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Abstract. The interval temporal logic AB features two modalities that
make it possible to access intervals which are adjacent to the right of the
current interval (modality 〈A〉) and proper subintervals that have the
same left endpoint of it (modality 〈B〉). AB is one of the most significant
interval logics, as it allows one to express meaningful (metric) properties,
while maintaining decidability (undecidability rules over interval logics,
AB is EXPSPACE-complete [14]). In an attempt to capture ωS-regular
languages with interval logics [15], it was proved that AB extended with
an equivalence relation, denoted AB∼, is decidable (non-primitive re-
cursive) on the class of finite linear orders and undecidable on N. The
question whether the addition of two or more equivalence relations makes
finite satisfiability for AB undecidable was left open. In this paper, we
answer this question proving that AB∼1∼2 is undecidable.

1 Introduction

Interval temporal logics (ITL) are temporal logics where time intervals/periods,
instead of time points/instants as in the standard framework, are used as basic
building blocks. ITL are characterized by high expressiveness and high computa-
tional complexity. The main formalization of these logics is known as HS which
features one modality for each interval order relation [7] (the so-called Allen’s
relations [1]). In this paper, we analyze the complexity of the finite satisfiability
problem for the interval temporal logic AB of Allen’s relations meets and begun
by extended with two equivalence relations. AB is one of the most significant
fragments of HS since it is decidable [14] (undecidability rules over interval log-
ics [5]) and it can express various important (metric) temporal properties. As
an example, it allows one to encode the standard until operator of point-based
linear temporal logic as well as to constrain the length of an interval to be less
than/equal to/greater than a given value [14].

The trade-off between the increase in expressiveness and the complexity blow-
up induced by the addition of one or more equivalence relations to a logic has
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been already highlighted in the literature (see, for instance, the logics for semi-
structured data [3], temporal logics [6], and timed automata [16]). Finite satis-
fiability of the two-variable fragment of first-order logic FO2 extended with one,
two, or more equivalence relations has been systematically explored in [8–10],
while the extension of FO2, interpreted over finite or infinite data words, with
an equivalence relation has been investigated by Bojańczyk et al. in [3]. Similar
results have been obtained by Demri and Lazic [6], that studied the extension of
linear temporal logic over data words with freeze quantifiers, which allow one to
store elements at the current word position into a register and then to use them
in equality comparisons deeper in the formula, and by Ouaknine and Worrell
[16], who showed that both satisfiability and model checking for metric tem-
poral logic over finite timed words are decidable with a non-primitive recursive
complexity.

The addition of an equivalence relation to an interval temporal logic was
first investigated by Montanari and Sala in [15]. They focused their attention
on the interval logic AB of Allen’s relations meets and begins extended with an
equivalence relation, denoted AB∼, interpreted over finite linear orders and N,
and they showed that the resulting increase in expressive power makes it pos-
sible to establish an original connection between interval temporal logics and
extended regular languages of finite and infinite words [2]. As for the computa-
tional complexity, they proved that AB∼ is decidable (non-primitive recursive)
on the class of finite linear orders and undecidable on N. Recently, the interval
logic of temporal neighborhood PNL, which features two modalities for Allen’s
relations meets and met by, and its metric variant MPNL, both extended with
one equivalence relation, have been proved to be decidable over finite linear or-
ders [13] (NEXPTIME-complete the former, EXPSPACE-hard the latter). In
this paper, we answer a question left open in [15], showing that the addition of
two (or more) equivalence relations makes AB undecidable also over finite linear
orders.

The paper is organized as follows. Section 2 illustrates in some detail previous
work on the interval temporal logic AB extended with one equivalence relation
and some related work. Section 3 introduces syntax and semantics of the logic
AB∼1∼2 and gives some background knowledge about counter machines. The
next two sections provide a reduction from the undecidable 0-0 reachability
problem for Minsky counter machines to the finite satisfiability problem for
AB∼1∼2. More precisely, Section 4 outlines the general structure forced on each
model (if any) by the formulas given in Section 5. Finally, in Section 6 we prove
that the proposed encoding is correct. Conclusions provide an assessment of the
work and outline future research directions.

