ interests
is repeated continuously in subsequent time intervals in order to deal with the
dynamic aspect of new portals. In both the previously presented methods, ap-
plying clustering techniques for time to time cannot cover the real evolution of
community structure over time. In fact, several structural changes may occur
and get lost without being detected. Besides, the temporal complexity of these
methods increases in large networks.

Aiming to benefit from the whole advantages of the dynamic community de-
tection process as part of recommender systems, we propose a global architecture
allowing to ensure this combination as detailed below.

4 Proposed architecture

The proposed architecture, called Dynamic Community-based Collaborative Fil-
tering, denoted by D2CF, is based on three main steps as shown in Figure 1.
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Fig. 1. D2CF architecture

4.1 The pre-processing step

This step consists in building a dynamic network in which the evolution of the
users’ interests (i.e. the set of items be looked at or ranked) over time is repre-
sented. We assume that if a user does not rate a given item then this latter is not
yet watched by him. It is important to note that, in this work, the nodes are the
items and not the users and hence the communities are groups of items. The in-
teractions between nodes are modeled using the co-ratings relationship. Indeed,
two nodes interact with each other if at least one user gives the same rating
to both of them in the same time. With the aim to prepare the list of network
changes over time, we have adapted the method of temporal network building
[18] (i.e. An edge is established between two nodes if these ones have interacted
with each others at least N times over a period of P days). The values of N and
P control the set of edges adding and removal in the network and depend not
only on the network topology but also on the information that we want to ex-
tract in order to create semantic links between the network nodes (e.g. messages
interactions seem to be more intense than calls interactions). If over a period of
P days, there are fewer than N interactions between two nodes, the edge will
be automatically removed. These changes (edges removal and edges creations)
can be represented either in the same graph as temporal network or in di↵er-
ent graphs as a sequence of snapshots where each one corresponds to network
changes over a specific time period (i.e. one hour, one day, ect.). The resulting
dynamic network of items is considered as a generic model that represents the
evolution of users interests over time.

4.2 Dynamic community detection step

Once the dynamic network (temporal network or a sequence of snapshots) is
constructed in the pre-processing step, we are now able to use it as input to
dynamic community detection method. Based on the network interactions, a
community can be defined as a set of items that are extremely related to each
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other physically (strongly connected) and semantically (a learning pattern of
items that tends to have the same interests of several users over a period of
time). The advantage here is that a community is not restricted to item-related
topics but it contains various topics (e.g. Horror, Comedy, Romance, ect.). The
novelty in this work is to apply a dynamic community detection algorithm that
takes into account the evolution of the network behavior in order to obtain a
more appropriate community structure. To ensure this step, we choose to use
the iLCD algorithm [9]. This choice is justified by the fact that iLCD detects
communities in both static and dynamic networks depending on disposal data.
Moreover, this algorithm takes into account the evolution of the network which
enables to identify the dynamical communities more accurately. Such community
detection can be more powerful because this analysis matches with the reality of
networks. The algorithm deals with both large evolving networks and the overlap
of communities. Extracted communities are atomic in the sense that there are
not other relevant communities inside it. Finally, all operations in iLCD are
made at a local level (i.e. a community can interact with only the nodes that are
linked to and having at least one node in common), which can allow to ensure
that the complexity will not grow exponentially with the size of the network.
The life cycle of a community may be described via three phases:

– A new community is born when a new clique is formed in the graph.

– A modification of an internal community can lead to merge two communities
having at least one node in common or to split the main community into
two new communities.

– A community dies when there is no disposal nodes in its structure.

4.3 Recommendation step

In this step, the learned patterns (communities) will be exploited to help the
recommender system to predict the users’ future interests based on certain cat-
egories given by these communities. Firstly, a target item should be identified
for each user. The target item in this case is the item in which the active user is
more interested (The item with the highest rating value). The items that belong
to the communities of target item and that are not rated by the active user are
selected as candidate items. The list of top k recommended items for the active
user contains the k candidate items that have the highest predicted preferences.
Our objective is to compute the preference of the user u on the candidate item
i based on the items that belong to the communities of i. By doing this the
recommendation is restricted on the communities to which the candidate item
pertains. To this end, we propose an adaptation of the traditional item-based
Collaborative filtering method (See Equation (1)). In fact, instead of comput-
ing user’s preferences taking into consideration all items present on the whole
network to discover the most similar items to the candidate item, we only rely
on the items that pertain to candidate item’s communities extracted from the
dynamic network as shown in Figure 2.
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Fig. 2. The principle of user’s preference computation taking into account the commu-
nity structure in the network

Thus, we can formally define the preference prediction as follows:

Pu,i =

P
j2C s(i, j) ru,jP

j2C |s(i, j)| (2)

where C is the set of items pertaining to the community of i, ru,j is the
rating given by the active user u to the item j and s(i, j) is the similarity degree
between items i and j.

We propose to compute the similarity s(i, j) using the Pearson correlation
similarity measure [19].

Finally, the recommendation list contains the candidate items i having the
highest preference values Pu,i.

In the case where the user is new (no ratings history), the target item of
this user is learned by browsing item in the recommender system. We select
then the candidate items that belong to the communities of the target item. The
recommendation list contains the candidate items which are ranked according
to their similarities relative to target item.

5 Experimental study

To evaluate the e↵ectiveness of D2CF, we propose to use the movieLens dataset
available through the movieLens website (http://movieLens.umn.edu). This dataset
contains in total 100.000 ratings collected by 943 users on 1682 movies, from 19-
09-1997 to 22-04-1998. The score of rating is ranged from 1 to 5. Each user has
rated at least 20 movies. The ratings information are timestamped. We suppose
that each movie is represented by a node and a community is defined as a set of
nodes. If a user rates a movie, this means that he is interested in watching it.
MoviLens data are represented as a sequence of temporal events in the following
way:

– user U1 rates movie I1 with 5 at T1,
– user U2 rates movie I1 with 3 at T1,
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– user U2 rates movie I5 with 5 at T2, etc.

