
Timed process calculi:
from durationless actions to durational ones ?

Marco Bernardo1 Flavio Corradini2 Luca Tesei2

1 Dipartimento di Scienze di Base e Fondamenti, Università di Urbino, Italy
2 Scuola di Scienze e Tecnologie, Università di Camerino, Italy

Abstract. Several timed process calculi have been proposed in the lit-
erature, which mainly differ for the way in which delays are represented.
In particular, a distinction is made between integrated-time calculi, in
which actions are durational, and orthogonal-time calculi, in which ac-
tions are instantaneous and delays are expressed separately. To reconcile
the two approaches, in a previous work an encoding from the integrated-
time calculus CIPA to the orthogonal-time calculus TCCS was defined,
which preserves timed bisimilarity. To complete the picture, in this pa-
per we consider the reverse translation, by examining the modifications
to the two calculi that are needed to make an encoding feasible, as well
as the behavioral equivalence that is appropriate to preserve. We then
introduce an encoding from modified TCCS to modified CIPA, and show
that it can only preserve the weak variant of timed bisimilarity.

1 Introduction

Computing systems are characterized not only by their functional behavior, but
also by their quantitative features. In particular, timing aspects play a funda-
mental role, as they describe the temporal evolution of system activities. This
is especially true for real-time systems, which are considered correct only if the
execution of their activities fulfills certain temporal constraints.

When modeling these systems, time is represented through nonnegative num-
bers. In the following, we refer to abstract time, in the sense that we use time as
a parameter for expressing constraints about instants of occurrences of actions.
Unlike physical time, abstract time permits simplifications that are convenient,
on the conceptual side, to obtain tractable models.

Many timed process calculi have appeared in the literature. Among them, we
mention temporal CCS [8], timed CCS [15], timed CSP [13], real-time ACP [2],
urgent LOTOS [4], CIPA [1], TPL [7], ATP [11], TIC [12], and PAFAS [6].
As observed in [10, 14, 5], these calculi differ on the basis of a number of time-
related options, some of which are recalled below:

– Durationless actions versus durational actions. In the first case, actions are
instantaneous events and time passes in between them; hence, functional

? Work partially supported by the MIUR-PRIN project CINA.

21

behavior and time are orthogonal. In the second case, every action takes a
fixed amount of time to be performed and time passes only due to action
execution; hence, functional behavior and time are integrated.

– Relative time versus absolute time. Assume that timestamps are associated
with the events observed during system execution. In the first case, each
timestamp refers to the time instant of the previous observation. In the
second case, all timestamps refer to the starting time of the system execution.

– Global clock versus local clocks. In the first case, there is a single clock that
governs time passing. In the second case, there are several clocks associ-
ated with the various system parts, which elapse independent of each other
although they define a unique notion of global time.

Moreover, for timed process calculi, there are several different interpretations
of action execution, in terms of whether and when it can be delayed, such as:

– Eagerness: actions must be performed as soon as they become enabled, i.e.,
without any delay, thereby implying that they are urgent.

– Laziness: after getting enabled, actions can be delayed arbitrarily long before
they are executed.

– Maximal progress: enabled actions can be delayed arbitrarily long unless they
are involved in synchronizations, in which case they are urgent.

In this paper, we focus on two different timed process calculi obtained by
suitably combining the time-related options mentioned above. More precisely,
the first calculus, TCCS [8], is inspired by the two-phase functioning principle,
according to which actions are durationless, time is relative, and there is a sin-
gle global clock. In contrast, the second calculus, CIPA [1], is inspired by the
one-phase functioning principle, according to which actions are durational, time
is absolute, and several local clocks are present.

In [5], it was shown that some of the choices concerned with the time-related
options and action execution interpretations are not irreconcilable, thus permit-
ting the interchange of concepts and analysis techniques. More precisely, the
different expressive power of the two considered process calculi was investigated
by developing a bisimulation-semantics-preserving encoding of CIPA processes
into TCCS processes for each action execution interpretation.

