
Stefano Bistarelli, Andrea Formisano (Eds.)

ICTCS’14
Fifteenth Italian Conference on
Theoretical Computer Science

Perugia, Italy, September 17–19, 2014
Proceedings

Copyright c©2014 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners.

Editors’ address:
Università di Perugia
Dipartimento di Matematica e Informatica
Via Vanvitelli 1
06123 Perugia, Italy

{stefano.bistarelli | andrea.formisano}@unipg.it

Preface

This volume contains the papers presented at ICTCS 2014, the 15th Italian Conference on
Theoretical Computer Science held on September 17-19, 2014 in Perugia.

ICTCS is the traditional meeting of the Italian Chapter of the European Association for
Theoretical Computer Science (EATCS). The purpose of these meetings is fostering the
cross-fertilisation of ideas stemming from different areas of theoretical computer science.
Hence, they represent occasions for exchanging ideas and for sharing experiences between
researchers. They also provide the ideal environment where junior researchers and PhD
students can meet senior researchers.

The Italian Chapter of the EATCS was founded in 1972 and previous meetings took
place in Pisa (1972), Mantova (1974 and 1989), L’Aquila (1992), Ravello (1995), Prato
(1998), Torino (2001), Bertinoro (2003), Pontignano (2005), Roma (2007), Cremona
(2009), Camerino (2010), Varese (2012) and Palermo (2013). As usual, ICTCS 2014
was open to researchers from outside Italy, who are always welcome to submit papers and
attend these periodical events.

In this edition, there were 30 submitted contributions. Each of them was reviewed by
at least 3 Program Committee members. The Committee decided to accept 26 papers
covering several areas of theoretical computer science. The participants came from in-
stitutions of various countries, namely, China, Finland, France, India, Israel, Italy, Japan,
Poland, Tunisia, Turkey, UK, and USA. The program included two invited speakers, Rocco
De Nicola (IMT, Lucca) and Giuseppe Liotta (Università di Perugia) and a presentation
given by Flavio Chierichetti (Sapienza Università di Roma), the recipient of the Young
Researcher in Theoretical Computer Science Award 2014, conferred this year by the Ital-
ian Chapter. Furthermore, Livio Bioglio (INSERM, Paris) and Andrea Marino (Università
di Milano), the two recipients of the Best PhD Thesis in Theoretical Computer Science
Award 2014, assigned by the Italian Chapter, gave two talks illustrating their recent re-
search. The program of ICTCS 2014 included a special session devoted to the memory of
Alberto Bertoni, which was one of the founders of the Italian Chapter and recently passed
away. This session, was organized by Arturo Carpi and Alessandra Cherubini.

We would like to express our gratitude to the invited speakers, to the recipients of the
three Awards, and to all authors and participants. We also wish to thank the members of
the Program Committee and all additional anonymous reviewers for their hard work. A
special mention is due to the colleagues of the Organizing Committee for the invaluable
contribution they gave in organizing ICTCS 2014.

We would like to give special thanks to the various sponsors that supported the event:
EATCS, Università di Perugia, Dipartimento di Matematica e Informatica, Regione Um-
bria, Provincia di Perugia, Comune di Perugia, Fondazione Perugiassisi 2019, Fondazione
Cassa di Risparmio di Perugia, INdAM-GNCS, IOS Press. Finally, we mention Easy-
Chair and CEUR-WS.org that helped us in organizing the conference and producing the
proceedings.

September 2014
Perugia

Stefano Bistarelli
Andrea Formisano

i

Program Committee

Paolo Baldan Università di Padova
Giampaolo Bella Università di Catania
Marco Bernardo Università di Urbino
Davide Bilo Università di Sassari
Stefano Bistarelli (chair) Università di Perugia
Michele Boreale Università di Firenze
Tiziana Calamoneri Sapienza Università di Roma
Antonio Caruso Università del Salento
Ferdinando Cicalese Università diSalerno
Flavio Corradini Università di Camerino
Giorgio Delzanno Università di Genova
Mariangiola Dezani Università di Torino
Eugenio Di Sciascio Politecnico di Bari
Agostino Dovier Università di Udine
Marco Faella Università di Napoli “Federico II”
Michele Flammini Università di L’Aquila
Andrea Formisano (chair) Università di Perugia
Maurizio Gabbrielli Università di Bologna
Fabio Gadducci Università di Pisa
Raffaella Gentilini Università of Perugia
Laura Giordano Università del Piemonte Orientale
Giuseppe F. Italiano Università di Roma ”Tor Vergata”
Sabrina Mantaci Università di Palermo
Isabella Mastroeni Università di Verona
Manuela Montangero Università di Modena e Reggio Emilia
Maurizio Proietti IASI-CNR, Roma
Antonino Salibra Università Ca’ Foscari Venezia
Francesco Santini Università di Perugia
Marinella Sciortino Università di Palermo
Maurice Ter Beek ISTI-CNR, Pisa

Local Organizing Committee

Serena Arteritano
Stefano Bistarelli
Arturo Carpi
Andrea Formisano
Raffaella Gentilini
Bruno Iannazzo
Laura Marozzi
Alfredo Navarra

Fernanda Pambianco
Fabio Rossi
Francesco Santini
Simone Topini
Lidia Trotta
Emanuela Ughi
Flavio Vella

ii

Contents

Invited Talks

A formal approach to autonomic systems programming: the SCEL language
Rocco De Nicola 1

Graph drawing beyond planarity: some results and open problems
Giuseppe Liotta 3

ICTCS Young TCS Research Award

Trace complexity
Flavio Chierichetti 9

ICTCS Doctoral Research Awards

Type disciplines for systems biology
Livio Bioglio 11

Algorithms for biological graphs: analysis and enumeration
Andrea Marino 15

Regular Papers

Timed process calculi: from durationless actions to durational ones
Marco Bernardo, Flavio Corradini, Luca Tesei 21

Size-constrained 2-clustering in the plane with Manhattan distance
Alberto Bertoni, Massimiliano Goldwurm, Jianyi Lin, Linda Pini 33

Graphs of edge-intersecting and non-splitting paths
Arman Boyacı, Tınaz Ekim, Mordechai Shalom, Shmuel Zaks 45

A graph-easy class of mute lambda-terms
Antonio Bucciarelli, Alberto Carraro, Giordano Favro, Antonino Salibra 59

iii

CONTENTS

Relating threshold tolerance graphs to other graph classes
Tiziana Calamoneri, Blerina Sinaimeri 73

Černý-like problems for finite sets of words
Arturo Carpi, Flavio D’Alessandro 81

Reasoning about connectivity without paths
Alberto Casagrande, Eugenio Omodeo 93

Binary 3-compressible automata
Alessandra Cherubini, Andrzej Kisielewicz 109

Extendibility of Choquet rational preferences on generalized lotteries
Giulianella Coletti, Davide Petturiti, Barbara Vantaggi 121

On multiple learning schemata in conflict driven solvers
Andrea Formisano, Flavio Vella 133

A metamodeling level transformation from UML sequence diagrams to Coq
Chao Li, Liang Dou, Zongyuan Yang 147

An efficient algorithm for generating symmetric ice piles
Roberto Mantaci, Paolo Massazza, Jean-Baptiste Yunès 159

Adding two equivalence relations to the interval temporal logic AB
Angelo Montanari, Marco Pazzaglia, Pietro Sala 171

Efficient channel assignment for cellular networks modeled as honeycomb grid
Soumen Nandi, Nitish Panigrahy, Mohit Agrawal, Sasthi C. Ghosh, Sandip Das 183

Programmable enforcement framework of information flow policies
Minh Ngo, Fabio Massacci 197

On the Stackelberg fuel pricing problem
Cosimo Vinci, Vittorio Bilò 213

Structural complexity of multi-valued partial functions computed by
nondeterministic pushdown automata
Tomoyuki Yamakami 225

iv

CONTENTS

Communications

Proving termination of programs having transition invariants of height ω
Stefano Berardi, Paulo Oliva, Silvia Steila 237

Orthomodular algebraic lattices related to combinatorial posets
Luca Bernardinello, Lucia Pomello, Stefania Rombolà 241

Abstract argumentation frameworks to promote fairness and rationality in
multi-experts multi-criteria decision making
Stefano Bistarelli, Martine Ceberio, Joel A. Henderson, Francesco Santini 247

Optimal placement of storage nodes in a wireless sensor network
Gianlorenzo D’Angelo, Daniele Diodati, Alfredo Navarra, Cristina M. Pinotti 259

Engineering shortest-path algorithms for dynamic networks
Mattia D’Emidio, Daniele Frigioni 265

Minimal models for rational closure in SHIQ
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato 271

An algebraic characterization of unary two-way transducers
Christian Choffrut, Bruno Guillon 279

Logspace computability and regressive machines
Stefano Mazzanti 285

Papers not included here and published elsewhere

Operational state complexity under Parikh equivalence
Giovanna Lavado, Giovanni Pighizzini and Shinnosuke Seki. Appeared in H. Jur-
gensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 294-305. Springer (2014)

Author Index 291

v

A formal approach to autonomic systems programming:
the SCEL language

Rocco De Nicola

IMT – Institute for Advanced Studies Lucca
rocco.denicola@imtlucca.it

Abstract. The autonomic computing paradigm has been proposed to cope with
size, complexity and dynamism of contemporary software-intensive systems. The
challenge for language designers is to devise appropriate abstractions and linguis-
tic primitives to deal with the large dimension of systems, and with their need to
adapt to the changes of the working environment and to the evolving require-
ments. We propose a set of programming abstractions that permit to represent
behaviours, knowledge and aggregations according to specific policies, and to
support programming context-awareness, self-awareness and adaptation. Based
on these abstractions, we define SCEL (Software Component Ensemble Lan-
guage), a kernel language whose solid semantic foundations lay also the basis
for formal reasoning on autonomic systems behaviour. To show expressiveness
and effectiveness of SCEL’s design, we present a Java implementation of the pro-
posed abstractions and show how it can be exploited for programming a robotics
scenario that is used as a running example for describing features and potentials
of our approach.

1

2

Graph drawing beyond planarity:
some results and open problems

Giuseppe Liotta

Dipartimento di Ingegneria
Università degli Studi di Perugia, Italy
giuseppe.liotta@unipg.it

Abstract. We briefly review some recent findings and outline some emerging
research directions about the theory of “nearly planar” graphs, i.e. graphs that
have drawings where some crossing configurations are forbidden.

1 Graph drawing beyond planarity

Recent technological advances have generated torrents of relational data that are hard to
display and visually analyze due, mainly, to their large size. Application domains where
this need is particularly pressing include Systems Biology, Social Network Analysis,
Software Engineering, and Networking. What is required is not simply an incremental
improvement to scale up known solutions but, rather, a quantum jump in the sophisti-
cation of the visualization systems and techniques. New research scenarios for visual
analytics, network visualization, and human-computer interaction paradigms must be
identified; new combinatorial models must be defined and their corresponding theoret-
ical problems must be computationally investigated; finally, the theoretical solutions
must be experimentally evaluated and put into practice. Therefore, a substantial re-
search effort in the graph drawing and network visualization communities started from
the following considerations.

The Planarity Handicap. The classical literature on graph drawing and network visu-
alization showcases elegant algorithms and sophisticated data structures under the
assumption that the input relational data set can be displayed as a network where
no two edges cross (see, e.g., [14,35,36,40]), i.e. as a planar graph. Unfortunately,
almost every graph is non-planar in practice and various experimental studies have
established that the human ability of understanding a diagram is dramatically af-
fected by the type and number of edge crossings (see, e.g., [42,43,48]).

Combinatorial Topology vs. Algorithmics. A topological graph is a drawing of a graph
in the plane such that vertices are drawn as points and edges are drawn as sim-
ple arcs between the points. Extremal theory questions such as “how many edges
can a certain type of non-planar topological graph have?” have been investigated
by mathematicians for decades, typically under the name of Turán-type problems.
However, the corresponding computational question: “How efficiently can one com-
pute a drawing Γ of a non-planar graph such that Γ is a topological graph of a cer-
tain type?” has been surprisingly disregarded by the algorithmic community until
very recent years.

3

We recall that planar graphs can be expressed in terms of forbidden subgraphs:
A graph G is planar if and only if it does not contain a subdivision of K5 or K3,3.
Then, a fundamental natural step towards understanding non-planar graphs is to con-
sider network visualizations where some types of crossings are forbidden while some
other types are allowed. For example, we recall a sequence of HCI experiments by
Huang et al. [32,33,34] proving that crossing edges significantly affect human under-
standing if they form acute angle, while crossing that form angles from about π3 to π

2
guarantee good readability properties. Hence it makes sense to explore complexity is-
sues related to drawings of graphs where such “sharp angle crossings” are forbidden.
As another problem, Purchase et al. [42,43,48]) prove that an edge is difficult to read
if it is crossed by many other edges; hence, the current research agenda considers com-
putational issues with graph drawings where every edge is crossed by at most k other
edges, for a given constant k.

In addition to requiring that some types of edge crossings must be forbidden, non-
planar drawings must also satisfy a set of geometric optimization goals (often called
aesthetic requirements) such as, for example, minimizing the area of the drawing for a
given resolution rule, maximizing the aspect ratio, minimizing the number of different
slopes used to draw the edges, or the number bends along the edges.

In the next section we briefly recall some of the most recent results in the area and
propose a few open problems. More formally, a drawing of a graph G: (i) injectively
maps each vertex u of G to a point pu in the plane; (ii) maps each edge (u, v) of G to
a Jordan arc connecting pu and pv that does not pass through any other vertex; (iii) is
such that any two edges have at most one point in common. A drawing of a graph is a
straight-line drawing if every edge is a straight-line segment, it is a poly-line drawing
if the edges are polygonal chains and may contain bends.

2 Some results and open problems

The “beyond planarity” research area could be briefly described as the (potentially un-
countable) collection of problems of the type depicted in Figure 1, where the column
”Forbidden” describes a forbidden crossing configuration and the column ”Question”
describes a corresponding computational question of interest in graph drawing. We re-
mark that both the forbidden configurations and the computational questions of Figure 1
are mere examples within a much larger research framework. In the remainder, we only
give some references about the second and the fourth entry of the table. The interested
reader is referred, for example, to recent proceedings of the International Symposium
on Graph Drawing [49] for more results on the “beyond planarity” topic. (See also
http://www.graphdrawing.org/symposia.html.)

2.1 Drawings with large crossing angles

The crossing angle resolution of a drawing of a graph measures the smallest angle
formed by any pair of crossing edges.

A RAC drawing is a drawing of a graph whose edges can cross only orthogonally
to one another, i.e. a RAC drawing maximizes the crossing angle resolution. The no-
tion of RAC drawings was first introduced by Didimo et al. in [23], who studied both

G.Liotta. Graph drawing beyond planarity: some results and open problems

4

no crossing angle

no fan crossing

α

smaller thanα

no edge with k crossings

with bounded vertex degree

Straight−line drawability for graphs

edges

no three mutually crossing

Compute compact drawings of planar

graphs with lmited number of

crossings per edge

of graph pairs

Compute simultaneous emebddings

Complexity of the recognition

problem

Forbidden configuration Algorithmic question

Fig. 1. A table with some forbidden crossing configurations and related computational questions.

straight-line and poly-line drawings. Variants of RAC drawings are drawings in which
the minimum crossing angle must be at least a given constat or the drawings where
the minimum crossing angle is exactly a given constant. A limited list of recent pa-
pers about RAC drawings and their variants includes [4,5,6,7,15,16,17,18,22,25,47].
See also [24] for more references and open problems about drawing graphs with large
crossing angles. A sample open problem follows.

Open Problem: Argyriou et al. [6] prove that deciding whether a graph has a straight-
line RAC drawing is NP-hard. Hence, maximizing the crossing angle resolution in a
straight-line drawing of a graph is also NP-hard. Is there an efficient approximation
algorithm for this problem? Is there a polynomial time solution for special families of
graphs (e.g. those having bounded vertex degree)?

Related to the problem above, we recall that there is a polynomial time algorithm
to recognize whether a bipartite graph has a straight-line RAC drawing such that the
vertices of a same partition set all lie on one of two parallel lines [16].

G.Liotta. Graph drawing beyond planarity: some results and open problems

5

2.2 Drawings with few crossings per edge

For a fixed non negative integer k, a k-planar drawing is a drawing of a graph where
every edge can be crossed by at most k other edges. A k-planar graph is a graph that has
a k-planar drawing. Note that the family of 0-planar graphs coincides with the family of
planar graphs. The literature about drawings of graphs where every edge can be crossed
at most k times has mostly focused on the case k = 1.

Concerning Turán-type problems, Pach and Tóth prove that 1-planar graphs with
n vertices have at most 4n − 8 edges, which is a tight upper bound [41]; in the case
of straight-line drawings, Didimo [21] proved that a tight bound is 4n − 9. 1-planarity
testing is studied by Korzhik and Mohar who prove that recognizing 1-planar graphs is
NP-hard [39]; polynomial-time solutions for the recognition problem are known under
some additional assumptions and/or for restricted classes of graphs (see, e.g. [8,27,30]).

Straight-line 1-planar drawings have been studied in [3,31,46]. The relation between
1-planar drawings and RAC drawings is considered in [13,28]. A limited list of addi-
tional papers on 1-planar graphs includes [1,2,3,9,10,11,26,29,31,37,38,45].

We conclude with a classical open problem about trade-offs of different aesthetic
requirements. Assuming that the vertices are points of an integer grid, the area of a
drawing of a graph is defined as the area of the smallest axis aligned rectangle that
includes the drawing.
Open Problem: It is known that every planar graph with n vertices admits a crossing-
free straight-line drawing in Θ(n2) area [12,44]. On the other hand, every planar graph
can be drawn with straight-line edges in O(n) area if one allows O(n) crossings per
edge [50]. Does every planar graph with n vertices have a straight-line drawing with
o(n2) area and a o(n) crossings per edge?.

Starting references to study the above problem include [19,20].

References

1. E. Ackerman. A note on 1-planar graphs. Discrete Applied Mathematics, 175:104–108,
2014.

2. E. Ackerman, R. Fulek, and C. D. Tóth. Graphs that admit polyline drawings with few
crossing angles. SIAM J. Discrete Math., 26(1):305–320, 2012.

3. M. J. Alam, F. J. Brandenburg, and S. G. Kobourov. Straight-line grid drawings of 3-
connected 1-planar graphs. In Wismath and Wolff [49], pages 83–94.

4. P. Angelini, L. Cittadini, W. Didimo, F. Frati, G. D. Battista, M. Kaufmann, and A. Symvonis.
On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl.,
15(1):53–78, 2011.

5. E. N. Argyriou, M. A. Bekos, M. Kaufmann, and A. Symvonis. Geometric rac simultaneous
drawings of graphs. J. Graph Algorithms Appl., 17(1):11–34, 2013.

6. E. N. Argyriou, M. A. Bekos, and A. Symvonis. The straight-line rac drawing problem is
np-hard. J. Graph Algorithms Appl., 16(2):569–597, 2012.

7. K. Arikushi, R. Fulek, B. Keszegh, F. Moric, and C. D. Tóth. Graphs that admit right angle
crossing drawings. Comput. Geom., 45(4):169–177, 2012.

8. C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, and
J. Reislhuber. Recognizing outer 1-planar graphs in linear time. In Wismath and Wolff
[49], pages 107–118.

G.Liotta. Graph drawing beyond planarity: some results and open problems

6

9. O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena. Acyclic colouring of 1-planar
graphs. Discrete Applied Mathematics, 114(1-3):29–41, 2001.

10. F.-J. Brandenburg, D. Eppstein, A. Gleißner, M. T. Goodrich, K. Hanauer, and J. Reislhuber.
On the density of maximal 1-planar graphs. In W. Didimo and M. Patrignani, editors, Graph
Drawing, volume 7704 of Lecture Notes in Computer Science, pages 327–338. Springer,
2012.

11. J. Czap and D. Hudák. 1-planarity of complete multipartite graphs. Discrete Applied Math-
ematics, 160(4-5):505–512, 2012.

12. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combina-
torica, 10:41–51, 1990.

13. H. R. Dehkordi and P. Eades. Every outer-1-plane graph has a right angle crossing drawing.
Int. J. Comput. Geometry Appl., 22(6):543–558, 2012.

14. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper
Saddle River, NJ, 1999.

15. E. Di Giacomo, W. Didimo, P. Eades, S.-H. Hong, and G. Liotta. Bounds on the crossing
resolution of complete geometric graphs. Discrete Applied Mathematics, 160(1-2):132–139,
2012.

16. E. Di Giacomo, W. Didimo, P. Eades, and G. Liotta. 2-layer right angle crossing drawings.
Algorithmica, 68(4):954–997, 2014.

17. E. Di Giacomo, W. Didimo, L. Grilli, G. Liotta, and S. A. Romeo. Heuristics for the maxi-
mum 2-layer rac subgraph problem. The Computer Journal. on print, published on line on
March 2014.

18. E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Area, curve complexity, and crossing
resolution of non-planar graph drawings. Theory Comput. Syst., 49(3):565–575, 2011.

19. E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. h-quasi planar drawings of
bounded treewidth graphs in linear area. In M. C. Golumbic, M. Stern, A. Levy, and G. Mor-
genstern, editors, WG, volume 7551 of Lecture Notes in Computer Science, pages 91–102.
Springer, 2012.

20. E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. Area requirement of graph
drawings with few crossings per edge. Computational Geometry, 46(8):909 – 916, 2013.

21. W. Didimo. Density of straight-line 1-planar graph drawings. Inf. Process. Lett., 113(7):236–
240, 2013.

22. W. Didimo, P. Eades, and G. Liotta. A characterization of complete bipartite rac graphs. Inf.
Process. Lett., 110(16):687–691, 2010.

23. W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. Theoretical
Computer Science, 412(39):5156–5166, 2011.

24. W. Didimo and G. Liotta. The crossing angle resolution in graph drawing. In J. Pach, editor,
Thirty Essays on Geometric Graph Theory. Springer, 2012.

25. V. Dujmovic, J. Gudmundsson, P. Morin, and T. Wolle. Notes on large angle crossing graphs.
Chicago J. Theor. Comput. Sci., 2011, 2011.

26. P. Eades, S.-H. Hong, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. Testing maximal
1-planarity of graphs with a rotation system in linear time. In Proc. of GD 2012, LNCS.
Springer. on print.

27. P. Eades, S.-H. Hong, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A linear time
algorithm for testing maximal 1-planarity of graphs with a rotation system. Theor. Comput.
Sci., 513:65–76, 2013.

28. P. Eades and G. Liotta. Right angle crossing graphs and 1-planarity. Discrete Applied Math-
ematics, 161(7-8):961–969, 2013.

29. I. Fabrici and T. Madaras. The structure of 1-planar graphs. Discrete Mathematics, 307(7-
8):854–865, 2007.

G.Liotta. Graph drawing beyond planarity: some results and open problems

7

30. S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A linear-time
algorithm for testing outer-1-planarity. In Wismath and Wolff [49], pages 71–82.

31. S.-H. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry’s theorem for 1-planar graphs. In
J. Gudmundsson, J. Mestre, and T. Viglas, editors, COCOON, volume 7434 of Lecture Notes
in Computer Science, pages 335–346. Springer, 2012.

32. W. Huang. Using eye tracking to investigate graph layout effects. In APVIS, pages 97–100,
2007.

33. W. Huang, P. Eades, and S.-H. Hong. Larger crossing angles make graphs easier to read. J.
Vis. Lang. Comput., 25(4):452–465, 2014.

34. W. Huang, S.-H. Hong, and P. Eades. Effects of crossing angles. In PacificVis, pages 41–46,
2008.

35. M. Jünger and P. Mutzel, editors. Graph Drawing Software. Springer, 2003.
36. M. Kaufmann and D. Wagner, editors. Drawing Graphs. Springer Verlag, 2001.
37. V. P. Korzhik. Minimal non-1-planar graphs. Discrete Mathematics, 308(7):1319–1327,

2008.
38. V. P. Korzhik. Proper 1-immersions of graphs triangulating the plane. Discrete Mathematics,

313(23):2673–2686, 2013.
39. V. P. Korzhik and B. Mohar. Minimal obstructions for 1-immersions and hardness of 1-

planarity testing. Journal of Graph Theory, 72(1):30–71, 2013.
40. T. Nishizeki and Md.S. Rahman. Planar Graph Drawing. World Scientific, 2004.
41. J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427–

439, 1997.
42. H. C. Purchase. Effective information visualisation: a study of graph drawing aesthetics and

algorithms. Interacting with Computers, 13(2):147–162, 2000.
43. H. C. Purchase, D. A. Carrington, and J.-A. Allder. Empirical evaluation of aesthetics-based

graph layout. Empirical Software Engineering, 7(3):233–255, 2002.
44. W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the first annual

ACM-SIAM symposium on Discrete algorithms, SODA ’90, pages 138–148, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied Mathematics.

45. Y. Suzuki. Optimal 1-planar graphs which triangulate other surfaces. Discrete Mathematics,
310(1):6–11, 2010.

46. C. Thomassen. Rectilinear drawings of graphs. Journal of Graph Theory, 12(3):335–341,
1988.

47. M. van Kreveld. The quality ratio of RAC drawings and planar drawings of planar graphs.
In Proc. of GD 2010, volume 6502 of LNCS, pages 371–376. Springer, 2010.

