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Abstract. A finite deterministic automaton A = (Q,Σ, δ) is k-com-
pressible if there is a word w ∈ Σ+ such that the image of the state
set Q under the natural action of w is reduced by at least k states. In
such case w is called a k-compressing word for A. It is known that, for
any alphabet Σ and any k ≥ 2, there exist words that are k-compressing
for each k-compressible automaton with the input alphabet Σ. Such
words are called k-collapsing. It has been proved that recognizing 2-
collapsing words over a 2-element alphabet may be done in polynomial
time, while recognizing 2-collapsing words over an alphabet of size ≥ 3
is co-NP-complete. A natural question in this context, whether recog-
nizing 3-collapsing words over a 2-element alphabet is easy or hard, has
remained open. In this paper we provide results on 3-compressible bi-
nary automata, which allow to prove that that the latter problem is
co-NP-complete.

1 Introduction

Let T (Q) be the full transformation monoid on a finite set Q. For f ∈ T (Q), we
define the deficiency df(f) of f to be the difference between the cardinalities of
Q and the image Imf under f , df(f) = |Q| − |Imf |. At the beginning of 1990’s
Sauer and Stone [12] introduced the property ∆k defined as follows. For a finite
alphabet Σ and a positive integer k, a word w ∈ Σ+ has the property ∆k for Σ
if for all homomorphisms φ : Σ+ → T (Q), where Q is any finite set, df(wφ) ≥ k
whenever df(vφ) ≥ k for some v ∈ Σ+. They proved the nonobvious fact that
such words exist for each positive integer k and for each finite alphabet Σ giving

an elegant recursive construction that produces a word whose length is O(22
k

).
Their construction was improved in [9], where better but yet unrealistic upper
bounds for the length of shortest words with the property ∆k were given.

Words with the property ∆k have a natural interpretation in the language of
finite automata theory. Each complete deterministic automaton A = (Q,Σ, δ)
over the alphabet Σ can be viewed as the transformation monoid generated by
transformations on Q induced via δ by the letters of Σ. Namely, for each α ∈ Σ
we define the induced transformation by qα = δ(q, α). This action of the letters
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on Q extends naturally into the action of words w ∈ Σ+ on Q which is denoted
briefly by qw = δ(q, α).

Conversely, to define an automaton it is enough to assign to any letter of
Σ a transformation on Q. Thus an automaton A can be identified with a spe-
cific homomorphism φA of Σ+ in T (Q). If there exists a word v ∈ Σ+ such
that df(vφA) ≥ k—that is, if |Q| − |Qv| ≥ k—the automaton A is called k-
compressible and v is a k-compressing word for A (it k-compresses A). A word
that is k-compressing for each k-compressible automaton with the input alpha-
bet Σ is called k-collapsing. Obviously, a word has the property ∆k (or witnesses
for deficiency k, in the terminology of [9]) if and only if it is k-collapsing. Hence,
besides the original motivations coming from combinatorics and algebra, the
interest in such words comes from the fact that they can be seen as universal
testers whose action on the set of states of an automaton exposes whether or
not the automaton is k-compressible. The problem of the length of the shortest
k-collapsing word over an alphabet Σ can be considered as a black-box version
of the generalized Černý’s conjecture stated by Pin [7, 8].

In [10] it is proved that the membership of a given word w ∈ Σ+ to the lan-
guage of k-collapsing words is decidable. The decision procedure is in the class
co-NP and requires linear space, which shows that the language of k-collapsing
words is context-sensitive. In [11] it is shown that it is not context-free even in the
very simple case of the language of 2-collapsing words over a 2-letter alphabet.
Most results so far concern 2-collapsing words. In particular, 2-collapsing words
were characterized in [2] and in [5]. From the first characterization, that has a
group theoretical flavor, a non-deterministic polynomial algorithm to recognize
whether a word w ∈ Σ+ is 2-collapsing was derived [3]. A refinement of this
algorithm was used in [4] to give the list of shortest 2-collapsing words over a
3-letter alphabet. The second characterization is in terms of systems of permuta-
tion conditions and it is used in [6] to show that the membership problem of the
language of 2-collapsing words over an alphabet of size ≥ 3 is a co-NP-complete
problem. The algorithms for recognizing whether a word w ∈ Σ+ is 2-collapsing,
derived by both the characterizations of 2-collapsing words, become polynomial
algorithms when |Σ| = 2 even if w is represented in the compressed form [5].
In view of these results a question arose whether for k ≥ 3, k-collapsing words
over a binary alphabet can also be recognized in polynomial time. This natural
question has remained open so far. In this paper we show that the answer is
negative. We prove that the problem of recognizing whether a word w ∈ {α, β}+
is 3-collapsing is co-NP-complete.