In this paper, we complete the previous expressiveness study by considering
the reverse encoding from TCCS processes to CIPA processes, which may also be
exploited for checking bisimilarity of TCCS processes more efficiently. As pointed
out at the end of [5], there are several issues that need to be addressed before the
reverse encoding can be established. Our first contribution is to provide a solution
for each of the various problems. Our second contribution is the definition of the
reverse encoding, together with a full abstraction result of this reverse encoding
under weak timed bisimilarity, as opposed to the direct encoding demonstrated
to be fully abstract with respect to strong timed bisimilarity in [5].

The rest of the paper is organized as follows. In Sect. 2, we recall TCCS
and CIPA. In Sect. 3, we discuss the main design decisions behind the reverse
encoding. In Sect. 4, we define the reverse encoding and show that it preserves
weak timed bisimilarity. Finally, in Sect. 5 we provide some concluding remarks.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

22

2 Background

2.1 Preliminaries

We denote by A a nonempty set of visible actions – ranged over by a, b – and by
Ā = {ā | a ∈ A} the set of corresponding coactions such that ¯̄a = a for all a ∈ A.
We use Act = A∪ Ā∪{τ} to indicate the set of all actions – ranged over by α, β
– where τ is the invisible action.

We denote by Rel a set of action relabeling functions. Each such function
ϕ : Act → Act satisfies ϕ(τ) = τ and ϕ(a) = ϕ(ā) for all a ∈ Act \ {τ}.

We denote by T = (T,�,v) a time domain such that T ∩ Act = ∅, which is
equipped with an associative operation � possessing neutral element and a total
order relation v satisfying t1 v t2 iff there exists t′ ∈ T such that t1 � t′ = t2.
Typical choices are T = N and T = R≥0, with the usual + and ≤.

Finally, we denote by Var a nonempty set of process variables – ranged over
by X,Y – whose occurrences can be free or bound by “rec”.

2.2 Durationless Actions: TCCS

We recall from [8] the syntax of TCCS. As in [5], we leave out the idling operator δ
and the weak choice operator ⊕, as they have no direct counterpart in CIPA.

Definition 1. The set of process terms of the process language PLTCCS is gen-
erated by the following syntax:

P ::= 0 stopped process
| α.P action prefix
| (t).P delay prefix
| P + P alternative composition
| P |P parallel composition
| P\L restriction
| P [ϕ] relabeling
| X process variable
| recX : P recursion

where α ∈ Act, t ∈ N>0, L ⊆ A, ϕ ∈ Rel, and X ∈ Var. We denote by PTCCS

the set of closed and guarded process terms of PLTCCS.

Process 0 can neither proceed with any action, nor proceed through time.
Process α.P can perform instantaneous action α and then evolves into process P ;
action α is urgent, hence time cannot progress before α is executed. Process (t).P
evolves into process P after a delay equal to t.

Process P1 + P2 represents a nondeterministic choice between processes P1

and P2, with the choice being resolved depending on whether an action of P1

or P2 is executed first. Time does not resolve choices, in the sense that any initial
passage of time common to P1 and P2 must be allowed without making the
choice. Process P1|P2 describes the parallel composition of processes P1 and P2,

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

23

α.P
α
−−→ P (t).P

t
−; P

P1

α
−−→ P ′

1

P1 + P2

α
−−→ P ′

1

P2

α
−−→ P ′

2

P1 + P2

α
−−→ P ′

2 (t+ t′).P
t
−; (t′).P

P
t
−; P ′

(t′).P
t+t′
−; P ′

P1

α
−−→ P ′

1

P1|P2

α
−−→ P ′

1|P2

P2

α
−−→ P ′

2

P1|P2

α
−−→ P1|P ′

2

P1

t
−; P ′

1 P2

t
−; P ′

2

P1 + P2

t
−; P ′

1 + P ′
2

P1

a
−−→ P ′

1 P2

ā
−−→ P ′

2

P1|P2

τ
−−→ P ′

1|P ′
2

P1

t
−; P ′

1 P2

t
−; P ′

2

P1|P2

t
−; P ′

1|P ′
2

P
α
−−→ P ′ α /∈ L ∪ L̄
P\L

α
−−→ P ′\L

P
t
−; P ′

P\L
t
−; P ′\L

P
α
−−→ P ′

P [ϕ]
ϕ(α)

