
On multiple learning schemata in conflict driven solvers

Andrea Formisano1 and Flavio Vella2
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Abstract. In this preliminary paper we describe a general approach for multiple
learning in conflict-driven SAT solvers. The proposed formulation of the conflict
analysis task turns out to be expressive enough to reckon with different orthogonal
generalizations of the standard learning schemata, such as the conjunct analysis
of multiple conflicts, the generation of possibly interdependent learned clauses,
the imposition of global optimality criteria.
We formalize the general learning problem as a search for a collection of vertex
cuts in a directed acyclic graph. Optimality of the solution may be evaluated with
respect to a given global objective function intended to encode search strategies
and heuristics affecting the behavior of the solver. We also outline some algo-
rithmical solutions by exploiting standard algorithms proposed to solve cut and
multicut problems on DAGs.

1 Introduction

Most of the successful SAT solvers available nowadays originate from refinements of
the DPLL procedure [11] and integrate powerful techniques such as conflict driven
learning and non-chronological backtracking. As a matter of fact, the combination of
suitable learning schemata with smart branching heuristics and efficient (Boolean) con-
straint propagation algorithms [4], remarkably improved the efficiency and effective-
ness of modern SAT solvers. Analogous techniques, often migrated from SAT tech-
nology, have been exploited in developing solvers in various fields of Automated Rea-
soning, such as Answer Set Programming, Constraint Programming, and Satisfaction
Modulo Theory (cf., among many, [13, 26, 23] and the references therein).

In what follows we focus on clause-based SAT solving, albeit similar arguments can
be advanced concerning other kind of solvers. More specifically, we will consider the
problem of determining the satisfiability of a set of clauses, built up from a collection
of propositional variables. (As usual, a literal is a variable or its complement. Clauses
are sets of literals.)

Let us briefly recall the main traits of a DPLL-like SAT solver. For a formal and
detailed treatment the reader is referred to [4], among many). Given an instance of SAT
(i.e., a set of clauses), a DPLL-like SAT solver proceeds by alternating decision steps
and propagation phases. By making a decision, the solver assigns one propositional
variable a truth value. Then, it propagates the effects of such a decision to (possibly)
derive implied assignments. Each decision has a decision level associated to it and prop-
agation takes place, within the current decision level, whenever all but one literals in a
clause have been assigned false (with a slight abuse, let us call unit this kind of clause).
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In order to find a satisfying assignment for the unit clause (and then, for the whole
instance), the unassigned literal must be set true. The propagation stage continues as
long as units are produced. Then, the decision level is increased and another decision is
taken. The process stops as soon as a solution is found (namely, all variables have been
consistently assigned) or a conflict is detected. Normally, a conflict arises when, through
the propagation phase, all the literals in a clause become assigned to false. At this point
a conflict analysis procedure derives a new conflict clause to be added to the instance.
Then, some of the previously taken decisions are undone and the solver backjumps to
a previous decision level, before continuing the search for a solution. The presence
of the new clause drives subsequent propagation phases and prevents the solver from
generating again the very same conflicting assignment.

In this paper we propose a schema for conflict analysis general enough to enable the
conjunct analysis of several conflicts and the consequent generation of more that one
learned clause. Multiplicity may arise not only from generating more than one conflict
in a single propagation phase, or by admitting multiple decisions at each decision level,
but also from concurrently running different instances of the above outlined procedure
(each one performing a different visit of the solution space). Designing a global learn-
ing procedure in such a general context has several potential advantages. On the one
hand, it might take advantage from the results of all searches in order to derive more ef-
fective conflict clauses. On the other hand, learned clauses convey knowledge exchange
between the concurrent threads of the parallel solver.

The paper is organized as follows. After recalling the basic notions about conflict-
driven SAT solving (Section 2), in Section 3 we formalize our general learning schema.
Sections 4 and 5 concretize our proposal by introducing some algorithmical solutions.
Finally, Section 6 provides some concluding remarks and hints for future development.