The difficulty in this case is that we have no characterization of 3-collapsing
words similar to that for the case of 2-collapsing words. Yet, we have a certain
classification of proper 3-compressible automata on 2 input letters [1], and we
can see that the problem looks differently depending on the class. In some classes
it is easy to recognize whether a word w 3-compresses all the automata in the
class. There is however at least one class where this problem leads to solving
a sort of a system of permutation conditions, similarly as in [6], and it seems
computationally hard.
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Our idea is the following. First, we reduce the problem whether a word w
is 3-collapsing to the problem of recognizing those words w that 3-compress all
automata in a restricted class D of 3-compressible automata. Next, we show that
in this restricted class the problem is equivalent to the existence of a solution
of a certain system of permutation/transformation conditions similar to those
considered in [6]. Then, using the tools worked out in [6], we show that the
problem of the existence of a solution of such systems is NP-hard. Since our
reductions induce suitable polynomial transformations, we obtain a proof that
the initial problem is co-NP-complete. In this paper, we present the first part of
the plan, showing how to reduce the problem to a problem concerning systems
of transformation conditions. The full proof will appear in the extended version
of this paper.

2 Preliminaries

We deal with binary automata over the alphabet Σ = {α, β}. The letters α and
β are identified with transformations they induce on the set Q of the states.
The image of q ∈ Q by a letter (transformation) α is denoted qα. The words
w = α1α2 . . . αt over Σ are identified with transformations they induce. The
inverse image is denoted by xα−1.

We use special notation for concrete transformations α (similar to permuta-
tion notation), where round brackets (x1x2 . . . xt) denote a cycle: x1α = x2, . . . ,
xtα = x1, and square brackets [x1x2 . . . xt] denote a path: x1α = x2, . . . , xt−1α =
xt. This notation is not unique: for example [123][42](357) = [12][423](357). Yet,
we always write full cycles, and refer to them as the cycles of α, and usually omit
all the fixed points. If x is an element of a cycle in α, then we write Cycα(x) to
denote the cycle containing x, or a set of elements in this cycle, and we write
|Cycα(x)| to denote the length of this cycle (the number of elements). We will
also use a part of the structure of a transformation to speak about transforma-
tions of a given form. For example, a transformation (permutation) is of the form
β = (12y)(xa)(zb) . . . for some elements y, x, z, a, b ∈ Q if β = (12y)(xa)(zb)τ for
some transformation τ . We do not exclude that some of these elements may be
equal, and some of these cycles coincide. For example, we may have x = z and
(consequently) a = b, in which case the cycle (xa) is the same as the cycle (zb).
We may have also x = a, which means that (xa) is, in fact, a fixpoint (x) = (a).
But, assuming 1 6= 2, we cannot have x = y, because y is in a cycle of length 3,
while x is in a cycle of length 2 or 1. Thus saying that a transformation is of the
form β = (a1a2 . . . at) . . . we assume that the length of the cycle is t or a divisor
of t.

Treating words over Σ = {α, β} as compositions of transformations on the
set Q with 1, 2 ∈ Q, we shall consider systems of transformation conditions of
the form

1u1, 1u2, . . . , 1us ∈ {1, 2}
stating that the image of 1 by each of words u1, u2, . . . , us belongs to the set
{1, 2}. If all transformations in Σ fix 1 or all fix the set {1, 2}, then they form
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a solution of the system (1), which is called trivial. The problem whether there
exists a nontrivial solution for a system of permutation conditions has been
proved to be NP-complete in [6]. Similarly one can prove that the problem is
hard if we look for a solution in transformations of given types. We will exploit
this in our proof.