−−→ P ′[ϕ]

P
t
−; P ′

P [ϕ]
t
−; P ′[ϕ]

P{recX : P ↪→ X}
α
−−→ P ′

recX : P
α
−−→ P ′

P{recX : P ↪→ X}
t
−; P ′

recX : P
t
−; P ′

Table 1. Structural operational semantic rules for TCCS

where any two complementary actions may synchronize thereby resulting in a τ
action; also in this case, any initial passage of time must be permitted.

Process P\L behaves as process P except for actions in L ∪ L̄, which are
forbidden; this operator is useful to force synchronizations between complemen-
tary actions. Process P [ϕ] behaves as process P , with the difference that every
performed action is transformed via ϕ; this operator allows processes with dif-
ferent actions to communicate. Finally, recX : P represents a recursive process,
which behaves as process P in which every free occurrence of X is replaced by
recX : P itself; the resulting process will be denoted by P{recX : P ↪→ X}.

Following [8], the intuitive meaning of process terms is formalized in Table 1.
Transition relation −−→ on the left represents the functional behavior. Transition
relation −; on the right represents the timing behavior according to time ad-
ditivity (second and third rules) and time determinism (fourth and fifth rules);
the second rule is necessary for the applicability of the fourth and fifth ones,
while the third rule is necessary for the forthcoming equivalence.

A notion of weak bisimilarity for TCCS was studied in [9]. It is an extension of
Milner’s weak bisimilarity that is capable of summing up delays while abstracting
from τ actions. Weak transitions are defined as follows:

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

24

– ==⇒ = (
τ
−−→)∗.

–
a

==⇒ = ==⇒
a
−−→==⇒.

–
α̂

==⇒ = ==⇒ if α = τ ,
α̂

==⇒ =
α

==⇒ if α 6= τ .

–
t

==⇒ = ==⇒
t1−;==⇒ · · ·==⇒

tn−;==⇒ where t =
∑

1≤i≤n ti, n ∈ N≥1.

Definition 2. A symmetric relation B over PTCCS is a weak timed bisimulation
iff, whenever (P1, P2) ∈ B, then for all actions α ∈ Act and delays t ∈ N>0:

– For each P1

α
−−→ P ′1 there exists P2

α̂
==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

– For each P1

t
−; P ′1 there exists P2

t
==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

P1 ≈TCCS P2 iff (P1, P2) is contained in a weak timed bisimulation.

2.3 Durational Actions: CIPA

We recall from [1] the syntax of CIPA. As in [5], we add the relabeling operator.

Definition 3. The set of process terms of the process language PLCIPA is gen-
erated by the following syntax:

Q ::= nil inactive process
| a.Q durational action prefix
| wait t.Q waiting prefix
| Q+Q alternative composition
| Q|Q parallel composition
| Q\L restriction
| Q[ϕ] relabeling
| X process variable
| recX : Q recursion

where a ∈ Act \ {τ}, t ∈ N>0, L ⊆ A, ϕ ∈ Rel, and X ∈ Var. We denote by
PCIPA the set of closed and guarded process terms of PLCIPA.