2 Conflict analysis and implication graphs

Let us consider in more detail the conflict analysis procedure described earlier. Fol-
lowing [34, 22], the dependencies between decided and propagated variables can be de-
scribed by means of an implication graph. It is a directed acyclic graph (DAG, for short)
in which vertices represent truth value assignments for literals. We will often identify a
vertex with the literal it represents: a variable x assigned true (resp., false) is rendered
by a vertex x (resp., −x). Moreover, given a literal x, let x denote its complement.

Edges express the reasons that lead the assignments. In particular, decided variables
correspond to vertices having no incident edges. If a literal x has been assigned true by
propagation, because of a unit clause {x, y1, . . . , yk}, then the vertex x has each yi as
direct antecedents in the implication graph.

To simplify the following treatment, let us introduce a special kind of vertex. A
conflict vertex, not corresponding to any variable, is introduced in the graph whenever a
pair of contradictory assignments is produced for the same propositional variable x. A
conflict vertex has exactly two antecedent vertices, representing two inconsistent value
assignments for a variable.

In this setting, given an implication graphG(V,E), we can identify the set of source
vertices S ⊆ V (corresponding to decisions) and the set of conflict vertices T ⊆ V .
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Fig. 1. Implication graph G1 for Example 1.

Example 1. Consider the following clauses: {a, b}, {c,¬a}, {¬a, f}, {h, g}, {¬g,¬d},
{¬f, d,¬e}, {e, d,¬c}. Fig. 1 shows an implication graph G1 obtained by assigning
true the two literals ¬b and ¬h. Hence, two sources are present in G1, corresponding
to such decisions. (For the time being, let us ignore the decision levels indicated by the
vertices’ superscripts.) As mentioned, edges denote propagation steps. For instance, an
edge from ¬b to a is introduced because of the first clause. In fact, being b false, in
order to satisfy the clause, a must be set true. Similarly, two edges from a, to vertices c
and f , respectively, are introduced because of the second and the third clause, resp., and
so on. Note that, once completed, the propagation steps introduces a pair of conflicting
assignments for the literal e. A conflict vertex t denotes this fact. ut

For simplicity, let us consider a graph G having a single conflict vertex t (having x
and x as antecedents, for a variable x).1 Every vertex cut X in G that separates S from
t and such that {x, x} 6⊆ X , corresponds to a partial assignment sufficient to imply
the conflict.2 In other words, X can be translated into a conflict clause made of the
complements of the literals in X .

Example 2. Consider the graphG1 in Fig. 1. The vertex cut made of the vertices a and g
separates all the sources from the conflict. Consequently, a partial assignment sufficient
to imply the conflict consists in assigning true to both a and g.

Clearly, more that one vertex cut may exist. For instance, in G1, two other possible
vertex cuts are {a,¬d} and {c, f,¬d}. ut

If a vertex cut contains only one literal that has been assigned at a certain decision
level `, then such a literal is a unique implication point (UIP). Notice that, if s` is the
literal decided at level `, a UIP dominates (in the sub-graph of level `) the conflict vertex
t with respect to s`: each path from the source s` to t must go through the UIP.

The maximum decision level of the vertices in the cut (except the decision level of
the conflict) is the decision level to backjump. After backjumping, the conflict clause
becomes an asserting clause: all its literals but one are assigned false, so the remaining

1 Such a situation can be always achieved by isolating a single conflict vertex t, and by restricting
the implication graph to the S−t-connected portion of G.

2 Let a and b be two distinct vertices such that b is reachable from a in a directed graph G.
Recall that, a vertex cut (resp., edge cut) that separates a from b, is defined as a set of vertices
(resp., edges) such that their removal from G eliminates all directed paths from a to b.
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literal is determined by propagation. Consequently, the solver will be “guided” toward
a different portion of the search space.

With respect to the same conflict, several UIPs may occur in the implication graph.
These are ordered depending on the distance from the conflict vertex: the UIP closest
to the conflict vertex is called first UIP, and so on.

Clearly, not all the possible vertex cuts involve a UIP. Nevertheless, each of them
identifies a different conflict clause that can be, in principle, profitably added to the SAT
instance in order to prune the search space.