We recall that a factor of a word w ∈ Σ+ is a word v ∈ Σ+ such that w = uvz
for some u, z ∈ Σ∗. If A is k-compressible at least one letter of its input alphabet
has deficiency greater than 0. It is known that each k-collapsing word over a fixed
alphabet Σ is k-full [12], that is, contains each word of length k over the alphabet
Σ among its factors. A k-compressible automaton is called proper k-compressible
if it cannot be k-compressed by any word of length k. Thus, k-collapsing words
are k-full words that k-compress all proper k-compressible automata. In partic-
ular, in our consideration we may restrict to proper k-compressible automata.

We will consider types of transformations with regard to which states are
sent into the same element, and which states are missing in the image. We
say that a transformation α is of type I\M , where M is a subset of Q, and
I is a family of disjoint subsets of Q, if M = Q \ Qα is a set of elements
missing in the image Qα, while I is the family of those inverse images of el-
ements of Q that have more than one element. In other words, we write that
a letter α is of type [x11 , . . . , xj1 ][x12 , . . . , xj2 ] . . . [x1r , . . . , xjr ]\y1, y2, ..., ym, if
{y1, . . . ym} = Q \ Im(α) and {x11 , . . . , xj1}, {x12 , . . . , xj2}, . . . , {x1r , . . . , xjr}
are the equivalence classes of the kernel of transformation induced by α that
have more than one element. We say that α ∈ Σ is a permutation letter if it in-
duces a permutation on the set Q of the states, i.e., it has deficiency 0. Otherwise,
a letter is a non-permutation.

The following fact leading to a classification of proper 3-compressible au-
tomata is not difficult to prove (see e.g. [1]).

Proposition 1. If A is a proper 3-compressible automaton over the alphabet
Σ = {α, β} then each letter in Σ is either a permutation or is one of the following
types:

1. [x, y, z]\x, y;
2. [x, y][z, t]\x, z;
3. [x, y]\x;
4. [x, y]\z with za ∈ {x, y}.
where x, y, z, t are different states of A.

Since we wish to classify proper 3-compressible automata up to renaming the
states in Q, we may assume that Q = {1, 2, . . . , n}, and {x, y, z, t} = {1, 2, 3, 4}.
Then, following [1], we say that an automaton A over a two-letter alphabet
Σ = {α, β} is an (i., j.)-automaton, where i, j ∈ {1,2,3,4}, if the letter α is of
type i., while the letter β is of type j., above. We say also that A is a (i.,p) (or
(p, i.)-automaton, if it is an automaton in which the letter α (β) is of type i.,
while the other letter is a permutation. By Proposition 1, up to renaming the
states, each proper 3-compressible automaton over 2 letters is a (t, s)-automaton
with some t, s ∈ {1.,2.,3.,4.,p}.
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3 Automata of Type (3., p)

Let A be a (3.,p)-automaton over the alphabet Σ = {α, β} and with the state
set Q = {1, 2, . . . , n}. Without loss of generality we can also assume that the
letter α is of type [1, 2]\1 (and β is a permutation). Given such an automaton,
we call an integer k > 0 a good exponent for the permutation β, or briefly, β-
good, if 1βk /∈ {1, 2}; otherwise, it is called β-bad exponent. We will consider
transformation conditions of the form 1v ∈ {1, 2} stating the the image of 1 by
the word v is 1 or 2. For a word v ∈ Σ+ and Q1 ⊆ Q, as in [1], we denote
M(v) = Q \Qv, the set of the states missing in the image of Q under the action
of v, andM(Q1, v) = Q\ (Q\Q1)v, the set of states missing in Q after applying
the word v, provided that the set Q1 of states is already missing.

Our first result is the following characterization.