2 Related work

The present paper can be viewed as the natural completion of the work reported
in [15], where Montanari and Sala proved that the satisfiability problem for
AB∼ is decidable over finite linear orders, with non-primitive recursive complex-
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ity, and undecidable over N. Undecidability has been proved by a reduction from
the (undecidable) 0-n reachability problem for lossy counter machines [11]. As
for finite satisfiability, they initially reduced the problem of finding a model for a
given AB∼ formula ϕ to the existence of a particular compass structure exploit-
ing the correspondence that can be established between intervals and points
in the positive octant of the Cartesian plane, that is, the map that links any
interval [x, y] to the corresponding point (x, y). Then, by exploiting a suitable
model contraction technique, they showed that if ϕ is finitely satisfiable, then a
structure satisfying it can be obtained via a bottom-up generation of candidate
(finite) compass structures. Since the number of pairwise incomparable rows of
any candidate structure can be proved to be finite, termination easily follows.
The complexity bound has been obtained by encoding in AB∼ the 0-0 reacha-
bility for lossy counter machines (LCM) which is known to be a non-primitive
recursive (decidable) problem [17].

The general structure of the AB∼ encoding of the 0-0 reachability problem
for LCM is similar to the one provided in this paper for (non-lossy) counter
machines (CM). However, when only one equivalence relation is available, it is
possible to enforce the presence of certain points in a configuration (depending
on the points of the previous configuration), but not to restrict the number of
points in it. This last constraint is necessary for the encoding of CM and it can
be enforced only by making use of two equivalence relations.

From a technical point of view, our work presents some similarities to the
one by Bojańczyk et al. in [4], where it is shown, among other results, that the
logic FO2(+1,∼1,∼2) over finite data words is undecidable. To prove it, they
provide a reduction from the Post correspondence problem to finite satisfiabil-
ity for FO2(+1,∼1,∼2), that exploits the interconnections between equivalence
relations in a way that is similar to what we do here. However, their encoding
strongly depends on constraints of the form ∀∃ which are not expressible in AB.
To overcome these limitations, we will exploit some metric properties definable
in AB.

3 Preliminaries

In this section, we first introduce syntax and semantics of AB∼1∼2 and then we
provide background knowledge about Minsky counter machines.

3.1 The interval temporal logic AB∼1∼2

The interval temporal logic AB∼1∼2 features two modalities 〈A〉 and 〈B〉 corre-
sponding to Allen’s relations meets and begun by, respectively, and two special
binary relation symbols ∼1 and ∼2. Formally, given a set Prop of propositional
variables, formulas of AB∼1∼2 are built up from Prop and ∼1,∼2 using the
Boolean connectives ¬, ∨ and the modalities 〈A〉 and 〈B〉. Moreover, we make
use of shorthands ϕ1 ∧ϕ2 for ¬(¬ϕ1 ∨¬ϕ2), [A]ϕ for ¬〈A〉¬ϕ, [B]ϕ for ¬〈B〉¬ϕ,
> for p ∨ ¬p, and ⊥ for p ∧ ¬p, with p ∈ Prop.
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We interpret formulas of AB∼1∼2 in interval temporal structures over (pre-
fixes of) N endowed with the ordering relations meets (denoted by A) and begun
by (denoted by B), and two equivalence relations ∼1 and ∼2. More precisely,
we identify any given ordinal N < ω with the prefix of length N of N and we
accordingly define I(N) as the set of all closed intervals [i, j], with i, j ∈ N and
i ≤ j. A special role will be played by point-intervals (intervals of the form [i, i],
with i ∈ N) and unit-intervals (intervals of the form [i, i + 1]), which can be
respectively defined as [B] ⊥ (abbreviated π) and [B][B] ⊥ (abbreviated unit).
For any pair of intervals [i, j], [i′, j′] ∈ I(N), relations A and B are defined as
follows:

– meets relation: [i, j] A [i′, j′] iff j = i′;
– begun by relation: [i, j] B [i′, j′] iff i = i′ and j′ < j.