Example 3. Consider again the graph G1 in Fig. 1 and assume that ¬b has been as-
signed first, at the decision level 1. (Decision levels are denoted by superscripts in the
graph.) All the vertices assigned by propagation as a consequence of this decision be-
long to such decision level. Then, a subsequent decision, at level 2, assigned true to the
literal ¬h and caused the propagation of the other vertices. Hence, the conflict occurs
at level 2. The first UIP is ¬d. Indeed it dominates t (each path from ¬h to the con-
flict must go through the vertex ¬d) and it is the dominator closest to t. The procedure
proceeds by learning the clause corresponding to such UIP, namely {¬f,¬c, d}, and
backjumping to level 1 (hence, the decision regarding ¬h is undone). In this situation,
a propagation step, using the newly introduced clause forces d to be assigned true. In
turn, because of clauses {¬g,¬d} and {h, g} also ¬g and h are set true. ut

3 Generalizing conflict analysis and learning

The effectiveness of a solver largely depends on the strategy used to identify suitable
conflict clauses, among all the possible candidates, by analyzing the implication graph.
Notice that, the structure of the implication graph substantially affects the learning pro-
cedure, because, as mentioned, conflict clauses correspond to vertex cuts. In turn, the
structure of the graph depends on:
(a) the selection of decision variables (branching strategy). This determines the set of

sources of the graph.
(b) The specific sequence of propagations performed in each propagation phase. If

different asserting clauses are activable at each time, different orders of their activa-
tion induce different topologies of the graph.

Many of the existing solvers perform just a single decision at each step and stop the
propagation phase as soon as the first conflict arises. Moreover, conflict analysis is usu-
ally focused on UIPs (often, only conflict clauses involving the first-UIP are learned).
One reason for this choice is that such conflict clauses can be obtained by developing
a linear derivation by propositional resolution. The steps of this derivation use as resol-
vents (in the reverse order) the asserting clauses used along the path from the (first) UIP
to the conflict. Hence, in some sense, once the conflict is present, the generation of the
conflict clause is deterministic [4, 34].

In what follows we generalize the basic learning schema described so far. More
specifically, we design a general schema for conflict analysis that takes into account the
following aspects:
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Fig. 2. Implication graph G2 for Example 4.

• Multiple decisions taken at each decision level. This corresponds to focusing the
search for a solution on a more restricted portion of the search space. This increases
the effect of subsequent propagation phases. In addition, this splitting of the search
space may be exploited by parallel solvers.

• Multiple conflicts. These might be generated both because of multiple decisions or
because the propagation phase does not necessarily end when the first conflict is
produced. For example, it might proceed until no further inference is possible.

• Weights associated to vertices and/or edges of the implication graph. This enables
the application of some kind of heuristics in selecting conflict clauses. We will not
enter into the details of how these weights are assigned. For the time being, it suf-
fices observing that weights may be generated in various manners, depending on
the involved heuristics. For instance, one could consider static measures, concern-
ing the structure of the SAT instance at hand, or dynamic parameters such as the
“relevance” exhibited by each variable during the previous part of the computation
(as an immediate example, think about exploiting criteria somewhat akin to those
used by branching strategies).

Most of the learning schemata appeared in the literature essentially consider only
cuts involving UIPs. In this context, some comparative empirical evaluation of different
learning schemata can be found in [34] and in [27]. Very few proposals concern multi-
ple clauses learning. We just mention here the interesting work [17], that explores the
advantage of learning several clauses from the same conflict.

Example 4. Consider this set of clauses: {a, b}, {c,¬a}, {¬a, f}, {h, g}, {¬g,¬d},
{e,¬v,¬c}, {¬f,¬v,¬e}, {q,¬p}, {v,¬p}, {r,¬g}, {d,¬u}, {p,¬s}, {u,¬r,¬q}.
Suppose we proceed by deciding a single literal in each decision level and we develop an
implication graph by first deciding ¬b to be set true (decision level 1). After propagating
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the effect of this decision (literals a, c, f are set true, cf., the implication graph G2 in
Fig. 2), we step to decision level 2 and set true the literal ¬h. Again, a propagation phase
is executed and this determines the truth values of the literals g,¬d, r, and ¬u. Since no
conflict arises and there are still unassigned literals, we step to decision level 3. Suppose
we perform a decision setting true the literal s. Fig. 2 show the literals propagated
at level 3, namely, p, q, v,¬e, e and u. Clearly, two conflicts (denoted by the conflict
vertices, t1 and t2) arise, because of the values to be assigned to u and e, respectively.