48. C. Ware, H. C. Purchase, L. Colpoys, and M. McGill. Cognitive measurements of graph
aesthetics. Information Visualization, 1(2):103–110, 2002.

49. S. K. Wismath and A. Wolff, editors. Graph Drawing - 21st International Symposium, GD
2013, Bordeaux, France, September 23-25, 2013, Revised Selected Papers, volume 8242 of
Lecture Notes in Computer Science. Springer, 2013.

50. D. R. Wood. Grid drawings of k-colourable graphs. Computational Geometry: Theory and
Applications, 30(1):25 – 28, 2005.

G.Liotta. Graph drawing beyond planarity: some results and open problems

8

Trace complexity

Flavio Chierichetti

Dipartimento di Informatica
Sapienza University of Rome

Abstract. Prediction tasks in machine learning usually require deduc-
ing a latent variable, or structure, from observed traces of activity —
sometimes, these tasks can be carried out with a significant precision
and statistical significance, while sometimes getting any useful predic-
tion requires an unrealistically large number of traces.

In this talk, we will study the trace complexity of (that is, the number of
traces needed for carrying out) two prediction tasks in social networks:
the network inference problem and the number of signers problem.

The first problem [1] consists of reconstructing the edge set of a network
given traces representing the chronology of infection times as epidemics
spread through the network. The second problem’s [2] goal is to guess
the unknown number of signers of some email-based petitions, when only
a small subset of the emails that circulated is available.

These two examples will allow us to make some general remarks about
social networks’ prediction tasks.

References

1. B. D. Abrahao, F. Chierichetti, R. Kleinberg, and A. Panconesi. Trace
complexity of network inference. In I. S. Dhillon, Y. Koren, R. Ghani,
T. E. Senator, P. Bradley, R. Parekh, J. He, R. L. Grossman, and
R. Uthurusamy, editors, KDD, pages 491–499. ACM, 2013.

2. F. Chierichetti, J. M. Kleinberg, and D. Liben-Nowell. Reconstructing
patterns of information diffusion from incomplete observations. In
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira, and
K. Q. Weinberger, editors, NIPS, pages 792–800, 2011.

9

10

Type disciplines for systems biology

Livio Bioglio

INSERM, UMR-S 1136, iPLESP, Paris, France

Systems Biology is a discipline that aims to study complex biological sys-
tems by means of computational models. Because of the complexity of biological
behaviors, the formalisms used in this field are usually designed ad-hoc for the
biological topic of interest, or they need to be tuned by a long set of evolu-
tion rules. Here we present a different approach: we define biological properties
through a type discipline, leaving the formalisms as general as possible. We ex-
plore three different kinds of Type Systems: a static one, that limits the model
that can be written by modelers; a dynamic one, that limits the evolution of the
model at run-time; and an hybrid combination of the previous ones.

1 Static type system

Homogeneous biological entities are classified according to their behavior. In
order to reproduce such classification, we propose a Minimal Object-Oriented
Core Calculus for term-rewriting formalisms. A rewrite system is composed by a
term, representing the structure of the modeled system, and a series of reduction
rules, representing the possible evolutions of the system: depending on the for-
malism, these rules can be embedded in terms, like in P Systems [7], or defined
in a separate part, like in the Calculus of Looping Sequences [1] (CLS for short).
The objective of the OO Core Calculus is to facilitate the organizations of rules,
also improving their re-use, and to check the correctness of the model at compile
time. In our core calculus it is possible to define classes, that contain methods
(encapsulation) and extend another class (subtyping), inheriting all its methods
(inheritance). Methods are formed by a sequence of variables, the arguments,
and a sequence of reduction rules containing these variables. They are called on
symbols of the model, representing biological entities, with a sequence of values
as arguments (method invocation). A method invocation is replaced by the re-
duction rules of the method, in which the variables are replaced by the values
used as arguments. These reduction rules are then used for the evolution of the
model. The syntax, definitions and rules of the OO Core Calculus are inspired
by the ones proposed by Igarashi, Pierce and Wadler for Featherweight Java [6],
a minimal core calculus for modeling the Java Type System. For more details,
see [2].

2 Dynamic type system

In Biology and Chemistry there can be found several examples of repellency, such
as hydrophobicity (the physical property of a molecule that is repelled from a

11

mass of water), the behavior of anions and cations, or, at a different level of
abstraction, the behavior of the rh antigen for the different blood types. As a
counterpart, there may be elements, in nature, which always require the pres-
ence of other elements: for example, it is difficult to find a lonely atom of oxygen,
they always appear in the pair O2. We bring these aspects at their maximum
limit, and, by abstracting away all the phenomena which give rise/arise to/from
repellency (and its counterpart), we assume that for each kind of element of our
reality we are able to fix a set of elements which are required by the element for
its existence, and a set of elements whose presence is forbidden by the element.
We enrich the basic CLS with a type discipline which guarantees the soundness
of reduction rules with respect to some relevant properties of biological systems
deriving from the required and excluded kinds of elements. The key technical
tool we use is to associate to each reduction rule the minimal set of conditions an
instantiation must satisfy in order to assure that applying this rule to a ”correct”
system we get a ”correct” system as well. We also propose a type inference algo-
rithm, based on the machinery of principal typing [8], and show its soundness and
completeness. The required/excluded elements properties modeled here assure,
through type inference, that only compatible elements are combined together in
the different environments of the biological system took in consideration. Thus
the type system intrinsically yields a notion of correct (well-behaving) system
according to the expressed requirements. The detailed Type Discipline can be
found in [5].
There are cases in which the request/repellency model cannot reflect the behav-
ior of a biological system. An example is homeostasis, the property of a system
that regulates its internal environment and tends to maintain stable conditions
that are optimal for survival: when this equilibrium is disturbed, built-in regula-
tory devices respond in order to restore the balance. Different living organisms
employ homeostatic mechanisms to maintain some conditions in specific ranges:
the human body, like in all the warm-blooded animals, maintain a near-constant
body temperature using mechanisms such as vasodilation and vasoconstriction;
microorganisms maintain the iron presence above a minimum level to maintain
life but up to a maximum level to avoid iron toxicity. For this reason, we pro-
pose an extension of the previous Type Disciplines, where we assume that for
each element of our system we can fix the minimum and the maximum number
of other elements it requires. We enrich CLS with a type discipline and typed
reductions that guarantee the soundness of reduction rules with respect to the
properties of biological systems deriving from the minimum and the maximum
requested numbers of elements, and a type inference algorithm for inferring the
type of rewriting rules. Our contribution appeared in [3].

3 Hybrid type system

We present the variant of the Calculus of Looping Sequences with global and
local rewrite rules (CLSLR, for short). Global rules are the usual rules of CLS,
and they can be applied anywhere in a given term wherever their patterns match

L.Bioglio. Type disciplines for systems biology

12

the portion of the system under investigation, while local rules can only be
applied in the compartment in which they are defined. Terms written in CLSLR
are thus syntactically extended to contain explicit local rules within the term,
on different compartments. Local rules can be created, moved between different
compartments and deleted. Having a calculus in which we can model the dynamic
evolution of the rules describing the system allows to study emerging properties
of complex systems in a more natural and direct way. As it happens in nature,
where data and programs are encoded in the same kind of molecular structures,
we insert rewrite rules within the terms modeling the system under investigation.
On the other hand, some rule may represent general behaviors, common to the
whole system: global rules are used for avoiding the repetition of such rules in
each compartment. Since in this framework the focus is put on local rules, we
define a set of features that can be associated to each one. Features may define
general properties of rewrite rules or properties which are strictly related to the
model under investigation. We define a membrane type for the compartments of
our model and develop a type systems enforcing the property that a compartment
must contain only local rules with specific features. Our framework has been
presented in [4].

References

1. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina. A Calculus of Looping
Sequences for Modelling Microbiological Systems. Fundamenta Informaticæ, 72(1–
3):21–35, 2006.

2. L. Bioglio. A Minimal OO Calculus for Modelling Biological Systems. Computational
Models for Cell Processes (CompMod) 2011, EPTCS 67:50–64, 2011.

3. L. Bioglio. Enumerated Type Semantics for the Calculus of Looping Sequences.
RAIRO - Theoretical Informatics and Applications, 45(01):35–58, 2011.

4. L. Bioglio, M. Dezani-Ciancaglini, P. Giannini and A. Troina. A Calculus of Loop-
ing Sequences with Local Rules. 7th Workshop on Developments in Computational
Models (DCM’11), EPTCS 88:43–58, 2011.

5. L. Bioglio, M. Dezani-Ciancaglini, P. Giannini and A. Troina. Type Directed Se-
mantics for the Calculus of Looping Sequences. International Journal of Software
and Informatics, to appear.

6. A. Igarashi, B. Pierce and P. Wadler. Featherweight Java: a Minimal Core Calcu-
lus for Java and GJ. ACM Transactions on Programming Languages and System,
23:396–450, 2001.

7. G. Păun. Membrane Computing. An Introduction. Springer, 2002.
8. J. B. Wells. The Essence of Principal Typings. International Colloquium on Au-

tomata, Languages and Programming (ICALP’02), LNCS 2380:913–925, 2002.

L.Bioglio. Type disciplines for systems biology

13

14

Algorithms for biological graphs:
analysis and enumeration?

Andrea Marino

Dipartimento di Informatica, Università di Milano, Milano, Italy

The aim of enumeration is to list all the feasible solutions of a given prob-
lem satisfying some constraints. Enumeration algorithms are particularly useful
whenever the goal of a problem is not clear and all its solutions need to be
checked. Since one peculiar property of biological networks is the uncertainty, a
scenario in which enumeration algorithms can be helpful is biological network
analysis. Modelling biological networks indeed introduce bias: arc dependencies
are neglected and underlying hyper-graph behaviours are forced in simple graph
representations to avoid intractability. Moreover regulatory interactions between
all the biological networks are omitted, even if none of the different biological
layers is truly isolated. Last but not least, the dynamical behaviours of biolog-
ical networks are often not considered: indeed most of the currently available
biological network reconstructions are potential networks, where all the possible
connections are indicated, even if edges/arcs and vertices are hardly present all
together at the same time. More details about these aspects of the biological
networks can be found in [8].

Our Contribution. We have shown four examples of enumeration algorithms
that can be applied to efficiently deal with some biological problems modelled
by using biological networks: enumerating central and peripheral nodes of a
network, enumerating stories, enumerating paths or cycles, and enumerating
bubbles. Notice that the corresponding computational problems we define are of
more general interest and our results hold in the case of arbitrary networks.

1 Enumerating central and peripheral vertices

Structural analysis allows the identification of important and not important ver-
tices within a network and also for this reason has become very popular in many
disciplines. In the biological domain, the importance of a vertex can be defined
in many different ways. With neighbourhood-based centrality measures, such as
degree, the importance of the vertices is inferred from their local connectivity
and the more connections a vertex has the more central it is. Closeness, ec-
centricity, and shortest path based betweenness relies on global properties of a
network, such as distance between vertices.

? The author wants to thank the PhD advisor Pierluigi Crescenzi, the PhD School
of Dipartimento di Sistemi e Informatica, Università di Firenze (Italy), and all the
coauthors of the papers.

15

We have focused on the enumeration of the radial and diametral vertices,
i.e. vertices that are central and peripheral according to the eccentricity notion
of centrality, and on the computation of the radius and diameter of biological
networks and of real world graphs in general. The diameter and radius of a graph
are respectively the maximum and minimum eccentricity among all its nodes,
where the eccentricity of a node x is the distance from x to its farthest node.
Thus, intuitively, the diametral source vertices are the vertices that hardly reach
the other ones, the diametral target vertices are the vertices hardly reachable
from the other ones, and the radial vertices are the vertices that easily reach all
the vertices of the network. In order to calculate the vertices that can be easily
reached from any other vertex, it is sufficient to consider the transposed graph.

We have presented the difub Algorithm, which is able to list all the diame-
tral sources and targets and to compute the diameter of (strongly) connected
components of a graph G = (V,E) in time O(|E|) in practice, even if, in the
worst case, the complexity is Θ(|V ||E|). Analogously, we have presented a new
algorithm to list all the central vertices and to compute the radius of (strongly)
connected components of a graph in almost O(|E|) time in practice.

The analysis of real world networks in general, such as citation, collaboration,
communication, road, social, and web networks, has attracted a lot of attention.
The fundamental analysis measures have been reviewed in [12]. Moreover the
size of these networks has been increasing rapidly, so that in order to study such
measures, algorithms able to handle huge amount of data are needed. Since the
algorithms available until now were not able to compute diameter and radius
in the case of huge real world graphs, the contribution of our algorithms is not
just limited to biological networks analysis, but extends also to the analysis of
complex networks in general. We thus have shown their effectiveness also for
several other kinds of complex networks. More details can be found in the work
[5], which has been the generalization of [4, 3]. Our algorithm in [3] has been used
to compute the diameter of Facebook Network (721.1M vertices, 68.7G edges,
and diameter 41) with just 17 bfses in a popular work ([9], divulged by New
York Times on November 22, 2011).

2 Enumerating stories

The problem of enumerating stories was motivated initially by the biological
question in [10] related to Metabolic networks, in particular to compound graphs,
in which vertices are compounds and there is an arc from a compound x to a
compound y if there is a metabolic reaction that consumes x and produces y.
A subset B corresponds to compounds that have been experimentally identified
as having a significantly higher or lower production in a given condition (for
instance when an organism is exposed to some stress). The aim is then to extract
all the interaction dependencies among the compounds in B which do not create
cycles but at the same time involve as many compounds as possible. These may
require intermediate steps that concern compounds not in B, but the initial and

A.Marino. Algorithms for biological graphs: analysis and enumeration

16

final steps must involve only compounds in B. A solution, that is a possible
scenario of metabolic dependencies, is called a (metabolic) story.

A metabolic story has to capture the relationship between the vertices of
interest in a way that allows us to define a flow of matter from a set of sources
to a set of target compounds. The need for this hierarchy between the compounds
led us to consider acyclic solutions. The maximality condition has been added
in order to capture all alternative paths between the sources and the targets.
The problem is then to “tell” all possible stories given as input a graph G and
a subset B of the vertices of G.

We have presented a polynomial algorithm to find one story and an exact
but exponential approach for the enumeration problem [1]. This definition is a
generalization of a well-known problem which is the feedback arc set problem.
However, any polynomial-delay algorithm to enumerate feedback arc sets (ex:
[14]) can only be used in some particular instances. Moreover we have shown
that finding a story with a specified set of sources or targets is NP-hard.

Our contribution appeared in [1] and its biological application in [11].

3 Enumerating cycles or paths

Studying paths or cycles of biological networks can be useful for several pur-
poses. In the case of interaction graphs, such as Gene Regulatory networks, the
importance of enumeration has been shown in [7]. These networks are directed,
their vertices are genes, and their arcs are signed, where the sign or weight of the
arcs indicates the causal relationship between the vertices, such as activation or
inhibition. In particular cycles and paths can be useful for studying dependencies
among vertices, the steady state and multistationarity of dynamic models.

We have considered the problem of enumerating paths and cycles in the case
of undirected graphs. This result can be useful for undirected Protein-Protein
Interaction networks, where nodes are proteins and edges are interactions, but
in the case of interaction networks in general, our approach neglects the effects
of the controls, i.e. the sign and direction of the arcs. In this latter case, the
cycles can be enumerated in the underlying undirected graph and a posteriori
filtered or ad hoc algorithms can be applied. The main question arising from our
work, is whether it is possible to extend our result to directed graphs in order
to efficiently deal also with this kind of networks.

On the other hand, our contribution is not just restricted to biological undi-
rected networks, but extends also to arbitrary undirected graphs. Listing all
the paths and cycles in a graph is a classical problem whose efficient solu-
tions date back to the early 70s. The best known solution in the literature
is given by Johnson’s algorithm [6] and takes O((|C(G)| + 1)(|E| + |V |)) and
O((|Pst(G)| + 1)(|E| + |V |)) time for a graph G = (V,E), where C(G) and
Pst(G) denote respectively the set of cycles and (s, t)-paths in G. However there
exists graphs for which this algorithm is not optimal.

We have presented the first optimal algorithm to list all the paths and cy-
cles in an undirected graph G. Our algorithm requires O(|E|+∑c∈C(G) |c|) time

A.Marino. Algorithms for biological graphs: analysis and enumeration

17

and is asymptotically optimal: indeed, Ω(|E|) time is necessarily required to
read G as input, and Ω(

∑
c∈C(G) |c|) time is necessarily required to list the

output. Moreover, our algorithm lists all the (s, t)-paths in G optimally in
O(|E|+∑π∈Pst(G) |π|) time, observing that Ω(

∑
π∈Pst(G) |π|) time is necessarily

required to list the output.
Our algorithm exploits the decomposition of the graph into biconnected com-

ponents and without loss of generality restricts to study paths and cycles in a
same biconnected component. Thus it recursively lists the cycles or (s, t)-paths
using the classical binary partition: given an edge e in G, list all the solutions
containing e, and then all the solutions not containing e, at each time modifying
the graph. In order to avoid recursive calls (in the binary partition) that do not
list solutions, we have used a certificate, as a data structure, whose cost for dy-
namically updating is constant with respect to the number of solutions produced.
In order to prove the complexity obtained, we have exploited the properties of
the binary recursion tree corresponding to the binary partition. For more details,
see [2].

4 Enumerating bubbles

A DNA fragment, that is an RNA-coding sequence, is transformed in a Pre-
mRNA sequence, through the transcription phase, in which sequences of exons
and sequences of introns alternatively occur. The removal of all the sequences
of introns and of some sequences of exons leads to the mRNA sequence, that
is a protein-coding sequence, that translated leads to a protein. Since not any
exon is transcribed in the mRNA sequence, there can be many possible mRNA
sequences. For instance, let 〈e1, i1, e2, i2, e3, i3, e4, i4〉 be a fragment of DNA,
where for any j, with 1 ≤ j ≤ 3, ej and ij are the j-th sequence of exons
and introns respectively. The possible resulting mRNA sequences containing e1
are 〈e1, e2, e3, e4〉, 〈e1, e2, e3〉, 〈e1, e2, e4〉, 〈e1, e3, e4〉, 〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉.
The underlying phenomenon is called alternative splicing and checking all the
alternative events has been shown in [13] to correspond to checking recognisable
patterns in a de Bruijn graph built from the reads provided by a sequencing
project. The pattern corresponds to an (s, t)-bubble: an (s, t)-bubble is a pair of
vertex-disjoint (s, t)-paths that only shares s and t.

Since the k-mers correspond to all words of length k present in the reads
(strings) of the input dataset, and only those, in relation to the classical de Bruijn
graph for all possible words of size k, the de Bruijn graph for NGS data may
then not be complete. We have ignored all the details related to the treatment
of NGS data using De Bruijn graphs, and consider instead the more general
case of finding all (s, t)-bubbles in an arbitrary directed graph. In particular we
show the first linear delay algorithm to identify all bubbles. A previous known
algorithm presented in [13] was an adaptation of Tiernan’s algorithm for cycle
enumeration [15] which does not have a polynomial delay. In the worst case the
time elapsed between the output of two solutions is proportional to the number
of paths in the graph, i.e. exponential in the size of the graph. Our algorithm

A.Marino. Algorithms for biological graphs: analysis and enumeration

18

is a non trivial adaptation of Johnson’s cycle enumeration algorithm [6] in a
directed graph with the same theoretical complexity. Notably, the method we
propose enumerates all bubbles with a given source with O(|V |+ |E|) delay. The
algorithm requires an initial transformation of the graph, for each source s, that
takes O(|V |+ |E|) time and space; this transformation reduces the enumeration
of bubbles to the enumeration of constrained cycles in a special graph.

References

1. V. AcuŻna, E. Birmelé, L. Cottret, P. Crescenzi, F. Jourdan, V. Lacroix,
A. Marchetti-Spaccamela, A. Marino, P. V. Milreu, M.-F. Sagot, and L. Stougie.
Telling stories: Enumerating maximal directed acyclic graphs with a constrained
set of sources and targets. Theor. Comput. Sci., 457:1–9, 2012.

2. E. Birmelé, R. A. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, and G. Saco-
moto. Optimal listing of cycles and st-paths in undirected graphs. In SODA, pages
1884–1896, 2013.

3. P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On computing the
diameter of real-world undirected graphs. Theor. Comput. Sci., 514:84–95, 2013.

4. P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding the di-
ameter in real-world graphs - experimentally turning a lower bound into an upper
bound. In ESA (1), pages 302–313, 2010.

5. P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. On computing the diameter of
real-world directed (weighted) graphs. In SEA, pages 99–110, 2012.

6. D.B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4(1):77–84, 1975.

7. S. Klamt and A. von Kamp. Computing paths and cycles in biological interaction
graphs. BMC Bioinformatics, 10:181, 2009.

8. C. Klein, A. Marino, M.-F. Sagot, P.V. Milreu, and M. Brilli. Structural and
dynamical analysis of biological networks. Briefings in functional genomics, 2012.

9. B. Lars, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees of separation.
In WebSci, pages 33–42, 2012.

10. G. Madalinski, E. Godat, S. Alves, D. Lesage, E. Genin, P. Levi, J. Labarre, J.-
C. Tabet, E. Ezan, and C. Junot. Direct introduction of biological samples into
a ltq-orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis.
Analytical Chemistry, 80(9):3291–3303, 2008.

11. P. V. Milreu, C. Klein, L. Cottret, V. Acuña, E. Birmelé, M. Borassi, C. Junot,
A. Marchetti-Spaccamela, A. Marino, L. Stougie, F. Jourdan, P. Crescenzi,
V. Lacroix, and M.-F. Sagot. Telling metabolic stories to explore metabolomics
data: a case study on the yeast response to cadmium exposure. Bioinformatics,
30(1):61–70, 2014.

12. M. E. J. Newman. The structure and function of complex networks. SIAM RE-
VIEW, 45:167–256, 2003.

13. G. Sacomoto, J. Kielbassa, R. Chikhi, R. Uricaru, P. Antoniou, M.-F. Sagot, P. Pe-
terlongo, and V. Lacroix. Kissplice: de-novo calling alternative splicing events from
rna-seq data. BMC Bioinformatics, 13(S-6):S5, 2012.

14. B. Schwikowski and E. Speckenmeyer. On enumerating all minimal solutions of
feedback problems. Discrete Applied Mathematics, 117(1-3):253 – 265, 2002.

15. J. C. Tiernan. An efficient search algorithm to find the elementary circuits of a
graph. Communonications ACM, 13:722–726, 1970.

A.Marino. Algorithms for biological graphs: analysis and enumeration

19

20

Timed process calculi:
from durationless actions to durational ones ?

Marco Bernardo1 Flavio Corradini2 Luca Tesei2

1 Dipartimento di Scienze di Base e Fondamenti, Università di Urbino, Italy
2 Scuola di Scienze e Tecnologie, Università di Camerino, Italy

Abstract. Several timed process calculi have been proposed in the lit-
erature, which mainly differ for the way in which delays are represented.
In particular, a distinction is made between integrated-time calculi, in
which actions are durational, and orthogonal-time calculi, in which ac-
tions are instantaneous and delays are expressed separately. To reconcile
the two approaches, in a previous work an encoding from the integrated-
time calculus CIPA to the orthogonal-time calculus TCCS was defined,
which preserves timed bisimilarity. To complete the picture, in this pa-
per we consider the reverse translation, by examining the modifications
to the two calculi that are needed to make an encoding feasible, as well
as the behavioral equivalence that is appropriate to preserve. We then
introduce an encoding from modified TCCS to modified CIPA, and show
that it can only preserve the weak variant of timed bisimilarity.

1 Introduction

Computing systems are characterized not only by their functional behavior, but
also by their quantitative features. In particular, timing aspects play a funda-
mental role, as they describe the temporal evolution of system activities. This
is especially true for real-time systems, which are considered correct only if the
execution of their activities fulfills certain temporal constraints.

When modeling these systems, time is represented through nonnegative num-
bers. In the following, we refer to abstract time, in the sense that we use time as
a parameter for expressing constraints about instants of occurrences of actions.
Unlike physical time, abstract time permits simplifications that are convenient,
on the conceptual side, to obtain tractable models.

Many timed process calculi have appeared in the literature. Among them, we
mention temporal CCS [8], timed CCS [15], timed CSP [13], real-time ACP [2],
urgent LOTOS [4], CIPA [1], TPL [7], ATP [11], TIC [12], and PAFAS [6].
As observed in [10, 14, 5], these calculi differ on the basis of a number of time-
related options, some of which are recalled below:

– Durationless actions versus durational actions. In the first case, actions are
instantaneous events and time passes in between them; hence, functional

? Work partially supported by the MIUR-PRIN project CINA.

21

behavior and time are orthogonal. In the second case, every action takes a
fixed amount of time to be performed and time passes only due to action
execution; hence, functional behavior and time are integrated.

– Relative time versus absolute time. Assume that timestamps are associated
with the events observed during system execution. In the first case, each
timestamp refers to the time instant of the previous observation. In the
second case, all timestamps refer to the starting time of the system execution.

– Global clock versus local clocks. In the first case, there is a single clock that
governs time passing. In the second case, there are several clocks associ-
ated with the various system parts, which elapse independent of each other
although they define a unique notion of global time.