Theorem 1. Let A = 〈Q,Σ, δ〉 be a proper 3-compressible (3.,p)-automaton
with Q and Σ as above, and w be a word in Σ+. Then, w does not 3-compresses
A if and only if for every factor of w of the form αuα where

u = βk1αm1 . . . βktαmtβkt+1 ,

t ≥ 1, and k1 and kt+1 are β-good, while all other ki are β-bad, the condition
1u ∈ {1, 2} holds.

Proof. Let w = βsαr1βs1αr2 . . . βsh−1αrhβsh , where s, sh ≥ 0, rh > 0, and
ri, si > 0 for 1 ≤ i ≤ h − 1. We consider the sequence of missed states by
the action of consecutive prefixes of w. Obviously M(βsαr1) = {1}. Moreover
if s1 is a β-bad exponent then M({1}, bs1) = M(βsαr1βs1) = {1βs1} ⊆ {1, 2},
hence M(βsαr1βs1αr2) = {1} = M(βsαr1). Repeating the same argument it
turns out that if there is no β-good exponent among s1, s2, . . . , sh, then w does
not 3-compress α.

So we may assume that there is i with 1 ≤ i ≤ h − 1 such that si is a β-
good exponent and sj is a β-bad exponent for each j < i. Then we have w =
pαriβsiαri+1βsi+1 . . ., whereM(pαri) = {1}. SoM({1}, βsi) = {1βsi} * {1, 2},
and M({1βsi}, αri+1) = {1, x1} where x1 = 1βsiαri+1 6= 1 (since α is of type
[1, 2]\1). Now if si+1 is β-bad, thenM(pαriβsiαri+1βsi+1) =M({1, x1}, βsi+1) =
{y, x1βsi+1} with y ∈ {1, 2}, whence, whether x1β

si+1 ∈ {1, 2} or not, we have
M(pαriβsiαri+1βsi+1αri+2) = M({y, x1βsi+1}, αri+2) = {1, x2} where x2 =
x1β

si+1αri+2 6= 1. Then until we encounter βsm with a β-good exponent sm
the missing state set of each prefix of w ending with α has cardinality 2 and
contains 1; in particular, if there no such second β-good exponent, w does not
3-compress α.

So, assume that there is m with i < m ≤ h such that sm is a β-good exponent
and each st with i < t < m is a β-bad exponent. Then w = pαriβsiαri+1vαrm+1 . . .,
where v = βsi+1αri+2 . . . βsm . Now,

M(αriβsiαri+1v) =M({1, x1}, v) =M({1, xm−i}, betasm) = {1βsm , xm−iβsm},
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where xm−iβsm = 1v (since x1 = 1βsiαri+1 , x2 = x1β
si+1αri+2 , etc.). Hence if

1v /∈ {1, 2} then M({1βsm , 1v}, α) has cardinality 3, and w is a 3-compressing
word. If 1v ∈ {1, 2} then 1vαrm+1 = 1αrm+1 , hence M(pαriβsiαri+1vαrm+1) =
{1βsm , 1αrm+1}. So we are in the analogous situation as with M(pαriβsiαri+1),
and we can use the above argument with i replaced by m, the prefix p replaced
by p1 = pαriβsi . . . βsm−1 , and β-good exponent si replaced by β-good exponent
sm. Thus, the reasoning may be repeated for consecutive factors αuα with the
property stated in the theorem, and the claim easily follows. ut

The theorem above means that to check whether there exists a (3.,p)-
automaton that fails to be 3-compressed by a given word w, we need to consider
all the possibilities for β leading to various sets of good and bad exponents. This
means that we consider whether 1 and 2 are in the same orbit of β. If so, we
consider various lengths of this orbit and distances between 1 and 2, and if not,
the only thing that counts is the length of the orbit of 1. For each such case
we establish β-good and β-bad exponents, find all the factors of w of the form
described in the theorem above, and form the corresponding system of transfor-
mation conditions. If the system has a solution, then w fails to 3-compress the
corresponding automaton A with a non-permutation α and a permutation β.
The solution represents an automaton that is not 3-compressed by word w. It
is nontrivial, if the resulting automaton is 3-compressible (some solutions corre-
spond to automata that fails to be 3-compressible).

