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Abstract. We consider the Stackelberg fuel pricing problem in which a
company has to decide the fuel selling price at each of its gas stations
in order to maximize its revenue, assuming that the selling prices of the
competitors and the customers’ preferences are known in advance. We
show that, even in the basic case in which the road network is modeled
by an undirected planar graph and the competitors discriminate on two
different selling prices only, the problem is APX-hard. On the positive
side, we design a polynomial time algorithm for instances in which the
number of gas stations owned by the company is constant, while, in the
general case, we show that the single-price algorithm (which provides the
best-known solutions for essentially all the Stackelberg pricing problems
studied in the literature up to date) achieves an approximation ratio
which is logarithmic in some parameters of the input instance. This re-
sult, in particular, is tight and holds for a much more general class of
Stackelberg network pricing problems.

1 Introduction

A fundamental decisional process in many business activities concerns how to
set the selling prices so as to maximize its own revenue, once knowing the sell-
ing prices of the competitors and the customers’ preferences. The scenario in
which the latter are implicitly defined in terms of some optimization problem
are usually referred to as Stackelberg pricing problems [15]. These problems can
be modeled as multi-player one-round games in which there is a special player,
the leader, while all the others are followers. The first action is undertaken by
the leader who decides on some parameters (e.g., the selling prices) and then the
followers respond by deciding their actions. Each follower adopts, as her action,
the optimal solution of a certain optimization problem (e.g., satisfying her own
demand at the minimum cost) which depends on some of the parameters fixed
by the leader and on some other values on which the leader has no control (e.g.,
the selling prices of the competitors). Since the followers’ choices influence, in

? This work was partially supported by the PRIN 2010–2011 research project ARS
TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Ital-
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turn, the leader’s revenue, the determination of the best possible action for the
leader often results in a challenging algorithmic problem.

A considerable research attention, see [2–8, 11, 12, 14], has been devoted in
the last years to the study of Stackelberg network pricing problems based on
some fundamental (polynomial time solvable) optimization problems, such as
shortest paths, shortest path trees and minimum spanning trees. In this paper,
we study the Stackelberg fuel pricing problem (SFPP) which is a Stackelberg
network pricing problem based on the gas station problem (GSP): an optimization
problem introduced in [9] to model situations in which drivers have to go from
one location to another and have to decide where to fill their cars with fuel so
as to minimize the travel cost, once knowing the fuel prices at the various gas
stations along the road network.

Model and Notation. For a positive integer k, let [k] denote the set {1, . . . , k}.
A road network is an edge-weighted directed graph G = (V,E,w), with |V | = n,
|E| = m and w : E → R≥0 such that, for each e = (u, v) ∈ E, w(e) specifies the
amount of fuel (expressed in gallons) needed to go from u to v.

An instance (G, s, t, S, p) of the GSP is defined by a road network G, a pair
of nodes s, t ∈ V , a set of nodes S ⊆ V and a function p : S → R≥0. The set of
nodes S represents the locations of gas stations and the function p models the
selling prices (per gallon) at each of the gas stations. There is a driver who needs
to go from s to t. For the sake of simplicity, we assume that the driver’s car is
equipped with a tank of unlimited capacity and that s ∈ S, so that the driver
can fill with as much fuel as she wants at price p(s) when starting her trip. The
driver wants to determine the best possible itinerary, that is, which (s, t)-path
to drive through and which gas stations to stop at for fueling so as to minimize
the total fuel cost3.

An instance (G, (si, ti, λi)i∈[k], L, C, pC , e) of the SFPP is defined by a road
network G, k source-destination pairs (si, ti) with an associated integer weight
λi ≥ 1 for each i ∈ [k], two sets L,C ⊆ V , a function pC : C → R≥0 and a value
e ≥ 0. The sets of nodes L and C represent the locations of gas stations: the
gas stations located at nodes in L are owned by the leader, while those located
at nodes in C are owned by her competitors, so that the function pC models
the selling prices established by the competitors at each of their gas stations4.
Note that we do not require L and C to be disjoint, i.e., either the leader and
one of her competitors may own a gas station at the same location. The leader
buys (or produces) the fuel at price e per gallon. There are k types of drivers
(the followers) such that, for each i ∈ [k], the driver of type i wants to go from
si to ti along the cheapest path in G, where λi denotes the number of drivers
of type i, that is, how many drivers want to go from si to ti. Once the leader
has established a pricing function pL : L → R≥0 defining the fuel prices at
her own gas stations, each follower of type i ∈ [k] determines her action by

3 The amount of fuel bought at each gas station s is implicitly defined by the minimum
distance between s and the successive station chosen for fueling

4 In the case in which more than one competitor owns a gas station in a given location
v, pC(v) will denote the cheapest fuel price among them.
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solving the instance (G, si, ti, L∪C, p) of the GSP, in which, for each v ∈ L∪C,
p(v) := min{pL(v), pC(v)}. The leader has to determine the pricing function
pL : L → R≥0 providing her with the highest possible revenue. To this aim, we
make the following simplifying assumption which is common in the setting of
Stackelberg pricing problems: when the gas station problem has more than one
optimal solution, the follower always chooses the one providing the leader with
the highest revenue5. Furthermore, we assume that si ∈ C ∀i ∈ [k], otherwise,
either the problem is not feasible or the revenue is unbounded.