Moreover, for timed process calculi, there are several different interpretations
of action execution, in terms of whether and when it can be delayed, such as:

– Eagerness: actions must be performed as soon as they become enabled, i.e.,
without any delay, thereby implying that they are urgent.

– Laziness: after getting enabled, actions can be delayed arbitrarily long before
they are executed.

– Maximal progress: enabled actions can be delayed arbitrarily long unless they
are involved in synchronizations, in which case they are urgent.

In this paper, we focus on two different timed process calculi obtained by
suitably combining the time-related options mentioned above. More precisely,
the first calculus, TCCS [8], is inspired by the two-phase functioning principle,
according to which actions are durationless, time is relative, and there is a sin-
gle global clock. In contrast, the second calculus, CIPA [1], is inspired by the
one-phase functioning principle, according to which actions are durational, time
is absolute, and several local clocks are present.

In [5], it was shown that some of the choices concerned with the time-related
options and action execution interpretations are not irreconcilable, thus permit-
ting the interchange of concepts and analysis techniques. More precisely, the
different expressive power of the two considered process calculi was investigated
by developing a bisimulation-semantics-preserving encoding of CIPA processes
into TCCS processes for each action execution interpretation.

In this paper, we complete the previous expressiveness study by considering
the reverse encoding from TCCS processes to CIPA processes, which may also be
exploited for checking bisimilarity of TCCS processes more efficiently. As pointed
out at the end of [5], there are several issues that need to be addressed before the
reverse encoding can be established. Our first contribution is to provide a solution
for each of the various problems. Our second contribution is the definition of the
reverse encoding, together with a full abstraction result of this reverse encoding
under weak timed bisimilarity, as opposed to the direct encoding demonstrated
to be fully abstract with respect to strong timed bisimilarity in [5].

The rest of the paper is organized as follows. In Sect. 2, we recall TCCS
and CIPA. In Sect. 3, we discuss the main design decisions behind the reverse
encoding. In Sect. 4, we define the reverse encoding and show that it preserves
weak timed bisimilarity. Finally, in Sect. 5 we provide some concluding remarks.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

22

2 Background

2.1 Preliminaries

We denote by A a nonempty set of visible actions – ranged over by a, b – and by
Ā = {ā | a ∈ A} the set of corresponding coactions such that ¯̄a = a for all a ∈ A.
We use Act = A∪ Ā∪{τ} to indicate the set of all actions – ranged over by α, β
– where τ is the invisible action.

We denote by Rel a set of action relabeling functions. Each such function
ϕ : Act → Act satisfies ϕ(τ) = τ and ϕ(a) = ϕ(ā) for all a ∈ Act \ {τ}.

We denote by T = (T,�,v) a time domain such that T ∩ Act = ∅, which is
equipped with an associative operation � possessing neutral element and a total
order relation v satisfying t1 v t2 iff there exists t′ ∈ T such that t1 � t′ = t2.
Typical choices are T = N and T = R≥0, with the usual + and ≤.

Finally, we denote by Var a nonempty set of process variables – ranged over
by X,Y – whose occurrences can be free or bound by “rec”.

2.2 Durationless Actions: TCCS

We recall from [8] the syntax of TCCS. As in [5], we leave out the idling operator δ
and the weak choice operator ⊕, as they have no direct counterpart in CIPA.

Definition 1. The set of process terms of the process language PLTCCS is gen-
erated by the following syntax:

P ::= 0 stopped process
| α.P action prefix
| (t).P delay prefix
| P + P alternative composition
| P |P parallel composition
| P\L restriction
| P [ϕ] relabeling
| X process variable
| recX : P recursion

where α ∈ Act, t ∈ N>0, L ⊆ A, ϕ ∈ Rel, and X ∈ Var. We denote by PTCCS

the set of closed and guarded process terms of PLTCCS.

Process 0 can neither proceed with any action, nor proceed through time.
Process α.P can perform instantaneous action α and then evolves into process P ;
action α is urgent, hence time cannot progress before α is executed. Process (t).P
evolves into process P after a delay equal to t.

Process P1 + P2 represents a nondeterministic choice between processes P1

and P2, with the choice being resolved depending on whether an action of P1

or P2 is executed first. Time does not resolve choices, in the sense that any initial
passage of time common to P1 and P2 must be allowed without making the
choice. Process P1|P2 describes the parallel composition of processes P1 and P2,

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

23

α.P
α
−−→ P (t).P

t
−; P

P1

α
−−→ P ′

1

P1 + P2

α
−−→ P ′

1

P2

α
−−→ P ′

2

P1 + P2

α
−−→ P ′

2 (t+ t′).P
t
−; (t′).P

P
t
−; P ′

(t′).P
t+t′
−; P ′

P1

α
−−→ P ′

1

P1|P2

α
−−→ P ′

1|P2

P2

α
−−→ P ′

2

P1|P2

α
−−→ P1|P ′

2

P1

t
−; P ′

1 P2

t
−; P ′

2

P1 + P2

t
−; P ′

1 + P ′
2

P1

a
−−→ P ′

1 P2

ā
−−→ P ′

2

P1|P2

τ
−−→ P ′

1|P ′
2

P1

t
−; P ′

1 P2

t
−; P ′

2

P1|P2

t
−; P ′

1|P ′
2

P
α
−−→ P ′ α /∈ L ∪ L̄
P\L

α
−−→ P ′\L

P
t
−; P ′

P\L
t
−; P ′\L

P
α
−−→ P ′

P [ϕ]
ϕ(α)

−−→ P ′[ϕ]

P
t
−; P ′

P [ϕ]
t
−; P ′[ϕ]

P{recX : P ↪→ X}
α
−−→ P ′

recX : P
α
−−→ P ′

P{recX : P ↪→ X}
t
−; P ′

recX : P
t
−; P ′

Table 1. Structural operational semantic rules for TCCS

where any two complementary actions may synchronize thereby resulting in a τ
action; also in this case, any initial passage of time must be permitted.

Process P\L behaves as process P except for actions in L ∪ L̄, which are
forbidden; this operator is useful to force synchronizations between complemen-
tary actions. Process P [ϕ] behaves as process P , with the difference that every
performed action is transformed via ϕ; this operator allows processes with dif-
ferent actions to communicate. Finally, recX : P represents a recursive process,
which behaves as process P in which every free occurrence of X is replaced by
recX : P itself; the resulting process will be denoted by P{recX : P ↪→ X}.

Following [8], the intuitive meaning of process terms is formalized in Table 1.
Transition relation −−→ on the left represents the functional behavior. Transition
relation −; on the right represents the timing behavior according to time ad-
ditivity (second and third rules) and time determinism (fourth and fifth rules);
the second rule is necessary for the applicability of the fourth and fifth ones,
while the third rule is necessary for the forthcoming equivalence.

A notion of weak bisimilarity for TCCS was studied in [9]. It is an extension of
Milner’s weak bisimilarity that is capable of summing up delays while abstracting
from τ actions. Weak transitions are defined as follows:

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

24

– ==⇒ = (
τ
−−→)∗.

–
a

==⇒ = ==⇒
a
−−→==⇒.

–
α̂

==⇒ = ==⇒ if α = τ ,
α̂

==⇒ =
α

==⇒ if α 6= τ .

–
t

==⇒ = ==⇒
t1−;==⇒ · · ·==⇒

tn−;==⇒ where t =
∑

1≤i≤n ti, n ∈ N≥1.

Definition 2. A symmetric relation B over PTCCS is a weak timed bisimulation
iff, whenever (P1, P2) ∈ B, then for all actions α ∈ Act and delays t ∈ N>0:

– For each P1

α
−−→ P ′1 there exists P2

α̂
==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

– For each P1

t
−; P ′1 there exists P2

t
==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

P1 ≈TCCS P2 iff (P1, P2) is contained in a weak timed bisimulation.

2.3 Durational Actions: CIPA

We recall from [1] the syntax of CIPA. As in [5], we add the relabeling operator.

Definition 3. The set of process terms of the process language PLCIPA is gen-
erated by the following syntax:

Q ::= nil inactive process
| a.Q durational action prefix
| wait t.Q waiting prefix
| Q+Q alternative composition
| Q|Q parallel composition
| Q\L restriction
| Q[ϕ] relabeling
| X process variable
| recX : Q recursion

where a ∈ Act \ {τ}, t ∈ N>0, L ⊆ A, ϕ ∈ Rel, and X ∈ Var. We denote by
PCIPA the set of closed and guarded process terms of PLCIPA.

Process nil cannot proceed with any action, but can let time pass. Process a.Q
can perform urgent action a and evolves into process Q after the execution of a
has finished; all occurrences of an action are assumed to have the same duration,
which is established by a function ∆ : (Act \{τ})→ N>0 such that ∆(ā) = ∆(a).
Process wait t.Q waits for time t and then becomes process Q. All the other
operators work as expected, with the additional constraints that each relabeling
function ϕ must preserve durations, i.e., ∆(ϕ(a)) = ∆(a) for all a ∈ Act \ {τ},
and any pair of actions a and ā can synchronize only if they start at the same
time, yielding a τ action with the same duration as the two original actions.

Following [1], the set KP of states correspond to process terms augmented
with local clocks, so to keep track of the time elapsed in the various sequential
components. The shorthand t ⇒ Q means that the clock value t ∈ N≥0 is dis-
tributed over all subprocesses of Q according to the extended syntax for KP:

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

25

t⇒ a.Q
a@t
−−→
∆(a)

(t+∆(a))⇒ Q t⇒ wait t′.Q
τ@t
−−→
t′

(t+ t′)⇒ Q

K1

α@t
−−→
d

K′
1 ¬(K2

α′@t′
−−→
d′

K′
2 ∧ t′ < t)

K1 +K2

α@t
−−→
d

K′
1

K2

α@t
−−→
d

K′
2 ¬(K1

α′@t′
−−→
d′

K′
1 ∧ t′ < t)

K1 +K2

α@t
−−→
d

K′
2

K1

α@t
−−→
d

K′
1 ¬(K2

α′@t′
−−→
d′

K′
2 ∧ t′ < t)

K1|K2

α@t
−−→
d

K′
1|K2

K2

α@t
−−→
d

K′
2 ¬(K1

α′@t′
−−→
d′

K′
1 ∧ t′ < t)

K1|K2

α@t
−−→
d

K1|K′
2

K1

a@t
−−→
d

K′
1 K2

ā@t
−−→
d

K′
2

K1|K2

τ@t
−−→
d

K′
1|K′

2

K
α@t
−−→
d

K′ α /∈ L ∪ L̄

K\L
α@t
−−→
d

K′\L

K
α@t
−−→
d

K′

K[ϕ]
ϕ(α)@t

−−→
d

K′[ϕ]

t⇒ Q{recX : Q ↪→ X}
α@t
−−→
d

K′

t⇒ recX : Q
α@t
−−→
d

K′

Table 2. Structural operational semantic rules for CIPA

K ::= t⇒ nil | t⇒ a.Q | t⇒ wait t′.Q | t⇒ recX : Q |
K +K | K|K | K\L | K[ϕ]

In this setting, any transition is of the form K
α@t
−−→
d

K ′, meaning that K ∈ KP

performs an action of name α ∈ Act that starts at time t ∈ N≥0 and has duration
d ∈ N>0, after which evolves to K ′ ∈ KP. The transition relation is defined in
Table 2, where negative premises are present as in [5]. Those in the rules for
alternative composition enforce action urgency. Those in the rules for parallel
composition avoid the generation of ill-timed paths, i.e., computations along
which the starting time of some actions decreases as the execution proceeds.

A notion of weak bisimilarity for CIPA was studied in [1] under the name of
timed branching bisimilarity, which has the capability of summing up consecutive

waitings. Weak transitions are defined as follows: ==⇒ =
τ@t1−−→
d1

· · ·
τ@tn−−→
dn

, n ∈ N.

Definition 4. A symmetric relation B over KP is a weak timed bisimulation
iff, whenever (K1,K2) ∈ B, then for all actions α ∈ Act, starting times t ∈ N≥0,

and durations d ∈ N>0 it holds that for each K1

α@t
−−→
d

K ′1:

– When α 6= τ , there exists K2 ==⇒K ′′2
α@t
−−→
d

K ′2 such that (K1,K
′′
2) ∈ B and

(K ′1,K
′
2) ∈ B.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

26

– When α = τ , either (K ′1,K2) ∈ B, or there exists K2 ==⇒K ′′2
α@t′

−−→
d′

K ′2 such

that (K1,K
′′
2) ∈ B and (K ′1,K

′
2) ∈ B.

K1 ≈CIPA K2 iff (K1,K2) is contained in a weak timed bisimulation. Moreover,
Q1 ≈CIPA Q2 iff (0⇒ Q1, 0⇒ Q2) is contained in a weak timed bisimulation.

Although in the clause α = τ it may be t′ 6= t and d′ 6= d, possible subsequent
visible actions must start at the same time in both processes for ≈CIPA to hold.

3 Design of the Reverse Encoding

In [5], where an encoding from CIPA to TCCS was proposed, a number of issues
were raised about the existence of a reverse encoding from TCCS back to CIPA.
In this section, we recall those issues and discuss how to address them.

3.1 Adapting TCCS and CIPA

The first issue is related to the range of values that can be used in CIPA to
express action durations. In TCCS, it is possible to describe both timed processes
and untimed ones. Consider for example the untimed TCCS process a.b.0. This
cannot be translated into a reasonably corresponding CIPA process for the very
simple reason that actions a and b are instantaneous, but CIPA does not allow
zero durations. Moreover, due to instantaneous actions, TCCS processes may
exhibit Zeno behaviors, which are not possible in CIPA. For instance, the timed
TCCS process (t1).a.recX : (b.X + c.(t2).0) may perform, after time t1 and
action a, an arbitrary (even infinite) number of actions b at the same time.
These problems can be straightforwardly solved by admitting zero durations in
CIPA through an extended duration function ∆ : (Act \ {τ})→ N.

The second issue that we address is timelock. In a TCCS process, time does
not solve choices; indeed, the operational rules for alternative and parallel com-
position allow time to pass only if all the subprocesses do so. As a consequence,
a local timelock always implies a global timelock, which may in turn determine a
deadlock. By contrast, in CIPA timelock cannot occur unless there is a deadlock,
because time passing is associated with action execution and explicit waiting.
Consider the TCCS process 0+(t).0 and the ideally corresponding CIPA process
nil + wait t.nil; the former process cannot let time pass, while the latter process
can. The same would happen with (a.0)\{a}+ (t).0 and (a.nil)\{a}+ wait t.nil.

To avoid timelocks due to the stopped process 0, we replace it with the in-
active process 0 introduced in [9], which lets time pass according to the rule

0
t
−; 0. To avoid timelocks caused by restriction, for both calculi we opt for the

following two-level syntax featuring only restriction at the top level (let P′TCCS

and P′CIPA be the two resulting sets of closed and guarded process terms):
P ′ ::= P | P ′\L
P ::= 0 | α.P | (t).P | P + P | P |P | P [ϕ] | X | recX : P
Q′ ::= Q | Q′\L
Q ::= nil | a.Q | wait t.Q | Q+Q | Q|Q | Q[ϕ] | X | recX : Q

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

27

Note that this modification does not limit the expressive power of the calculi.
Suppose that a process P is made out of three subprocesses P1, P2, P3 composed
in parallel, such that P1 has action a and the other two have action ā, but
only P1 and P2 have to synchronize on a and ā. Normally, one would write
(P1|P2)\{a}|P3, but this is forbidden by the revised syntax. However, the same
effect can be obtained through (P1[ϕ]|P2[ϕ]|P3)\{b}, where relabeling function
ϕ maps a to a fresh action b not occurring in any of the three subprocesses.

3.2 From Delays to Durations

One of the major design decisions about the translation of (modified) TCCS
into (modified) CIPA is how to assign durations to actions. In principle, it is
desirable to be able to associate a suitable nonzero duration with every visible
action occurring in a TCCS process that is not untimed. Unfortunately, in most
cases this is not possible, as we now show.

Consider the TCCS process a.(t1).b.(t2).0. In this case, it is natural to inter-
pret delay t1 as the duration of a and delay t2 as the duration of b, thus consid-
ering the occurrence of an instantaneous visible action of TCCS as the beginning
of the corresponding durational action of CIPA (initial view). In the TCCS pro-
cess (t1).a.(t2).b.0, the durations are as before, provided that the occurrence of
an instantaneous visible action is considered as the end of the corresponding
durational action (final view). Notice that, if a = b but t1 6= t2, the translation
into a reasonably corresponding CIPA process would not be possible, unless, as
noted in [5], we further extend the duration function for CIPA by admitting that
different occurrences of the same action may have different durations.

Let us now examine the case in which there is not a precise pairing between
actions and delays, like, e.g., in the TCCS process (t1).a.(t2).0. In this scenario,
the duration of a can be either t1 or t2, but in any case a waiting is necessary to
account for the delay that is not associated with a. The situation is even more
complicated if we consider the TCCS process a.(t1).(t2).b.0. One option is to
interpret t1 + t2 as the duration of a (initial view), with b having duration 0.
The dual option is to interpret t1 + t2 as the duration of b (final view), with
a having duration 0. In any case, the definition of the encoding would become
technically involved, especially in the presence of recursion, due to the necessity
of performing some lookahead. Moreover, there seems not to be any strong reason
for choosing one option rather than the other.

Yet another option is to interpret t1 as the duration of a (initial view) and
t2 as the duration of b (final view). This mixed option should be discarded
because it disrupts equivalence preservation of the encoding. Indeed, the consid-
ered process is equivalent to the TCCS process a.(t2).(t1).b.0, while, under the
assumption t1 6= t2, the two corresponding CIPA processes are not equivalent
to each other, because the a-transition of duration t1 in the first CIPA process
cannot be matched by the a-transition of duration t2 of the second CIPA process.

Summing up, on the one hand there are TCCS delays that cannot be as-
sociated with any visible action, and hence have to be translated into CIPA

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

28

Fig. 1. Labeled transition system for P0

waitings. On the other hand, it is not always possible to assign a nonzero dura-
tion to every TCCS visible action. In particular, this is impossible in the case of
untimed TCCS processes. In this respect, it is also worth reminding that the two
untimed TCCS processes a.0|b.0 and a.b.0 + b.a.0 are always equivalent under
the interleaving view of concurrency, while the two ideally corresponding CIPA
processes a.nil|b.nil and a.b.nil + b.a.nil are equivalent to each other only if both
a and b have duration zero.

As a consequence, for the sake of simplicity, uniformity, and semantics preser-
vation, when encoding TCCS into CIPA we proceed as follows:

– Every TCCS action a will be translated into a CIPA action a with ∆(a) = 0.
– The TCCS action τ will be translated into a CIPA waiting of duration 0

by allowing for waitings of the form wait 0.Q in the modified syntax of CIPA.
– Every TCCS delay t will be translated into a CIPA waiting of duration t.

3.3 Which Behavioral Equivalence Can Be Preserved?

While the encoding from CIPA to TCCS defined in [5] preserves strong timed
bisimilarity, this cannot be the case for the reverse encoding from (modified)
TCCS to (modified) CIPA.

Consider the two TCCS processes a.(t1).(t2).b.0 and a.(t1 + t2).b.0, which
are equivalent to each other according to the strong timed bisimilarity of [8].
Their corresponding CIPA processes will be respectively a.wait t1.wait t2.b.nil
and a.wait (t1 + t2).b.nil, which are not equivalent to each other according to the
strong timed bisimilarity defined in [5].

It is however worth pointing out that the two former processes are equivalent
according to ≈TCCS and, most importantly, the two latter processes are equiv-
alent according to ≈CIPA. As a consequence, in this paper we have to restrict
ourselves to weak timed bisimilarities when investigating semantics preservation
for the reverse encoding.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

29

4 The Reverse Encoding

In this section, we translate (modified) TCCS process terms into (modified)
CIPA process terms and we show that the resulting encoding is fully abstract,
in the sense that it preserves weak timed bisimilarity. The encoding is defined
by induction on the syntactical structure of process terms.

Definition 5. The encoding [[]] : P′TCCS → P′CIPA is defined as follows:
[[0]] = nil [[a.P]] = a.[[P]]

[[τ.P]] = wait 0.[[P]] [[(t).P]] = wait t.[[P]]
[[P1 + P2]] = [[P1]] + [[P2]] [[P1|P2]] = [[P1]]|[[P2]]

[[P\L]] = [[P]]\L [[P [ϕ]]] = [[P]][ϕ]
[[X]] = X [[recX : P]] = recX : [[P]]

with ∆(a) = 0 for all a ∈ Act \ {τ}.

The states of the labeled transition systems underlying a TCCS process P
and the corresponding [[P]] are strictly related. This relation is the key point that
permits to show the main result of the paper stated in the forthcoming Thm. 1.
Formally, to establish the relation, we need to add local clocks to [[P]]. We let
E [[P]] ∈ KP denote the encoded P process where a clock 0⇒ has been added to
each sequential component.

Consider as an example the process P0 = a.(1).b.0 | c.(2).(1).d.0, whose
transition system is depicted in Fig. 1. The transition system of E [[P0]] is shown
in Fig. 2. It easy to see that, as far as only visible actions and zero-valued
local clocks are concerned, the correspondence is one-to-one: E [[Pi]] = Ki, for
i = 0, 1, 2, 3. However, in CIPA the wait t waitings, which produce τ actions, can
be executed independently by one of the sequential components, which moves its
own clock forward in time. In the meanwhile, the other components still have to

execute actions “before” that time. This happens, for instance, in K1

τ@0
−−→

1
K ′1;

note, anyway, that K ′1 can still perform the visible action c at time 0.
Processes P5, P6 and P7 are related by TCCS delay transitions. In the corre-

sponding CIPA states, we can relate P5 with K5. The nil CIPA process lets any
time pass for other sequential components. Thus, K5 can be considered equiv-
alent (at least with respect to ≈CIPA) to K ′5 = 2 ⇒ nil | 2 ⇒ wait 1.d.nil. In
this way, E [[P6]] = 0 ⇒ nil | 0 ⇒ wait 1.d.nil can be related to K ′5 by adjusting
the clock values that are different in absolute value, but agree on the relative
differences: 2 − 2 = 0 − 0 = 0. Similarly, process P7 can be related to process
K ′6 = 3⇒ nil | 3⇒ d.nil obtained from K6.

Consider, finally, process P4, derived from P0. Its counterpart K4 cannot
perform any τ , but E [[P4]] has clock values not corresponding to K4. Nevertheless,
the b action is performed at the same time in both cases, i.e., with timestamp 1.

To formally treat the discrepancies mentioned above, it is convenient to define
a structural congruence ≡ over KP that permits to equate timed processes that
respect, in their sequential components, the following two equations:

m⇒ waitn.P = m+ n⇒ P
n⇒ nil = m⇒ nil

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

30

Fig. 2. Labeled transition System for E [[P0]]

where n,m ∈ N. It is easy to see that ≡ implies ≈CIPA. Moreover, following [5],
we define wf ⊆ KP × N and up : KP × N → KP. We let wf (K,n) hold iff the
local clocks of K can be decreased by n without any of them becoming negative,
neglecting the components that are nil. If wf (K,n), then up(K,n) is the timed
CIPA state K in which every local clock (apart from the nil components) has
been decreased by n.

Using this notation, we get E [[P1]] = K1 = up(K1, 0) ≡ K ′1, i.e., P1 in Fig. 1
can be related to two timed states that are structural equivalent and, thus, ≈CIPA

equivalent. Moreover, E [[P5]] = up(K5, 1), E [[P6]] = up(K ′5, 1 + 1 = 2) where
K ′5 ≡ K5, E [[P7]] = up(K ′6, 2 + 1 = 3) where K ′6 ≡ K6. Note that the subsequent
times n in up(·, n) reflect the TCCS delay transitions. Finally, E [[P4]] = 0 ⇒
b.nil | 0⇒ wait 1.wait 1.d.nil ≡ 0⇒ b.nil | 1⇒ wait 1.d.nil = up(K4, 1).

Theorem 1. Let P1, P2 ∈ P′TCCS. Then P1 ≈TCCS P2 iff [[P1]] ≈CIPA [[P2]].

5 Conclusions

In this paper, we have addressed the issues raised at the end of [5] and shown
that it is possible, after applying certain modifications to the languages, to define
a reverse semantics-preserving mapping from TCCS to CIPA. Unlike the direct
encoding of [5] from CIPA to TCCS, which preserves strong timed bisimilarity,
our reverse encoding can only preserve weak timed bisimilarity.

As future work, we want to investigate how to exploit our encoding of TCCS
into CIPA together with the notion of compact representation of CIPA timed
states introduced in [5], to achieve a better performance with respect to weak

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

31

timed bisimilarity checking algorithms for TCCS. Moreover, we would like to
extend the reverse mapping so to encode the idling operator and the weak choice
operator of TCCS as well. Similar to [5], we also plan to investigate variants of
our reverse encoding in which laziness or maximal progress is assumed in place
of action urgency. Finally, continuing the work of [3], we would like to provide
a uniform framework for comparing the various timed process calculi and timed
models that have been proposed in the literature.