The (non-strict) semantics of AB∼1∼2 is given in terms of interval models
S = 〈I(N), A,B,∼1,∼2, V 〉, where ∼1 and ∼2 are two equivalence relations over
N and V : I(N)→ ℘(Prop) is a valuation function that assigns to every interval
[i, j] ∈ I(N) the set of propositional variables V ([i, j]) that are true on it. The
truth of an AB∼1∼2 formula over a given interval [i, j] in a model S is defined
by structural induction as follows:

– S, [i, j] � p iff p ∈ V ([i, j]), for all p ∈ Prop;
– S, [i, j] � ¬ψ iff S, [i, j] 2 ψ;
– S, [i, j] � ϕ ∨ ψ iff S, [i, j] � ϕ or S, [i, j] � ψ;
– S, [i, j] � 〈X〉ψ iff there exists an interval [i′, j′] such that [i, j] X [i′, j′], and
S, [i′, j′] � ψ, for X ∈ {A,B};

– S, [i, j] �∼k iff i ∼k j, for k ∈ {1, 2}.
Given an interval structure S and a formula ϕ, we say that S satisfies ϕ if

there is an interval I in S such that S, I � ϕ. We say that ϕ is (finitely) satisfiable
if there exists a (finite) interval structure that satisfies it. We define the (finite)
satisfiability problem for AB∼1∼2 as the problem of establishing whether a given
AB∼1∼2 formula ϕ is (finitely) satisfiable.

3.2 Counter machines

A k counter machine (kCM) is a triple of the form M = (Q, k, δ), where Q is a
finite set of control states, k is the number of counters, whose values range over
N, and δ is a function that maps each state q ∈ Q to a transition rule having
one of the following forms:

1. value(h)← value(h) + 1; goto q′, for some 1 ≤ h ≤ k and q′ ∈ Q (abbrevi-
ated (q, h+ +, q′)), meaning that, whenever M is at state q, it increases the
counter h and it moves to state q′;

2. if value(h) = 0 then goto q′ else value(h) ← value(h) − 1; goto q′′, for
some 1 ≤ h ≤ k and q′, q′′ ∈ Q (abbreviated (q, h?0, q′, q′′)), meaning that,
whenever M is at state q and the value of the counter h is 0 (resp., greater
than 0), it moves to state q′ (resp., it decrements the counter h and it moves
to state q′′).
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A computation of M is any sequence of configurations that conforms to the
transition relation. The reachability problem for a counter machineM = (Q, k, δ)
is the problem of deciding, given two configurations (q0, z0) and (qf , zf ), whether
there is a computation that takes M from (q0, z0) to (qf , zf ). The reachability
problem for counter machines is undecidable even for machines with only two
counters [12]. For convenience, we will use a restricted, but equally undecidable,
form of this problem, called 0-0 reachability problem, where z0 and zf are both
0. Moreover, without loss of generality, we restrict our attention to computations
where q0 and qf occur only at the beginning and at the end, respectively.

4 The structure of intended models

The main contribution of the paper is the proof of the following theorem.

Theorem 1. The satisfiability problem for AB∼1∼2 over the class of finite lin-
ear orders is undecidable.

To prove it, we provide a reduction from the 0-0 reachability problem for Minsky
two-counter machines to the satisfiability problem for AB∼1∼2. More precisely,
given a two-counter machine M = (Q, 2, δ) and two states q0, qf ∈ Q, we build
a formula ψM,q0,qf such that there exists a computation in M from the configu-
ration (q0, 0, 0) to the configuration (qf , 0, 0) if and only if ψM,q0,qf is satisfiable.
First, in the present section, we delineate the structure that we want to give to
each model (if any) of ψM,q0,qf (the intended model). Then, in Section 5, we
show how to encode in AB∼1∼2 such a structure. We conclude the paper with
the proof of the correctness of the encoding.