More formally, given a node v ∈ V and a pricing function pL for the leader, let
q(pL, v) := 1pL(v)≤pC(v). For a pair of nodes u, v ∈ V , let d(u, v) be the distance
from u to v in G and B(u, v) be the set of itineraries connecting u to v, that is,
the set of sequences of nodes [u = vi1 , vi2 , . . . , vir = v] such that vis ∈ L ∪C for
each s ∈ [r − 1]. Set ps := p(vis), ds := d(vis , vis+1

) and qs := q(pL, vis) for each
s ∈ [r− 1]. Given pL and B ∈ B(u, v), a driver choosing itinerary B experiences
a cost c(pL, B) and yields a contribution g(pL, B) to the leader’s revenue which
are defined as follows:

c(pL, B) :=

r−1∑

s=1

ps · ds, g(pL, B) :=

r−1∑

s=1

(ps − e) · ds · qs.

Let cg(pL, B) = (c(pL, B), g(pL, B)) and define a total ordering relation ≺ on
R≥0 × R≥0 such that [x1, y1] ≺ [x2, y2] ⇔ x1 < x2 ∨ {x1 = x2 ∧ y1 > y2}. Let
B∗(u, v) ⊆ B(u, v) be the set of itineraries B ⊆ B(u, v) minimizing cg(pL, B) ac-
cording to the ordering relation ≺. Let cg(pL, u, v) := [c(pL, u, v), g(pL, u, v)] :=
minB∈B(u,v) cg(pL, B). Given a driver of type i, we have that c(pL, si, ti) is the
cost of her cheapest path, and g(pL, si, ti) is her contribution to the leader’s

revenue, so that g(pL) :=
∑k
i=1 λi · g(pL, si, ti) is the leader’s total revenue that

has to be maximized. Let pM := maxi∈[k] pC(si). It is easy to prove that, if we
set pL(v) > min{pM , pC(v)} for some v ∈ L, no driver will stop at station v for
fueling. Similarly, whenever pC(v) > pM for some v ∈ C, no driver will stop at
station v for fueling. Therefore, we can suppose without loss of generality that
pC(v) ≤ pM ∀v ∈ C, the leader’s revenue g(pL) is bounded and, in order to be
maximized, pL can be chosen in such a way that e ≤ pL(v) ≤ pC(v) ∀v ∈ L.

Related Work. The GSP has been introduced by Khuller, Malekian and Mestre
in [9]. They give polynomial time algorithms for the basic problem and for some
of its variations.

Briest, Hoefer and Krysta author an influential work [6] on Stackelberg net-
work pricing problems which widely generalizes previous results in the field. In
particular, they consider the case in which the edges of the network are parti-
tioned into two sets: the set of fixed-price edges and that of priceable edges, with
the latter owned by the leader. Each follower buys a subnetwork of minimum
cost and so the leader wants to assign suitable prices to the priceable edges so

5 In fact, if this is not the case, the leader can decrease some selling price of a negli-
gible amount so as to achieve almost the same revenue as in the case in which the
assumption holds.
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as to maximize her revenue. They study the approximation guarantee of the
single-price algorithm in this general class of problems. This algorithm, which
assigns the same (suitably computed) price to all priceable edges, has been first
analyzed in [7] for the case of a single follower buying a minimum spanning
tree. Briest, Hoefer and Krysta show that, for the case of a single follower, the
approximation guarantee is (1 + ε)Hh, where ε > 0 is an arbitrary value, h is
the number of priceable edges and Hi is the ith harmonic number, while, for
the case of k followers, it becomes (1 + ε)(Hh +Hk). Finally, when the followers
may have different weights, they show that the single-price algorithm achieves
an approximation guarantee of (1+ε)h2 and also provide a lower bound of O(hε)
on the approximability of the problem.

Determining whether there are approximation algorithms better than the
single-price one is, perhaps, the most important open problem in this field of
research. In fact, while the performance of this algorithm remains essentially the
same even when instantiated to specific optimization problems such as shortest
paths, shortest path trees and minimum spanning trees, the impossibility results
known so far in these cases only refer to APX-hardness, see [3, 5, 7].