Process nil cannot proceed with any action, but can let time pass. Process a.Q
can perform urgent action a and evolves into process Q after the execution of a
has finished; all occurrences of an action are assumed to have the same duration,
which is established by a function ∆ : (Act \{τ})→ N>0 such that ∆(ā) = ∆(a).
Process wait t.Q waits for time t and then becomes process Q. All the other
operators work as expected, with the additional constraints that each relabeling
function ϕ must preserve durations, i.e., ∆(ϕ(a)) = ∆(a) for all a ∈ Act \ {τ},
and any pair of actions a and ā can synchronize only if they start at the same
time, yielding a τ action with the same duration as the two original actions.

Following [1], the set KP of states correspond to process terms augmented
with local clocks, so to keep track of the time elapsed in the various sequential
components. The shorthand t ⇒ Q means that the clock value t ∈ N≥0 is dis-
tributed over all subprocesses of Q according to the extended syntax for KP:

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

25

t⇒ a.Q
a@t
−−→
∆(a)

(t+∆(a))⇒ Q t⇒ wait t′.Q
τ@t
−−→
t′

(t+ t′)⇒ Q

K1

α@t
−−→
d

K′
1 ¬(K2

α′@t′
−−→
d′

K′
2 ∧ t′ < t)

K1 +K2

α@t
−−→
d

K′
1

K2

α@t
−−→
d

K′
2 ¬(K1

α′@t′
−−→
d′

K′
1 ∧ t′ < t)

K1 +K2

α@t
−−→
d

K′
2

K1

α@t
−−→
d

K′
1 ¬(K2

α′@t′
−−→
d′

K′
2 ∧ t′ < t)

K1|K2

α@t
−−→
d

K′
1|K2

K2

α@t
−−→
d

K′
2 ¬(K1

α′@t′
−−→
d′

K′
1 ∧ t′ < t)

K1|K2

α@t
−−→
d

K1|K′
2

K1

a@t
−−→
d

K′
1 K2

ā@t
−−→
d

K′
2

K1|K2

τ@t
−−→
d

K′
1|K′

2

K
α@t
−−→
d

K′ α /∈ L ∪ L̄

K\L
α@t
−−→
d

K′\L

K
α@t
−−→
d

K′

K[ϕ]
ϕ(α)@t

−−→
d

K′[ϕ]

t⇒ Q{recX : Q ↪→ X}
α@t
−−→
d

K′

t⇒ recX : Q
α@t
−−→
d

K′

Table 2. Structural operational semantic rules for CIPA

K ::= t⇒ nil | t⇒ a.Q | t⇒ wait t′.Q | t⇒ recX : Q |
K +K | K|K | K\L | K[ϕ]

In this setting, any transition is of the form K
α@t
−−→
d

K ′, meaning that K ∈ KP

performs an action of name α ∈ Act that starts at time t ∈ N≥0 and has duration
d ∈ N>0, after which evolves to K ′ ∈ KP. The transition relation is defined in
Table 2, where negative premises are present as in [5]. Those in the rules for
alternative composition enforce action urgency. Those in the rules for parallel
composition avoid the generation of ill-timed paths, i.e., computations along
which the starting time of some actions decreases as the execution proceeds.

A notion of weak bisimilarity for CIPA was studied in [1] under the name of
timed branching bisimilarity, which has the capability of summing up consecutive

waitings. Weak transitions are defined as follows: ==⇒ =
τ@t1−−→
d1

· · ·
τ@tn−−→
dn

, n ∈ N.

Definition 4. A symmetric relation B over KP is a weak timed bisimulation
iff, whenever (K1,K2) ∈ B, then for all actions α ∈ Act, starting times t ∈ N≥0,

and durations d ∈ N>0 it holds that for each K1

α@t
−−→
d

K ′1:

– When α 6= τ , there exists K2 ==⇒K ′′2
α@t
−−→
d

K ′2 such that (K1,K
′′
2) ∈ B and

(K ′1,K
′
2) ∈ B.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

26

– When α = τ , either (K ′1,K2) ∈ B, or there exists K2 ==⇒K ′′2
α@t′

−−→
d′

K ′2 such

that (K1,K
′′
2) ∈ B and (K ′1,K

′
2) ∈ B.