The structure of the models of the encoding formula can be described as
follows. To start with, we partition the set of point-intervals (points for short)
in two subsets: points labeled by a state in Q (state-points) and points labeled
by c1 or c2 (counter-points). A configuration (q, v1, v2) is represented as a set
of contiguous points, where the first point is a state-point with label q and the
remaining ones are counter-points such that exactly v1 points have label c1 and
v2 points have label c2, in any order. Counter-points with label del are points
which have been “deleted” and thus do not count for the value of a counter in a
configuration.

The computation of the two-counter machine M (from q0 to qf ) consists
of a sequence of contiguous configurations. Counter-points with label plus and
minus indicate, respectively, points added in a configuration as a result of a
counter increment or eliminated in the next configuration as a result of a counter
decrement. Each configuration, but the first one, is obtained from the previous
one by applying a transition of M , which amounts to say that the sequence of
configurations is a valid computation of M .

In Figure 1, we give an example of the proposed model representation for the
computation (q, 1, 1)→ (q′, 1, 0)→ (q′′, 2, 0). The second configuration (q′, 1, 0)
is obtained from the initial configuration (q, 1, 1) by decrementing the second
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counter; the third configuration is obtained from the second one by increment-
ing the first counter. Notice that points with label minus are deleted, that is,
labeled by del, in the configuration that immediately follows the one in which
the decrement of the counter takes place.

. . . . . .

q c1 c2

minus

q′ c1 c2

del

q′′ c1 c2

del

c1

plus

Fig. 1. Labels of the points in a model representing the partial computation (q, 1, 1)→
(q′, 1, 0)→ (q′′, 2, 0).

5 Encoding of 0-0 reachability in AB∼1∼2

In this section, we show how to encode intended models, representing valid com-
putations of the two-counter machine, by an AB∼1∼2 formula.

Let us consider the AB∼1∼2 formula ψM,q0,qf , which is defined as follows:

ψM,q0,qf ≡ ψ0→0 ∧ [G](ψpoints ∧ ψδ ∧ ψ∼),

where [G]ϕ is an shorthand for [B]ϕ∧ϕ∧ [B][A]ϕ∧ [A][A]ϕ (universal modality)
and

– ψ0→0 forces the initial and final configurations of the computation to be
respectively (q0, 0, 0) and (qf , 0, 0);

– ψpoints specifies conditions on points: (i) points are partitioned in state-
points and counter-points, (ii) labels plus and minus can label counter-
points only, and (iii) in a configuration, there is at most one point with label
minus and at most one point with label plus;

– ψδ ensures the consistency of state-points and plus/minus points with the
transitions in M , that is, if a configuration τ ′, with state-point q′, immedi-
ately follows a configuration τ , with state-point q, then one of the following
three cases must hold: (i) there is a transition δi = (q, h + +, q′) ∈ δ, there
is no point with label minus in τ , and there is one point with labels ch and
plus in τ ′; (ii) there is a transition δi = (q, h?0, q′, q′′), there is no point with
label ch and without label del in τ , and there is no point with label plus in
τ ′; (iii) there is a transition δi = (q, h?0, q′′, q′), there is one point with label
ch and without label del in τ , and there is no point with label plus in τ ′;

– ψ∼ guarantees that each configuration is obtained from the previous one by
an increment/decrement/no-action transition (notice that the fact that the
transition actually belongs to M is checked by ψδ and not by ψ∼).

Formulas ψ0→0, ψpoints, and ψδ can be easily expressed in AB, that is, equiv-
alence relations play no role in the encoding of the corresponding conditions.
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The main component of the encoding is the formula ψ∼, which acts like a con-
troller of the form of configurations by preventing the addition of any unwanted
counter-point. More precisely, it forces each configuration to be an isomorphic
copy of the previous configuration, that is, to feature the same counter-points in
the same order, plus at most one extra point with label plus.