In principle, there are infinitely many cases to consider. But given the word
w, if k is the largest exponent for β (when w is written in the compact form with
exponents), then only k − 1 elements following 1 in the cycle of 1 in β are what
really counts. So, in practice, for every word, we may distinguish and consider
only finitely many cases.

In fact, we may view α as (almost) a permutation without 1 (1 is not an image
of any state; we need only to keep in mind that 1 has the same image as 2). The
system of transformation conditions may be treated very similarly to the system
of suitable permutation conditions, and the method of trees with distinguished
nodes developed in [6] may be used to solve it. (This is so, in spite of that the
two letters involved come in the both cases from very different considerations.)

4 Reduction to a Smaller Class of Automata

To prove that solving systems of transformations in Theorem 1 is hard we need
to restrict considerations to one class in which the conditions may be stated in a
unique and relatively simple form. Therefore, we define the class D to contain all
proper 3-compressible automata A over alphabet Σ = {α, β}, such that α is a
transformation of type [1, 2]\1, and β is a permutation of the form β = (12y) . . ..
For such permutation the β-good exponents are positive integers k = 2 modulo
3. We will refer to them as to (12y)-good. Other positive integers are (12y)-bad.

In order to reduce our problem to automata in D, to each word w ∈ {α, β}+
we assign a word w∗ = w′w such that w∗ is 3-collapsing if and only if w 3-
compresses all automata in D. The idea is to find a set of words that 3-compress
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all automata not in D, and do not 3-compress automata in D. These words will
be used to form w′. We wish that these words have no (12y)-good exponents,
because then w∗ and w have the same factors described in Theorem 1, which
guarantees that they 3-compress the same proper automata in D. This cannot
be achieved exactly, and the few exceptions we allow will be handled further in
a different way.

We start from (3.,p)-automata not in D. The following technical lemma
established in [1] will be useful here.

Lemma 1. ([1], Lemma 3) Let A be a (3.,p)-automaton with α of type [1, 2]\1.
Then A is not 3-compressible if, and only if (up to renaming the states) one of
the following conditions holds:

(i) β fixes 1 or the set {1, 2},
(ii) β = (13)π for some permutation π on Q \ {1, 3} and 3α = 3,

(iii) β = (13)(2)π, β = (132)π or β = (123)π for some permutation π on
Q \ {1, 2, 3} and {2, 3}α = {2, 3},

(iv) β = (13)(24)π or β = (1324)π for some permutation π on Q\{1, 2, 3, 4} and
{3, 4}α = {3, 4}.

In all other cases A is a proper 3-compressible automaton, and one of the words
{ababa, abab2a, aba2ba, abab2aba, ab2ab2a, ab2a2b2a, ab2abab2a, ab2aba, ab3aba,
abab3a, ab3ab3a} 3-compresses A.

Using it we get the following.

Lemma 2. Each proper 3-compressible (3.,p)-automaton A /∈ D can be 3-
compressed by a word of the form αβiαkβjα, where i, j ∈ {1, 3, 4}, k ∈ {1, 2, 3}
or αβ4αβ2αβ4α.

Proof. Let A be a (3.,p)-automaton A /∈ D, then by (i) of Lemma 1, b fixes
neither 1 nor the set {1, 2}.

First, assume that 1β = x /∈ {1, 2}. Then, M(αβαk) = {1, xαk}. If xαkβ /∈
{1, 2} for some k then the word αβαkβα 3-compresses the automaton A. Obvi-
ously, if xαkβ /∈ {1, 2}, for some k we can always assume that k ≤ 3. Otherwise,
either xα = x or xα2 = x and xαkβ ∈ {1, 2} for all k.