K1 ≈CIPA K2 iff (K1,K2) is contained in a weak timed bisimulation. Moreover,
Q1 ≈CIPA Q2 iff (0⇒ Q1, 0⇒ Q2) is contained in a weak timed bisimulation.

Although in the clause α = τ it may be t′ 6= t and d′ 6= d, possible subsequent
visible actions must start at the same time in both processes for ≈CIPA to hold.

3 Design of the Reverse Encoding

In [5], where an encoding from CIPA to TCCS was proposed, a number of issues
were raised about the existence of a reverse encoding from TCCS back to CIPA.
In this section, we recall those issues and discuss how to address them.

3.1 Adapting TCCS and CIPA

The first issue is related to the range of values that can be used in CIPA to
express action durations. In TCCS, it is possible to describe both timed processes
and untimed ones. Consider for example the untimed TCCS process a.b.0. This
cannot be translated into a reasonably corresponding CIPA process for the very
simple reason that actions a and b are instantaneous, but CIPA does not allow
zero durations. Moreover, due to instantaneous actions, TCCS processes may
exhibit Zeno behaviors, which are not possible in CIPA. For instance, the timed
TCCS process (t1).a.recX : (b.X + c.(t2).0) may perform, after time t1 and
action a, an arbitrary (even infinite) number of actions b at the same time.
These problems can be straightforwardly solved by admitting zero durations in
CIPA through an extended duration function ∆ : (Act \ {τ})→ N.

The second issue that we address is timelock. In a TCCS process, time does
not solve choices; indeed, the operational rules for alternative and parallel com-
position allow time to pass only if all the subprocesses do so. As a consequence,
a local timelock always implies a global timelock, which may in turn determine a
deadlock. By contrast, in CIPA timelock cannot occur unless there is a deadlock,
because time passing is associated with action execution and explicit waiting.
Consider the TCCS process 0+(t).0 and the ideally corresponding CIPA process
nil + wait t.nil; the former process cannot let time pass, while the latter process
can. The same would happen with (a.0)\{a}+ (t).0 and (a.nil)\{a}+ wait t.nil.

To avoid timelocks due to the stopped process 0, we replace it with the in-
active process 0 introduced in [9], which lets time pass according to the rule

0
t
−; 0. To avoid timelocks caused by restriction, for both calculi we opt for the

following two-level syntax featuring only restriction at the top level (let P′TCCS

and P′CIPA be the two resulting sets of closed and guarded process terms):
P ′ ::= P | P ′\L
P ::= 0 | α.P | (t).P | P + P | P |P | P [ϕ] | X | recX : P
Q′ ::= Q | Q′\L
Q ::= nil | a.Q | wait t.Q | Q+Q | Q|Q | Q[ϕ] | X | recX : Q

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

27

Note that this modification does not limit the expressive power of the calculi.
Suppose that a process P is made out of three subprocesses P1, P2, P3 composed
in parallel, such that P1 has action a and the other two have action ā, but
only P1 and P2 have to synchronize on a and ā. Normally, one would write
(P1|P2)\{a}|P3, but this is forbidden by the revised syntax. However, the same
effect can be obtained through (P1[ϕ]|P2[ϕ]|P3)\{b}, where relabeling function
ϕ maps a to a fresh action b not occurring in any of the three subprocesses.

3.2 From Delays to Durations

One of the major design decisions about the translation of (modified) TCCS
into (modified) CIPA is how to assign durations to actions. In principle, it is
desirable to be able to associate a suitable nonzero duration with every visible
action occurring in a TCCS process that is not untimed. Unfortunately, in most
cases this is not possible, as we now show.