We now show how to express each of above conditions in AB∼1∼2. To fa-
cilitate the reading of the formulas, we make use of the following abbreviations:
we denote the formula

∨n
i=1 qi by the symbol q and the formula

∨2
i=1 ci by the

symbol c. Moreover, we define the following formula, parametric in ϕ:

succ(ϕ) ≡ 〈A〉(unit ∧ 〈A〉(π ∧ ϕ))

which states the truth of ϕ at the point immediately after the current interval,
that is, at the successor of the right endpoint of the current interval. Finally,
we introduce a derived modality 〈P〉, which is defined in terms of modalities 〈A〉
and 〈B〉, that allows one to force a given formula ϕ to be true at some point of
the current interval, endpoints included. The modality 〈P〉 is formally defined as
follows:

〈P〉ϕ ≡ 〈B〉〈A〉(π ∧ ϕ) ∨ 〈A〉(π ∧ ϕ).

The dual of the above modality is defined as usual, that is, [P]ϕ ≡ ¬〈P〉¬ϕ, and
it states that ϕ holds at each point of the current interval (endpoints included).

The initial and final configurations are encoded by the formula:

ψ0→0 ≡ q0 ∧ succ(q) ∧ 〈A〉〈A〉qf ∧ [A][A](qf → succ([A][A](¬q ∧ (c→ del)))).

It states that the initial configuration is (q0, 0, 0) (the first state-point q0 is
followed by a state-point) and that the final configuration is (qf , 0, 0) (the last
state-point is qf and every counter-point after it, if any, is deleted).

The formula ψpoints is defined as the conjunction of the following conditions
(hereafter, we explicitly provide the encoding of the most complex conditions
only):

(A1) every point of the domain has one and only one label from the set
Q ∪ {c1, c2};

(A2) labels in Q∪{c1, c2}∪{plus,minus, last, del} are given to points only;
(A3) at most one counter-point per configuration can be labeled with plus

and at most one with minus;
(A4) the label last is associated with the points of the final configuration

only:

(last→ π) ∧ (last↔ [A](¬π → [A]¬q));

(A5) only counter-points can be labeled with del and a point can not have
both label del and label plus (or minus).

The formula ψδ is defined as the conjunction of the following conditions:
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(B1) all configurations but the initial one (and only them) have one (and
only one) label in δ = {δ1, ..., δm}. We label the first configuration with
a dummy transition δ0. If a configuration is labeled with δi, for some
i > 0, it means that it is obtained from the previous configuration by
the application of the transition δi;

(B2) transition labels are consistent with state-points of each configuration:

∧

δi=(q,h++,q′)∈δ
(δ ∧ succ(〈A〉δi))→

(〈B〉q ∧ succ(q′ ∧ 〈A〉(δi ∧ 〈P〉(ch ∧ plus))))
∧

∧

δi=(q,h?0,q′,q′′)∈δ
(δ ∧ [P](ch → del) ∧ succ(〈A〉δi))→ (〈B〉q ∧ succ(q′))

∧
∧

δi=(q,h?0,q′,q′′)∈δ
(δ ∧ 〈P〉(ch ∧ ¬del) ∧ succ(〈A〉δi))→

(〈B〉q ∧ succ(q′′) ∧ 〈P〉(ch ∧minus)),

where δ is a shorthand for the formula
∨m
i=0 δi;

(B3) there are no points labeled with plus in configurations labeled with
non-increment transitions or point labeled withminus in configurations
that precede configurations labeled with non-decrement transitions;

(B4) every (non-final) configuration devoid of counter-points is followed by
a configuration with at most one counter-point (labeled with plus).

In order to define the formula ψ∼, it turns out to be useful to introduce the
following formula:

ψ∃!q ≡ ([B](〈A〉q → [B]〈A〉¬q) ∧ 〈B〉〈A〉q ∧ 〈A〉¬q) ∨ (〈A〉q ∧ [B][A]¬q),

which guarantees the existence of a unique state-point inside the current interval
(endpoints included).

We call an interval labeled with both ∼1 and ∼2 and containing exactly one
state-point a linking interval, that is, a linking interval is an interval that satisfies
the formula ∼1 ∧ ∼2 ∧ψ∃!q, and we say that its endpoints are linked together
(the use of linking intervals in the encoding will be explained in Section 6).