References

1. L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Informat-
ica, 33:317–350, 1996.

2. J. Baeten and J. Bergstra. Real time process algebra. Formal Aspects of Comput-
ing, 3:142–188, 1991.

3. M. Bernardo and L. Tesei. Encoding timed models as uniform labeled transi-
tion systems. In Proc. of the 10th European Performance Engineering Workshop
(EPEW 2013), volume 8168 of LNCS, pages 104–118. Springer, 2013.

4. T. Bolognesi and F. Lucidi. LOTOS-like process algebras with urgent or timed
interactions. In Proc. of the 4th Int. Conf. on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE 1991), volume C-2 of
IFIP Transactions, pages 249–264, 1991.

5. F. Corradini. Absolute versus relative time in process algebras. Information and
Computation, 156:122–172, 2000.

6. F. Corradini, W. Vogler, and L. Jenner. Comparing the worst-case efficiency of
asynchronous systems with PAFAS. Acta Informatica, 38:735–792, 2002.

7. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117:221–239, 1995.

8. F. Moller and C. Tofts. A temporal calculus of communicating systems. In Proc. of
the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), volume 458 of LNCS,
pages 401–415. Springer, 1990.

9. F. Moller and C. Tofts. Behavioural abstraction in TCCS. In Proc. of the 19th
Int. Coll. on Automata, Languages and Programming (ICALP 1992), volume 623
of LNCS, pages 559–570. Springer, 1992.

10. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In Proc. of the REX Workshop on Real Time: Theory in Practice, volume 600 of
LNCS, pages 526–548. Springer, 1991.

11. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and appli-
cation. Information and Computation, 114:131–178, 1994.

12. J. Quemada, D. de Frutos, and A. Azcorra. TIC: A timed calculus. Formal Aspects
of Computing, 5:224–252, 1993.

13. G. Reed and A. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249–261, 1988.

14. I. Ulidowski and S. Yuen. Extending process languages with time. In Proc. of the
6th Int. Conf. on Algebraic Methodology and Software Technology (AMAST 1997),
volume 1349 of LNCS, pages 524–538. Springer, 1997.

15. W. Yi. CCS + time = an interleaving model for real time systems. In Proc. of the
18th Int. Coll. on Automata, Languages and Programming (ICALP 1991), volume
510 of LNCS, pages 217–228. Springer, 1991.

M.Bernardo et al. Timed process calculi: from durationless actions to durational ones

32

Size-constrained 2-clustering in the plane with
Manhattan distance

Alberto Bertoni, Massimiliano Goldwurm, Jianyi Lin, Linda Pini

Dipartimento di Informatica, Università degli Studi di Milano
Via Comelico 39/41, 20135 Milano – Italy,

Abstract. We present an algorithm for the 2-clustering problem with
cluster size constraints in the plane assuming `1-norm, that works in
O(n3 logn) time and O(n) space. Such a procedure also solves a full
version of the problem, computing the optimal solutions for all possible
constraints on cluster sizes. The algorithm is based on a separation result
concerning the clusters of any optimal solution of the problem and on
an extended version of red-black trees to maintain a bipartition of a set
of points in the plane.

Keywords: algorithms and data structures, clustering, cluster size constraints,
Manhattan distance.

1 Introduction

Clustering is one of the most used techniques in statistical data analysis and ma-
chine learning [5], with a wide range of applications in many areas like pattern
recognition, bioinformatics and image processing. Clustering consists in parti-
tioning data into groups, called clusters, that are required to be homogeneous
and well-separated according to a data similarity measure [9]. A natural repre-
sentation of the data elements is by means of points in a d-dimensional space
equipped with a suitable distance function that determines the similarity mea-
sure. We study this very usual case, called distance clustering.

A central problem in distance clustering is the well-known Minimum Sum-of-
Squares Clustering (MSSC), also called Variance-based Clustering [2, 10]. The
MSSC problem requires to find a k-partition {A1, ..., Ak} of a given set X =
{x1, ..., xn} ⊂ Rd of n points that minimizes the weight

W (A1, ..., Ak) =

k∑

i=1

∑

x∈Ai

||x− CAi
||22

where ||·||2 denotes the Euclidean norm and CAi is the mean point of the cluster
Ai, defined by

CAi = argmin
µ∈Rd

∑

x∈Ai

||µ− x||22 =
1

|Ai|
∑

x∈Ai

x.

33

MSSC is difficult in general; indeed for an arbitrary dimension d (given in the
instance) the problem is NP-hard even if the number of clusters is fixed to k = 2
[1, 8]; the same occurs if k is arbitrary and the dimension is fixed to d = 2 [14].
However there’s a well-known heuristic for finding an approximate solution of
MSSC, called k-Means [13], which is known to be usually very fast, but can
require exponential time in the worst case [17].

Moreover, a known variant of MSSC, called k-Medians Problem, is given by
substituting the squared-euclidean norm ||·||22 with the `1-norm ||·||1 [15].

In many applications, often people have some information on the clusters [3]:
including this information into traditional clustering algorithms can increase the
clustering performance. Problems that include such background information are
called constrained clustering problems and are split into two classes. On the one
hand, clustering problems with point-level constraints typically comprise a set
of must-link constraints or cannot-link constraints [18], defining pairs of point
that, respectively, must be or cannot be grouped in the same cluster. On the
other hand, clustering problems with cluster-level constraints [6, 16] provides
constraints concerning the size of the resulting clusters. For example, in [19]
cluster size constraints are used for improving clustering accuracy; this approach,
for instance, allows one to avoid extremely small or large clusters yielded by
classical clustering techniques.

In this work we study the 2-clustering problem in the plane, with cluster size
constraints, assuming `1-norm. The relevance of the 2-clustering problems is also
due to the wide spread of hierarchical clustering techniques [11, Sec.14.3.12],
that repeatedly apply the 2-clustering as the key step. This leads to natural
size-constrained versions of so-called divisive hierarchical clustering.

We recall that the 2-clustering problem with cluster size constraints has been
studied in [12, 4], where it is shown that in dimension 1 the problem is solvable
in polynomial time for every norm `p with integer p ≥ 1, while there is some
evidence that the same result does not hold for non-integer p. Moreover, it is
also known that for arbitrary dimension d the same problem is NP-hard even
assuming equal sizes of the two clusters.

Here we prove that, assuming dimension 2 and `1-norm, the 2-clustering
problem with cluster size constraints can be solved in O(n3 log n) time and O(n)
space. Our procedure actually solves a full version of the problem, computing the
optimal solutions for all possible sizes of cluster. Clearly this yields the solution
to the general unconstrained 2-clustering problem in the plane with `1-norm.

The algorithm is based on a separation result stating that, in our hypotheses,
the clusters of any optimal solution are separated by curves of some special forms,
which can be analysed in a suitable linear order. The algorithm also make use
of a particular extension of red-black trees to maintain a bipartition of a set of
points in the plane.

We remark that in this work we propose an efficient method for obtaining a
solution that is globally optimal, instead of a locally optimal solution as yielded
by various heuristics [3, 6, 19].

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

34

2 Problem definition

In this section we introduce some basic notions of distance-based clustering prob-
lems on the plane assuming the Manhattan norm (also called `1-norm), which
is defined by ‖x‖1 = |x1|+ |x2| for any x = (x1, x2) ∈ R2.

Given a set X ⊂ R2 of n points in the plane, a k-partition of X is a family
{A1, A2, ..., Ak} of k nonempty subsets of X such that ∪ki=1Ai = X and Ai∩Aj =
∅, for i 6= j. Each Ai is called cluster. The centroid CA of a cluster A ⊂ X is

CA = argmin
µ∈R2

∑

x∈A
‖x− µ‖1 = argmin

µ∈R2

∑

x∈A
(|x1 − µ1|+ |x2 − µ2|)

Since the objective function in the minimization is not strictly convex, the cen-
troid CA is not necessarily unique. Indeed it is well-known that the centroid CA
is the component-wise median, i.e. the abscissa (ordinate) of the centroid is the
median of the abscissae (ordinates) of the points in A. The weight W (A) of a
cluster A is

W (A) =
∑

x∈A
‖x− CA‖1

while the weight of a k-partition {A1, A2, ..., Ak} (also called k-clustering) is

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).

The classical Clustering Problem in the plane assuming the Manhattan norm is
stated as follows.

Definition 1 (Clustering Problem in R2 under `1-norm). Given a point
set X ⊂ R2 of cardinality n and an integer k, 1 < k < n, find a k-clustering
{A1, A2, ..., Ak} that minimizes the weight W (A1, A2, · · · , Ak) =

∑k
1 W (Ai).

Note that here k is included in the instance of the problem. If k is fixed the prob-
lem is called k-Clustering in R2. Our main contribution in this paper concerns
the 2-Clustering in R2 under `1-norm.

We are interested in a version of clustering problem where the cluster sizes
are constrained. Formally, the problem can be stated as follows:

Definition 2 (Size Constrained Clustering Problem in R2 under `1-
norm). Given a point set X ⊂ R2 of cardinality n, an integer k > 1 and

k positive integers m1,m2, ..., mk such that
∑k

1 mi = n, find a k-clustering
{A1, A2, ..., Ak} with |Ai| = mi for i = 1, ..., k, that minimizes the weight

W (A1, A2, · · · , Ak) =
∑k

1 W (Ai).

We denote this problem by SCC-2 (under `1-norm). We stress that in the SCC-2
problem the integers n, k, m1, . . . ,mk are part of the instance. On the contrary,
if k is fixed and does not belong to the instance, the problem is denoted by
k-SCC-2.

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

35

In the following sections we present an algorithm for the 2-Clustering problem
in R2 under `1-norm, which solves at the same time the full version of the 2-
SCC-2 problem, i.e. that yields the solutions to all 2-SCC-2 problems for every
value of m1 ∈ {1, 2, . . . , bn/2c} and the same point set X = {x1, x2, ..., xn} ⊂ R2

in input. The procedures works in O(n3 log n) time and is based on a separation
result concerning the optimal solutions of 2-Clustering in the plane, presented
in Section 3, and on an augmented version of red-black trees used to maintain
bipartitions of a set of real points, described in Section 4.

3 Separation results

In this section we present a separation result concerning the optimal solution of
2-SCC-2 problem under `1-norm. It turns out that the clusters of the optimal
solutions of this problem are separated by plane curves of 8 different types, we
will call Ci and Si, i = 1, 2, 3, 4, respectively. Similar results are obtained in [4]
for higher dimensional spaces and `p-norms, with p > 1.

First, we show that in an optimal 2-clustering the swapping of two elements
in different clusters does not decrease the solution value.

Lemma 1 (Swapping Lemma). Let {A,B} be an optimal solution of the 2-
SCC-2 problem. Then, for any a ∈ A and b ∈ B, it holds

||a− CA||1 + ||b− CB ||1 ≤ ||a− CB ||1 + ||b− CA||1 .

Proof. For the sake of simplicity, we omit the subscript 1 in denoting norm. By
contradiction, let us assume that for some a ∈ A and b ∈ B

||a− CA||+ ||b− CB || > ||a− CB ||+ ||b− CA|| .

Then, the weight of the optimal solution is

W (A,B) =
∑

x∈A
||x− CA||+

∑

x∈B
||x− CB || =

>
∑

x∈Ar{a}
||x− CA||+ ||b− CA||+

∑

x∈Br{b}
||x− CB ||+ ||a− CB || =

=
∑

x∈Ar{a}∪{b}
||x− CA||+

∑

x∈Br{b}∪{a}
||x− CB || .

Now, it is clear that the 2-clustering {A′, B′}, with A′ = A r {a} ∪ {b} and
B′ = B r {b} ∪ {a}, is a feasible solution since |A′| = |A| and |B′| = |B|.
Furthermore, by definition of centroid it holds:

∑

x∈A′

||x− CA||+
∑

x∈B′

||x− CB || ≥
∑

x∈A′

||x− CA′ ||+
∑

x∈B′

||x− CB′ || = W (A′, B′)

and hence W (A,B) > W (A′, B′). However, this is in contradiction since {A,B}
is an optimal solution. ut

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

36

We are now able to obtain the general form of the equation for the curves
separating the clusters in an optimal 2-clustering.

Theorem 1 (Separation Result). In an optimal solution {A,B} of the 2-
SCC-2 problem, the clusters A and B are separated by a curve of equation

||z − α||1 − ||z − β||1 = g (1)

where the variable z ranges over R2, while α, β ∈ R2 and g ∈ R are suitable
constants.

Proof. Let CA and CB be the centroids of A and B respectively. Then, by Lemma
1 the inequality

||a− CA||1 − ||a− CB ||1 ≤ ||b− CA||1 − ||b− CB ||1
is satisfied for all a ∈ A and b ∈ B, and hence it also holds by taking the
maximum over a’s on the left and the minimum over b’s on the right:

cA := max
a∈A
{||a− CA||1 − ||a− CB ||1} ≤ min

b∈B
{||b− CA||1 − ||b− CB ||1} =: cB

Therefore, choosing g ∈ [cA, cB], all the points of A and B are contained in the
region defined respectively by ||z − CA||1 − ||z − CB ||1 ≤ g and ||z − CA||1 −
||z − CB ||1 ≥ g. The common boundary of the two regions has equation
||z − CA||1−||z − CB ||1 = g, and thus the proof is concluded by setting α = CA
and β = CB . ut

Remark 1. It is noteworthy to observe that both the Swapping Lemma and the
Separation Result can be extended to the case of `p-norm with any p ≥ 1 and
dimension d ≥ 2, provided the norm is raised to the p-th power [12].

Setting the symbols z = (x, y), α = (c, d), β = (e, f), equation (1) becomes

|x− c| − |x− e|+ |y − d| − |y − f | = g

It is clear that it always represents a connected curve on the plane, which may
have some sharp corner points, i.e. points where one or both partial derivatives
do not exist. A rather standard study of this equation, conducted by considering
all possible values of c, d, e, f, g, leads to derive 8 types of separating curves, we
denote by symbols C1, C2, C3, C4 and S1, S2, S3, S4, according to their shape.
The proof is here omitted for lack of space. Such 8 types of curves are depicted
in Figures 1–4.

4 Bipartition red-black trees

In this section we describe a natural data structure to maintain a bipartition of
a set of real numbers, with possible multiple values, able to test membership, to
execute insertion and deletion, and to perform two further operations: selecting

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

37

the i-th smallest element in either of the two clusters of the bipartition, for any
integer i, and moving an element from one cluster to the other.

Let X be a finite multiset of real numbers, i.e. a finite set X of reals where
any value may occur several times, represented as a finite ordered sequence

X = (x1, x2, . . . , xn), xi ∈ R for every i, and x1 ≤ x2 ≤ · · · ≤ xn.

Moreover, consider a bipartition {A,B} of X, i.e. two non-empty subsets A ⊆ X,
B ⊆ X such that A ∩ B = ∅ and A ∪ B = X. In the following A and B are
called clusters. Operations Member, Insert and Delete can be defined in order
to specify the cluster the elements belong to. More precisely, for every z ∈ R,
Member(z) = (j1, j2), where j1 (resp. j2) is the number of xi’s in A (resp. in B)
such that xi = z, Insert(z,A) adds a new element z to A, Insert(z,B) does the
same to B, while Delete(z,A) and Delete(z,B) execute the delete operations.

Figure 1

c

d

e

f

α

β

@
C2

@
@
@
@

S1 @@

C1

Figure 2

c

d

e

f

α

β

@
C2

@
@
@

S2

@@

C1

Figure 3

c

f

e

d
α

β

�
�
�
�

S3

�
�

C3

��

C4

Figure 4

c

f

e

d
α

β

�
�

C3
�
�
�

S4

��

C4

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

38

Moreover, for every i ∈ {1, 2, . . . , n}, we define

SelectA(i) =

{
a if i ≤ |A| and a is the i-th smallest element of A
⊥ if i > |A|

SelectB(i) =

{
b if i ≤ |B| and b is the i-th smallest element of B
⊥ if i > |B| .

Finally, for any z ∈ R, if A contains an element xi = z then MoveAB(z) deletes
a value z from A and adds it to B, otherwise MoveAB(z) = ⊥. The operation
MoveBA(z) is defined symmetrically.

A natural data structure, able to executes the above operations in time log-
arithmic with respect to n = |X|, is an augmented version of the well-known
red-black trees [7]. Formally, we define a Bipartition Red-Black Tree for a bipar-
tition {A,B} of X as a binary tree T such that: i) all internal nodes have both
the left and the right son, ii) every node is red or black, iii) the root and the
leaves are black, iv) if a node is red its sons are black, and v) for every node v all
simple paths from v to any leaf have the same number of black nodes. Further,
the distinct elements of X (called keys) are assigned to the internal nodes in
a bijective correspondence, respecting the standard rule of binary search trees,
and the leaves are empty (usually represented by “nil”). Moreover, T satisfies
the following two conditions:

1. every internal node v contains a triple (z,mA(v),mB(v)), where z is the key
assigned to v, and mA(v) (respectively, mB(v)) is the number of elements xi
belonging to A (resp. B) such that xi = z;

2. every internal node v contains the pair of integers (cA(v), cB(v)), where cA(v)
(resp. cB(v)) is the number of elements of X belonging to A (resp. B) whose
value is assigned to a vertex in the subtree rooted at v.

For each internal node v, we denote by key(v), left(v) and right(v) the key
contained in v, the left son and the right son of v, respectively. Clearly, v can be
implemented as a record including the values mA(v), mB(v)), cA(v), cB(v).

Procedures Member, Insert and Delete can be defined as in the standard red-
blacks trees [7] with obvious changes. Clearly, Insert and Delete have to update
the values mA(v), mB(v)), cA(v), cB(v), for all nodes v on the path from the
root to the vertex resulting from the binary search.

Operations Select and Move can be executed as follows. To compute SelectA(i)
one checks whether i ≤ cA(r), where r is the root of T : in the affirmative case
a standard searching procedure (we avoid to define for lack of space) is called,
otherwise the value ⊥ is returned. SelectB(i) is defined in a similar way.

To compute MoveAB(z) one first determines the node v containing z by
calling a rather usual procedure, then the commands

mA(v) = mA(v)− 1 and mB(v) = mB(v) + 1

are executed. Procedure MoveBA(z) is defined symmetrically.
It is clear that all previous procedures can be executed in O(log n) time.

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

39

5 Updating the weight of clusters

Our main result, presented in the next section, is based on a procedure that
updates a current bipartition by moving one point from a cluster to the other.
Here we want to show how to update the centroids and the weights of the clusters
of a current bipartition after executing such a moving operation.

To this end we first deal with the problem of updating centroid and weight
of a set of real numbers subject to insert and delete operations. The results will
be easily extended to a set of points in R2.

Let A be a cluster in R, i.e. a finite sequence of ordered real numbers, A =
{a1, a2, . . . , ak}, where a1 ≤ a2 ≤ · · · ≤ ak. Assuming `1-norm it is well-known
that the centroid of A is the median of the set, that is the value

M(A) =

{
a k+1

2
if k is odd

1
2

(
a k

2
+ a k

2+1

)
if k is even

Thus, if A is a cluster of a bipartition (of a finite multiset X ⊂ R of n elements),
maintained by a Bipartition Red-Black Tree, then M(A) can be computed in
O(log n) time by calling procedure SelectA(j) for suitable j’s.

Now, let us recall the definition of the left and right part of the weight of A;
given m = k+1

2 , we have

L(A) :=
∑

1≤i<m
ai , R(A) :=

∑

m<i≤k
ai

It is not difficult to see that the weight of A, given by W (A) =
∑k
i=1 |ai−M(A)|,

can be computed as the difference between R(A) and L(A).

Proposition 1. For every ordered sequence of real numbers A = {a1, a2, . . . , ak},
where a1 ≤ a2 ≤ · · · ≤ ak, we have

W (A) = R(A)− L(A)

Proof. If k is even then m = k+1
2 is not integer and hence

W (A) =

k∑

i=1

|ai −M(A)| =
∑

1≤i<m
(M(A)− ai) +

∑

m<i≤k
(ai −M(A))

= −L(A) +R(A)

If k is odd the reasoning is almost the same. ut

As a consequence, in order to maintain W (A) it is sufficient to update L(A) and
R(A). This can be done by a straightforward procedure that implements, as a
chain of if-then-else instructions, the rules for computing the left and right part
of the weight of a current cluster upon insertion and deletion. For lack of space
here we omit their cumbersome formal description. These rules together with

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

40

Proposition 1, define procedures UpdateW-ins(A, x) and UpdateW-del(A, aj),
which update the weight of a current cluster A ⊂ R, respectively upon insertion
and deletion of an element of value x ∈ R.

They can be executed by using a Bipartition Red-Black tree with the cor-
responding Select operation, introduced in the previous section. Note that, for
updating both L(A) and R(A), the Select procedure is necessary to find in the
tree the i-th value of A when required. As a consequence also UpdateW-ins(A, x)
and UpdateW-del(A, aj) can be executed in logarithmic time.

6 Main algorithm

In this section we apply the previous results, in particular the separation property
of Section 3, to define an algorithm for the 2-SCC-2 problem in the full version,
i.e. for all possible sizes of cluster. Thus the same algorithm also yields a solution
of the general 2-Clustering problem in the plane.

By our Theorem 1, the optimal solution of a 2-SCC-2 problem for a set
X ⊂ R2 of n points and a cluster size m, consists of a bipartition (A,B), with
|A| = m and |B| = n−m, where A and B are separated by a curve of the form
Ci or Si, i = 1, 2, 3, 4.

Note that each curve of type Ci can be obtained from a curve of any other
form Cj , j 6= i, by means of a simple rotation of the plane. Similarly each curve
of type Si can be obtained from another curve of any different type Sj by means
of a rotation and/or a reflection through a line.

For these reasons we treat in detail only the case of bipartitions separated
by a curve of type C1. The cases of curves of type C2, C3 and C4 are solved by
the same algorithm through a rotation of the input points. The same algorithm
can be easily adapted to the cases of separating curves of type Si, i = 1, 2, 3, 4.

Let X = {p1, p2, . . . , pn} ⊂ R2 be a set of n points and let us set pi = (xi, yi),
for any i = 1, 2 . . . , n. Without loss of generality we may assume that all pi’s lie
in the first quadrant, i.e. xi > 0 and yi > 0 for all i.

We define a procedure that searches an optimal bipartition of X whose clus-
ters are separated by a curve of type C1. The procedure first sorts X according
with 3 parameters: the two coordinates and their sum, i.e. the values xi’s, yi’s and
xi + yi’s, respectively. Then the elements of X are processed by three for-loops,
each nested into the other, corresponding to the three parameters considered
above. The algorithm evaluates all possible bipartitions of X whose clusters are
separated by curves of type C1 and, for every admissible cluster size, only the
bipartition with minimum weight is maintained. These bipartitions are consid-
ered in a linear order and, at each step, a new bipartition of X is obtained from
the current one {A,B} by swapping a point from cluster B to cluster A.

Such a current bipartition {A,B} is maintained by two bipartition red-black
trees: one for the 2-clustering {Ax, Bx} of the set {xi | pi = (xi, yi) ∈ X},
where Ax = {xi | pi ∈ A} and Bx = {xi | pi ∈ B}, and the other for the
2-clustering (Ay, By) of {yi | pi = (xi, yi) ∈ X}, where Ay = {yi | pi ∈ A} and
By = {yi | pi ∈ B}.

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

41

An Update subroutine can be defined which, for an input (A,B, pi), where
{A,B} is the current bipartition of X and pi ∈ B, computes the new bipartition
moving pi from B to A and returns the weights of its clusters. The subroutine
applies the procedures described in Sections 4 and 5 and it is defined by the
following scheme:

Procedure Update(A,B, pi)
begin

MoveBxAx(xi)
MoveByAy

(yi)
w(Ax) := UpdateW-ins(Ax, xi)
w(Bx) := UpdateW-del(Bx, xi)
w(Ay) := UpdateW-ins(Ay, yi)
w(By) := UpdateW-del(By, yi)
return (w(Ax) + w(Ay), w(Bx) + w(By))

end

By the discussion presented in Sections 4 and 5 also this subroutine only
requires O(log n) time.

Thus, the overall algorithm is described in detail by the procedure given be-
low, where three bipartitions are actually maintained, denoted by (A,B), (A′, B′)
and (A′′, B′′), respectively. Each of them need two Bipartition Red-Black trees,
one for the abscissae and the other for the ordinates.

Moreover, instruction Sortx (resp., Sorty and Sortx+y) yields an ordered list
of the indices of the points in X, sorted in non-decreasing order with respect to
the values xi (resp., yi and xi + yi).

Taking into account the previous discussion, it is easy to see that the algo-
rithm works in O(n3 log n) time; moreover, it has a space complexity O(n) since
each Bipartition Red-Black tree only requires linear space.