Consider the TCCS process a.(t1).b.(t2).0. In this case, it is natural to inter-
pret delay t1 as the duration of a and delay t2 as the duration of b, thus consid-
ering the occurrence of an instantaneous visible action of TCCS as the beginning
of the corresponding durational action of CIPA (initial view). In the TCCS pro-
cess (t1).a.(t2).b.0, the durations are as before, provided that the occurrence of
an instantaneous visible action is considered as the end of the corresponding
durational action (final view). Notice that, if a = b but t1 6= t2, the translation
into a reasonably corresponding CIPA process would not be possible, unless, as
noted in [5], we further extend the duration function for CIPA by admitting that
different occurrences of the same action may have different durations.

Let us now examine the case in which there is not a precise pairing between
actions and delays, like, e.g., in the TCCS process (t1).a.(t2).0. In this scenario,
the duration of a can be either t1 or t2, but in any case a waiting is necessary to
account for the delay that is not associated with a. The situation is even more
complicated if we consider the TCCS process a.(t1).(t2).b.0. One option is to
interpret t1 + t2 as the duration of a (initial view), with b having duration 0.
The dual option is to interpret t1 + t2 as the duration of b (final view), with
a having duration 0. In any case, the definition of the encoding would become
technically involved, especially in the presence of recursion, due to the necessity
of performing some lookahead. Moreover, there seems not to be any strong reason
for choosing one option rather than the other.

Yet another option is to interpret t1 as the duration of a (initial view) and
t2 as the duration of b (final view). This mixed option should be discarded
because it disrupts equivalence preservation of the encoding. Indeed, the consid-
ered process is equivalent to the TCCS process a.(t2).(t1).b.0, while, under the
assumption t1 6= t2, the two corresponding CIPA processes are not equivalent
to each other, because the a-transition of duration t1 in the first CIPA process
cannot be matched by the a-transition of duration t2 of the second CIPA process.

Summing up, on the one hand there are TCCS delays that cannot be as-
sociated with any visible action, and hence have to be translated into CIPA

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

28

Fig. 1. Labeled transition system for P0

waitings. On the other hand, it is not always possible to assign a nonzero dura-
tion to every TCCS visible action. In particular, this is impossible in the case of
untimed TCCS processes. In this respect, it is also worth reminding that the two
untimed TCCS processes a.0|b.0 and a.b.0 + b.a.0 are always equivalent under
the interleaving view of concurrency, while the two ideally corresponding CIPA
processes a.nil|b.nil and a.b.nil + b.a.nil are equivalent to each other only if both
a and b have duration zero.

As a consequence, for the sake of simplicity, uniformity, and semantics preser-
vation, when encoding TCCS into CIPA we proceed as follows:

– Every TCCS action a will be translated into a CIPA action a with ∆(a) = 0.
– The TCCS action τ will be translated into a CIPA waiting of duration 0

by allowing for waitings of the form wait 0.Q in the modified syntax of CIPA.
– Every TCCS delay t will be translated into a CIPA waiting of duration t.

3.3 Which Behavioral Equivalence Can Be Preserved?

While the encoding from CIPA to TCCS defined in [5] preserves strong timed
bisimilarity, this cannot be the case for the reverse encoding from (modified)
TCCS to (modified) CIPA.

Consider the two TCCS processes a.(t1).(t2).b.0 and a.(t1 + t2).b.0, which
are equivalent to each other according to the strong timed bisimilarity of [8].
Their corresponding CIPA processes will be respectively a.wait t1.wait t2.b.nil
and a.wait (t1 + t2).b.nil, which are not equivalent to each other according to the
strong timed bisimilarity defined in [5].

It is however worth pointing out that the two former processes are equivalent
according to ≈TCCS and, most importantly, the two latter processes are equiv-
alent according to ≈CIPA. As a consequence, in this paper we have to restrict
ourselves to weak timed bisimilarities when investigating semantics preservation
for the reverse encoding.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

29

4 The Reverse Encoding

In this section, we translate (modified) TCCS process terms into (modified)
CIPA process terms and we show that the resulting encoding is fully abstract,
in the sense that it preserves weak timed bisimilarity. The encoding is defined
by induction on the syntactical structure of process terms.