The formula ψ∼ is defined as the conjunction of the following conditions:

(C1) a unit interval can not be labeled with both ∼1 and ∼2:

unit→ ¬(∼1 ∧ ∼2);

(C2) there is no interval, whose endpoints belong to the same configuration,
which is neither a point interval nor a unit interval and is labeled with
∼1 or ∼2:

(¬π ∧ ¬unit ∧ [P]¬q)→ ¬(∼1 ∨ ∼2);
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(C3) two consecutive counter-points are in relation ∼1 or ∼2:

(unit ∧ 〈B〉c ∧ 〈A〉c)→ (∼1 ∨ ∼2)

(C4) each counter-point, which does not belong to the last configuration,
starts a linking interval:

(c ∧ ¬last)→ 〈A〉(∼1 ∧ ∼2 ∧ψ∃!q);

(C5) the labels of the endpoints of a linking interval must satisfy the follow-
ing constraints:

(∼1 ∧ ∼2 ∧ψ∃!q)→
(
((〈B〉c1 ∧ 〈A〉c1) ∨ (〈B〉c2 ∧ 〈A〉c2))

∧ (〈B〉del→ 〈A〉del)
∧ (〈B〉minus→ 〈A〉del)
∧ (〈B〉(¬minus ∧ ¬del)→ 〈A〉¬del)
∧ (〈A〉¬plus)

)
;

(C6) the first point of all configurations, but the final one, is linked to the
first point of the next configuration:

(unit ∧〈B〉(q ∧ ¬last) ∧ 〈A〉c)
→ 〈A〉(∼1 ∧ ∼2 ∧ψ∃!q ∧ [B](〈A〉q ∨ [P]¬q)).

We would like to observe that the formula [B](〈A〉q ∨ [P]¬q)) enforces
the second to last point of the linking interval to be the only state-point.
Let [x, y] be this interval. If y′, with x < y′ < y − 1, were a state-point
(it can not be the final point y since [x, y] is a linking-interval, and,
by C5, linking intervals have counter-points as their endpoints), then
[x, y − 1] would satisfy neither 〈A〉q (there can only be one state-point
between x and y) nor [P]¬q (since y′ is between x and y − 1 and it is
a state-point);

(C7) the last point of every configuration, but the final one, is linked to a
point that is followed by a state-point or by a counter-point with label
plus followed by a state-point:

(δi ∧ 〈B〉¬last)→〈A〉
(
∼1 ∧ ∼2 ∧ ψ∃!q ∧
(succ(q) ∨ succ(plus ∧ succ(q)))

)
.

We would like to emphasize the crucial role of condition (C5). First of all, it
constrains linking intervals to connect counter-points with the same label (either
c1 or c2). Moreover, it transfers logical deletion (counter-points labeled by del)
from one configuration to the next one, it forces the actual execution of a new
deletion by connecting a counter-point labeled by minus to a counter-point
labeled by del, and it prevents unwanted deletions or insertions to take place.

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

179



6 Proof of correctness of the encoding

The proof of correctness for the formulas ψpoints, ψδ, and ψ0→0 is straightforward.
The only thing that we really need to show is that the behavior of the formula
ψ∼ is actually the one we described in Section 5, that is, we need to prove that
ψ∼ forces each configuration to be the result of the application of a transition of
a (generic) counter machine to the previous configuration. To this end, we show
that each configuration τi+1 contains an exact copy of the counter-points of
the previous configuration τi in its initial part plus possibly an additional point
labeled with plus at the end (if it is obtained from the previous configuration
by an increment transition).

Let S = (I(N), A,B,∼1,∼2, V ) be a model of ψM,q0,qf and q0, q1, . . . , qm

be the enumeration of its state-points according to the order of the domain
(therefore, by ψ0→0, q0 = q0 and qm = qf ). The configuration τi is defined as
the set of points from qi (included) to qi+1 (excluded). τm consists of qm and
the points that follows it, till the end of the domain I(N). We denote by ∼k any
of the relations ∼1 or ∼2. If τ is an ordered set of points, we write τ j to denote
the j-th point of τ .