The cut corresponding to the first UIP for the conflict t1 is made of the vertices v,
f , and c. The clause learned from this conflict is {¬v,¬f,¬c}. Similarly, by analyzing
the other conflict t2, we obtain a cut made of the vertices ¬d, r, and q, corresponding
to the first UIP q, and an alternative learned clause {d,¬r,¬q}..

A solver that decides a single literal in each decision level and that takes into account
only one conflict, would learn just one of these two clauses, while both of them can be
added to the set of clauses and affect the subsequent part of the execution.

Moreover, performing a global analysis of the implication graph might help in learn-
ing alternative clauses. (Note that, the same graph can be obtained by deciding the three
literals ¬b, s,¬h at the first decision level, except for the fact that in that case all ver-
tices belong to level 1.) For instance, the pair of clauses {¬a,¬p} and {¬g,¬p} can be
obtained by considering the two sets X1 = {a, p} and X2 = {p, g}, each of them sep-
arating one of the conflicts from all source vertices ¬b, ¬h, and s. In a situation where
one heuristically prefers short clauses, the global analysis produces better results. Ob-
serve, moreover, that detecting a single vertex cut separating both conflict vertices from
all sources would produce a single learned clause. However, such a clause would con-
tain at least three literals. ut

The previous example shows that, even considering simple heuristics based on car-
dinality of learned clauses (i.e., the number of literals they include), a global analysis
may offer advantages. In general, more complex heuristics can be applied to assign
weights to literals/vertices and then to vertex cuts. Consequently, the conflict analysis
procedure will focus on minumin vertex cuts. Among the various approaches that can
be adopted in assigning weights to literals, many of the branching strategies exploited
in standard SAT-solvers can be adapted to our case [4].

Remark 1. Note that another generalization can be foreseen. Indeed, it seems natural to
consider the parallel execution of several solvers, each one adopting its own criteria and
heuristics, and exploring (possibly) different portions of the search space. Plainly, each
solver develops a different implication graph. A conjunct analysis of all these graphs
(that share the vertices and differ in the set of edges) should be advisable. Intuitively, a
common analysis could be enabled by introducing a coloring of the edges. Each color
would identify the inferences made by one of the solver. In this way, a global learn-
ing process can be developed, by applying global strategies, so as to realize forms of
communication and cooperation between the solvers. For the sake of simplicity, in what
follows we will not deal with this kind of generalization, which represents an interesting
theme for future research.

Summing up, we will consider implication graphs where weights are provided and
several conflict vertices may occur. The graphs are still acyclic and layered (as vertices

A.Formisano et al. On multiple learning schemata in conflict driven solvers

138



are partitioned by the decision levels). The conflict analysis should focus on those (sets
of) cuts that are optimal with respect to a given objective function. Typically, it may
encode “local” optimality criteria (focusing on each single conflict in isolation from
the others), as well as involve “global” criteria, aimed at optimizing the set of cuts as
a whole. To keep the following description as general as possible, we will leave these
optimality criteria implicit and simply deal with a generic objective function f(·).

Let G = (V,E) be a weighted DAG with n = |V | vertices and m = |E| edges. Let
S ⊆ V be the set of source vertices and T = {t1, . . . , tk} ⊆ (V − S) the set of sink
vertices. Assume, moreover, that each sink is reachable (through a directed path) from
at least one source.

Without loss of generality, we can assume that S = {s1, . . . , sk} and that ti is
reachable from si (for each i). 3

A weight function w : V → N assigns positive weights to the vertices in G.4 We
are interested in solving the following optimization problem (where f(·) is the objective
function).