Definition 5. The encoding [[]] : P′TCCS → P′CIPA is defined as follows:
[[0]] = nil [[a.P]] = a.[[P]]

[[τ.P]] = wait 0.[[P]] [[(t).P]] = wait t.[[P]]
[[P1 + P2]] = [[P1]] + [[P2]] [[P1|P2]] = [[P1]]|[[P2]]

[[P\L]] = [[P]]\L [[P [ϕ]]] = [[P]][ϕ]
[[X]] = X [[recX : P]] = recX : [[P]]

with ∆(a) = 0 for all a ∈ Act \ {τ}.

The states of the labeled transition systems underlying a TCCS process P
and the corresponding [[P]] are strictly related. This relation is the key point that
permits to show the main result of the paper stated in the forthcoming Thm. 1.
Formally, to establish the relation, we need to add local clocks to [[P]]. We let
E [[P]] ∈ KP denote the encoded P process where a clock 0⇒ has been added to
each sequential component.

Consider as an example the process P0 = a.(1).b.0 | c.(2).(1).d.0, whose
transition system is depicted in Fig. 1. The transition system of E [[P0]] is shown
in Fig. 2. It easy to see that, as far as only visible actions and zero-valued
local clocks are concerned, the correspondence is one-to-one: E [[Pi]] = Ki, for
i = 0, 1, 2, 3. However, in CIPA the wait t waitings, which produce τ actions, can
be executed independently by one of the sequential components, which moves its
own clock forward in time. In the meanwhile, the other components still have to

execute actions “before” that time. This happens, for instance, in K1

τ@0
−−→

1
K ′1;

note, anyway, that K ′1 can still perform the visible action c at time 0.
Processes P5, P6 and P7 are related by TCCS delay transitions. In the corre-

sponding CIPA states, we can relate P5 with K5. The nil CIPA process lets any
time pass for other sequential components. Thus, K5 can be considered equiv-
alent (at least with respect to ≈CIPA) to K ′5 = 2 ⇒ nil | 2 ⇒ wait 1.d.nil. In
this way, E [[P6]] = 0 ⇒ nil | 0 ⇒ wait 1.d.nil can be related to K ′5 by adjusting
the clock values that are different in absolute value, but agree on the relative
differences: 2 − 2 = 0 − 0 = 0. Similarly, process P7 can be related to process
K ′6 = 3⇒ nil | 3⇒ d.nil obtained from K6.

Consider, finally, process P4, derived from P0. Its counterpart K4 cannot
perform any τ , but E [[P4]] has clock values not corresponding to K4. Nevertheless,
the b action is performed at the same time in both cases, i.e., with timestamp 1.

To formally treat the discrepancies mentioned above, it is convenient to define
a structural congruence ≡ over KP that permits to equate timed processes that
respect, in their sequential components, the following two equations:

m⇒ waitn.P = m+ n⇒ P
n⇒ nil = m⇒ nil

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

30

Fig. 2. Labeled transition System for E [[P0]]

where n,m ∈ N. It is easy to see that ≡ implies ≈CIPA. Moreover, following [5],
we define wf ⊆ KP × N and up : KP × N → KP. We let wf (K,n) hold iff the
local clocks of K can be decreased by n without any of them becoming negative,
neglecting the components that are nil. If wf (K,n), then up(K,n) is the timed
CIPA state K in which every local clock (apart from the nil components) has
been decreased by n.

