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The aim of enumeration is to list all the feasible solutions of a given prob-
lem satisfying some constraints. Enumeration algorithms are particularly useful
whenever the goal of a problem is not clear and all its solutions need to be
checked. Since one peculiar property of biological networks is the uncertainty, a
scenario in which enumeration algorithms can be helpful is biological network
analysis. Modelling biological networks indeed introduce bias: arc dependencies
are neglected and underlying hyper-graph behaviours are forced in simple graph
representations to avoid intractability. Moreover regulatory interactions between
all the biological networks are omitted, even if none of the different biological
layers is truly isolated. Last but not least, the dynamical behaviours of biolog-
ical networks are often not considered: indeed most of the currently available
biological network reconstructions are potential networks, where all the possible
connections are indicated, even if edges/arcs and vertices are hardly present all
together at the same time. More details about these aspects of the biological
networks can be found in [8].

Our Contribution. We have shown four examples of enumeration algorithms
that can be applied to efficiently deal with some biological problems modelled
by using biological networks: enumerating central and peripheral nodes of a
network, enumerating stories, enumerating paths or cycles, and enumerating
bubbles. Notice that the corresponding computational problems we define are of
more general interest and our results hold in the case of arbitrary networks.

1 Enumerating central and peripheral vertices

Structural analysis allows the identification of important and not important ver-
tices within a network and also for this reason has become very popular in many
disciplines. In the biological domain, the importance of a vertex can be defined
in many different ways. With neighbourhood-based centrality measures, such as
degree, the importance of the vertices is inferred from their local connectivity
and the more connections a vertex has the more central it is. Closeness, ec-
centricity, and shortest path based betweenness relies on global properties of a
network, such as distance between vertices.
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We have focused on the enumeration of the radial and diametral vertices,
i.e. vertices that are central and peripheral according to the eccentricity notion
of centrality, and on the computation of the radius and diameter of biological
networks and of real world graphs in general. The diameter and radius of a graph
are respectively the maximum and minimum eccentricity among all its nodes,
where the eccentricity of a node x is the distance from x to its farthest node.
Thus, intuitively, the diametral source vertices are the vertices that hardly reach
the other ones, the diametral target vertices are the vertices hardly reachable
from the other ones, and the radial vertices are the vertices that easily reach all
the vertices of the network. In order to calculate the vertices that can be easily
reached from any other vertex, it is sufficient to consider the transposed graph.

We have presented the difub Algorithm, which is able to list all the diame-
tral sources and targets and to compute the diameter of (strongly) connected
components of a graph G = (V,E) in time O(|E|) in practice, even if, in the
worst case, the complexity is Θ(|V ||E|). Analogously, we have presented a new
algorithm to list all the central vertices and to compute the radius of (strongly)
connected components of a graph in almost O(|E|) time in practice.

The analysis of real world networks in general, such as citation, collaboration,
communication, road, social, and web networks, has attracted a lot of attention.
The fundamental analysis measures have been reviewed in [12]. Moreover the
size of these networks has been increasing rapidly, so that in order to study such
measures, algorithms able to handle huge amount of data are needed. Since the
algorithms available until now were not able to compute diameter and radius
in the case of huge real world graphs, the contribution of our algorithms is not
just limited to biological networks analysis, but extends also to the analysis of
complex networks in general. We thus have shown their effectiveness also for
several other kinds of complex networks. More details can be found in the work
[5], which has been the generalization of [4, 3]. Our algorithm in [3] has been used
to compute the diameter of Facebook Network (721.1M vertices, 68.7G edges,
and diameter 41) with just 17 bfses in a popular work ([9], divulged by New
York Times on November 22, 2011).

2 Enumerating stories

The problem of enumerating stories was motivated initially by the biological
question in [10] related to Metabolic networks, in particular to compound graphs,
in which vertices are compounds and there is an arc from a compound x to a
compound y if there is a metabolic reaction that consumes x and produces y.
A subset B corresponds to compounds that have been experimentally identified
as having a significantly higher or lower production in a given condition (for
instance when an organism is exposed to some stress). The aim is then to extract
all the interaction dependencies among the compounds in B which do not create
cycles but at the same time involve as many compounds as possible. These may
require intermediate steps that concern compounds not in B, but the initial and
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final steps must involve only compounds in B. A solution, that is a possible
scenario of metabolic dependencies, is called a (metabolic) story.

A metabolic story has to capture the relationship between the vertices of
interest in a way that allows us to define a flow of matter from a set of sources
to a set of target compounds. The need for this hierarchy between the compounds
led us to consider acyclic solutions. The maximality condition has been added
in order to capture all alternative paths between the sources and the targets.
The problem is then to “tell” all possible stories given as input a graph G and
a subset B of the vertices of G.

We have presented a polynomial algorithm to find one story and an exact
but exponential approach for the enumeration problem [1]. This definition is a
generalization of a well-known problem which is the feedback arc set problem.
However, any polynomial-delay algorithm to enumerate feedback arc sets (ex:
[14]) can only be used in some particular instances. Moreover we have shown
that finding a story with a specified set of sources or targets is NP-hard.

Our contribution appeared in [1] and its biological application in [11].