Procedure Full-biclustering(p1, p2, . . . , pn)
begin

(i1, i2, . . . , in) := Sortx(1, 2, . . . , n)
(j1, j2, . . . , jn) := Sorty(1, 2, . . . , n)
(k1, k2, . . . , kn) := Sortx+y(1, 2, . . . , n)
A := ∅ ; w(A) := 0
B := {p1, p2, . . . , pn}
compute the weight w(B) of cluster B
i0 := 0 ; j0 := 0 ; x0 := 0 ; y0 := 0
for r = 0, 1, . . . , n do

A′ := A ; B′ := B ; w(A′) := w(A) ; w(B′) := w(B)
for s = 0, 1, . . . , n do

A′′ := A′ ; B′′ := B′ ; w(A′′) := w(A′) ; w(B′′) := w(B′)
for k = k1, k2, . . . , kn do

if xk ≥ xir ∧ yk ≥ yjs then

(w(A′′), w(B′′)) = Update(A′′, B′′, pk)

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

42

h := min(|A′′|, |B′′|)
z := w(A′′) + w(B′′)

if W [h] > z then

{
W [h] := z
Π[h] := (ir, js, k)

if s 6= n ∧ xjs+1
≥ xir then

(w(A′), w(B′)) = Update(A′, B′, pjs+1
)

h := min(|A′|, |B′|)
z := w(A′) + w(B′)

if W [h] > z then

{
W [h] := z
Π[h] := (ir, js+1, 0)

if r 6= n then

(w(A), w(B)) = Update(A,B, pir+1)
h := min(|A|, |B|)
z := w(A) + w(B)

if W [h] > z then

{
W [h] := z
Π[h] := (ir+1, 0, 0)

return (W,Π)
end

7 Conclusions

In this paper we have shown a O(n3 log n) time algorithm for the size-constrained
2-Clustering problem in the plane with `1-norm. It is clear that our results
strictly depend on those conditions and it is not evident (at least at the present
time) whether they hold under different hypotheses or for more general problems.
Moreover, being our algorithm exact and working in polynomial time, we do not
think it is necessary to produce here, in our hypotheses (2-clustering in R2 with
`1-norm), an experimental comparison with traditional heuristics like k-Means,
which instead yields an approximate solution, tackles a more general problem
with larger number of clusters, and works in exponential time in the worst case.

However, we think that the present contribution could be the starting point
for a further analysis, still based on the separation result introduced in [4], of
more general clustering problems, with dimension greater than 2, larger number
of clusters, different norms and other constraints. It is clear that such a research
direction should also include an experimental activity that plans a comparison
with classical heuristics.

We also remark we have already obtained recently some results under other
hypotheses. In particular, in a companion paper we present more efficient al-
gorithms for solving exactly the same problem with Euclidean norm, based on
rather different techniques of computational geometry. More precisely, it turns
out that the 2-Clustering problem in R2 under Euclidean norm, with size con-
straint k, can be solved by an exact algorithm in O(n 3

√
k log2 n) time, while the

full version of the same problem (i.e. for all k = 1, 2, . . . , bn/2c) is solvable in
O(n2 log n) time.

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

43

References

1. D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75:245–249, 2009.

2. D. Aloise and P. Hansen. On the complexity of minimum sum-of-squares clustering.
Technical report, Les Cahiers du GERAD, 2007.

3. S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. Chapman and Hall/CRC, 2008.

4. A. Bertoni, M. Goldwurm, J. Lin, and F. Saccà. Size Constrained Distance Clus-
tering: Separation Properties and Some Complexity Results. Fundamenta Infor-
maticae, 115(1):125–139, 2012.

5. C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
6. P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-Means Clustering.

Technical Report MSR-TR-2000-65, Miscrosoft Research Publication, May 2000.
7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2nd edition, 2001.
8. S. Dasgupta. The hardness of k-means clustering. Technical Report CS2007-0890,

Dept. Computer Sc. and Eng., Univ. of California, San Diego, 2007.
9. W. D. Fisher. On grouping for maximum homogeneity. Journal of the American

Statistical Association, 53(284):789–798, 1958.
10. S. Hasegawa, H. Imai, M. Inaba, and N. Katoh. Efficient algorithms for variance-

based k-clustering. In Proceedings of Pacific Graphics ’93, pages 75–89, 1993.
11. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer-Verlag, 2nd edition, 2009.
12. J. Lin. Exact algorithms for size constrained clustering. PhD Thesis, Università

degli Studi di Milano. Ledizioni Publishing, Milano, 2013.
13. J. B. MacQueen. Some method for the classification and analysis of multivariate

observations. In Proc. 5th Berkeley Symp. Math. Structures, pages 281–297, 1967.
14. M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem

is NP-hard. Theoretical Computer Science, 442:13–21, 2012.
15. K. Sabo. Center-based l1-clustering method. International Journal of Applied

Mathematics and Computer Science, 24(1):7–225, 2014.
16. A. Tung, J. Han, L. Lakshmanan, and R. Ng. Constraint-Based Clustering in Large

Databases. In J. Van den Bussche and V. Vianu, editors, Database Theory ICDT
2001, volume 1973 of LNCS, pages 405–419. Springer Berlin/Heidelberg, 2001.

17. A. Vattani. K-means requires exponentially many iterations even in the plane. In
Proceedings of the 25th Symposium on Computational Geometry (SoCG), 2009.

18. K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proc. of
the 17th Intl. Conf. on Machine Learning, pages 1103–1110, 2000.

19. S. Zhu, D. Wang, and T. Li. Data clustering with size constraints. Knowledge-
Based Systems, 23(8):883–889, 2010.

M.Bertoni et al. Size-constrained 2-clustering in the plane with Manhattan distance

44

Graphs of edge-intersecting and non-splitting

paths ⋆

Arman Boyacı1, Tınaz Ekim1, Mordechai Shalom2, and Shmuel Zaks3

1 Department of Industrial Engineering, Bogazici University, Istanbul, Turkey
[arman.boyaci,tinaz.ekim]@boun.edu.tr

2 TelHai College, Upper Galilee, 12210, Israel cmshalom@telhai.ac.il ⋆⋆

3 Department of Computer Science, Technion, Haifa, Israel.
zaks@cs.technion.ac.il

Abstract. The families of Edge Intersection Graphs of Paths in a tree
(resp. in a grid) EPT (resp. EPG) are well studied graph classes. Re-
cently we introduced the class of graphs of Edge-Intersecting and Non-
Splitting Paths in a Tree (ENPT) [2]. In this model, two vertices are
adjacent if they represent two intersecting paths of a tree whose union
is also a path. In this study we generalize this graph class by allowing
the host graph to be an arbitrary graph. These are the graphs of Edge-
Intersecting and Non-Splitting Paths ENP. Although the Edge Intersec-
tion Graphs of Paths in an arbitrary graph includes all graphs, we show
that this is not the case for ENP. We also show that the class ENP co-
incides with the family of graphs of Edge-Intersecting and Non-Splitting
Paths in a Grid (ENPG). Following similar studies for EPG graph class,
we study the implications of restricting the number of bends in the grid,
of the individual paths. We show that restricting the bend number also
restricts the graph class. Specifically, by restricting the number of bends
one gets an infinite sequence of classes such that every class is properly
included in the next one.

1 Introduction

1.1 Background

The intersection graph of a family of sets is a graph in which every vertex
corresponds to a set in the family, and two vertices of the graph are adjacent if
and only if their corresponding set have a non-empty intersection. It is easy to
see that every graph is an intersection graph. Therefore, it makes sense to study
intersection graphs only when one focuses on specific families of sets. The family
of paths on graphs is a commonly studied family of sets. To distinguish the graph
on which the paths are defined, from the resulting intersection graph, this graph

⋆ This work was supported in part by TUBITAK PIA BOSPHORUS Grant No.
111M303.

⋆⋆ Currently in the Department of Industrial Engineering, Bogazici University, Istanbul,
Turkey, supported by TUBITAK 2221 Programme.

45

is termed the host graph. Given a host graph H and a set P of paths in H ,
the Edge Intersection Graph of Paths (EP graph) of P is denoted by Ep(P).
Ep(P) contains a vertex for each path in P , and it contains an edge between two
vertices if the corresponding two paths intersect in at least one edge. A graph G
is EP if there exist a graph H and a set P of paths in H such that G = Ep(P).
In this case we say that 〈H,P〉 is an EP representation of G. We also denote by
EP the family of all graphs G that are EP.

EP graphs have applications in many areas, and in particular in commu-
nication networks. Consider a communication network, and routes of messages
to be delivered in it. Two paths conflict if they both require the usage of the
same link. This conflict model is equivalent to an EP graph. Suppose we try to
find a schedule for the messages such that no two messages sharing a link are
scheduled at the same time interval. Then a proper vertex coloring of the EP
graph corresponds to a feasible schedule on this network.

Often the host graphs are restricted to certain families such as paths, cycles,
trees, grids, etc. When H is restricted to paths and cycles we get the well known
families of interval graphs [11] and circular arc graphs [15], respectively. When H
is restricted to trees, we obtain the family of Edge Intersection Graph of Paths
in a tree (EPT) [6], and finally when H is a grid, the corresponding graph is
termed an EPG graph [10].

In [2] we defined the graph of edge intersecting and non-splitting paths of a
tree (ENPT) of a given representation 〈T,P〉 as described above, denoted by
Enpt(P). This graph is a subgraph of Ept(P): it has a vertex v for each path
Pv of P and two vertices u, v of this graph are adjacent if the paths Pu and
Pv edge-intersect and do not split (that is, their union is a path). A graph G
is an ENPT graph if there is a tree T and a set of paths P of T such that
G = Enpt(P). We note that whenever T is a path Ept(P) = Enpt(P) is an
Interval Graph. Therefore, the class ENPT includes all Interval Graphs. In this
work we extend this definition to the case where the host graph is not necessarily
a tree.

The motivation to study edge-intersecting and non-splitting paths arises from
all-optical telecommunication networks. In the Wavelength Division Multiplex-
ing (WDM) technology different signals can be multiplexed onto a single optical
fiber by using different wavelength ranges of the laser beam [13]. A stream of
signals traveling from its source to its destination in optical form is termed a
lightpath. A lightpath is realized by signals traveling through a series of fibers,
on a certain wavelength. Specifically, Wavelength Assignment problems (WLA)
are a family of path coloring problems that aim to assign wavelengths (i.e. col-
ors) to lightpaths, so that no two lightpaths with a common edge receive the
same wavelength and certain objective function (depending on the problem) is
minimized. Traffic Grooming is the term used for combination of several low-
capacity requests into one lightpath using Time Division Multiplexing (TDM)
technology [4]. In this context a set of paths can be combined into one lightpath,
thus receiving the same color. One main constraint in traffic grooming is that

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

46

the union of the paths receiving the same color should constitute a path or a set
of disjoint paths, and this originated the study of the class of ENPT graphs.

1.2 Related Work

EPT graphs have been studied in the literature. Their recognition is NP-
complete [5], whereas one can solve in polynomial time the maximum clique
[5] and the maximum stable set [14] problems for this class.

Current research on intersection graphs is concentrated on the comparison of
various intersection graphs of paths in a tree and their relation to chordal and
weakly chordal graphs [7, 8]. The k-edge intersection graphs where two vertices
are adjacent if their corresponding paths intersect on at least k edges are studied
in [9].

Several recent papers consider the edge intersection graphs of paths on a
grid. Since all graphs are EPG (see [10]), studies focus mostly on the sub-classes
of EPG where the paths have a limited number of bends. An EPG graph is
Bk-EPG if it admits a representation in which every path has at most k bends.
The bend number of a graph G is the minimum number k such that G has
a Bk-EPG representation. Clearly, a graph is B0-EPG if and only if it is an
interval graph. B1-EPG graphs are studied in [10] in which every tree is shown
to be B1-EPG, and a characterization of C4 representations is given. In [1] it
is shown that there exists an outer-planar graph that is not a B1-EPG. The
recognition problem of B1-EPG graphs is shown to be NP-complete in [12].
The work [1] investigates the bend number of some special graph classes.

In [2] we define the family of ENPT graphs and study their properties; in
particular, we study the representations of induced cycles, that turns out to be
much more complex than their counterpart in the EPT graphs (discussed in [6]).

In [3] we focus on graphs with bend number 1. We show that cycles and
trees are B1-ENPG graphs, that the recognition problem of these graphs in
NP-complete in general, and provide a polynomial time recognition algorithm
for Co-Bipartite graphs.

1.3 Our Contribution

In this work we extend the definition of the family of edge intersecting and non-
splitting paths on a tree (ENPT) graphs to the general case in which the host
graph is not necessarily a tree. In Section 3 we consider the general case and we
show that not every co-bipartite graph is an ENP graph, and that the family of
ENP graphs is exactly the family of ENPG graphs. Therefore, it is sufficient to
consider ENPG graphs for most of the questions. We thus consider, in Section
4, the effect of restricting the number of bends of the paths, where a bend of a
path on a grid is a pair of consecutive edges of the path one of which is vertical
and the other is horizontal. We show that restricting the number of bends give
rise to an infinite hierarchy of sub-families of ENPG graphs, where every family
is properly included in the next family in the hierarchy.

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

47

2 Preliminaries

2.1 Graphs, Co-Bipartite Graphs

Given a simple graph (no loops or parallel edges) G = (V (G), E(G)) and a vertex
v of G, we denote by δG(v) the set of edges of G incident to v, by NG(v) the set
consisting of v and its neighbors in G, and by dG(v) = |δG(v)| the degree of v in
G. Whenever there is no ambiguity we omit the subscript G and write d(v), δ(v)
and N(v). Two adjacent vertices u, v of G are twins if NG(u) = NG(v). For a
graph G, V̄ ⊆ V (G) and Ē ⊆ E(G) we denote by G[V̄] and G[Ē] the subgraphs
of G induced by V̄ and by Ē, respectively. The union of two graphs G,G′ is the

graph G ∪G′ def
= (V (G) ∪ V (G′), E(G) ∪ E(G′)).

We emphasize that two graphs G and G′ are equal if and only if V (G) =
V (G′) and E(G) = E(G′). Therefore, two isomorphic graphs may be distinct,
and they are considered as such in the counting arguments in our proofs.

A graph G = (V,E) is co-bipartite if V can be partitioned into two cliques.
Note that this partition is not necessarily unique. We denote bipartite and co-
bipartite graphs as triples (V1, V2, E) where

a) V1 ∩ V2 = ∅,
b) for bipartite graphs V1 and V2 are independent sets,
c) for co-bipartite graphs V1 and V2 are cliques,
d) E ⊆ V1 × V2 (in other words E does not contain the cliques’ edges).

Unless stated otherwise we assume that G is connected and none of V1, V2 is
empty.

2.2 Walks, trails, paths, segments, splits

A walk in a graph G = (V (G), E(G)) is a sequence P = (e1, e2, . . . , eℓ) of edges
of E(G) such that there are vertices v0, v1, . . . , vℓ satisfying ei = {vi−1, vi} for
every i ∈ [ℓ]. Clearly, the reverse sequence (eℓ, . . . , e1) is also a walk. The length
of P is the number ℓ of (not necessarily distinct) edges in the sequence. In
this work we do not consider trivial (zero length) walks, as such walks do not
intersect others. P is closed whenever v0 = vℓ, and open otherwise. A trail is a
walk consisting of distinct edges. A (simple) path is a walk consisting of distinct
vertices except possibly v0 = vℓ. A contiguous sub-sequence of a walk (resp.
trail, path) is termed a sub-walk (resp. sub-trail, sub-path).

Let P = (e1, e2, . . . , eℓ) be a trail with vertices v0, v1, . . . , vℓ as above. For
every i ∈ [ℓ− 1], the triple (ei, vi, ei+1) is an internal point of P . Whenever P is
closed, the triple (eℓ, vℓ = v0, e1) too, is an internal point of P . We denote the set
of internal points of P by INT(P). We say that a vertex v is an internal vertex of
P , or equivalently that P crosses v if v is in (i.e. is the second entry of) a triple

in INT(P). If P is open END(P)
def
= {v0, vℓ} and TAIL(P)

def
= {(e1, v0), (eℓ, vℓ)}

are the sets of endpoints of P and tails of P , respectively. Given a set P of

trails, we define TAIL(P)
def
= ∪P∈PTAIL(P), END(P)

def
= ∪P∈PEND(P) and

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

48

INT(P)
def
= ∪P∈PINT(P). For brevity, in the text we often refer to internal

points as vertices and to tails as edges. Moreover, when we apply the intersection
and union operations on two trails we consider them as sets of internal points
and endpoints.

Given two trails P = (e1, e2, . . . , eℓ) and P ′ = (e′1, e
′
2, . . . , e

′
ℓ′), a segment

of P ∩ P ′ is a maximal trail that constitutes a sub-trail of both P and P ′.
Since P and P ′ are trails, P ∩ P ′ is the union of edge disjoint segments. We
denote this set by S(P, P ′). A tail (resp. endpoint) of a segment is terminating
if it is in TAIL(P, P ′) (resp. END(P, P ′)). A split of P and P ′ is a pair of
internal points (ei, vi, ei+1), (e

′
j , v

′
j , e

′
j+1) ∈ INT(P)× INT(P ′) such that vi = v′j

and
∣∣{ei, ei+1} ∩

{
e′j, e

′
j+1

}∣∣ = 1. Note that the common edge and the common
vertex constitute a non-terminating tail of a segment of P ∩ P ′ and conversely
every non-terminating tail of a segment corresponds to a split. We denote by
split(P, P ′) the set of all splits of P and P ′, which corresponds to the set of all
non-terminating tails of the segments S(P, P ′).

P ‖ P ′ denotes that P and P ′ are non-intersecting, i.e. edge-disjoint. When-
ever P and P ′ intersect and split(P, P ′) = ∅ we say that P and P ′ are non-
splitting and denote this by P ∼ P ′. Note that in this case all the end-
points of the segments are terminating. As there are at most 4 such endpoints
1 ≤ |S(P, P ′)| ≤ 2. Moreover, in this case P ∪P ′ is a trail. When split(P, P ′) 6= ∅
we say that P and P ′ are splitting and denote this by P ≁ P ′. Clearly, for any
two paths P and P ′ exactly one of the following holds: P ‖ P ′, P ∼ P ′, P ≁ P ′.
See Figure 1 for an example.

A bend of a trail P in a grid H is an internal point of P whose edges have
different directions, i.e. one vertical and one horizontal.

2.3 The EP and ENP graph families

Let P be a set of trails in a graph H . The graphs Ep(P) and Enp(P) are such
that V (Enp(P)) = V (Ep(P)) = V and there is a one to one correspondence
between P and V , i.e. P = {Pv : v ∈ V }. Given two trails Pu, Pv ∈ P , {u, v} is
an edge of Ep(P) if and only if Pu and Pv have a common edge. Moreover, {u, v}
is an edge of Enp(P) if and only if Pu ∼ Pv. Clearly, E(Enp(P)) ⊆ E(Ep(P)).
A graph G is ENP if there is a graph H and a set of paths P of H such
that G = Enp(P). In this case 〈H,P〉 is an ENP representation of G. Two
representations are equivalent if they are representations of the same graph.

Let 〈H,P〉 be a representation of an ENP graph G. Pe
def
= {P ∈ P| e ∈ P}

denotes the set of trails of P containing the edge e of H . For a subset S ⊆ V (G)

we define PS
def
= {Pv ∈ P : v ∈ S}. When H is a tree (resp. grid) Ep(P) is an

EPT (resp. EPG) graph, and Enp(P) is an ENPT (resp. ENPG) graph; these
graphs are denoted also as Ept(P), Epg(P), Enpt(P) and Enpg(P). Unless
otherwise stated, without loss of generality we assume that H is a complete
graph, as any non-edge of H can be substituted with an edge without affecting
Enp(P).

Lemma 1. Let K be a clique of an ENP graph. Then one of the following holds:

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

49

bb b b b b b b

131211109876

b

b b b

b

b 14

b

15

1 2

3

4

5

P1

P4

P2

P3

Fig. 1: The pairs of paths (P2, P4) and (P3, P4) do not share a common edge,
therefore P2 ‖ P4 and P3 ‖ P4. P1 and P4 have a common edge {11, 12}, and 12
is a common internal vertex constituting a split of P1 and P4, therefore P1 ≁ P4.
Similarly P1 and P3 have three common edges and 10 is a split vertex of P1 and
P3, therefore P1 ≁ P3. P1 and P2 have three common edges but no splits, then
P1 ∼ P2. The same holds for the pair (P2, P3). However, we note that in the
latter case the common edges are separated into two segments. The vertex 8 is
not a split point of P1 and P2 because the only internal points of P1 involving
this vertex are (e7,8, 8, e7,9), (e14,8, 8, e8,15), and the only internal point of P2

involving it is (e7,8, 8, e7,9). Moreover, |{e7,8, e7,9} ∩ {e7,8, e7,9}| = 2 6= 1 and
|{e7,8, e7,9} ∩ {e14,8, e7,15}| = 0 6= 1.

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

50

i) ∪PK is an open trail and ∩PK 6= ∅.
ii) ∪PK is a closed trail, and for every edge e of ∪PK there exists an edge e′

of ∪PK such that P ∩ {e, e′} 6= ∅ for every path P ∈ PK .

Proof. If ∪PK contains two internal points (e1, v, e2) and (e′1, v, e
′
2) such that

|{e1, e2} ∩ {e′1, e′2}| = 1. Then there are two paths P, P ′ ∈ PK such that
(e1, v, e2) ∈ INT(P) and (e′1, v, e

′
2) ∈ INT(P ′). Therefore split(P, P ′) 6= ∅ and

P ≁ P ′ contradicting the fact that K is a clique. Therefore ∪PK s a disjoint
union of trails. However, if ∪PK contains two disjoint trails, then P ‖ P ′ for any
two paths P, P ′ from two distinct trails of ∪ppK , contradicting the fact that K
is a clique. Therefore ∪PK is one trail.

i) If ∪PK is an open trail, then we can embed it on the real line, so that the
individual paths of PK are intervals on the real line. Then, the result follows
from the Helly property of intervals.

ii) If ∪PK is an open trail, let e be any edge of this trail. Let Pe be the set of
trails in PK containing the edge e. Then ∪(PK \ Pe) is an open trail. By
the previous result there is an edge e′ of this trail that is contained of all
these paths. Therefore, all the paths of PK contain either e or e′.

⊓⊔

Based on this lemma we say that K is an open (resp. closed) clique if ∪PK is
an open (resp. closed) trail. It will be convenient to use the following corollary
of Lemma 1 in order to unify the two cases into one.

Corollary 1. Let K be a clique of an ENP graph, with a representation 〈H,P〉.
Then ∪PK is a sub-trail of a closed trail in which for every edge e there exists
an edge e′ such that P ∩ {e, e′} 6= ∅ for every P ∈ PK.

We denote a closed trail whose existence is guaranteed by Corollary 1 as P(K).
Note that P(K) consists of at most one edge more than ∪PK

3 ENP

In this section we show that a) the family of ENP graphs does not include all
co-bipartite graphs(Theorem 1), and b) the family of ENP graphs coincides with
the family of ENPG graphs (Theorem 2).

We proceed with definitions regarding the relationship between the repre-
sentations of two cliques. Given two vertex disjoint cliques K,K ′ of an ENP

graph G with a representation 〈H,P〉, we denote S(K,K ′)
def
= S(P(K),P(K′)).

A segment S ∈ S(K,K ′) is quiet in K if does not contain tails of paths of PK ,
and busy in K, otherwise. The importance of segments stems from the following
observation:

Observation 31 Consider a pair of trails (P, P ′) ∈ PK × PK′ . Then,

i) P ∩ P ′ ⊆ ∪S(K,K ′), and

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

51

ii) split(P, P ′) corresponds to the set of all non-terminating segment endpoints
crossed by both P and P ′.

Cn,n is the set of all co-bipartite graphs G(K,K ′, E) where K = [n] and
K ′ = {i′ : i ∈ [n]}. The following lemma bounds the number of graphs of this
form as a function of the number of segments.

Lemma 2. For any s ≥ 0, the number of graphs G = (K,K ′, E) ∈ Cn,n with a
representation 〈H,P〉 such that |S(K,K ′)| ≤ s is at most (4n)!((2n+ 2s)!)2.

Theorem 1. Co-Bipartite * ENP.

Proof. |Cn,n| = 2n
2

because there are n2 pairs of vertices (v, v′) ∈ K × K ′,
and for every such pair, either (v, v′) ∈ E or (v, v′) /∈ E. In the rest of the
proof we show that every G ∈ Cn,n has a representation 〈H ′,P ′〉 for which
s = |S(K,K ′)| ≤ 12n. By Lemma 2, the number of such representations and
therefore |Cn,n ∩ ENP| is at most (4n)!((2n + 2s)!)2 ≤ (4n)!((2n + 24n)!)2 =
(4n)!(26n)!(26n)!. Therefore, log |Cn,n ∩ ENP| = O(n log n), whereas log |Cn,n| =
n2 concluding the proof. It remains to show that G has a representation with
s ≤ 12n segments.