Then let xαkβ ∈ {1, 2} for each k ∈ {1, 2, 3}.
First assume xα = x. If xαβ = xβ = 1 then β = (1x) . . . and by (ii), A is

not 3-compressible. So xαβ = xβ = 2 and β = (1x2 . . .) . . .. If β = (1x2) . . .
then 2α 6= 2 otherwise A is not 3-compressible by (iii). Then M(αβ1+3hαβ2) =
{1, 2} for each h ≥ 0. Since M({1, 2}, α) = {1, 2α} and 2α /∈ {1, 2, x}, then
αβ1+3hαβ2αβ1+3kα 3-compresses A. So let β = (1x2y . . .) . . .. ThenM(αβ3α) =
{1, yα} and if yαβ /∈ {1, 2} then αβ3αβα 3-compresses A. We know that yαβ 6=
xαβ = 2, so let yαβ = 1. If yα = y then A is not 3-compressible by (iv). If
yα 6= y then αβ3αβ4α 3-compresses A.

Then let xα 6= x and xα2 = x. Put xα = y, then yα = x and yαβ = xα2β =
xβ ∈ {1, 2}. If xβ = 1 then β = (1x)(y2z . . .) . . . where y, z, 2 are all distinct
by (iii) and (iv). Hence αβαβ3α 3-compresses A. So let xβ 6= 1, hence xβ = 2,
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and again by (iv), β = (1x2z . . . y) . . . where 1, x, 2, z, y are distinct states, then
αβαβ4α is a 3-compressing A. This completes all the cases when 1β = x 6= 1, 2.

Lastly, let 1β = 2. Then β = (12xy . . .) . . . where 1, 2, x, y are distinct el-
ements, otherwise A ∈ D. Then M(αβ3α) = {1, yα}. If yαβ3 /∈ {1, 2} then
αβ3αβ3α is 3-compressing, similarly if yαβ4 /∈ {1, 2} then αβ3αβ4α is 3-com-
pressing. So yαβ3 = 1 and yαβ4 = 2 whence y 6= yα and so yα 6= yα2, and so
yα2β3 6= 1. If yα3β3 6= 2 then αβ3α2β3α is 3-compressing, if yα3β3 = 2, then
yα3β4 = x and αβ3α2β4α is 3-compressing. ut

For the automata of types other than (3.,p) we make use of Proposition 1
and other lemmas established in [1]. These lemmas have been established in [1]
to compute a bound for the length of the shortest 3-collapsing word. We extract
from them information we need to our aim. We have the following.

(i) no 3-compressible (i., j.)-automaton with i ∈ {1,2}, j ∈ {1,2,4} or with
j ∈ {1,2}, i ∈ {1,2,4} is proper; [1, Lemma 5];

(ii) each proper 3-compressible (1.,p)-automaton and each proper 3-compressible
(1.,3)-automaton is 3-compressed by αβ2α; hence (by switching the letters),
each proper 3-compressible (p.,1) or (3.,1)-automaton is 3 compressed by
βα2β; [1, Lemma 1 and Lemma 6];

(iii) each proper 3-compressible (2.,p) and each proper 3-compressible (2.,3)-
automaton is 3-compressed by a word in the set {αβ2α, αβ3α}; each proper
3-compressible (p.,2) and each proper 3-compressible (3.,2)-automaton is
3-compressed by a word in the set {βα2β, βα3β}; [1, Lemma 2 and Lemma 7];

For the future reference we underline words that have an occurrence of β with
a (12y)-good exponent inside the word. Here, this is limited only to occurrences
of β2. These words will be handled in a different way than those words that have
no occurrence β with a (12y)-good exponent or they have such an occurrence
only at the beginning or at the end of the word. We will see that only the exact
form of underlined words is what really counts in our proof.

In order to find a set of words 3-compressing all (p,3.)-automata we use
again Lemma 1, yet switching the letters α and β. It yields the following set:
{βαβαβ, βαβα2β, βαβ2αβ, βαβα2βαβ, βα2βα2β, βα2β2α2β, βα2βαβα2β,
βα2βαβ, βα3βαβ, βαβα3β, βα3βα3β}. Some of these words are factors of others,
so we may infer the following:

(iv) each proper 3-compressible (p,3.)-automaton is 3-compressed by any word
with a factor of the form βαβαβ, βαβ2αβ, βαβα2βαβ, βα2βα2β, βα2β2α2β,

βα2βαβα2β, βα3βαβ,βαβα3β, βα3βα3β; [1, Lemma 3];