Our Contribution. We show that the SFPP is APX-hard even in the basic
case in which the road network is modeled by an undirected planar graph and
the competitors discriminate on two different selling prices only, by means of a
reduction from the maximum independent set problem on cubic graphs. This
reduction, however, requires that |L| is a non-constant value. This assumption
is essential, anyway, since, for the case in which |L| = O(1), we show that the
problem can be solved in polynomial time.

We stress that the SFPP does not fall within the scope of the Stackelberg
network pricing problems defined by Briest, Hoefer and Krysta in [6] and that the
presence of additional parameters in the definition of the problem (in particular,
the edge-weights) makes the performance of the single-price algorithm unlikely
to be uninfluenced by the characteristics of the road network given in input.
To this aim, we define a general class of Stackelberg network pricing problems
which extends the one given by Briest, Hoefer and Krysta and includes the SFPP.
For this class of problems, we show that the single-price algorithm provides an
approximation guarantee which is logarithmic in some parameters of the input
instance (see the claim of Theorem 4 for the exact characterization) and that
this bound is tight.

Due to space limitations, some details and proofs have been removed.

2 Complexity Results

We first show that the SFPP is APX-hard even under some restrictions.

Theorem 1 The SFPP is APX-hard even when pC assigns only two different
prices and G is an undirected planar graph as long as |L| ∈ Θ(n).

Proof. We consider a polynomial reduction from the Maximum Indipendent Set
Problem on cubic graphs (MISP). Given a cubic graph (U,F ), with |U | = n
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and |F | = m, and an arbitrary value θ ∈]0, 1/2] polynomially representable with
respect to n, consider an instance (G, (si, ti, λi)i∈[k], L, C, pC , e) of the SFFP
that we define incrementally as follows. Suppose that the sets V , E, L and C
are initially empty. Fix an arbitrary orientation on the edges in U , insert a node
v∗ in V with pC(v∗) = 1 + 3θ, then, ∀i ∈ [n], insert in V three nodes v1i , v

2
i

and v3i with pC(v1i ) = pC(v3i ) = 1 + 3θ and pC(v2i ) = 4θ; v1i belongs to L. Then,
∀i ∈ [n], insert in E three edges e1i = {v1i , v2i }, e2i = {v2i , v∗} and e3i = {v3i , v1i }
with ω(e1i ) = θ, ω(e2i ) = 1/2 − θ and ω(e3i ) = 1 − θ. ∀ej = (ui, uh) ∈ F , denote
v1i with v1j , v2i with v2j , v2h with v3j , v1h with v4j and v3h with v5j . There is a driver

(v1i , v
2
i ) ∀i ∈ [n], and a driver (v1j , v

5
j ) ∀j ∈ [m]. Finally, set e = 3θ.

We stress that the constructed road network G is a planar graph.

Fig. 1. We consider, for example, the
polynomial reduction applied to a com-
plete graph (U,F ) with |U | = 4, de-
picted on the left. In (U,F ) the edges
are arbitrary oriented and there is an
enumeration of vertices and edges such
that the vertex numbers are overlined,
whereas the edge numbers are not. On
the right, we have the road network G
obtained from U . The index i indicates
the driver (v1i , v

2
i ) ∀i ∈ [4], and the in-

dex j indicates the driver (v1j , v
5
j ) ∀j ∈

[6]. The starting and the arriving nodes
of the source-destination pair associated
with every driver are depicted trough an
arrow.

The following lemmas hold.

Lemma 1 Consider the instance obtained by the reduction from (U,F ). Given
a pricing function pL, let p′L be the pricing function such that p′L(v1i ) = 4θ if
pL(v1i ) ≤ 4θ and p′L(v1i ) = 1 + 3θ otherwise. It holds that g(p′L) ≥ g(pL).

Proof (Sketch). We first prove that, independently from pL, the cheapest path
for driver (v1i , v

2
i ) is [v1i , v

2
i ] ∀i ∈ [n] and that the cheapest path for driver (v1j , v

5
j )

is [v1j , v
2
j , v
∗, v3j , v

4
j , v

5
j ] ∀j ∈ [m] . At this point, we prove that, by setting to 4θ

all the prices not bigger than 4θ and to 1+3θ the remaining ones (thus obtaining
p′L), the leader gets a revenue of g(p′L) ≥ g(pL). ut

Lemma 2 Given the pricing function p′L of the previous lemma, there exists
a pricing function p∗L which can be obtained in polynomial time from p′L such
that p∗L(v1i ) = 4θ if exists fj ∈ δ+(U,F )(ui) such that p′L(v1j ) = p′L(v4j ) = 1 + 3θ,

and p∗L(v1i ) = p′L(v1i ) otherwise. Moreover, it holds that g(p∗L) ≥ g(p′L) and that
g(p∗L) = |{i ∈ [n] : p∗L(vi) = 1 + 3θ}|(θ − θ2) + θ2n+ (2θ − θ2)m.
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Proof (Sketch). First we prove that, given j ∈ [m] such that p′L(v1j ) = p′L(v4j ) =