Problem 1 Find k vertex setsXi ⊆ (V −T ) that minimize the value of f(X1, . . . , Xk)
and such that, for each i ∈ {1, . . . , k}, Xi is a vertex cut separating si from ti.

Example 5. Consider a ‘local’ optimality criterion that, focusing on single conflict ti,
prefers the vertex cut that produces the smallest learned clause, namely, the one mini-
mizing the cardinality |Xi| of the vertex cut Xi. In presence of k conflicts, two natural
choices for the ‘global’ objective function f(X1, . . . , Xk), are:
• f(X1, . . . , Xk) =

∑
i |Xi|, and

• f(X1, . . . , Xk) = |
⋃

iXi|.
In both cases, the weight function w(·) simply evaluates 1 for each node. Clearly, more
complex weight function w(·) and objective functions f(·) can be designed. For in-
stance, w(·) might take into account the number of occurrences of literals in the set of
clauses, or the activity of literals (cf., [15]), to mention two possibilities. ut

A further remark is in order. In what follows we will take advantage from the fact
that, any given minimum vertex-cut problem can be translated into a minimum edge-cut
problem whose solutions correspond to solutions of the former problem. So, in order to
simplify the presentation, in the following sections we formalize our learning scheme
in terms of (edge) cut and multicut problems.

In the following sections we will describe some alternative approaches to the solu-
tion of Problem 1.

4 Solving the multiple learning problem

Let us start by considering the particular case in which the objective function is the sum
of the cuts’ weights, i.e., f(X1, . . . , Xk) =

∑
i w(Xi). In this case, the problem can

3 In fact, if this is not the case, we can always find k subsets S1, . . . , Sk of S, such that Si

contains all sources from which ti can be reached, and extend G by adding a new vertex si
having as successors all vertices in Si (for each i).

4 For a set of vertices X let w(X) =
∑

x∈X w(x).
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be formulated as a minimum s-t multicut problem [12] (or dually as a multicommodity
maxflow problem [19]). Alternatively, one can translate the problem into a vertex sep-
arator problem on a network, as defined, for instance, in [3]. (The reader is referred to
the cited literature, and to [2, 7, 28, 29], for a detailed treatment of these problems.)

A drawback of adopting an encoding in an s-t multicut problem is that the obtained
solution would consist in a single vertex/edge set X that acts as a separator for each
pair si-ti. This does not fulfill the requirement of Problem 1, that asks for a collection
of k cuts (each one separating one of the pairs). Consequently, it is necessary to convert
the single cut, by splitting it in k subsets (not necessarily pairwise disjoint). In doing
this one has to exploit the si-ti-connectedness of G (for each i) in order to determine
which part ofX is actually related to the pair si-ti. Computing this step may add a com-
putational cost which is in any case polynomially bounded. (Actually, such an overhead
could be absent, if connectedness computations are part of the algorithm used to solve
the minimum s-t multicut instance).

Recall that, for general graphs, the problem of finding the minimum s-t multicut
is Max SNP-hard [8]. Nevertheless, in undirected graphs [12] proposes an O(log k)
approximate algorithm based on LP relaxation.

An alternative approach consists in solving Problem 1 through the solution of sev-
eral minimum s-t cut problems. We outline here two possibilities. The first one consists
in independently solving k minimum s-t cut problems, one for each pair si-ti (by ig-
noring, in each of them, all other pairs sj-tj , for j 6= i). Clearly, the computational
cost of this approach depends on the algorithm exploited to solve each of the k sim-
pler problems. For instance, [14] proposes an algorithm for minimum s-t cut, based on
push-relabel methods, having O(n × m × log(n2/m)) time complexity. Notice that,
the Hao-Orlin algorithm solves this problem by computing n − 1 s-t cuts and attains
an overall complexity which asymptotically matches that of computing a single s-t cut
(cf., [6]). Notice that, in general, the union of the k single minimum s-t cuts does not
necessarily represent an optimal solution of the s-t multicut problem. Indeed, it can
be easily shown that it is a k-factor approximation of such optimal solution. A similar
criticism applies with respect to Problem 1, because finding each single s-t cut inde-
pendently, does not allow one to impose any global optimization criteria.