The number of busy segments of S(K,K ′) is at most 4n, because
|END(PK)| = 2n and an endpoint can be in at most 2 segments. We now
bound the number of quiet segments of S(K,K ′). Consider two endpoints from
END(PK) that are consecutive on P(K) and let P be the sub-trail of P(K)

between these two endpoints. By this choice, every trail of PK intersecting
P includes P . Let S̄ be the set of segments S that are sub-trails of P (thus
V (S) ⊆ INT(P)). Suppose that

∣∣S̄
∣∣ > 4. Consider the two edges ea′ and eb′ of

P(K′) whose existence are guaranteed by Corollary 1. These two edges divide
P(K′) into at most two open trails. One of these open trails contains (at least)
3 segments S1, S2, S3 ∈ S̄ where the indices are in the order they appear on
this open trail from ea′ to eb′ (see Figure 2). Let also vi1, vi2 be the endpoints
of Si in the same order. We claim that the representation obtained by adding
to H a new vertex x and two edges {v21, x} , {x, v22} and finally modifying all
the trails intersecting P (that therefore include S2) so that the segment S2 is
replaced by the trail ({v21, x} , {x, v22}) is an equivalent representation. Clearly,
any trail that does not intersect S2 is not affected by this modification. Con-
sider two trails Pv and Pv′ such that (v, v′) ∈ K × K ′ and both intersect S2.
Pv includes P and therefore includes all the vertices of S2, in particular crosses
v21 and v22. On the other hand, by Corollary 1, Pv′ contains at least one of
ea′ and eb′ . Without loss of generality let eb′ ∈ Pv′ . Then, v22 is an internal
vertex of Pv′ . We conclude that v22 ∈ split(Pv, Pv′), i.e. (v, v′) /∈ E(G). After
the modification, we have v31 ∈ split(Pv, Pv′), thus (v, v′) is not an edge of the
resulting graph. Therefore, the new representation is equivalent to 〈H,P〉. After
this modification, S is not a segment of S(K,K ′) and the new representation
has one segment less. We can apply this transformation until we get an equiva-
lent representation 〈H ′,P ′〉 having at most 4 quiet segments between every two
consecutive vertices of END(PK). In other words, 〈H ′,P ′〉 has at most 8n quiet

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

52

segments of S(K,K ′). Adding the at most 4n busy segments, we conclude that
s ≤ 12n. ⊓⊔

ea′ eb′

S1

S2

S3

v11

v12

v21 v22

v31

v32

b

b
b
b

b

b

Pv

Pv′

b

x

Fig. 2: Getting a representation with at most 8n quiet segments in the proof of
Theorem 1. Whenever there are 3 segments on one side of the closed trail, the
middle one can be bypassed.

Theorem 2. ENP=ENPG

Proof. Clearly, ENPG ⊆ ENP. To prove the other direction, consider an ENP
graph G with a representation 〈H,P〉. We transform this representation into an
equivalent ENPG representation, in three steps. In the first step, we obtain an
equivalent representation 〈H ′,P ′〉 where H ′ is planar. In the second step, we
transform 〈H ′,P ′〉 to an equivalent representation 〈H ′′,P ′′〉 where H ′′ is planar
and ∆(H ′′) ≤ 4. Finally, we transform 〈H ′′,P ′′〉 to an ENPG representation.

The host graph H can be embedded in a plane such that the vertices are
mapped to a set of points in general position on the plane and the edges are
drawn as straight line segments. Specifically, no three points are co-linear and
no three segments intersect at one point. Note that the mapping of the edges
might intersect, however as the points are in general position, we can assume
that no three edges intersect at the same point. For every intersection point of
two edges e, e′, we can add a vertex v to H and subdivide the edges e and e′ (and
consequently the paths in P containing e and e′) such that the resulting 4 edges
are incident to v. Every pair of paths P, P ′ that include e and e′ respectively now
intersect at v. However as we are not concerned with vertex intersections, the
resulting representation is a representation of G. We continue in this way until

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

53

all intersection points are replaced by a vertex. The graph H ′ of the resulting
representation 〈H ′,P ′〉 is clearly planar.

We now transform the representation 〈H ′,P ′〉 to a representation 〈H ′′,P ′′〉
where H ′′ is planar with maximum degree at most 4. We start with 〈H ′′,P ′′〉 =
〈H ′,P ′〉, and as long as there is a vertex v with dH′′ (v) > 4, we eliminate
such a vertex without introducing new vertices of degree more than 4 using the
following procedure described in Figure 3: we number the edges incident to v
as e1, e2, . . . , edv in counterclockwise order according to the planar embedding
of H ′. Then e1 and edv are in the same face F of H ′′. We replace the vertex
v with a path of dv vertices v1, v2, . . . , vdv such that each edges ei is incident
to vi. Clearly, the constructed path is part of F . We now construct the gadget
in Figure 3 within the face F , where every path crossing v from an edge ei to
another edge ej with i < j is modified as described in the figure. Clearly, we
do not lose intersections in this process. On the other hand, every pair of paths
that intersect within the gadget have at least one edge incident to v in common
before the transformation. Moreover, two paths have a split vertex within the
gadget if and only if they split at v before the transformation.

1

2

i

j

dv

1 2 i dv

b

b

b

b

b

b b b b

ei

ej

i

j

v

b

b

b

b

b

b
1

dv

b b b

b b b

2

b

b

b

j
b

Fig. 3: The gadget used in the second transformation in the proof of Theorem 2

The last step is implied by the following theorem.
Theorem 2.3 [16]: A planar graph H ′′ with maximum degree at most 4 can

be embedded in a grid graph H ′′′ of polynomial size: the vertices u′′ of H ′′ are
mapped to vertices u′′′ of H ′′′; each edge e′′ = {u′′, v′′} of H ′′ is mapped to a
path e′′′ between u′′′ and v′′′ in H ′′′; the intermediate vertices of e′′′ belong to
exactly one such path. Given an embedding of H ′′ guaranteed by the theorem,
we embed every trail P ′′ ∈ P ′′ to a trail P ′′′ of H ′′′ by embedding every edge
e′′ of it to the corresponding path e′′′ of H ′′′. P ′′′ is clearly a walk. P ′′′ a trail,
because otherwise there is an edge of H ′′′ that is contained in the embedding of
two distinct edges ofH ′′, contradicting the last guarantee of the theorem. Clearly
two trails P ′′

1 , P
′′
2 of P ′′ intersect if and only if the corresponding paths P ′′′

1 , P ′′′
2 in

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

54

P ′′′ intersect. Moreover a split (e′′11, v
′′, e′′12), (e

′′
21, v

′′, e′′22) of two paths P ′′
1 , P

′′
2 is

mapped to a split (e′′′11, v
′′′, e′′′12), (e

′′
21, v

′′′, e′′22) of the corresponding paths P
′′′
1 , P ′′′

2

and this mapping is one to one. ⊓⊔

4 Bk-ENPG

In this section we investigate the effect of restricting the number of bends of the
paths on the family of ENPG graphs. An ENPG graph is Bk-ENPG if it has an
ENPG representation 〈H,P〉, in which every path P ∈ P has at most k bends.
The graph Pmn ∈ Cn,n is the co-bipartite graph (V, V ′, E) with |V | = |V ′| = n
and E constitutes a perfect matching. In what follows we present upper and
lower bounds for the bend number of this graph depending on n (lemmata 3
and 6). Using these bounds we show in Theorem 3 that for some infinite and
increasing sequence of numbers k1, k2, . . . there is a graph in Bki+1-ENPG that
is not Bki-ENPG, thus proving the existence of an infinite hierarchy within the
family of ENPG graphs. The following upper bound whose proof can be found
in the appendix is implied by the representation in Figure 4.

Lemma 3. Pmn ∈ B(2(n−1))-ENPG.

P1

P2

P3

P4

P5

P6

PΠ(1)

PΠ(2)

PΠ(3)

PΠ(4)

PΠ(5)

PΠ(6)

Fig. 4: The ENPG representation of the graph Pmn with 2(n− 1) bends
(proof of Lemma 3)

To prove the lower bound, we consider a given number k of bends and we
upper bound the number n such that Pmn ∈ Bk-ENPG. We first show that a
bound on the number of bends implies a bound on the total number of bends
in the representation of a clique (Lemma 4). Then we show that this implies
an upper bound on the number of segments (Lemma 5), and finally using this
bound we bound n from above (Lemma 6).

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

55

Lemma 4. Let K be a complete graph with Bk-ENPG representation 〈H,P〉.
Then ∪PK contains at most 2

⌊
(3−δK)k

2

⌋
bends, where δK = 1 when K is an

open clique and 0 otherwise.

Proof. If K is an open clique (δK = 1), then there exists an edge e contained in
every P ∈ PK . e divides ∪PK into two trails each of which contains at most k

bends. Therefore, ∪PK contains at most 2k = 2
⌊
(3−δK)k

2

⌋
bends. If K is a closed

clique (δK = 0), consider a trail P = (e1, . . . , eℓ) of PK . Let P1 (resp. Pℓ) be a
trail containing e1 (resp. eℓ) with the maximum number of edges from ∪PK \P .
P ∪ P1 ∪ Pℓ = ∪PK , because otherwise there is an edge e ∈ ∪PK \ {P, P1, Pℓ}
that is included in some trail P ′ that does not contain neither e1 nor eℓ, i.e.
does not intersect P , contradicting the fact that K is a clique. We conclude
that the number of bends of ∪PK is at most 3k. Moreover, this number is even
because ∪PK is a closed trail. Therefore the number of bends of ∪PK is at most

2
⌊
3k
2

⌋
= 2

⌊
(3−δK)k

2

⌋
. ⊓⊔

Corollary 2. A clique K of a B1-ENPG graph is an open clique and ∪PK has
at most 2 bends.

In the appendix we prove the following lemma

Lemma 5. Let G = (K,K ′, E) ∈ Cn,n with a Bk-ENPG representation 〈H,P〉.
Then

i) |S(K,K ′)| ≤ 3k.
ii) Moreover, this upper bound is asymptotically tight: there exist infinitely

many pairs k, n with a graph G ∈ Cn,n ∩Bk-ENPG such that |S(K,K ′)| =
3k − 6.

Lemma 6. If n > 36k2 + 6k, then Pmn /∈ Bk-ENPG.

Sketch of Proof: Let Pmn = (K,K ′, E) and assume by contradiction that Pmn

is a Bk-ENPG graph with a corresponding ENPG representation 〈H,P〉. Let
S = S(K,K ′). By Lemma 5, |S| ≤ 3k. Therefore, |S| (4·|S|+2) ≤ 36k2+6k < n,
i.e. n

|S| > 4 |S|+ 2.

For an edge e = (v, v′) ∈ E we say that e is realized in segment S ∈ S if
Pv∩Pv′∩S 6= ∅. Every edge e = (v, v′) is realized in at least one segment, because
otherwise Pv ∩Pv′ = ∅, contradicting the fact that (v, v′) ∈ E. As |E| = n, there
is at least one segment S in which ℓ ≥ n/ |S| > 4 · |S|+ 2 edges are realized. As
E is a perfect matching, these ℓ edges ES ⊆ E constitute a perfect matching of
the subgraph GS = (KS,K

′
S , ES) = Pmℓ induced by all the endpoints of ES .

We first show that there is at most one path of PKS crossing both endpoints
of S. Assume by contradiction that there are two paths Pu, Pv ∈ PKS crossing
both endpoints of S. Let u′ be the unique neighbor of u in K ′

S. Then Pu′ ⊆ S
because otherwise Pu′ splits from Pu. Therefore, Pv ⊇ S ⊇ Pu′ , i.e. Pv ∼ Pu′

and (v, u′) ∈ ES , contradicting the fact that GS = Pmℓ. Similarly, there is at
most one path from PK′

S
crossing both endpoints of S. We conclude that GS

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

56

contains a subgraph ḠS = (K̄S , K̄ ′
S, ĒS) = Pmℓ̄ where ℓ̄ ≥ ℓ− 2 > 4 · |S| with a

representation in which every path crosses at most one endpoint of S.
Consider an edge e = (v, v′) of ḠS . Pv and Pv′ do not cross the same endpoint

of S, as otherwise they would split. Let w,w′ be the endpoints of S. There is
a set ¯̄ES of ¯̄ℓ ≥ ℓ̄/2 > 2 · |S| edges such that their endpoints induce a graph
¯̄GS = (¯̄KS ,

¯̄K ′
S,

¯̄ES) = Pm¯̄ℓ, where no path Pv ∈ P ¯̄KS
crosses w′ and no path

Pv′ ∈ P ¯̄
K′

S

crosses w. All the paths of P ¯̄KS
(resp. P ¯̄

K′
S

) have one endpoint in

INT(S). The other endpoint of such a path can be in one of the |S| segments,
or between two of them. We classify the paths of P ¯̄KS

by the location of the

other endpoint. As ¯̄ℓ > 2 · |S|, there are at least two paths Pv1 and Pv2 in the
same category, i.e. crossing exactly the same segment endpoints. For i ∈ {1, 2}
let Pv′

i
be the unique neighbour of vi in ¯̄K ′

S. C = (v1, v2, v
′
2, v

′
1) is a cycle of

G = Enpg(P), therefore it is also a cycle of Epg(P). We note that every pair of
intersecting paths among these 4 paths intersect also in S. Then C is also a cycle
of the interval graph obtained by restricting all the trails of 〈H,P〉 to S. As an
interval graph cannot contain an induced C4, it must contain one chord. Assume
without loss of generality that (v1, v

′
2) is such a chord. By definition, this chord

is not in Pmn. We conclude that Pv1 ≁ Pv′
2
, implying split(Pv1 , Pv′

2
) 6= ∅. As

Pv1 and Pv2 cross exactly the same segment endpoints, we have split(Pv2 , Pv′
2
) =

split(Pv1 , Pv′
2
) 6= ∅, contradicting the fact that (v2, v

′
2) is an edge of G. ⊓⊔

We are now ready to prove the main result of this section.

Theorem 3. There is an infinite increasing sequence of integers
{ki : i = 1, 2, . . .} such that Bki-ENPG (Bki+1-ENPG for i ∈ {1, 2, . . .}.

Proof. Consider the family of Bk-ENPG graphs for some integer k ≥ 1, and
let G = Pm36k2+6k+1. G /∈ Bk-ENPG by Lemma 6. On the other hand, by
Lemma 3, G ∈ B72k2+12k-ENPG. Therefore Bk-ENPG (B72k2+12k-ENPG.
We conclude that the infinite sequence defined as ki+1 = 72k2i + 12ki for any
i > 1 satisfies the claim where k1 ≥ 0 is chosen arbitrarily. ⊓⊔

5 Summary and Future Work

In this work we generalized the family of ENPT graphs to ENP graphs in which
the host graphs can be any graph. We showed that without loss of generalization,
we can restrict the host graphs to grids. Moreover, this family ENPG does not
contain all graphs, as opposed to the family of EPG graphs that contains all
graphs. We showed that by restricting the number of bends in the paths, we can
define an infinite hierarchy of subfamilies of ENPG.

Although most of the results in this work are proved for cobipartite graphs,
the counting arguments used in the proofs of Theorem 1 and Lemma 6 can be
extended to the more general case of graphs with a large clique number. This
extension is work in progress. Another open question is to find the sequence of
the smallest numbers ki such that Bki-ENPG (Bki+1-ENPG for every i. In
particular, is B1-ENPG (B2-ENPG (· · · ? In [2] we studied recognition

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

57

problems in given graph pairs, i.e. a pair((Ept(P),Enpt(P)) of graphs that are
defined on the same set of vertices. A similar study on EP, ENP graph pairs is
another interesting research direction.

References

1. T. C. Biedl and M. Stern. On edge-intersection graphs of k-bend paths in grids.
Discrete Mathematics & Theoretical Computer Science, 12(1):1–12, 2010.

2. A. Boyacı, T. Ekim, M. Shalom, and S. Zaks. Graphs of edge-intersecting non-
splitting paths in a tree: Towards hole representations. In The Proceedings of the
39th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), Luebeck, Germany, pages 115–126, June 2013.

3. A. Boyacı, T. Ekim, M. Shalom, and S. Zaks. Graphs of edge-intersecting and
non-splitting one bend paths in a grid, 2014. In preparation.

4. O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effective traffic grooming in wdm
rings. In INFOCOM’98, Seventeenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, 1998.

5. M. C. Golumbic and R. E. Jamison. Edge and vertex intersection of paths in a
tree. Discrete Mathematics, 55(2):151 – 159, 1985.

6. M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a
tree. Journal of Combinatorial Theory, Series B, 38(1):8 – 22, 1985.

7. M. C. Golumbic, M. Lipshteyn, and M. Stern. Equivalences and the complete
hierarchy of intersection graphs of paths in a tree. Discrete Appl. Math., 156:3203–
3215, Oct. 2008.

8. M. C. Golumbic, M. Lipshteyn, and M. Stern. Representing edge intersection
graphs of paths on degree 4 trees. Discrete Mathematics, 308(8):1381–1387, 2008.

9. M. C. Golumbic, M. Lipshteyn, and M. Stern. The k-edge intersection graphs of
paths in a tree. Discrete Appl. Math., 156:451–461, Feb. 2008.

10. M. C. Golumbic, M. Lipshteyn, and M. Stern. Edge intersection graphs of single
bend paths on a grid. Networks, 54(3):130–138, 2009.

11. A. Hajnal and J. Surányi. Über die auflösung von graphen in vollständige teil-
graphen. Ann. Univ. Sci. Budapest Eötrös Sect. Math., 1:113–121, 1958.

12. D. Heldt, K. Knauer, and T. Ueckerdt. Edge-intersection graphs of grid paths: the
bend-number. Discrete Applied Mathematics, 2013.

13. R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki. Optical Networks: A Practical
Perspective. Morgan Kaufmann Publisher Inc., San Francisco, 3rd edition, August
2009.

14. R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221
– 232, 1985.

15. A. Tucker. Characterizing circular-arc graphs. Bulletin of the American Mathe-
matical Society, 76(6):1257–1260, 11 1970.

16. L. Yanpei, A. Morgana, and B. Simeone. General theoretical results on rectilinear
embedability of graphs. Acta Mathematicae Applicatae Sinica, 7:187192, 1991.

A.Boyacı et al. Graphs of edge-intersecting and non-splitting paths

58

A graph-easy class of mute lambda-terms

A. Bucciarelli1, A. Carraro2, G. Favro1,2, and A. Salibra2

1 Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, Paris, France
2 DAIS, Università Ca’Foscari Venezia, Italy

Abstract. Among the unsolvable terms of the lambda calculus, the
mute (or root-active) ones are those having the highest degree of un-
definedness. In this paper, we define an infinite set S of mute terms, and
show that it is graph-easy: for any closed term t of the lambda calculus
there exists a graph model equating all the terms of S to t.
Keywords: Lambda-calculus, mute terms, graph models, forcing, ultra-
products.

1 Introduction

It is a well known result by Jacopini [15] that Ω can be consistently equated to
any closed term t of the (untyped) lambda-calculus, where Ω is the paradigmatic
unsolvable term (λx.xx)(λx.xx) (this is called the easiness of Ω). Baeten and
Boerboom [3] gave the first semantic proof of this result by showing that for
all closed terms t one can build a graph model satisfying the equation Ω = t.
This semantic result extends to other classes of models and to some other terms
which share with Ω enough of its good will (cf. [7] for a survey of such results).

Mute lambda terms have been introduced by Berarducci [5], for defining
models of the lambda calculus that do not identify all the unsolvable terms. Mute
terms are somehow the “most undefined” lambda terms, as they are unsolvable
of order 0 (zero terms), which are not β-convertible to a zero term applied to
something else. For instance, Ω is mute, and Ω3 = (λx.xxx)(λx.xxx) is a zero
term that is not mute, since it reduces to Ω3(λx.xxx).

Berarducci proved that the set of mute terms is easy, in the sense that it is
consistent with the lambda calculus to simultaneously equate all the mute terms
to a fixed arbitrary closed term. Hereafter, a set of lambda terms that can be
simultaneously, consistently equated to a fixed arbitrary closed term is called an
easy set.

Given a class C of models of the lambda calculus, and an easy set S, we say
that S is C-easy if, for every closed term t, there exists a model in C that equates
all the terms in S to t.

Studying C-easiness gives insights on the expressive power of the class C.
Concerning filter lambda models, for instance, it had been conjectured [2] that
they have full expressive power for singletons, in the sense that any easy single-
ton set is filter-easy. Carraro and Salibra [13] showed that this is not the case:
there exists a co-r.e. set of easy terms that are not filter-easy. The first negative
semantic result was obtained by Kerth [19]: Ω3I, where I = λx.x, is an easy

59

term, but no graph model satisfies the identity Ω3I = I. This result shows a
limitation of graph models. The easiness of Ω3I was proven syntactically in [16]
(see also [6]), but it was only given a semantic proof in [1], where the authors
build, for each closed t, a filter model of Ω3I = t.

Graph models are arguably the simplest models of the lambda calculus. There
are two known methods for building graph models, namely: by forcing or by
canonical completion. Both methods consist in completing a partial model into
a total one.

The canonical completion method was introduced by Plotkin and Engeler
and then systematized by Longo [21] for graph models. The word “canonical”
refers here to the fact that the graph model is built inductively from the partial
one and completely determined by it. This method was then used by Kerth [18]
to prove the existence of 2ω pairwise inconsistent graph theories, and by Buc-
ciarelli–Salibra [11, 9, 10] to characterize minimal and maximal graph theories.
In particular [11] shows that the minimal graph theory is not equal to the min-
imal lambda theory λβ, and that the lambda theory B (generated by equating
lambda terms with the same Böhm tree) is the greatest sensible graph theory.

The forcing method originates with Baeten–Boerboom [3], and it is more
flexible than canonical completions. In fact, the inductive construction depends
here not only on the initial partial model but also on the consistency problem
one is interested in. The method was afterwards generalized to other classes of
webbed models by Jiang [17] and Kerth [20]. It was also generalized to families
of terms similar to Ω by Zylberajch [23] and Berline–Salibra [8].

One more difference between these methods is that if we start with a recursive
partial web, the canonical completion builds a recursive total web, while forcing
always generates a non recursive web.

In this paper we define an infinite and recursive set of mute terms, the regular
mute terms. A regular mute term has the form s0s1 . . . sn, for some n, and it has
the property that, in n steps of head reduction, it reduces to a term of the same
shape t0t1 . . . tn, where t0 = si for some 1 ≤ i ≤ n. As regular mute terms are
mute, we know that the set of all regular mute terms is easy, since each subset of
an easy set is itself easy. We show that it is actually graph-easy by generalizing
the forcing technique used in [8].

More precisely, given a closed λ-term t and a finite set {n1, . . . , nk} of natural
numbers, we construct a graph model which equates to t all the regular mute
terms of the form s0s1 . . . snj , 1 ≤ j ≤ k, using forcing.

Then we glue together these graph models in an ultraproduct, using a tech-
nique introduced in [12]. This gives rise to a graph model that is an expansion
of the ultraproduct, where all the regular mute terms are equated to t, thus
concluding the proof that the set of regular mute terms is graph-easy.

2 Theories and models of λ-calculus

With regard to the lambda-calculus we follow the notation and terminology of
[4]. By Λ and Λo, respectively, we indicate the set of λ-terms and of closed λ-

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

60

terms. We denote αβ-conversion by λβ. A λ-theory is a congruence on Λ (with
respect to the operators of abstraction and application) which contains λβ. A
λ-theory is consistent if it does not equate all λ-terms, inconsistent otherwise.

It took some time, after Scott gave his model construction, for consensus to
arise on the general notion of a model of the λ-calculus. There are mainly two
descriptions that one can give: the category-theoretical and the algebraic one.
The categorical notion of model, that of reflexive object in a Cartesian closed
category (ccc), is well-suited for constructing concrete models, while the algebraic
one is rather used to understand global properties of models (constructions of
new models out of existing ones, closure properties, etc.) and to obtain results
about the structure of the lattice of λ-theories. The algebraic description of
models of λ-calculus proposes two kinds of structures, viz. the λ-algebras and
the λ-models, both based on the notion of combinatory algebra. We will focus on
λ-models.

A combinatory algebra A = (A, ·,k, s) is a structure with a binary operation
called application and two distinguished elements k and s called basic combi-
nators. The symbol “·” is usually omitted from expressions and by convention
application associates to the left, allowing to leave out superfluous parentheses.
The class of combinatory algebras is axiomatized by the equations kxy = x and
sxyz = xz(yz). A function f : A → A is representable in A if there exists an
element a ∈ A such that f(b) = ab for all b ∈ A. For example, the identity
function is represented by the combinator i = skk.

The axioms of an elementary subclass of combinatory algebras, called λ-
models, were expressly chosen to make coherent the interpretation of the λ-terms
(see Barendregt [4, Def. 5.2.7]). In addition to five axioms due to Curry (see [4,
Thm. 5.2.5]), the Meyer-Scott axiom is the most important one in the definition
of a λ-model. In the first-order language of combinatory algebras it is formulated
as ∀xy.(∀z. xz = yz) ⇒ εx = εy, where the combinator ε = s(ki) is made into
an inner choice operator. Indeed, given any a, the element εa represents the
same function as a; by the Meyer-Scott axiom, εc = εd for all c, d representing
the same function.

Given a set A, we denote by EnvA the set of A-environments, i.e., the func-
tions from the set Var of λ-calculus variables to A. For every x ∈ Var and a ∈ A
we denote by ρ[x := a] the environment ρ′ which coincides with ρ everywhere
except on x, where ρ′ takes the value a.

Given a λ-model A, the interpretation |t|A : EnvA → A of a λ-term is defined
by induction on the complexity of t in such a way that

|x|Aρ = ρ(x); |tu|Aρ = |t|Aρ |u|Aρ ; |λx.t|Aρ = εb

where b is any element satisfying ba = |t|Aρ[x:=a] for every a ∈ A.

It is important to stress that the class of λ-models is axiomatized by first-
order axioms expressed in terms of Horn formulas, so that it is closed under
direct products; it is not axiomatized by equations only, so that it is not closed
neither under substructures nor under homomorphic images.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

61

3 Graph models

The class of graph models belongs to Scott’s continuous semantics. Graph models
owe their name to the fact that continuous functions are encoded in them via (a
sufficient fragment of) their graphs, namely their traces.