1 + 3θ, the leader’s revenue does not decrease when decreasing the value p′L(v1j )

to 4θ. By repeating this operation ∀j ∈ [m] such that p′L(v1j ) = p′L(v4j ) = 1 +
3θ, we obtain p∗L which, by induction, satisfies g(p∗L) ≥ g(pL). Hence, we get
g(p∗L, v

1
i , v

2
i ) = (p∗L(v1i )− 3θ)θ ∀i ∈ [n] and g(p∗L, v

1
j , v

5
j ) = 2θ − θ2. By summing

these values for all drivers, we obtain the claimed value for g(p∗L). ut

Now, we prove the theorem. Let 1 + ε be a lower-bound on the approximability
of MISP (see [1] for a proof of the APX-hardness of MISP). We prove, by con-
tradiction, that SFPP cannot be (1 + δ)-approximable ∀δ < ε

13 . Suppose that
there exists a (1 + δ)-approximation algorithm for the SFPP with δ < ε

13 . Let
p∗L be an optimal pricing function and pL be the pricing function returned by
the approximation algorithm. We have that g(p∗L)/g(pL) ≤ 1 + δ. By Lemma 2,
we can suppose without loss of generality that pL verifies pL(v1i ) ∈ {4θ, 1 + 3θ}
∀i ∈ [n] and pL(v1j ) = 4θ or pL(v4j ) = 4θ ∀j ∈ [m]. In fact, if this is not the
case, we can apply the polynomial time transformation outlined in the proof of
Lemma 2 so as to obtain from pL a pricing function p′L verifying the assumption
and such that p∗L/p

′
L ≤ p∗L/pL. Clearly, again by Lemma 2 and the optimality of

p∗L, the same assumption can also be made for p∗L.
Let M(pL) := {ui ∈ U : pL(v1i ) = 1 + 3θ}. From the assumptions on p∗L

and pL, it follows that M∗ := M(p∗L) and M := M(pL) are independent sets
of (U,F ). By the optimality of p∗L and because of the characterization of g(p∗L)
given in Lemma 2, M∗ has to be a maximum independent set of (U,F ). Let
θ := n−2. Again by the characterization of the leader’s revenue given in Lemma
2, for a sufficiently big n, we have

g(p∗L)

g(pL)
=

(|M∗|+ 2m+ (n− |M∗| −m)n−2)n−2

(|M |+ 2m+ (n− |M | −m)n−2)n−2
∼ |M

∗|+ 2m

|M |+ 2m
≤ 1 + δ. (1)

By manipulating (1), we have that |M∗|/|M | ≤ 1 + δ + 2mδ/|M |. In a graph
of degree 3 and m edges, we can find in polynomial time an independent set
with at least dm/6e nodes. So, we can suppose that |M | ≥ m/6. Therefore,
|M∗|/|M | ≤ 1 + δ + 2mδ/|M | ≤ 1 + 13δ < 1 + ε ⇒ |M∗|/|M | < 1 + ε, thus
contradicting the 1 + ε lower bound on the approximability of the MISP. ut

Note that, in the claim of Theorem 1, we required that |L| = Θ(n). However,
if we consider instances of the SFPP such that |L| = O(1), then the problem can
be efficiently solved. We prove this fact by designing an algorithm, called SFPP-
CL, which solves a polynomial number of linear systems in order to determine
the best possible pricing function for the leader.

Let K = {(si, ti) : i ∈ [k]}. For a pair of nodes (u, v), let c∞(u, v) be the
minimum cost paid by a driver to go from u to v without stopping at gas sta-
tions in L. Given a driver going from u to v, consider an optimal itinerary
B ∈ B∗(pL, u, v). There exists an itinerary D extracted from B, that we call
strong itinerary, of the form D = (u = v11 , v

1
2 , . . . v

1
t(1) = vC1 , v

2
1 , v

2
2 , . . . v

2
t(2) =

vC2 , . . . . . . v
C
r−1, v

r
1, v

r
2, . . . v

r
t(r) = v), with vCs ∈ C \ L ∀s ∈ [r − 1] while all
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the other nodes belong to L, such that the cost c and the revenue g with re-
spect to B can be computed as follows (set psz := pL (vsz), d

s
z := d(vsz, v

s
z+1) and

c∞(vCr , v
r+1
1 ) := 0):

c(pL, D) :=

r∑

s=1

t(s)−1∑

z=1

psz · dsz + cs∞, g(pL, D) :=

r∑

s=1

t(s)−1∑

z=1

(psz − e) · dsz.