The second approach can be adopted when the objective function f(X1, . . . , Xk)
has an intrinsically global nature, i.e., it is not possible to express it as a simple combina-
tion of k simpler functions, each concerning a single pair si-ti (as we did by restraining
to the minimization of the sum of the cuts’ weights), then a more general technique
has to be designed. A viable possibility consists in exploiting some kind of enumera-
tion technique (complete or bounded), such as those proposed in [29, 3, 30], in order to
compute one sequence of si-ti-cuts, for each i. Then, the solution to Problem 1 can be
obtained by suitably combining k single solutions, each one coming from one of the
sequences. More details will be provided in the next section.

5 An optimal solution for the general case

In this section we outline a viable algorithmic approach to Problem 1 that guarantees to
achieve the optimal solution. The basic idea consists in enumerating, for each of the k
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si-ti pairs, the admissible solutions of the corresponding si-ti cut problem. Then, the
optimal solution of the global problem can be sought for by evaluating the objective
function f(X1, . . . , Xk) directly on the k-tuples of single solutions. In this manner one
can carry out the optimization of an objective function in its most general form.

Concerning each single si-ti cut problem, this technique requires to produce an
enumeration of all its solutions ordered by non-decreasing weights. Such a specific
problem has been formalized precisely in [31] and it turns out to be a #P -complete
problem [25].

Concerning the cut problem, instead of the s-t cut problem, a remarkable approach
has been proposed in [33], by combining the technique described in [31] with the
faster Hao-Orlin algorithm [16]. The resulting algorithm can enumerate all cuts, in
non-decreasing order of weight, with a O(n × m × log(n2/m)) delay, between two
consecutive solutions.

In our case, we propose the adoption of the same technique (see below), slightly
re-engineered in order to obtain an enumeration of all s-t cuts. The resulting naive
algorithm is able to solve Problem 1 within O(N × n×m× log(n2/m)) steps, where
N is the number of all si-ti cuts. Notice that, in general, N may be exponential in the
size of the given graph [31, 24].

Let us briefly outline the enumeration technique of [33, 31] and how to adapt it to
our case. Given a DAG G(V,E), the vertices in V are numbered from 1 to n. In this
way, we can represent each cut inG by means of a binary string b1, b2, . . . , bn composed
of n bits, where bi = 0 if and only if the vertex indexed i is in the cut. Conversely, each
binary string represents a possible cut.

Consequently, the set of all (strings representing) potential cuts can be organized in
a complete binary tree of height n. For example, the picture shown below, borrowed
from [33], illustrates such a tree for n = 4.

In such a tree, each leaf is associated with one of the possible strings b1, b2, . . . , bn,
and vice versa. Each internal node, at level h represents a partially specified cut, not
involving the vertices indexed from h + 1 to n. In other words, such a node of the tree
represents the collection of all cuts that agree on the first h vertices. Let this collection
be denoted by C(X,Y ) with X = {i|bi = 0} and Y = {i|bi = 1}. The root of the
tree represents all cuts and is denoted by ε. For the sake of simplicity, let us identify a
node v of the tree with the partially specified cut it represents and let mc(v) denote the
minimum cut among those represented by v.
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Let Π = {(ε,mc(ε))} be a working set of pairs where the first component is a
node of the tree and the second one is the value of the corresponding minimum cut.
The algorithm proceeds by extracting the element (v,mc(v)) from Π that minimizes,
among the pairs in Π , the value of mc(v). The pair (v,mc(v)) is produced as output.
Then, the leaf corresponding to the minimum cut mc(v) is considered. Let l be such a
cut/leaf (c.f., the above picture). At this point, the path in the tree connecting v to l is
considered and for each of the immediate children u in such path the pair (u,mc(u))
is added to Π . The immediate children are all the nodes which are not in the path, are
adjacent to some node in the path, and belong to the tree rooted in v. (They are depicted
in gray color in the figure.) Each value mc(u) is obtained by means of an auxiliary
computation (for instance, by exploiting the algorithm in [16, 14]). This procedure is
repeated until Π is empty.