Similarly we get the following

(v) each proper 3-compressible (4.,p) is 3-compressed by any word with a factor
of the form αβαβα, α2β2α2, α2βα2, α2β3α, αβ3αβ3α, α2βαβ2α; each proper
3-compressible (p.,4) is 3-compressed by any word with a factor of the form
βαβαβ, β2α2β2, β2αβ2, β2α3β, βα3βα3β, β2αβα2β; [1, Lemma 4];
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(vi) each proper 3-compressible (3.,3)-automaton is 3-compressed by a word in
the set {αβαβ, αβ2αβ, αβα2β, αβ2α2β, βαβα, βα2βα, βαβ2α, βα2β2α}; [1,
Lemma 9];

(vii) each proper 3-compressible (3.,4)-automaton is 3-compressed by a word
in the set {β2αβ2, β2α2β2, β2α3β2, β2αβαβ2}; each proper 3-compressible
(4.,3)-automaton is 3-compressed by a word in the set {α2βα2, α2β2α2,

α2β3α2, α2βαβα2}; [1, Lemma 10];
(viii) each proper 3-compressible (4.,4) is 3-compressed by a word in the set

{α2βα2, α2β2, β2αβ2, β2α2}; [1, Lemma 11].

Using the lemmas above we can see that any word containing as factors the
following words

(I) α2βαβ2α, βα2β2α2β, αβ4αβ2αβ4α,

(II) αβ3αβ3α, βα3βα3β, β2αβα2β, βαβα2βαβ, βα2βα2β, βα2βαβα2β, βα3βαβ,
βαβα3β, βα3βα3β, β2α2β2, β2α3β2, β2αβαβ2, α2β3α2.

(III) αβiαkβjα, where i, j ∈ {1, 3, 4}, k ∈ {1, 2, 3}.
3-compresses all 3-compressible automata except those in the D.

To form a single word that 3-compresses all automata not in D it is enough
to concatenate all the words listed in (I-III) above. Yet, we wish to have such a
word without (12y)-good exponents. So, at this moment, we have only a partial
solution. Let wD be the word obtained from concatenation of words in (II) and
(III), in arbitrary order, adding the suffix α2βα at the beginning, and replacing
all β2 by β3 (more precisely replacing all factors αβ2α by αβ3α; note that the
factors αβ2α in the word obtained from concatenation of words in (II) and (III)
can only come from the concatenation of words in (II-III) ending and starting
with β). Then obviously, wD has all words in (II-III) as factors and has no
occurrences of (12y)-good exponents. The fact that it has the suffix α2βα will
be used later in the proof. We observe that wD is also 3-full, since all words of
length 3 appear as factors in words listed in (II). This means we may state the
following.

Proposition 2. Let w ∈ {α, β}∗ be a word such that w∗ = wDw has as factors
all the three words listed in (I) above. Then, w 3-compresses all proper automata
in D if and only if the word w∗ = wDw described above is 3-collapsing.

5 Reduction to a System of Transformation Conditions

Now, our aim is to express the problem of 3-compressibility of proper automata
in D in terms of solving a system of transformation conditions. The base for this
is Theorem 1. Our attention is restricted to transformations α and β satisfying
the following conditions.

(C1) α is a transformation of type [1, 2]\1;
(C2) β is a permutation of the form β = (12y) . . . for some y /∈ {1, 2};
(C3) either 2α or yα is not in {2, y}.
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Given a word w ∈ {α, β}+, by u1, u2, . . . , us we denote the set of all factors of w
such that αu1α, αu2α, . . . , αusα are all the factors of w defined in Theorem 1
for the permutation β = (12y) . . .. Then we have the following.

Proposition 3. Let w ∈ {α, β}+, and let u1, u2, . . . , us be the factors of w
described above. Then, there exists a proper automaton A ∈ D such that w does
not 3-compresses A if and only if the system

1u1, 1u2, . . . , 1us ∈ {1, 2} (1)

has a solution in transformations α, β on a finite set Q = {1, 2, . . . , n} satisfying
the conditions (C1-C3).