Set cg(pL, D) := [c(pL, D), g(pL, D)] and let D(u, v) be the set of strong
itineraries starting at u and ending at v. It holds that cg(pL, u, v) =
minD∈D(u,v) cg(pL, D). From this fact, it follows that an optimal pricing func-
tion p∗L is an optimal solution to an LP problem LP ({Duv}(u,v)∈K), yielded by
a set of optimal strong itineraries {Duv}(u,v)∈K , whose objective function to be
maximized is g(pL) and the constraints are: (i) c(pL, Duv) ≤ c(pL, D) for each
D ∈ D(u, v), and (ii) e ≤ pL(v) ≤ pC(v) for each v ∈ L. From the LP Theory, we
know that there exist |L| constraints in LP ({Duv}(u,v)∈K) defining a linear sys-
tem of |L| equations in |L| variables whose unique solution is p∗L. By evaluating
the revenue yielded by all the pricing functions that solve all the possible linear
systems and returning the one giving the highest leader’s revenue, we obtain an
optimal pricing function p∗L.

We now describe algorithm SFPP-CL, which is based on a refinement of the
ideas outlined above. SFPP-CL is divided into two phases: an initializing phase,
in which several data structures are created and a running phase, in which SFPP-
CL evaluates the leader’s revenue yielded by several pricing functions obtained
trough the data structures defined during the initializing phase. Let KU = {u ∈
V : (u, v) ∈ K} and KV = {v ∈ V : (u, v) ∈ K}.

SFPP-CL: initializing phase

Step 1 Compute c∞(u, v) ∀u, v ∈ V .
Step 2 ∀u ∈ L, v ∈ L ∪ KV , let Xuv := [e =

xuv(0), xuv(1), . . . , xuv(ruv) = pC(u)] be the vector given by
the abscissa of all the vertices of the polyhedron Puv :=⋂
z∈C∪{v} {[x, y] : e ≤ x ≤ pC(u), y ≤ fzuv(x) := d(u, z) · x+ c∞(z, v)}

listed in increasing order (in order to compute Xuv, see [13]).
Let Zuv := [zuv(s)]s∈[ruv ] be the vector such that zuv(s) =
arg maxz∈C∪{v}{d(u, z) : [xuv(s), f

z
uv(xuv(s))] is a vertex of Puv} ∀s ∈ [ruv].

The usefulness of the vectors Xuv and Zuv is that, if an optimal pricing func-
tion p∗L verifies that p∗L(u) ∈]xuv(s − 1), xuv(s)] (set xuv(−1) = −∞), then the
itinerary D∗uv := [u, zuv(s), v] minimizes cg(p∗L, D) among all the itineraries of
the form D = [u, z, v] with z ∈ C ∪{v}. This observation will imply the correct-
ness of the running phase of SFPP-CL. Before describing this phase, we present
an algorithm that, given pL, computes g(pL) and which will be used as a subrou-
tine in the running phase (note that this algorithm can also be used to certify
that the SFPP belongs to NP).

SFPP-CL-C algorithm (SFPP-CL-Certificate algorithm)
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Step 1 Given a ∈ L and b ∈ L ∪ KV , let sab be the smallest strictly
positive integer such that pL(a) ≤ xab(sab) and, given (u, v) ∈ K, let
Guv = (Vuv, Euv, wuv) be a connected weighted graph that has an edge
(a, b) with w(a, b) = [c∞(a, b), 0] if a ∈ {u} \ L and b ∈ L ∪ {v}, w(a, b) =
[pL(a) · d(a, zab(sab)) + c∞(zab(sab), b), (pL(a) − e) · d(a, zab(sab))] if a ∈ L
and b ∈ L ∪ {v}.

Step 2 Evaluate the length of the shortest path from u to v in the graph Guv
∀(u, v) ∈ K, which is equal to g(pL, u, v) (because of the observation we did
when discussing the initializing phase). Finally, compute and return g(pL).

SFPP-CL: running phase

Step 1 Fix a set KL ⊆ K of |L| elements. Let KL
U := KU ∩KL and KL

V := KV ∩
KL. Given u ∈ L, let Xu = [e = xu(0), xu(1), . . . , xu(ru) = pC(u)] be the
vector obtained by sorting the elements of the vectors Xuv with v ∈ L∪KL

V .
Let Zu = (zu(t, v))t∈[ru],v∈L∪KV

be a matrix of nodes in V , in which the
generic zu(t, v) is equal to the node zuv(s) if xuv(s − 1) < xu(t) ≤ xuv(s),
where s ∈ [ruv].

Step 2 Let T = [t(u)]u∈L be a vector of integers indexed in L, such that 1 ≤
t(u) ≤ ru ∀u ∈ L. Let GT = (VT , ET ) be a connected graph such that
ET has the edges (u, zu(t(u), v)), (zu(t(u), v), v), (z, v) with z ∈ KL

U , u ∈ L,
v ∈ L ∪KL

V .
Step 3 Fix L−, L+ ⊆ L such that L− ∩ L+ = ∅ and set r := |L| − |L−| − |L+|.