It is easy to verify that the cuts are enumerated in non-decreasing weight order.
Consider once again the above figure. At each step, each of the immediate children u
added to Π cannot represent a collection of cuts that includes l. Since l is the optimal
solution among all the cuts represented by v, no cut among those represented by u can
have weight lower than l. In [31] it is shown that such algorithm, if implemented using
suitable data structures, can enumerate all cuts with a Õ(n2m) time delay.5

In order to adapt this technique to our purpose, it suffices to consider that to repre-
sent s-t cuts we only need a tree of height n− 2, because s and t must be separated in
each cut. Clearly, an auxiliary algorithm will be used to compute minimum s-t cuts, at
each step. It might be the case that not all the leaves of the binary tree actually represent
s-t cuts. Hence, there might be internal nodes that represent empty collections of s-t
cuts. This particular cases are easily dealt with by simply ignoring the corresponding
sub-tree. (Notice that, at least one minimum s-t cut exists and it is determined at the
beginning of the execution.)

A very inefficient algorithm for Problem 1 is composed of two steps. First, the
above outlined enumeration algorithm is used to compute all si-ti cuts l(i)1 , . . . , l

(i)
ni , for

each i ∈ {1, . . . , k}, where ni ≤ 2n−2 is the number of si-ti cuts. Then, the objective
function is optimized on the set of k-tuples of the form l(1), . . . , l(k), obtaining the set
l(1) ∪ · · · ∪ l(k) that minimizes the value of f(l(1), . . . , l(k)).

Clearly, the computational complexity of this algorithm is unsatisfactory, even for
small graphs. However, one may exploit the specific properties the implication graph
exhibits to gain greater efficiency. The structure of the graph G(V,E) has to be con-
sidered. Indeed, G is a layered DAG and the application of suitable heuristics might
sensibly improve the naive algorithm. For instance, the Padberg-Rinaldi or the Karger
heuristics [6] are certainly exploitable. Moreover, the fact that the DAG is an implication
graph built up by reflecting the logical relationships between propositional variables,
implicitly encoded in the set of clauses, has great relevance. In fact, the DAG encodes
logical implications between each vertex/literal and the set of its antecedents. By ap-
plying simple propositional properties, one can locally re-write the graph G so as to

5 Actually, one of the crucial points in reducing the overall complexity of the algorithm consists
in handling a set Π of pairs (v,mc(v)) instead of simple elements v. In this way, in fact, one
has to compute the value of mc(v) just once for each node v (see [31] for the details).
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transform it into a graph G′ which is equivalent to G w.r.t. the learning process, but
belongs to a class of DAGs having better computational properties. Examples of graph
classes that are desirable targets for this rewriting process are planar graphs and series-
parallel graphs. (Note that instead of explicitly applying these rewritings on the graph,
one could encode their effect directly in the algorithms user to compute the cuts.)

Another, not antithetic, possibility consists in introducing a bound on the number
of non-decreasing cuts to be computed for each si-ti pair. This, in principle, corre-
sponds to accept a solution that approximates the optimal one. To achieve this, the s-t
cut algorithm is used to compute the first c ≤ 2n si-ti cuts, for each i, where c is a
fixed constant value; Then, the algorithm proceeds as before, but minimizing the ob-
jective function w.r.t. the prefixes of the k sequences of si-ti cuts. The quality of the
approximation depends on c and on the specific order in which the single si-ti cuts are
enumerated by the si-ti cut algorithm.

Further investigation is needed to study all these issues.

6 Concluding remarks and future work

In this paper we considered one of the most crucial component of modern DPLL-based
SAT solvers, namely, the conflict analysis procedure.