To experimentally determine the impact of the training size on the quality of
the recommended movies, we propose to test three scenarios:

– Set 1 : For each user, we randomly select 90% of his ratings as instances in
the training set and the remaining ones will be used in the testing set.

– Set 2 : For each user, we randomly select 40% of his ratings as instances in
the training set and 10% will be used in the testing set.

– Set 3 : For each user, we randomly select 20% of his ratings as instances in
the training set and 10% will be used in the testing set.

The data selection should take into account the evolution over time, so that,
instances of the testing set should be chosen after those of the training set.
We run 10-fold cross-validation on data. The precision is defined to evaluate
the validity of a given recommendation list and it is formulated to detect the
average of the true recommendations relative to the total number of the proposed
recommendations. While the recall metric is defined as the ratio of the number
of recommended objects collected by users appearing in the test set to the total
number of the objects actually collected by these users.

The implementation of the whole system needs several parameters. Our
choices regarding the three steps of D2CF can be summarized as follows:

1. Pre-processing step: Our idea is to extract movies interactions in such a way
that we know what a movie has been assessed with another one with the
same score by the same producer in the same time. In fact, if an interaction
between two movies occurred more than N times over a period of P days,
an edge is established between them. We define the values of P and N such
a way that we conserve more links between nodes. After performing several
tests on the movieLens data, we set P and N respectively to 200 and 30 for
Set 1, 200 and 20 for Set 2 and 200 and 5 for Set 3. This means that, in
Set 1, an edge is established between two nodes, if these ones have interacted
at least 30 times over a period of 200 days and this edge is removed if less
than 30 interactions have occurred between them over a period of 200 days
after the edge creation date. The movies that are not very visible in the users’
ratings behaviors are considered as outliers. The outliers are the nodes that
are disconnected of the core of the network due to their low interactions with
other movies (i.e. there are less than N users who give the same rating for
both of movies).

2. Dynamic community detection step: In this stage, we are able to apply any
state of art dynamic community detection algorithm. In this experiment we
choose to use iLCD algorithm to extract communities from the temporal
network built above. Since the quality of resulting communities depends on
the threshold (i.e. is a parameter using as input in the community detection
step to determine the belonging or not of new added nodes in a community),
we choose the value 0.5 to obtain by the end of the process, overlapping, small
and dense communities.
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3. Recommendation step: Using detected communities, we are now able to gen-
erate the top k recommendation list of movies to the active user. This step
requires both the user’s ID to look for his target item and the community
structure as input parameters to select the candidate items that may inter-
est the active user. Then, the predicted preference of each candidate item
is computed using Pearson correlation-based similarity measure. The items
which have the top k preference predictions are recommended to the active
user.

In order to evaluate both of the e↵ectiveness and e�ciency of our proposed D2CF
approach we compare the performance of this one with the following methods:

– The Static Community-based Collaborative Filtering (denoted S2CF for
short), which is a static version of our proposed architecture. We keep the
same parameters used for the dynamic network without taking into account
the temporal dimension. This is possible since, as mentioned before, the
iLCD algorithm allows both static and dynamic community detection.

– The traditional item-based Collaborative Filtering with Pearson correlation-
based similarity measure available from Apache mahout library in Java.

The obtained results are summarized in Table 1. We can notice that our D2CF
method outperforms traditional recommendation methods: item-based collabo-
rative filtering and Collaborative filtering based on static community detection.
In fact in Set 3, our approach is able even with small set of users’ data to provide
users with a wealthy and varied recommendation list based on the communities
of users’ interests. The recall and precision values for both item-based and static
community-based collaborative filtering decrease as we increase the training set
size but our approach combining recommendation and dynamic community de-
tection still provide better recommendation quality as shown in Figure 5. In fact,
D2CF gives its best results (i.e. D2CF proposes for one user an average of 6 good
items out of every 10 recommended items while S2CD o↵ers an average of two
good items out of every 10 recommended items and finally item-based collabo-
rative filtering gives an average of 0,15 good items per user). These results show
that our approach is the best in the case of scalable data, which is explained by
the fact that the dynamic network learned by more users’ data better performs
the prediction of users’ preferences for unseen items.

Table 1. Precision and Recall values for Set 1, Set 2 and Set 3

Set 1 Set 2 Set 3

Approach Precision Recall Precision Recall Precision Recall

D2CF 0.603 0.687 0.3 0.49 0.223 0.34

S2CF 0.2 0.26 0.21 0.195 0.197 0.221

Item-based CF 0.015 0.02 0.084 0.091 0.18 0.2

D2CF approach presents a significantly improvement on recommendation
on both small and large sets. We can say that this approach addresses both
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Fig. 3. Impact of the dataset size on the recommendation quality

scalability and sparse problems and it is able to handle the real-world networks
by providing a dynamic recommendation based on dynamic communities.

6 Conclusion

In this paper, we propose a Dynamic Community-based Collaborative Filtering
approach that combines recommendation and dynamic community detection.
This approach is able to deal with real-world networks as it takes into account
the evolutionary aspect of the users’ interests over time. The experimental results
show that our proposed D2CF outperforms both of item-based collaborative
filtering and collaborative filtering based on static communities. As a future
work, we will explore the similarity computation process of users pertaining to
the same community in the recommendation context.
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