Proof. First, suppose that a required solution exists, and let A be an automa-
ton with the state set Q = {1, 2, . . . , n} and two input letters whose transition
function is defined by the action of the letters α and β given by the solution.
Then conditions (C1) and (C2) mean simply that A ∈ D, provided it is proper
3-compressible. It is 3-compressible by Lemma 1, item (iii). Finally, it is not
difficult to see that any word 3-compressing A has a length exceeding 4. Indeed,
we need first a letter α to get 1 missing in the image, then a factor β2, to get
y missing in the image, and the next α, to get two states missing. Thus A ∈ D
and, by Theorem 1, w does not 3-compress A.

Conversely, if A ∈ D and w does not 3-compresses it, then we may assume
that its set of the states is Q = {1, 2, . . . , n}. Then, the transformations α and β
corresponding to the letters of A satisfy, by definition of D, the condition (C1)
and (C2), and as above, by Lemma 1, they satisfy also condition (C3). Thus, by
Theorem 1, they form a required solution of the system (1). ut

In such a way the problem of 3-compressibility of automata in D is reduced to
solving a system of transformation conditions 1u ∈ {1, 2} with all u of the form
u = βkαu′αβ`, where k, ` are (12y)-good exponents, and u′ has no occurrence
of (12y)-bad exponents. We are going to show that solving a certain subclass of
such systems is computationally hard.

Given words v1, . . . , vs ∈ {α, β}+, we add to them two further words v0 = α2

and vs+1 = αβ4α, and consider the following system of transformation condi-
tions.

1β2v0β
2, 1β2v1β

2, . . . , 1β2vs+1β
2 ∈ {1, 2} (2)

We define a specific decision problem:

PROBLEM (*)
Instance: words v1, . . . , vs ∈ {α, β}+ such that each word vi starts and ends
with α, and has no occurrence of β with a (12y)-good exponent;
Question: Is there a solution (α, β) of the system (2) satisfying conditions (C1-
C3)?

We have the following.
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Theorem 2. Problem (*) formulated above is NP-complete.

The proof ot this theorem uses tools worked out in [6], where solving systems
of such conditions is expressed in terms of coloring trees with distinguished nodes.
It will be given in the extended version of the paper. Having this theorem we
can can easily prove our main result.

Theorem 3. The problem whether a given word w ∈ {α, β}∗ is 3-collapsing is
co-NP-complete.

Proof. First observe that the problem belongs to co-NP class. Indeed, to see that
a word w is not 3-collapsing a nondeterministic algorithm needs only to guess
the smallest automaton that is not 3-compressed by w. By [10, Theorem 1]
such an automaton has not more than 4|w| + 2 states, and the facts that it
is 3-compressible and that w does not 3-compress it can be checked easily in
polynomial time with respect to |w|.

We transform problem (*) to our problem. Let v1, . . . , vs be an instance of
(*). First we form the word

w′ = β2v0β
2v0β

2v1β
2v2β

2 . . . β2vsβ
2vs+1β

2vs+1β
2.

Note that this word has doubled occurrences of factors v0 and vs+1. By assump-
tion, the only occurrences of β in w′ with (12y)-good exponents are β2 separating
factors v0, v1, v2, . . . , vs, vs+1. Thus, by Proposition 3, system (2) has a solution
satisfying conditions (C1-C3) if and only if there exists a proper automaton
A ∈ D such that w does not 3-compress A.

Now, we observe that w = wDw′, defined as in Proposition 2, has as factors
all the three words listed in (I). Indeed, α2βαβ2α is a factor of w since wD, by
definition, has the suffix α2βα, and w′ starts from β2α. The prefix β2v0β

2v0β
2 =

β2α2β2α2β2 of w′ has the second word in (I) as a factor. Finally, the suffix
vs+1β

2vs+1β
2 = αβ4αβ2αβ4αβ2 of w′ has the third word in (I) as a factor.

Therefore, by Proposition 2, there exists a proper automaton A ∈ D such that w
does not 3-compresses A if and only if the word w∗ = wDw is not 3-collapsing.
Obviously, this transformation may be performed in polynomial time, which
completes the proof. ut
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