The purpose of this procedure is the detection of the reasons behind a failure oc-
curred during the search for a satisfying assignment of a SAT instance. By analyzing
the failure, caused by a conflicting set of assignments performed by the solver while
visiting a solution space, one or more new clauses are learned and added to the problem
being solved. The effect of this addition consists in driving the solver “away from the
failure”, preventing the solver to make again the same contradictory assignments. Such
a kind of solving strategy is typical of the so-called conflict-driven SAT-solvers, but sim-
ilar techniques have been successfully applied in several other fields of computational
logic (such as, ASP, CP, SMT, to mention some).

We proposed a formulation of the conflict analysis task in a form expressive enough
to reckon with different orthogonal generalizations of the basic schema. Features such
as the analysis of multiple conflicts, the generation of multiple learned clauses, the
imposition of global optimality criteria, the treatment of multiple decisions, are easily
dealt with in the same framework. Extensions to the case of parallel solvers are also
foreseeable.

We formalized the general learning problem as the search for a collection of vertex
cuts in a directed acyclic graph. Optimality of the solution is evaluated with respect
to a given global objective function. Such a function is basically conceived to express
(complex) search strategies and heuristics that control the behavior of the solver. Nev-
ertheless, by considering a single conflict and by choosing a simple objective function
(e.g., minimizing set cardinality), one can recover the standard conflict analysis schema,
normally exploited in common solvers.

We provided ways to face the general learning problem by exploiting well-known
algorithms proposed in literature to solve cut and multicut problems on DAGs.

Clearly, the computational effort required to accomplish the learning task in its most
general form, is higher than the one needed to learn a collection of single clauses, each

A.Formisano et al. On multiple learning schemata in conflict driven solvers

143



of them justifying a single conflict, independently. The advantage of the general tech-
nique comes from the potentially higher quality of the learned (sets of) clauses. For
instance, the adoption of suitable global objective functions may enable the identifi-
cation of common reasons for multiple conflicts or the derivation of conflict clauses
that involve “heavy” literals, i.e., relevant literals with respect to the heuristics used
to determine vertex weights. This may reduce the number of clauses that are learned.
Another possibility consists in encoding in the objective-function criteria that tend to
minimize the literals shared among the learned clauses. Consequently, a smaller set of
clauses would better affect the search, because they would prune different and distant
(i.e., loosely related) portions of the search space.

In case the visit of the search space is split in different searches (this can be achieved
by assigning from the beginning a set of variables; this corresponds to making a multiple
decision at the first decision level) and/or by running different solvers in parallel, the
adoption of a global perspective in conflict analysis may help in learning conflict clauses
that act as a communication channel between the different searches.

It should be noted that the difference in the computational efforts required by solv-
ing the global problem as a whole and solving k simpler problems, reduces whenever
one resorts to approximated algorithms. In this context one might benefit even from
recent results on fixed-parameter tractability of multicut problems on DAGs [18]. For
example, think about the fact that it seems reasonable to fix the number of conflicts to
be considered in each analysis (namely, the parameter k) to a predefined value, or to
limit the search to those cuts/clauses having a specific cardinality.

In this paper we restrained ourselves to proposing an initial formalization of a gen-
eral learning schema. We also outlined some simple algorithmic solutions. Much has
to be done and there are many challenging themes for future research. As regards the
algorithmic aspects, one may explore the applicability to our context of several heuris-
tics and techniques developed for standard multicut problems, such as, for instance, the
Padberg-Rinaldi and the Karger heuristics [6].

Introducing a global perspective for multiple learning is certainly interesting per se.
It might be the case that one benefits from this new perspective in identifying new learn-
ing schemata, different from those currently described in literature, especially concern-
ing parallel solvers.

Clearly, the practical advantage of our proposal has to be validated through an exten-
sive experimental activity. In doing this one may proceed by implementing a concrete
prototypical solver. Alternatively, one may integrate a general learning schema into an
existing solver. The solvers described in [9, 32, 10], are good candidates for this last
possibility. In fact, these solvers (as well as those described in [5, 20, 1, 21], to men-
tion some proposals not necessarily concerned with SAT-solving) take advantage from
a high-performance parallel architecture, and offer solid support to the implementation
of parallel algorithms for conflict analysis.
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