3 Enumerating cycles or paths

Studying paths or cycles of biological networks can be useful for several pur-
poses. In the case of interaction graphs, such as Gene Regulatory networks, the
importance of enumeration has been shown in [7]. These networks are directed,
their vertices are genes, and their arcs are signed, where the sign or weight of the
arcs indicates the causal relationship between the vertices, such as activation or
inhibition. In particular cycles and paths can be useful for studying dependencies
among vertices, the steady state and multistationarity of dynamic models.

We have considered the problem of enumerating paths and cycles in the case
of undirected graphs. This result can be useful for undirected Protein-Protein
Interaction networks, where nodes are proteins and edges are interactions, but
in the case of interaction networks in general, our approach neglects the effects
of the controls, i.e. the sign and direction of the arcs. In this latter case, the
cycles can be enumerated in the underlying undirected graph and a posteriori
filtered or ad hoc algorithms can be applied. The main question arising from our
work, is whether it is possible to extend our result to directed graphs in order
to efficiently deal also with this kind of networks.

On the other hand, our contribution is not just restricted to biological undi-
rected networks, but extends also to arbitrary undirected graphs. Listing all
the paths and cycles in a graph is a classical problem whose efficient solu-
tions date back to the early 70s. The best known solution in the literature
is given by Johnson’s algorithm [6] and takes O((|C(G)| + 1)(|E| + |V |)) and
O((|Pst(G)| + 1)(|E| + |V |)) time for a graph G = (V,E), where C(G) and
Pst(G) denote respectively the set of cycles and (s, t)-paths in G. However there
exists graphs for which this algorithm is not optimal.

We have presented the first optimal algorithm to list all the paths and cy-
cles in an undirected graph G. Our algorithm requires O(|E|+∑c∈C(G) |c|) time
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and is asymptotically optimal: indeed, Ω(|E|) time is necessarily required to
read G as input, and Ω(

∑
c∈C(G) |c|) time is necessarily required to list the

output. Moreover, our algorithm lists all the (s, t)-paths in G optimally in
O(|E|+∑π∈Pst(G) |π|) time, observing that Ω(

∑
π∈Pst(G) |π|) time is necessarily

required to list the output.
Our algorithm exploits the decomposition of the graph into biconnected com-

ponents and without loss of generality restricts to study paths and cycles in a
same biconnected component. Thus it recursively lists the cycles or (s, t)-paths
using the classical binary partition: given an edge e in G, list all the solutions
containing e, and then all the solutions not containing e, at each time modifying
the graph. In order to avoid recursive calls (in the binary partition) that do not
list solutions, we have used a certificate, as a data structure, whose cost for dy-
namically updating is constant with respect to the number of solutions produced.
In order to prove the complexity obtained, we have exploited the properties of
the binary recursion tree corresponding to the binary partition. For more details,
see [2].

4 Enumerating bubbles

A DNA fragment, that is an RNA-coding sequence, is transformed in a Pre-
mRNA sequence, through the transcription phase, in which sequences of exons
and sequences of introns alternatively occur. The removal of all the sequences
of introns and of some sequences of exons leads to the mRNA sequence, that
is a protein-coding sequence, that translated leads to a protein. Since not any
exon is transcribed in the mRNA sequence, there can be many possible mRNA
sequences. For instance, let 〈e1, i1, e2, i2, e3, i3, e4, i4〉 be a fragment of DNA,
where for any j, with 1 ≤ j ≤ 3, ej and ij are the j-th sequence of exons
and introns respectively. The possible resulting mRNA sequences containing e1
are 〈e1, e2, e3, e4〉, 〈e1, e2, e3〉, 〈e1, e2, e4〉, 〈e1, e3, e4〉, 〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉.
The underlying phenomenon is called alternative splicing and checking all the
alternative events has been shown in [13] to correspond to checking recognisable
patterns in a de Bruijn graph built from the reads provided by a sequencing
project. The pattern corresponds to an (s, t)-bubble: an (s, t)-bubble is a pair of
vertex-disjoint (s, t)-paths that only shares s and t.

Since the k-mers correspond to all words of length k present in the reads
(strings) of the input dataset, and only those, in relation to the classical de Bruijn
graph for all possible words of size k, the de Bruijn graph for NGS data may
then not be complete. We have ignored all the details related to the treatment
of NGS data using De Bruijn graphs, and consider instead the more general
case of finding all (s, t)-bubbles in an arbitrary directed graph. In particular we
show the first linear delay algorithm to identify all bubbles. A previous known
algorithm presented in [13] was an adaptation of Tiernan’s algorithm for cycle
enumeration [15] which does not have a polynomial delay. In the worst case the
time elapsed between the output of two solutions is proportional to the number
of paths in the graph, i.e. exponential in the size of the graph. Our algorithm
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is a non trivial adaptation of Johnson’s cycle enumeration algorithm [6] in a
directed graph with the same theoretical complexity. Notably, the method we
propose enumerates all bubbles with a given source with O(|V |+ |E|) delay. The
algorithm requires an initial transformation of the graph, for each source s, that
takes O(|V |+ |E|) time and space; this transformation reduces the enumeration
of bubbles to the enumeration of constrained cycles in a special graph.
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