Let D2
T := {(Ds, D

′
s)}s∈[r] be a set of r pairs of strong itineraries such that,

∀s ∈ [r], Ds and D′s both start at u and end at v, with (u, v) ∈ KL and are
simple paths in GT .

Step 4 Solve a linear system in the unknown variables yielded by pL, with the
following |L| equations: c(pL, Ds) = c(pL, D

′
s) ∀s ∈ [r], pL(u) = xu(t(u)− 1)

∀u ∈ L− and pL(u) = xu(t(u)) ∀u ∈ L+. If the system has only one solution
pL with pL(u) ∈]xu(t(u)− 1), xu(t(u))[ ∀u ∈ L \ {L− ∪L+}, compute g(pL)
by using SFPP-CL-C.

Step 5 Run Steps 1, 2, 3 and 4 for all possible choices of KL, T , L−, L+ and
D2
T and return the best pricing function among the considered ones.

The following theorem holds.

Theorem 2 SFPP-CL solves the SFPP in polynomial time when |L| = O(1).

3 An Approximation Algorithm: the Class SGPS

Given a generic pricing problem, a uniform pricing function, or UPF, is an assign-
ment of the same price to all the priceable elements. An optimal uniform pricing
function, or UPF∗, maximizes the leader’s revenue among all the UPFs. We in-
troduce the class of Stackelberg Games with Priceable Sets, or SGPS, extending
that of Stackelberg Network Pricing Games described in [6], and characterize
the approximation factor provided by an UPF∗ in these games. Furthermore, we
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define an algorithm that finds an UPF∗, prove that the SFPP belongs to class
SGPS and adapt such an algorithm to the SFPP.

A game in SGPS is a tuple (E,C,L, pC , w, E ,K, {λi}i∈K , {Fi}i∈K , ) such that
E is a set, {C,L} is a partition of E, pC : C → R≥0 is a pricing function,
w : L→ R≥0 is a weight function, E := {E1, E2, . . . Er} is a partition of L, K is
a set of followers and, ∀i ∈ K, λi is the weight of follower i and Fi ⊆ P(E) is the
family of sets that can be purchased by follower i. We call competitor’s elements
the elements of C and leader’s elements the elements of L. Given pL : E → R≥0
and F ⊆ E, we define a cost c and a revenue g as follows:

g(pL, F ) :=
∑

E′∈E

∑

e∈E′∩F
w(e) · pL(E′), c(pL, F ) :=

∑

e∈F∩C
pC(e) + g(pL, F ).

Let cg(pL, F ) := [c(pL, F ), g(pL, F )]. Given i ∈ K, let [c(pL, i), g(pL, i)] :=
cg(pL, i) := minF∈Fi

cg(pL, F ), where the minimum is defined according to the
ordering relation ≺. Informally, c(pL, i) is the cost of follower i when choosing a
subset F ∈ Fi of minimum cost and g(pL, i) is the contribution of follower i to
the leader’s revenue recalling that, when a follower has different optimal choices,
she adopts the one providing the highest revenue to the leader. Let F ∗(pL, i) ∈ Fi
be a set minimizing the function cg(pL, i), that is, an optimal choice for follower
i. The leader’s revenue g(pL) is equal to

∑
i∈K λi · g(pL, i). In order for g to be

bounded, we suppose that, ∀i ∈ K, ∃F ∈ Fi such that F ⊆ C. Our objective is
to find a pricing function p∗L maximizing g. Different families of games in SGPS
can be defined by different choices of {Fi}i∈K . The main differences with the
Stackelberg Network Pricing Games are that single elements cannot be priced
independently in general, since the leader has to assign the same price to every
set in E , and that the prices are weighted by the function w.

Given θ ≥ 0, pθ is an UPF such that pθ(E
′) = θ ∀E′ ∈ E . Let SG1 be a game in

SGPS with one follower only (it is then possible to avoid considering the follower’s
weight and to omit the index 1 in several functions) and let SG2 be the game
obtained from SG1 by setting E = {{e}}e∈L. Note that the maximum leader’s
revenue g∗1 in SG1 is lower than the maximum leader’s revenue g∗2 in SG2 and that
a same UPF gives the same leader’s revenues in both games. Hence, given the
leader’s revenues g∗1,θ and g∗2,θ yielded by an UPF∗ for SG1 and SG2, respectively,
we have that g∗1/g

∗
1,θ ≤ g∗2/g∗2,θ. From this observation, in order to find un upper

bound on the approximation factor yielded by an UPF∗ for both games SG1 and
SG2, we can restrict our analysis only to SG2. Let W,C : P(E) → R≥0 be two
functions such that W (F ) =

∑
e∈F∩L w(e) ∀F ⊆ E and C(F ) =

∑
e∈F∩C pC(e).