A graph model is a model of untyped λ-calculus, which is generated from a
web in a way that will be recalled below. Historically, the first graph model was
Plotkin and Scott’s Pω (see e.g. [4]), which is also known in the literature as “the
graph model”. The simplest graph model, E , was introduced soon afterwards,
and independently, by Engeler [14] and Plotkin [22]. More examples can be found
in [7].

As a matter of notation, we denote by D∗ the set of all finite subsets of a
set D. Elements of D∗ will be denoted by small roman letters a, b, c, . . . , while
elements of D by greek letters α, β, γ,

For short we will confuse the model and its web and so we define:

Definition 1. A graph model is a pair (D, p), where D is an infinite set and
p : D∗ ×D → D is an injective total function.

Such a pair will also be called a total pair. In the setting of graph models a
partial pair (see [7]) is a pair (A, q) where A is any set and q : A∗ ×A ⇀ A is a
partial (possibly total) injection. Examples of partial pairs are: the empty pair
(∅, ∅) and all the graph models.

If (D, p) is a partial pair, we write a →p α (or a → α if p is evident from
the context) for p(a, α). Moreover, β → α means {β} → α. a1 → a2 → · · · →
an−1 → an → α stands for (a1 → (a2 → . . . (an−1 → (an → α)) . . .)). If ā =
a1, a2, . . . , an, then ā→ α stands for (a1 → (a2 → . . . (an−1 → (an → α)) . . .)).

A total pair (D, p) generates a λ-model of universe P(D), called graph λ-
model. In particular P(D) is endowed with an application operator that makes
it a λ-model. The interpretation |t|p : EnvP(D) → P(D) of a λ-term t relative
to (D, p) can be described inductively as follows (see Section 2):

– |x|pρ = ρ(x)

– |tu|pρ = {α : (∃a ⊆ |u|pρ) a→ α ∈ |t|pρ}
– |λx.t|pρ = { a→ α : α ∈ |t|pρ[x:=a]}

Since |t|pρ only depends on the value of ρ on the free variables of t, we only
write |t|p if t is closed.

A graph model (D, p) satisfies t = u, written (D, p) � t = u, if |t|pρ = |u|pρ for
all environments ρ. The λ-theory Th(D, p) induced by (D, p) is defined as

Th(D, p) = {t = u : t, u ∈ Λ and |t|p = |u|p}.

A λ-theory induced by a graph model will be called a graph theory.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

62

4 The regular mute λ-terms

A first step towards the definition of regular mute terms are the hereditarily
n-ary terms, defined below.

Definition 2. Let n > 0 and x̄ ≡ x1, . . . xk be distinct variables. The set of
hereditarily n-ary λ-terms over x̄, written Hn[x̄], is the smallest set of λ-terms
containing x1, . . . , xk and satisfying the following property, for all fresh distinct
variables ȳ ≡ y1, . . . , yn and all terms t1, . . . , tn:

t1, . . . , tn ∈ Hn[x̄, ȳ] ⇒ λȳ.yit1 . . . tn ∈ Hn[x̄].

We write Hn for Hn[].

Example 1. Some unary and binary hereditary λ-terms:

– λx.xx ∈ H1

– λy.yx ∈ H1[x]
– λx.x(λy.yx) ∈ H1

– λzy.yzx ∈ H2[x]
– λxy.x(λzy.yzx)y ∈ H2.

Given a natural number n and variables x̄ we define inductively an increasing
sequence of sets of λ-terms, starting at Hn[x̄]:

Definition 3. Let x̄ ≡ x1, . . . xk and ȳ ≡ y1, . . . , yn be distinct fresh variables.

– H0
n[x̄] = Hn[x̄]

– Hm+1
n [x̄] = {s[u/y] : s ∈ Hm

n [x̄, ȳ], ū ≡ u1, . . . , un ∈ Hm
n [x̄]}

– Sn[x̄] =
⋃
mH

m
n [x̄].

We write Sn for Sn[]. For t ∈ Sn[x̄], we denote by rk(t) the smallest number

such that t ∈ Hrk(t)
n [x̄].

Lemma 1. If ȳ is a sequence of n distinct variables, s ∈ Sn[x̄, ȳ] and t̄ ≡
t1, . . . , tn ∈ Sn[x̄], then s[t̄/ȳ] ∈ Sn[x̄].

Lemma 2. Let t be a λ-term. Then t ∈ Hm
n [x̄] if, and only if, there exist

– s ∈ H0
n[x̄, z̄1, . . . , z̄m],

– sequences z̄i (i = 1, . . . ,m) of n distinct variables,
– sequences t̄i (i = 1, . . . ,m) of n terms t̄i ≡ ti1, . . . , tin ∈ Hm−i

n [x̄, z̄1, . . . , z̄i−1]

such that t ≡ s[tm/zm] · · · [t1/z1].

Proof. Just an unfolding of the previous definition.

Proposition 1. For all n > 0, s0, . . . , sn ∈ Sn, there exist r0, . . . , rn ∈ Sn and
i ≤ n such that

s0s1 . . . sn →n
β r0r1 . . . rn and r0 ≡ si

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

63

Proof. (1) rk(s0) = 0.
Since s0 ∈ Hn, then s0 ≡ λy1 . . . yn.yir1 . . . rn with r1, . . . , rn ∈ Hn[y1, . . . , yn].

Hence s0s1 . . . sn →n
β sir1[s̄/ȳ] . . . rn[s̄/ȳ]. By Lemma 1 the term ri[s̄/ȳ] ∈ Sn,

and we are done.
(2) rk(s0) = m > 0.
By Lemma 2 there exists u ∈ Hn[z̄1, . . . , z̄m] such that s0 ≡ u[t̄m/z̄m] . . . [t̄1/z̄1],

for some terms t̄i ∈ Hm−i
n [z̄1, . . . , z̄i−1], for 1 ≤ i ≤ m. The term u cannot be

a variable because of the rank of s0. Then by definition u ≡ λȳ.yiu1 . . . un with
ui ∈ Hn[z̄1, . . . , z̄m, ȳ]. Then

s0 = λȳ.yi(u1[t̄m/z̄m] . . . [t̄1/z̄1]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1])

and, if s̄ = s1, . . . , sn

s0s1 . . . sn →n
β si(u1[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]).

Theorem 1. For all s0, . . . , sn ∈ Sn, the term s0s1 . . . sn is mute.

Hereafter, a term s0s1 . . . sn (si ∈ Sn) is called a n-regular mute term; Mn

will denote the set of all n-regular mute terms.

Example 2. Some unary and binary regular mute terms:

– (λx.xx)(λx.xx) ∈M1

– (λx.x(λy.yx))(λx.xx) ∈M1

– AAA ∈M2, where A := λxy.x(λzt.tzx)y.

Example 3. Let B := λx.x(λy.xy). Then BB is a mute term that is not regular:

BB = (λx.x(λy.xy))B →β B(λy.By)→β BB

5 Forcing for regular mute terms

In this section we show that, given a closed λ-term t and a finite set {n1, . . . , nk}
of natural numbers, there exists a graph model which equates all the regular mute
terms of the form s0s1 . . . snj , 1 ≤ j ≤ k, to t, using forcing.

5.1 Some useful lemmas

Lemma 3. Let (D, p) be a graph model, ρ be D-environment and β̄ = β, β, . . . , β
(n-times). If β = β̄ → α, t ∈ Sn[x̄] and β ∈ ρ(xi) (i = 1, . . . , k) then β ∈ |t|pρ.

Proof. Base case: t ∈ Hn[x̄]. Let ū ∈ Hn[x̄, ȳ] and z ∈ {x̄, ȳ} such that t = λȳ.zū.

β = β̄ → α ∈ |λȳ.zū|pρ ⇔ α ∈ |zū|p
ρ[ȳ:=β̄]

Since β ∈ ρ[ȳ := β̄] and by induction hypothesis β ∈ |ui|pρ[ȳ:=β̄]
, then α ∈

|zū|p
ρ[ȳ:=β̄]

.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

64

Let t ∈ Hm+1
n [x̄]. Then t ≡ s[u/y], where s ∈ Hm

n [x̄, ȳ] and ū ≡ u1, . . . , un ∈
Hm
n [x̄]. By induction hypothesis we have β ∈ |ui|pρ. Since |s[u/y]|pρ = |s|p

ρ[ȳ:=|ū|pρ]

and β ∈ ρ[ȳ := |ū|pρ](yi), then by induction hypothesis β ∈ |s|p
ρ[ȳ:=|ū|pρ]

and we

get the conclusion.

Lemma 4. Let (D, p) be a graph model, s0
0s

0
1 . . . s

0
n ∈ Mn (s0

i ∈ Sn) and γ ∈
|s0

0s
0
1 . . . s

0
n|p. Then there exist a sequence βi ≡ ai1 → · · · → ain → γ (i ∈ ω)

of elements of D and a sequence di (i ∈ ω) of natural numbers ≤ n such that
βi+1 ∈ aidi .

Proof. By Proposition 1 there exists an infinite sequence of mute terms such
that

s0
0s

0
1 . . . s

0
n →n

β s1
0s

1
1 . . . s

1
n →n

β . . . →n
β sk0s

k
1 . . . s

k
n →n

β . . .

and sk0 ≡ sk−1
dk−1

for some 1 ≤ dk−1 ≤ n. The number dk−1 is the order of the

head variable of the term sk−1
0 . By γ ∈ |s0

0s
0
1 . . . s

0
n|p there exists a0

1 → · · · →
a0
n → γ ∈ |s0

0|p such that a0
i ⊆ |s0

i |p. We define

β0 = a0
1 → · · · → a0

n → γ.

Assume βk = ak1 → · · · → akn → γ ∈ |sk0 |p and akj ⊆ |skj |p for every j ≤ n.

Since sk0 = λȳ.ydku1 . . . un for some terms ui and βk ∈ |sk0 |p, then, if ā =
ak1 , . . . , a

k
n

γ ∈ akdk(u1[ā/ȳ]) . . . (un[ā/ȳ]).

Then there exists βk+1 = ak+1
1 → · · · → ak+1

n → γ ∈ akdk ⊆ |s
k+1
0 |p = |skdk |p and

ak+1
j ⊆ |sk+1

j |p.

5.2 Forcing at work

We recall the notion of weakly continuous operator from [8].

Definition 4. Let D be an infinite countable set. By I(D) we indicate the cpo
of partial injections q : D∗ ×D ⇀ D, ordered by inclusion of their graphs.

By a “total p” we will mean “an element of I(D) which is a total map”
(equivalently: which is a maximal element of I(D)). The domain and range of
q ∈ I(D) are denoted by dom(q) and rg(q). We will also confuse the partial
injections and their graphs.

Definition 5. A function F : I(D)→ P(D) is weakly continuous if it is mono-
tone with respect to inclusion and if furthermore, for all total p ∈ I(D),

F (p) =
⋃

q⊆finp

F (q).

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

65

Let p ∈ I(D). The universe U(p) of p is defined as follows:

U(p) =
⋃

(a,α)∈dom(p)

(a ∪ {α, p(a, α)}).

If p is finite, then the universe of p is also finite.
Let p ∈ I(D) be finite, α ∈ D, ε̄ ≡ ε1, . . . , εk ∈ D \U(p) and k ∈ N. Then we

denote pε̄,α the extension of p such that

ε2 = ε1 → α; εj+1 = ε1 → εj (j = 2, . . . , k − 1); ε1 = ε1 → εk.

Notice that
ε1 = ε1 → ε1 → · · · → ε1 → α (k-times)

and pε̄,α is also finite.
Let e ⊆fin N. We let Me =

⋃
i∈eMi the set of n-regular mute terms for

n ∈ e.
The next theorem is the main technical tool for proving the easiness of the

full set of n-regular mute terms. It generalizes [8, Thm. 11].

Theorem 2. Let F : I(D) → P(D) be a weakly continuous function and let
e ⊆fin N. Then there exists a total pe : D∗×D → D such that (D, pe) |= t = F (pe)
for all terms t ∈Me.

Proof. We are going to build an increasing sequence of finite injective maps pn,
starting from p0 = ∅, and a sequence of elements αn ∈ D∪{∗}, where ∗ is a new
element, such that: pe =def ∪pn is a total injection, and (D, pe) |= t = A = F (pe)
for all t ∈Me, where A =def {αn : n ∈ ω} ∩D.

We fix an enumeration of D and an enumeration of D∗ ×D.
We start from p0 = ∅.
Assume that pn and α0, . . . , αn−1 have been built. We let

– αn = First element of F (pn) \ {α0, . . . , αn−1} in the enumeration of D, if
this set is non-empty, and αn = ∗ otherwise;

– (bn, δn) = “the first element in (D∗ ×D) \ dom(pn)”;
– γn = “the first element in D \ (U(pn) ∪ bn ∪ {δn} ∪ {α0, . . . , αn−1, αn})”.

Let r = pn ∪ {γn = bn →r δn}.
Case 1: αn = ∗. We let pn+1 = r.
Case 2: αn ∈ D.

Let e = {k1, . . . , km}. We define q0 ⊆ q1 ⊆ · · · ⊆ qm ∈ I(D) as follows: q0 = r
and pn+1 = qm. Assume we have defined qi. We define qi+1 = (qi)ε̄n,i,αn (see
above), where

ε̄n,i ≡ εn,i1 , . . . , εn,iki+1
∈ D \ (U(qi) ∪ {αn})

are distinct elements.
It is clear that pn is a strictly increasing sequence of well-defined finite injec-

tive maps and that pe = ∪pn is total.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

66

It is also clear that each pn (and pe) is partitioned into two disjoint sets:
pn = p1

n ∪ p2
n, where p1

n = {bi → δi = γi : 1 ≤ i ≤ n − 1} is called the gamma
part of pn and p2

n = pn \ p1
n is called the epsilon part.

For every γ ∈ D, we define

deg(γ) =

{
0 if γ /∈ rg(pe)

min{n : γ ∈ rg(pn)} if γ ∈ rg(pe)

Moreover, deg(c) = max{deg(x) : x ∈ c} for every c ⊆fin D.
The following lemmas easily derive from the construction of pe since (rg(pn+1)\

rg(pn)) ∩ U(pn) = ∅.

Lemma 5. If deg(a→ α) = n and α /∈ rg(pn), then α /∈ rg(pe).

Lemma 6. (i) deg(a→ α) ≥ deg(a), deg(α).
(ii) If a→ α is in the gamma part of pe, then deg(a→ α) > deg(a), deg(α).

Lemma 7. If αn ∈ rg(pe) then deg(αn) ≤ n.

Lemma 8. There exists no cycle β = c1 → c2 → . . . cm → β.

Proof. Consider a minimal cycle βi = ci → βi+1 (1 ≤ i ≤ m − 1) and βm =
cm → β1. By Lemma 6 we have deg(β1) ≥ deg(β2) ≥ · · · ≥ deg(βm) ≥ deg(β1).
Let us set this common degree equal to k + 1. If β1 = γk = bk →pk+1

δk then

δk = β2 has degree k + 1. This is not possible by Lemma 6(ii). If β1 = εk,ij then

εk,ij = c1 → c2 → . . . cm → εk,ij . From this it follows that either αk has degree k+1

(contradicting Lemma 7) or εk,ij = εk,ij−l (contradicting that the epsilon elements

are distinct) or εk,ij = αk (contradicting the definition of epsilon elements). This
concludes the proof of the lemma.

There remains to see that (D, pe) |= t = A = F (pe) for every t ∈Me.
A ⊆ F (pe): it follows from the definition of αn and from the fact that F (pn) ⊆

F (pe).
F (pe) ⊆ A: suppose γ ∈ F (pe); then, since F is weakly continuous, γ ∈ F (pm)

for some m (and for all the larger ones). If γ /∈ A then, for all n ≥ m, αn ∈ D
has smaller rank than γ in the enumeration of D, contradicting the fact that
there is only a finite number of such elements.

Let m ∈ e and t ≡ s0s1 . . . sm ∈Mm.
A ⊆ |t|pe : Let αn 6= ∗. The condition (D, pe) |= αn ∈ |t|pe follows immediately
from Lemma 3 and the fact that

εn,m1 = εn,m1 → εn,m1 → · · · → εn,m1 → αn (m-times).

|t|pe ⊆ A: Assume by contraposition that γ ∈ |t|pe and γ 6= αn for every n.
Then by Lemma 4 there exist a sequence βj ≡ aj1 → · · · → ajm → γ (j ∈ ω) of
elements of D and a sequence dj (j ∈ ω) of natural numbers ≤ m satisfying the

property βj+1 ∈ ajdj .

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

67

By Lemma 6 and by βj+1 ∈ ajdj the sequence deg(βj) is an infinite decreas-

ing sequence of natural numbers. Then there exists j such that deg(βj+i) =
deg(βj) = n for all i ≥ 0. Since pn is finite, it must exist k ≥ j and l > 0 such
that βk = βk+l.

Moreover, n = deg(βk) ≥ deg(akdk → akdk+1 → · · · → γ) ≥ deg(βk+1) = n

because βk+1 ∈ akdk . Then deg(ak+i
dk+i
→ akdk+1 → . . . γ) = n for every i ≤ l. Since

ak+i
dk+i

cannot be {ε1} (otherwise βk+i+1 = ε1 and γ = αn) and there is exactly

one pair (bn−1, δn−1) such that ((bn−1, δn−1), γn−1) ∈ p1
n \ pn−1, then

ak+i
dk+i
→ (akdk+i+1 → . . . γ) = ak+j

dk+j
→ (akdk+j+1 → . . . γ), for every i, j ≤ l.

This implies that ak+i
dk+i

= ak+j
dk+j

, etc. Since by Lemma 8 there are no cycles,

then we get βk = βk+1 = · · · = βk+l−1 = βk+l. It follows that βk ∈ akdk . Since

akdk → akdk+1 → · · · → γ belongs to the gamma part of pe, this contradicts
Lemma 6(ii).

Definition 6. (Forcing) For a term M , a partial pair (D, q), a D-environment
ρ and α ∈ D, the abbreviation q
ρ α ∈ M means that for all total injections
p ⊇ q we have that (D, p) |= α ∈ |M |pρ. Furthermore q
ρ X ⊆ M means that
q
ρ α ∈M for all α ∈ X.

If M is closed we write q
 α ∈M for q
ρ α ∈M .
Thus, for p is total, p
 α ∈M if and only if α ∈ |M |p.

Lemma 9. For every term M and environment ρ the function FM,ρ : I(D) →
P(D) defined by FM,ρ(q) = {α ∈ D : q
ρ α ∈ M} is weakly continuous, and
we have FM,ρ(p) = |M |pρ for each total p.

Proof. The proof of the weak continuity of FM,ρ is a straightforward induction
on the complexity of M . Let p ∈ Q be total. We have to show that FM,ρ(p) =⋃
q⊆finp

FM,ρ(q) = |M |pρ.
If M is a variable x then Fx,ρ(q) = {α ∈ D : q
 α ∈ ρ(x)} is the constant

function with value ρ(x).
If M = PQ and α ∈ |M |pρ, then there exists a ⊆ |Q|pρ such that p(a, α) ∈ |P |pρ.

Choose such an a and let γ = p(a, α). By induction hypothesis there is a finite
q ⊆ p such that q
ρ a ⊆ Q and a finite r ⊆ p such that r
ρ γ ∈ P ; then it is
clear that q ∪ r ∪ {((a, α), γ)}
 α ∈M.

If M = λx.P and α ∈ |M |pρ then there is a unique pair (b, β) such that
α = p(b, β) and β ∈ |P |pρ[x:=b]. By induction hypothesis there is a finite q ⊆ p

such that q
ρ[x:=b] β ∈ P ; then it is clear that q ∪ {((b, β), α)}
ρ α ∈M.

Theorem 3. Let M be a closed term. Then, for every e ⊆fin ω there exists
a graph model (D, pe) such that (D, pe) |= t = M for all regular mute terms
t ∈Me.

Proof. It is sufficient to consider an arbitrary environment ρ, the weakly con-
tinuous map FM,ρ : I(D) → P(D) defined in Lemma 9 and the graph model
(D, pe) defined in Theorem 2.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

68

6 Ultraproducts

Ultraproducts result from a suitable combination of the direct product and quo-
tient constructions. They were introduced in the 1950’s by Loś.

Let I be a non-empty set and let {Ai}i∈I be a family of combinatory algebras.
Let U be a proper ultrafilter of the boolean algebra P(I). The relation ∼U , given
by a ∼U b ⇐⇒ {i ∈ I : a(i) = b(i)} ∈ U , is a congruence on the combinatory
algebra

∏
i∈I Ai. The ultraproduct of the family {Ai}i∈I , noted (

∏
i∈I Ai)/U ,

is defined as the quotient of the product
∏
i∈I Ai by the congruence ∼U . If

a ∈ ∏i∈I Ai, then we denote by a/U the equivalence class of a with respect
to the congruence ∼U . If all members of {Ai}i∈I are λ-models, by a celebrated
theorem of Loś we have that (

∏
i∈I Ai)/U is a λ-model too, because λ-models

are axiomatized by first-order sentences. The basic combinators of the λ-model
(
∏
i∈I Ai)/U are k/U and s/U , and application is given by x/U ·y/U = (x·y)/U ,

where the application x · y is defined pointwise.
We now recall the famous Loś theorem.

Theorem 4 (Loś). Let L be a first-order language and {Ai}i∈I be a family
of L-structures indexed by a non-empty set I an let U be a proper ultrafilter of
P(I). Then for every L-formula ϕ(x1, . . . , xn) and for every tuple (a1, . . . , an) ∈∏
i∈I Ai we have that

(
∏

i∈I
Ai)/U |= ϕ(a1/U, . . . , an/U) ⇐⇒ {i ∈ I : Ai |= ϕ(a1(i), . . . , an(i))} ∈ U.

The following theorem is [12, Theorem 4.5].

Theorem 5. Let (Dj , pj)j∈J be a family of total pairs, A = (Aj : j ∈ J) be
the corresponding family of graph λ-models, where Aj = (P(Dj), ·,k, s), and let
F be an ultrafilter on J . Then there exists a graph model (E, q) such that the
ultraproduct (Πj∈JAj)/F can be embedded into the graph λ-model determined
by (E, q).

Theorem 6. Let M be a closed term and M =
⋃
n∈NMn be the set of all

regular mute λ-terms. Then there exists a total pair (E, q) such that

(E, q) |= M = t, for every t ∈M.

Proof. Let
K := {e ⊆ N : e is finite}

and F be a non-principal ultrafilter on P(K) that contains the set

Kn = {e : n ∈ e}, for each n ∈ N.

Hence F contains

Ke = {d : e ⊆ d} for each e ⊆fin N.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

69

For every e ⊆ N, let (D, pe) be the total pair determined by Theorem 3 and define
Ae be the corresponding graph λ-model. We show that (Πe∈KAe)/F |= M = t
for every t ∈M. Let t ∈Mn. Since

Kn ⊆ {e : Ae |= M = t}.

and Kn ∈ F then we have that (Πe∈KAe)/F |= M = t and the conclusion is
obtained.

References

1. Alessi, F., Dezani-Ciancaglini, M., Honsell, F.: Filter models and easy terms, Italian
Conference on Theoretical Computer Science, LNCS 2202, Springer-Verlag, 17–37,
2001.

2. Alessi, F., Lusin, S.: Simple easy terms, in S. van Bakel (ed.), Intersection Types
and Related Systems, ENTCS 70, Elsevier, 2002.

3. Baeten, J., Boerboom, B.: Omega can be anything it should not be, in Proceedings
of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie A, Indag.
Mathematicae 41, p.111–120, 1979.

4. Barendregt, H.P.: The lambda-calculus, its syntax and semantics, Studies in Logic
vol. 103, North Holland, revised edition 1984.

5. Berarducci, A.: Infinite λ-calculus and non-sensible models, in Logic and Algebra,
eds. A. Ursini and P. Agliano, Lecture Notes in Pure and Applied Mathematics
180, Marcel Dekker Inc., 1996.

6. Berarducci, A., Intrigila, B.: Some new results on easy λ-terms, Theoretical Com-
puter Science 121, 71–88, 1993.

7. Berline, C.: From Computation to foundations via functions and application: The
lambda-calculus and its webbed models, Theor. Comput. Sci. 249, 81–161, 2000.

8. Berline, C., Salibra, A.: Easiness in graph models, Theoretical Computer Science
354(1), 4–23, 2006.

9. Bucciarelli, A., Salibra, A.: The minimal graph-model of lambda-calculus, 28th
Internat. Symp. on Math. Foundations of Comput. Science, LNCS 2747, Springer-
Verlag, 2003.

10. Bucciarelli, A., Salibra, A.: The sensible graph theories of lambda-calculus,
LICS’04.

11. Bucciarelli, A., Salibra, A.: Graph lambda-theories, Mathematical Structures in
Computer Science 18(5), 975–1004, 2008.

12. Bucciarelli, A., Carraro, A., Salibra, A.: Minimal lambda-theories by ultraproducts,
EPTCS 113, 2012.

13. Carraro, A., Salibra, A.: Easy lambda-terms are not always simple, RAIRO - Theor.
Inform. and Applic. 46(2), 291–314, 2012.