Using this notation, we get E [[P1]] = K1 = up(K1, 0) ≡ K ′1, i.e., P1 in Fig. 1
can be related to two timed states that are structural equivalent and, thus, ≈CIPA

equivalent. Moreover, E [[P5]] = up(K5, 1), E [[P6]] = up(K ′5, 1 + 1 = 2) where
K ′5 ≡ K5, E [[P7]] = up(K ′6, 2 + 1 = 3) where K ′6 ≡ K6. Note that the subsequent
times n in up(·, n) reflect the TCCS delay transitions. Finally, E [[P4]] = 0 ⇒
b.nil | 0⇒ wait 1.wait 1.d.nil ≡ 0⇒ b.nil | 1⇒ wait 1.d.nil = up(K4, 1).

Theorem 1. Let P1, P2 ∈ P′TCCS. Then P1 ≈TCCS P2 iff [[P1]] ≈CIPA [[P2]].

5 Conclusions

In this paper, we have addressed the issues raised at the end of [5] and shown
that it is possible, after applying certain modifications to the languages, to define
a reverse semantics-preserving mapping from TCCS to CIPA. Unlike the direct
encoding of [5] from CIPA to TCCS, which preserves strong timed bisimilarity,
our reverse encoding can only preserve weak timed bisimilarity.

As future work, we want to investigate how to exploit our encoding of TCCS
into CIPA together with the notion of compact representation of CIPA timed
states introduced in [5], to achieve a better performance with respect to weak

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

31

timed bisimilarity checking algorithms for TCCS. Moreover, we would like to
extend the reverse mapping so to encode the idling operator and the weak choice
operator of TCCS as well. Similar to [5], we also plan to investigate variants of
our reverse encoding in which laziness or maximal progress is assumed in place
of action urgency. Finally, continuing the work of [3], we would like to provide
a uniform framework for comparing the various timed process calculi and timed
models that have been proposed in the literature.

References

1. L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Informat-
ica, 33:317–350, 1996.

2. J. Baeten and J. Bergstra. Real time process algebra. Formal Aspects of Comput-
ing, 3:142–188, 1991.

3. M. Bernardo and L. Tesei. Encoding timed models as uniform labeled transi-
tion systems. In Proc. of the 10th European Performance Engineering Workshop
(EPEW 2013), volume 8168 of LNCS, pages 104–118. Springer, 2013.

4. T. Bolognesi and F. Lucidi. LOTOS-like process algebras with urgent or timed
interactions. In Proc. of the 4th Int. Conf. on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE 1991), volume C-2 of
IFIP Transactions, pages 249–264, 1991.

5. F. Corradini. Absolute versus relative time in process algebras. Information and
Computation, 156:122–172, 2000.

6. F. Corradini, W. Vogler, and L. Jenner. Comparing the worst-case efficiency of
asynchronous systems with PAFAS. Acta Informatica, 38:735–792, 2002.

7. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117:221–239, 1995.

8. F. Moller and C. Tofts. A temporal calculus of communicating systems. In Proc. of
the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), volume 458 of LNCS,
pages 401–415. Springer, 1990.

9. F. Moller and C. Tofts. Behavioural abstraction in TCCS. In Proc. of the 19th
Int. Coll. on Automata, Languages and Programming (ICALP 1992), volume 623
of LNCS, pages 559–570. Springer, 1992.

10. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In Proc. of the REX Workshop on Real Time: Theory in Practice, volume 600 of
LNCS, pages 526–548. Springer, 1991.

11. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and appli-
cation. Information and Computation, 114:131–178, 1994.

12. J. Quemada, D. de Frutos, and A. Azcorra. TIC: A timed calculus. Formal Aspects
of Computing, 5:224–252, 1993.

13. G. Reed and A. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249–261, 1988.

14. I. Ulidowski and S. Yuen. Extending process languages with time. In Proc. of the
6th Int. Conf. on Algebraic Methodology and Software Technology (AMAST 1997),
volume 1349 of LNCS, pages 524–538. Springer, 1997.

15. W. Yi. CCS + time = an interleaving model for real time systems. In Proc. of the
18th Int. Coll. on Automata, Languages and Programming (ICALP 1991), volume
510 of LNCS, pages 217–228. Springer, 1991.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

32