Let X := {W (F ∗(pθ)) > 0 : θ ≥ 0} be the optimal weights vector of follower 1
and consider it as a vector X := [x(j) := xj ]j∈[n] sorted in increasing order.

We define three functions θ, c,∆ : X → R≥0 such that, given xj ∈ X, it
holds that θ(xj) := θj := max{θ ∈ R≥0 : W (F ∗(pθ)) = xj}, c(xj) := cj :=
min{C(F ) : W (F ) = xj , F ∈ F} and ∆(xj) := ∆j := c(x0) − c(xj). Note
that the function θ is decreasing in its argument. We call functions θ and c,
respectively, the optimal prices function and the optimal costs function of follower
1. We observe that, ∀j ∈ [n], assuming that θ0 · x0 = ∞ · 0 = 0, it holds that
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c(pθj ) = cj + θj · xj = cj−1 + θj · xj−1. This implies the following equation:

θj =
cj−1 − cj
xj − xj−1

=
∆j −∆j−1
xj − xj−1

. (2)

Let p∗L be an optimal pricing function, the following relationship holds: c(p∗L)−
g(p∗L) = C(F ∗(p∗L)) ≥ min{C(F ) : F ∈ F} = C(F ∗(p0)) = cn. Moreover, we
have c(p∗L) ≤ c0. By using the previous inequalities, we get

g(p∗L) = c(p∗L)− (c(p∗L)− g(p∗L)) ≤ c0 − cn = ∆n. (3)

Let Wm := x1, WM := xn, θm := θn, θM := θ1. By exploiting inequalities
(2) and (3), it is possible to prove the following fundamental theorem in analogy
with the results in [6].

Theorem 3 Any UPF∗ pθ∗ provides an approximation guarantee of 1 +
ln(min{WM/Wm, θM/θm}) to both SG1 and SG2.

Now we can generalize the previous theorem to the case of more followers. We
use the subscript i to denote the quantities previously defined for the case of
a single follower when instantiated to follower i. Let SG0 be a generic game in
SGPS and define θm ≤ mini∈K θm,i, θM ≥ maxi∈K θM,i, Wm ≤ mini∈KWm,i,
WM ≥ maxi∈KWM,i. Let λm := mini∈K λi and λM :=

∑
i∈K λi.

The following result holds.

Theorem 4 Any UPF∗ pθ∗ provides an approximation guarantee of 1 +
ln(min{(WM/Wm) · (λM/λm), θM/θm}) to SG0.

Now, we design an algorithm to find an UPF∗. Given i ∈ K, let Xi := [xi(j) :=
xij ]j∈[ni] be the optimal weights vector of follower i and let X := [x(h) :=

xh]h∈[n] be a vector sorted in increasing order containing all the values in Xi

and such that ∃F ∈ Fi : x(h) = W (F ) ∀h ∈ [n], ∀i ∈ K. Moreover, let Ci :=
[ci(h) := cih]h∈[n] be the vector such that, ∀h ∈ [n], ci(h) = c(xh), where c
denotes the optimal costs function of follower i. We suppose that the vectors X
and (Ci)i∈K are known. Let Θi := [θi(j) := θij ]j∈[ni] be the vector such that,

∀j ∈ [ni], θ
i(j) = θ(xij), where θ denotes the optimal prices function of follower

i. Observe that Θi is the vector given by the positive abscissa of all the vertices
of the polyhedron Pi :=

⋂
h∈[n]

{
[θ, y] : θ ∈ R, y ≤ f ih(θ) := cih + θ · xh

}
, and Xi

is the vector such that xij = max{xh : [θij , f
i
h(θij)] is a vertex of Pi}. By these

characterizations we can compute (Xi)i∈K and (Θi)i∈K in O(|K|n log(n)) time
(see [13] for further details). Let Θ = [θ(h) := θh]h∈[m] be the sorted fusion of
the vectors (Θi)i∈K without the eventual null element. Θ can be computed in
O(|K|n log(|K|)) time. Given i ∈ K and h ∈ [m], let j(h, i) ∈ [ni] be such that
θij(h,i) ≥ θh > θij(h,i)+1 (set θin1+1 := 0). Observe that W (F ∗(pθh , i)) = xij(h,i)
and then g(pθh , i) = θh · xij(h,i). Since there exists h∗ ∈ [m] such that pθh∗ is a

UPF∗, by the above arguments, we have that

g(pθh∗ ) = max
h∈[m]

g(pθh) = max
h∈[m]

∑

i∈K
λi · g(pθh , i) = max

h∈[m]

∑

i∈K
λi · θh · xij(h,i). (4)
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Observe that g(pθh∗ ) can be computed in O(|K|n) time, by using the charac-
terization provided in (4). So, we can define an algorithm that returns a UPF∗

starting from X and (Ci)i∈K , and that runs in O(|K|n(log(|K|)+ log(n))) time.
We call this algorithm Perfect-Single-Price algorithm (PSP); it differs from the
Single-Price algorithm given in [6] since the approximation ratio of the latter
(which is worse than the one of PSP algorithm) and its complexity depend on
an arbitrary ε given in input. An approximation ratio provided by this algorithm
can be obtain by setting Wm := x(1), WM := x(m), θm := θ(m), θM := θ(1).