Let f be the set of all and only those pairs of points, belonging to two
consecutive configurations τi and τi+1, which are connected by a linking interval,
that is, (x, y) ∈ f if and only if there exist τi, τi+1 such that x ∈ τi, y ∈ τi+1,
x ∼1 y, and x ∼2 y.

First of all, we observe that for each counter-point x in τi there exists a
counter-point y in τi+1 such that (x, y) ∈ f (by (C4)). Moreover, by condition
(C5), every pair in f consists of counter-points with the same label ck. We
now prove that f is (the map of) an injective function that preserves adjacency
between points, that is, if x, x′ are consecutive counter-points, then f(x), f(x′)
are consecutive counter-points as well:

– f is a function: suppose that there exist y, y′, with y < y′, in τi+1 which
have the same counter-image x, with x ∈ τi, in f , then y ∼1 x ∼1 y

′ and
y ∼2 x ∼2 y

′, and thus y ∼1 y
′ and y ∼2 y

′, which violates condition (C1) or
condition (C2), depending on the distance between y and y′ (if |y′ − y| = 1,
then it violates (C1); otherwise, it violates (C2));

– f is injective: the proof is similar to the one given for the previous point.
Suppose that there exist x, x′, with x < x′, in τi which have the same image
y, with y ∈ τi+1, in f , then x ∼1 y ∼1 x

′ and x ∼2 y ∼2 x
′, and thus x ∼1 x

′

and x ∼2 x
′, that violates condition (C1) or condition (C2);

– f preserves adjacency: let x, x′ be two consecutive points in τi, that is, x′

is the successor of x, and let y and y′ be their respective images (since
f is a injective function, it immediately follows that they are unique). By
condition (C3), it holds that∼k∈ V ([x, x′]), and thus y ∼k x ∼k x′ ∼k y′ and
∼k∈ V ([y, y′]), which, by condition (C2), implies that y, y′ are consecutive.

By the properties of f and condition (C6), it follows that f(τ ji ) = τ ji+1 for j =
2, . . . , |τi| (order preservation). A graphical account of the relationships between
pairs of counter-points belonging to two consecutive configurations is given in
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q c1 c2 c1 q′

p1 p2 p3 p4 p5

∼1 ∼2

∼1∼2

c1

p6

∼1∼2

∼1∼2

c2 c1

p7 p8

∼1 ∼2

Fig. 2. Correspondence between counter-points of two consecutive configurations.

Figure 2. Moreover, thanks to condition (C7), the inequality |τi| ≤ |τi+1| ≤ |τi|+1
holds, and thus the possible extra point of τi+1 must have label plus. By this fact
and the consistency of the labels plus,minus, and del guaranteed by condition
(C5), it follows that τi+1 is obtained from τi by an increment transition (if it
has an extra point labeled with plus) or by a decrement transition (if it has no
extra point), as desired.

It is worth emphasizing that the role of ψ∼ is not to guarantee that the
transition applied to τi to obtain τi+1 is a valid transition for M (which is the
job of ψδ), but to ensure that τi+1 could be obtained from τi by a transition of
a counter machine.

7 Conclusions

In [15], Montanari and Sala studied complexity and expressiveness of the interval
temporal logic AB∼, that extends AB with an equivalence relation. Complex-
ity and (un)decidability results are given by means of suitable reductions from
reachability problems for lossy counter machines. The resulting picture is as fol-
lows: one gets decidability over finite linear orders with nonprimitive recursive
complexity and undecidability over N. In addition, they showed that decidabil-
ity can be recovered by suitably restricting the class of models over which AB∼
formulas are interpreted. In this paper, we proved that decidability of finite
satisfiability is lost when two or more equivalence relations are added to AB.

As for future work, in analogy to what Montanari and Sala did for AB∼
over the natural numbers, we are thinking of possible ways of restricting the
class of models over which AB∼1∼2 formulas are interpreted in order to re-
cover finite satisfiability. We are also studying the effects of the addition of two
or more equivalence relations to other interval logics, such as (metric) proposi-
tional neighborhood logic, which preserves decidability when extended with one
equivalence relation only [13].
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