To apply the PSP algorithm to the SFPP, we reformulate the SFPP as a game
in SGPS. Given an instance I := (G,K, {λuv}(u,v)∈K , L, C, pC , e) of the SFPP,
define an instance I ′ := (E′, C ′, L′, p′C , w

′, E ,K, {λuv}(u,v)∈K , {Fuv}(u,v)∈K) in
the class SGPS as follows. Let E′ = C ′ ∪L′ be a set of edges in a graph (V ′, E′)
defined as follows: given u ∈ L, v ∈ C and z ∈ V , create a node z′uv, insert in
L′ an edge (u, z′uz) with w′((u, z′uz)) = d(u, z), insert in C ′ an edge (z′uz, z) with
p′C((z′uz, z)) = e · d(u, z), insert in C ′ an edge (v, z) with p′C((v, z)) = pC(v) ·
d(v, z). Given u ∈ L, set Eu = {(u, z′uz) ∈ L′} and E := {Eu}u∈L. Set, ∀(u, v) ∈
K, Fuv equal to the set of all the paths connecting u to v in (V ′, E′). Given two
pricing functions pL and p′L for the problems I and I ′, respectively, such that
pL(u) = p′L(Eu)+e ∀u ∈ L, we have that g(pL) = g(p′L). Moreover, by assigning
uniformly the prices θ and θ′ := θ − e to I and I ′, respectively, we obtain that
the length of the sub-path covered by follower (u, v) ∈ K by using fuel bought
from the leader in I, is equal to W (F ∗uv(pθ′)). From these observations, if one
transforms I into I ′ and applies the PSP algorithm to I ′, I can be approximated
according to the performance guarantee stated in Theorem 4.

To apply the PSP algorithm, we need a preliminary procedure to find the
vectors X and (Cuv)(u,v)∈K . Observe that we can set X := {d(u, v) > 0 : u ∈
L, v ∈ C ∪KV } := [x(h)]h∈[l] to apply the PSP algorithm, since every follower,
given an UPF, can always choose a path such that only a subpath is covered using
fuel bought from the leader. Because of this fact, we also have that Cuv(h) =
min{c∞(u, z) + e · d(z, z′) + c∞(z′, v) : d(z, z′) = x(h), z ∈ L, z′ ∈ C ∪ {v}}
∀h ∈ [l] and ∀(u, v) ∈ K. Observe that, given (u, v) ∈ K, Cuv can be computed
in O(|L| · |C|) ⊆ O(n2) time. To approximate the SFPP, compute the vectors X
and (Cuv)(u,v)∈K and apply the PSP algorithm to these vectors. The resultant
algorithm, that we call SFPP-PSP, requires O(n4) time in the worst-case.

We conclude by showing that the approximation ratio provided by the SFPP-
PSP algorithm is tight and also significantly high. Consider an instance with
V = {vi}i∈[n+1], E = {(vi, vi+1)}i∈[n], C = L = V \ {vn+1}, w((vi, vi+1)) =
2i−n and pC(vi) = 2n−i ∀i ∈ [n], e = 0, K = {(v1, vn+1)}. Observe that the
optimal assignment p∗L verifies that p∗L(vi) = pC(vi) ∀i ∈ [n− 1] and so g(p∗L) =∑n
i=1 2i−n · 2n−i = n. Observe that an UPF∗ is of the form p(2i), with i ∈

[n − 1] ∪ {0}, and we have that g(p(2i)) =
∑n−1−i
j=0 2−j . Therefore p(20) = p(1)

is an UPF∗ and g(p(1)) =
∑n−1
j=0 2−j

n→∞−→ 2. Hence, the approximation ratio
provided by the SFPP-PSP algorithm is asymptotically equal to g(p∗)/g(p(1)) =
n/2, and so it is very high. Since this instance verifies 1 + ln(WM/Wm) = 1 +

ln(
∑n
i=1 w((vi, vi+1))/w((v1, v2))) = 1+ln(

∑n−1
i=0 2i) = 1+ln(2n−1) ∼ ln(2n) =
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ln(4) ·n/2 ' 1.386 ·n/2 and 1 + ln(θM/θm) = 1 + ln(2n−1) ∼ ln(4) ·n/2, we have
that the approximation ratio claimed in Theorem 3 for the SFPP may not be
asymptotically improved. By using an instance of SFPP similar to the previous
one, it is possible to prove that also the approximation ratio 1 + ln(λM/λm)
claimed in Theorem 4 is asymptotically tight.
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