14. Engeler, E.: Algebras and combinators, Alg. Univ. 13(3), 289–371, 1981.

15. Jacopini, C.: A condition for identifying two elements in whatever model of com-
binatory logic, in C. Böhm, ed., LNCS 37, Springer Verlag, 1975.

16. Jacopini, C., Venturini-Zilli, M.: Easy terms in the lambda-calculus, Fundamenta
Informaticae VIII.2, 225–233, 1985.

17. Jiang, Y.: Consistency of a λ-theory with n-tuples and easy terms, Archives of
Math. Logic, 34(2), 79–96, 1995.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

70

18. Kerth, R.: Isomorphism and equational equivalence of continuous λ-models, Studia
Logica 61, 403–415, 1998.

19. Kerth, R.: Isomorphisme et équivalence équationnelle entre modèles du λ-calcul,
Thèse, Université Paris 7, 1995.

20. Kerth, R.: Forcing in stable models of untyped λ-calculus, Indagationas Mathe-
maticae 10 , 59–71, 1999.

21. Longo, G.: Set-theoretical models of λ-calculus : theories, expansions and isomor-
phisms, Annals of Pure and Applied Logic 24, 153–188, 1983.

22. Plotkin, G.: A set-theoretical definition of application, Memorandum MIP-R-95,
School of artificial intelligence, University of Edinburgh, 1972.

23. Zylberajch, C.: Syntaxe et sémantique de la facilité en λ-calcul, Thèse, Université
Paris 7, 1991.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

71

72

Relating threshold tolerance graphs to other graph
classes

Tiziana Calamoneri1? and Blerina Sinaimeri2

1 Sapienza University of Rome
via Salaria 113, 00198 Roma, Italy.

2 INRIA and Université de Lyon
Université Lyon 1, LBBE, CNRS UMR558, France.

Abstract. A graph G = (V, E) is a threshold tolerance if it is possible to associate
weights and tolerances with each node of G so that two nodes are adjacent exactly
when the sum of their weights exceeds either one of their tolerances. Threshold
tolerance graphs are a special case of the well-known class of tolerance graphs
and generalize the class of threshold graphs which are also extensively studied
in literature. In this note we relate the threshold tolerance graphs with other im-
portant graph classes. In particular we show that threshold tolerance graphs are
a proper subclass of co-strongly chordal graphs and strictly include the class of
co-interval graphs. To this purpose, we exploit the relation with another graph
class, min leaf power graphs (mLPGs).

Keywords: threshold tolerance graphs, strongly chordal graphs, leaf power graphs,
min leaf power graphs.

1 Introduction

In the literature, there exist hundreds of graph classes (for an idea of the variety and
the extent of this, see [2]), each one introduced for a different reason, so that some of
them have been proven to be in fact the same class only in a second moment. It is the
case of threshold graphs, that have been introduced many times with different names
and different definitions (the interested reader can refer to [13]). Threshold graphs play
an important role in graph theory and they model constraints in many combinatorial
optimization problems [8, 12, 17]. In this paper we consider one of their generalizations,
namely threshold tolerance graphs.

A graph G = (V, E) is a threshold tolerance graph if it is possible to associate
weights and tolerances with each node of G so that two nodes are adjacent exactly
when the sum of their weights exceeds either of their tolerances. More formally, there
are positive real-valued functions, weights g and tolerances t on V such that {x, y} ∈ E
if and only if g(x) + g(y) ≥ min (t(x), t(y)). In the following we denote by TT the class

? This work was supported in part by the Italian Ministry of Education, University, and Research
(MIUR) under PRIN 2012C4E3KT national research project “AMANDA’ - Algorithmics for
MAssive and Networked DAta”

73

of threshold tolerance graphs and indicate with G = (V, E, g, t) a graph in this class.
Threshold tolerance graphs have been introduced in [14] as a generalization of threshold
graphs (we refer to this class by Thr). Indeed, threshold graphs constitute a proper
subclass, and can be obtained by defining the tolerance function as a constant [15].
Specifically, a graph G = (V, E) is a threshold graph if there is a real number t and for
every vertex v in V there is a real weight av such that: {v,w} is an edge if and only if
av + aw ≥ t ([15, 13]).

A chord of a cycle is an edge between two non consecutive vertices x, y of the
cycle. A chord between two vertices x, y in an even cycle C is odd, when the distance
in C between x and y is odd. A graph is chordal if every cycle of length at least 4 has a
chord.

A graph is strongly chordal if it is chordal and every cycle of even length at least 6
has an odd chord.

Strongly chordal graphs can be also characterized in terms of excluding subgraphs.
A k-sun (also known as trampoline), for k ≥ 3, is the graph on 2k vertices obtained from
a clique {c1, . . . , ck} on k vertices and an independent set {s1, . . . , sk} on k vertices and
edge {si, ci}, {si, ci+1} for all 1 ≤ i < k, and {sk, ck}, {sk, c1}.

A graph is strongly chordal if and only if it does not contain either a cycle on at least
4 vertices or a k-sun as an induced subgraph [10]. Strongly chordal graphs are a widely
studied class of graphs that is characterized by several equivalent definitions that the
interested reader can find in [2]. We will call SC the class of strongly chordal graphs.

A graph is co-strongly chordal if its complement is a strongly chordal graph.

It is known [15] that every threshold tolerance graph is co-strongly chordal but it
is not known whether there exist graphs that are co-strongly chordal but not threshold
tolerance; in other words, it is not known whether the inclusion is strict or not. In fact, in
ISGCI (Information System on Graph Classes ands their Inclusions) [9] it is conjectured
that these two classes could be possibly equal.

We provide a graph that belongs to the class of co-strongly chordal graphs but not
to the class of threshold tolerance graphs, so proving that these two classes do not
coincide.

A graph is a tolerance graph [11] if to every node v can be assigned a closed interval
Iv on the real line and a tolerance tv such that x and y are adjacent if and only if |Ix∩ Iy| ≥
min{tx, ty}, where |I| is the length of the interval I. We will call Tol the class of tolerance
graphs.

A graph is an interval graph if it has an intersection model consisting of intervals
on a straight line. Clearly interval graphs are included in tolerance graphs and can be
obtained by fixing a constant tolerance function. We will call Int the class of interval
graphs.

It is known that co-Tol includes TT and that TT includes co-Int; while it can be easily
derived that co-Tol properly includes TT , it is not known whether the other inclusion
is strict or not (again, in ISGCI [9] it is conjectured that TT could be possibly equal to
co-Int). We prove that both the inclusions are proper.

T.Calamoneri et al. Relating threshold tolerance graphs to other graph classes

74

2 Preliminaries

In order to prove that TT is properly included in co-SC, we need to introduce the classes
of leaf power graphs (LPG) and min leaf power graphs (mLPG).

A graph G(V, E) is a leaf power graph [16] if there exists a tree T , a positive edge
weight function w on T and a nonnegative number dmax such that there is an edge {u, v}
in E if and only if for their corresponding leaves in T , lu, lv, we have dT,w(lu, lv) ≤ dmax,
where dT,w(lu, lv) is defined as the sum of the weights of the edges of T on the (unique)
path between lu and lv. In symbols, we will write G = LPG(T,w, dmax).

A t-caterpillar is a tree in which all the nodes are within distance 1 of a central path,
called spine, constituted of t nodes.

Although there has been a lot of work on this class of graphs (for a survey on this
topic see e.g. [1]), a complete description of leaf power graphs is still unknown.

The following result is particularly relevant for our reasoning.

Fact 1 [1] LPG is a proper subclass of SC. Furthermore, the graph in Figure 1 is a
strongly chordal graph and not a leaf power graph.

Fig. 1: A strongly chordal graph which is not in LPG [1].

The class mLPG is defined similarly to the class of leaf power graphs reversing the
inequality in the definition. Formally, a graph G = (V, E) is a min leaf power graph
(mLPG) [4] if there exists a tree T , a positive edge weight function w on T and an
integer dmin such that there is an edge (u, v) in E if and only if for their corresponding
leaves in T lu, lv we have dT,w(lu, lv) ≥ dmin; in symbols, G = mLPG(T,w, dmin).

In [3] it is proved that LPG ∩ mLPG is not empty, and that neither of the classes
LPG and mLPG is contained in the other. Furthermore, a number of papers deal with
this class with a special focus on the intersection with LPGs (e.g. see [5–7]).

The next result will be useful in the following.

Fact 2 [3] The class co-LPG coincides with mLPG and, vice-versa, the class co-mLPG
coincides with LPG.

T.Calamoneri et al. Relating threshold tolerance graphs to other graph classes

75

The main issue related to LPG and mLPG is to prove that a certain class belongs
to them by providing a constructive method that, given a graph, defines tree T , edge-
weight function w and value dmin or dmax.

In the next section we will prove that threshold tolerance graphs are mLPGs and use
this fact to separate the class TT from other graph classes.

3 Threshold tolerance graphs are mLPGs

Before proving the main result of this section, i.e. that threshold tolerance graphs are
mLPGs, we need to demonstrate a preliminary lemma stating that, when we deal with
threshold tolerance graphs, w.l.o.g. we can restrict ourselves to the case when g and t
take only positive integer values.

Lemma 1. A graph G = (V, E) is a threshold tolerance if and only if there exist two
functions g, t : V → N+ such that (V, E, g, t) is threshold tolerance.

Proof. Clearly if f , g exist then by definition G is a threshold tolerance graph. Suppose
now G is a threshold tolerance graph which weight and tolerance functions g and t are
both defined from V to R+. We show that nevertheless, it is not restrictive to assume that
g, t : V → Q+ in view of the density of rational numbers among real numbers. So, we
can assume that, for each v ∈ V , t(v) = nv/dv. Let m be the minimum common multiple
of all the numbers dv, v ∈ V . So we can express t(v) as t(v) =

nv·m/dv
m where m/dv is an

integer.
Define now the new functions g′ and t′ as g′(v) = g(v) ·m and t′(v) = t(v) ·m, v ∈ V .

Clearly, it holds that g′ : V → Q+ while t′ : V → N+.
In order to prove the claim, it remains to prove that g′ and t′ define the same graph

defined by t and g. This descends from the fact that g′(x) + g′(y) = (g(x) + g(y)) · m ≥
min(t(x), t(y)) · m = min(t′(x), t′(y)) if and only if g(x) + g(y) ≥ min(t(x), t(y)). ut

Theorem 1. Threshold tolerance graphs are mLPGs.

Proof. Let G = (V, E, g, t) be a threshold tolerance graph. Let K = maxv t(v). In view
of Lemma 1, it is not restrictive to assume that g : V → N+, so we split the nodes of G
in groups S 1, . . . , S K such that S i = {v ∈ V(G) : t(v) = i}. Observe that for some values
of i the set S i can be empty. We associate to G a caterpillar T as in Figure 2.

The spine of the caterpillar is formed by K nodes, x1, . . . , xK , and each node xi is
connected to the leaves lv corresponding to nodes v in S i. The weights w of the edges
of T are defined as follows:
− For each edge of the spine w(xi, xi+1) = 0.5 for 0 ≤ i ≤ K − 1.
− For each leaf lv connected to the spine through node xi we assign a weight w(v, xi) =

g(v) +
K−t(v)

2 .
We show that G = mLPG(T,w,K). To this purpose consider two nodes u and v

in G. By construction, in T we have that lu is connected to xt(u) and lv to xt(v), where
t(u) and t(v) are not necessary distinct. Clearly, w.l.o.g we can assume t(v) ≥ t(u), i.e.
t(u) = min (t(u), t(v)). We have that

T.Calamoneri et al. Relating threshold tolerance graphs to other graph classes

76

Fig. 2: The caterpillar used in the proof of Theorem 1 to prove that threshold tolerance graphs
are in mLPG.

dT (lu, lv) = w(lu, xt(u)) +
t(v) − t(u)

2
+ w(lv, xt(v))

= g(u) +
K − t(u)

2
+

t(v) − t(u)
2

+ g(v) +
K − t(v)

2
= g(u) + g(v) + K − t(u)

Clearly, dT (lu, lv) ≥ K if and only if g(u) + g(v) ≥ t(u) = min (t(u), t(v)) and this
proves the assertion. ut

Now we are ready to prove the following Theorem.

Theorem 2. TT $ co-SC.

Proof. Observe that according to the previous facts, TT are included in mLPG which
in turn is strictly included in co-strongly chordal class of graphs. This proves the claim.

ut

(a) (b)

Fig. 3: (a) S 3 (b) S̄ 3

4 Separating threshold tolerance graphs from other graph classes

It is known [15] that co-Tol ⊆ TT . This inclusion is in fact proper; indeed, the sun
of dimension 3, S 3, shown in Figure 3(a), is a tolerance graph but not a co-threshold
tolerance graph [15]. It follows that its complement, S̄ 3, shown in Figure 3(b), is a
co-tolerance graph but not a threshold tolerance graph, so proving co-Tol ⊂ TT .

It is easy to see that the graph S 3 belongs to the class of split antimatchings that
are provably included in LPG but not in mLPG [4]. Furthermore, S̄ 3 is a co-threshold

T.Calamoneri et al. Relating threshold tolerance graphs to other graph classes

77

tolerance graph [15], i.e. S 3 is a threshold tolerance graph;finally, S̄ 3 is a split matching,
and hence included in mLPG but not in LPG [4].

These inclusions prove the following:

(a) (b)

Fig. 4: Graphical representation of the known inclusions among the classes handled in this paper.

Theorem 3. The classes TT \ LPG and co-TT \mLPG are not empty.

Collecting these results and those reported in [4, 15] about S 3 and S̄ 3 we can finally
conclude that S 3 ∈ (Tol ∩ TT)\ (co-TT∪ co-Int) while S̄ 3 ∈ (co-TT∩ co-Tol) \ (TT ∪
Int). The results obtained are depicted in Fig. 4.

5 Conclusions and Open Problems

In this paper, we clarified the relation between some classes of graphs. In particular,
we have been able to position some special graphs, in order to prove that some class
inclusions are strict. In particular, we proved that threshold tolerance graphs are strictly
included in co-strongly chordal graphs, so confuting a conjecture reported in [9]. In
order to do this, we exploit mLPGs deducing as a side effect that threshold tolerance
graphs are mLPGs.

We summarize the obtained results in the two diagrams of Figure 4, from which it
naturally arises an interesting open problem: how are related tolerance graphs and leaf
power graphs (and, analogously, co-tolerance and min leaf power graphs)?

References

1. A. Brandstädt, On Leaf Powers, Technical report, University of Rostock, (2010).
2. A. Brandstädt, V. B. Le, J. Spinrad, Graph classes: a survey, SIAM Monographs on discrete

mathematics and applications (1999).
3. T. Calamoneri, E. Montefusco, R. Petreschi, B. Sinaimeri, Exploring Pairwise Compatibility

Graphs, Theoretical Computer Science , 468 (2013) 23–36.

T.Calamoneri et al. Relating threshold tolerance graphs to other graph classes

78

4. T. Calamoneri, R. Petreschi, B. Sinaimeri, On relaxing the constraints in pairwise compati-
bility graphs, In: Md. S. Rahman and S.-i. Nakano (Eds.), WALCOM 2012, LNCS vol. 7157,
Springer, Berlin (2012) 124–135.

5. T. Calamoneri, R. Petreschi, B. Sinaimeri, On the Pairwise Compatibility Property of Some
Superclasses of Threshold Graphs, Discrete Mathematics, Algorithms and Applications, 5(2)
(2013).

6. T. Calamoneri, R. Petreschi, On pairwise compatibility graphs having Dilworth number two,
Theoretical Computer Science 524 (2014) 34–40.

7. T. Calamoneri, R. Petreschi, On Dilworth k Graphs and Their Pairwise Compatibility. WAL-
COM 2014, LNCS, Springer, Berlin (2014) 213–224.

8. V. Chvátal, P. L. Hammer, Set-packing and threshold graphs, Res.Report, Comp.Sci. Dept.
Univ. of Waterloo, Ontario, (1973).

9. H.N. de Ridder et al. Information System on Graph Classes and their Inclusions (ISGCI),
http://www.graphclasses.org.

10. M. Farber, Characterizations of strongly chordal graphs, Discrete Mathematics 43 (1983)
173–189.

11. M. C. Golumbic, C. L. Monma, W. T. Trotter Jr., Tolerance graphs, Discrete Applied Math-
ematics, 9(2), (1984) 157–170,

12. P. B. Henderson, Y. Zalcstein, A Graph-Theoretic Characterization of the PV-chunk Class of
Synchronizing Primitives. SIAM J.Comput 6(1), (1977) 88–108.

13. N.V.R. Mahadev, U.N. Peled, Threshold Graphs and Related Topics, Elsevier, (1995).
14. C.L. Monma, B. Reed, W.T. Trotter Jr., A generalization of threshold graphs with Tolerance,

Congressus Numerantium 55 (1986) 187–197.
15. C.L. Monma, B. Reed, W.T. Trotter Jr., Threshold Tolerance Graphs, J. Graph Theory 12

(1988) 343–362.
16. N. Nishimura, P. Ragde, D. M. Thilikos, On graph powers for leaf-labeled trees, J. Algo-

rithms 42 (2002) 69–108.
17. E. T. Ordman, Minimal threshold separators and memory requirements for synchronization,

SIAM Journal on Computing, Vol. 18, (1989) 152–165.

T.Calamoneri et al. Relating threshold tolerance graphs to other graph classes

79

80

Černý-like problems for finite sets of words ?

Arturo Carpi1 and Flavio D’Alessandro2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Via Vanvitelli 1, 06123 Perugia, Italy.

carpi@dmi.unipg.it
2 Dipartimento di Matematica, Università di Roma “La Sapienza”

Piazzale Aldo Moro 2, 00185 Roma, Italy.
dalessan@mat.uniroma1.it

Abstract. This paper situates itself in the theory of variable length
codes and of finite automata where the concepts of completeness and
synchronization play a central role. In this theoretical setting, we in-
vestigate the problem of finding upper bounds to the minimal length of
synchronizing and incompletable words of a finite language X in terms of
the length of the words of X. This problem is related to two well-known
conjectures formulated by Černý and Restivo respectively. In particular,
if Restivo’s conjecture is true, our main result provides a quadratic bound
for the minimal length of a synchronizing pair of any finite synchronizing
complete code with respect to the maximal length of its words.

Keywords: Černý conjecture, synchronizing automaton, incompletable
word, synchronizing set, complete set

1 Introduction

The concepts of completeness and synchronization play a central role in Com-
puter Science since they appear in the study of several problems on variable
length codes and on finite automata. According to a well-known result of Schü-
tzenberger, the property of completeness provides an algebraic characterization
of finite maximal codes, which are the objects used in Information Theory to
construct optimal sequential codings. Let X be a set of words on an alphabet
A. The set X is complete if any word on the alphabet A is a factor of some word
belonging to X∗, otherwise it is incomplete. In the latter case, any word which
is factor of no word of X∗ is said to be incompletable in X. In [18], Restivo
conjectured that a finite incomplete set X has always an incompletable word
whose length is quadratically bounded by the maximal length of the words of
X. Results on this problem have been obtained in [5, 14, 15, 18].

The property of synchronization plays a natural role in Information Theory
where it is relevant for the construction of decoders that are able to efficiently
cope with decoding errors caused by noise during the data transmission. A set

? This work was partially supported by MIUR project PRIN 2010/2011 “Automi e
Linguaggi Formali: Aspetti Matematici e Applicativi”.

81

X is synchronizing if there are two words u, v of X∗ such that whenever ruvs ∈
X∗, r, s ∈ A∗, one has also ru, vs ∈ X∗. The pair of words (u, v) is called
synchronizing pair of X.

In the study of synchronizing sets, the search for synchronizing words of min-
imal length in a prefix complete code is tightly related to that of synchronizing
words of minimal length for synchronizing complete deterministic automata and
the celebrated Černý Conjecture [12] (see also [1–3, 6–12, 16, 17, 20] for some re-
sults on the problem). In particular, in [2] (see also [3]), Béal and Perrin have
proved that a complete synchronizing prefix code X on an alphabet of d letters
with n code-words has a synchronizing word of length O(n2).

In this paper we are interested in finding upper bounds to the minimal lengths
of incompletable and synchronizing words of a finite set X in terms of the size
of X. We recall that the size of X is the parameter `(X) defined as the maximal
length of the words of X.

Let L be a class of finite languages. For all n, d > 0, we denote by RL(n, d)
the least positive integer r satisfying the following condition: any incomplete set
X ∈ L on a d-letter alphabet such that `(X) ≤ n has an incompletable word of
length r. Similarly, we denote by CL(n, d) the least positive integer c satisfying
the following condition: any synchronizing set X ∈ L on a d-letter alphabet such
that `(X) ≤ n has a synchronizing pair (u, v) such that |uv| ≤ c.

In this context, the main result of this paper provides a bridge between the
parameters RL(n, d) and CL(n, d). More precisely, denoting by F and by M
the classes of finite languages and of complete finite codes respectively, we show
that, for all n, d > 0,

CM(n, d) ≤ 2RF (n, d+ 1) + 2n− 2.

In particular, if Restivo’s conjecture is true, the latter bound gives

CM(n, d) = O(n2),

thus providing a quadratic bound in the size of the set for the minimal length
of a synchronizing pair of a finite synchronizing complete code.

In the second part of the paper, we study the dependence of the parameters
RL(n, d) and CL(n, d) upon the number of letters d of the considered alphabet,
by showing that both the parameters have a low rate of growth. More precisely,
we show that, for the class L of finite languages (resp. codes, prefix codes), we
have

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
,

and, for the class L of finite complete languages (resp. codes, prefix codes), we
have

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
.

A similar result is obtained also when L is the class of finite (not necessarily
complete) languages (resp. codes, prefix codes).

A.Carpi et al. Černý-like problems for finite sets of words

82

2 Preliminaries

In this section we shortly recall some basic results of the theory of automata
and of the theory of codes which will be useful in the sequel and we fix the
corresponding notation used in the paper. The reader can refer to [4, 13] for
more details.

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The identity of A∗ is called the empty word and is denoted by ε.
The length of a word w ∈ A∗ is the integer |w| inductively defined by |ε| = 0,
|wa| = |w| + 1, w ∈ A∗, a ∈ A. Given w ∈ A∗ and a ∈ A, we denote by |w|a
the number of occurrences of the letter a in w. For any finite set W of words we
denote by `(W) the maximal length of the words of W . The number `(W) will
be called the size of W . Given words u,w ∈ A∗, u is said to be a factor of w if
w = αuβ, for some α, β ∈ A∗. The set of all factors of w is denoted by Fact(w).
Given a set W of words, the set of the factors of all the words of W is denoted
by Fact(W). Similarly, given a word w, a word u is said to be a prefix of w if
w = uβ, for some β ∈ A∗. A set X is said to be prefix if, for any u, v ∈ X, with
v = uw, with w ∈ A∗, one has w = ε.

Definition 1. Let X be a subset of A∗. A pair of words (r, s) is an X-completion
of a word w if rws ∈ X∗. A word having an X-completion is a completable word
of X; conversely, a word with no X-completion is an incompletable word of X.
The set X is complete if all words of A∗ are completable words of X; X is
incomplete, otherwise.

Another crucial notion of this paper is that of synchronizing set.

Definition 2. A pair (u, v) ∈ X∗×X∗ is a synchronizing pair of X if for every
X-completion (r, s) of uv, it holds that

ru, vs ∈ X∗ .

The set X is synchronizing if it has a synchronizing pair.

The notion of synchronizing pair of a set is strictly related to that of constant.
A word c of X∗ is said to be a constant of X if, for every u1, u2, u3, u4 ∈ A∗ such
that u1cu2, u3cu4 ∈ X∗, one has u1cu4, u3cu2 ∈ X∗. The following result holds.

Lemma 1. Let X be a subset of A∗. If (u, v) is a synchronizing pair of X, uv
is a constant of X. Conversely, if c is a constant of X, (c, c) is a synchronizing
pair of X.

2.1 Complete and synchronizing codes

The notions of complete and synchronizing sets provide a rich structure in the
case that the set is a code. It is worth to shortly describe some fundamental
results on such sets. A set X of words over an alphabet A is said to be a (variable
length) code over A if it fulfills the unique factorization property, that is, for every

A.Carpi et al. Černý-like problems for finite sets of words

83

word u ∈ X∗, there exists a unique sequence x1, . . . , xk of words of X such that
u = x1 · · ·xk. A well-known example of codes is given by prefix sets. The notion
of code is strictly related to the one of monomorphism. Let A and B be two
alphabets. A map h : A∗ → B∗ is said to be a monomorphism or (sequential)
encoding if h is injective and, for every u, v ∈ A∗, one has h(uv) = h(u)h(v).
The following lemma shows a well-known link between the notion of code and
that of monomorphism.

Proposition 1. Let h : A∗ → B∗ be a monomorphism. Then the set X = h(A)
is a code over B. If X is a code over B and X has the same cardinality of A, then
every bijection between A and X can be extended to a (unique) monomorphism
h : A∗ → B∗.

In view of Proposition 1, the monomorphism defined by a prefix code will be
called prefix encoding. A submonoid of A∗ is said to be free if it is generated by
a code. An important result due to Schützenberger provides a characterization
of a free submonoid of A∗ in terms of a property called stability. A submonoid
N of A∗ is said to be stable if, for every word u ∈ A∗, the existence of words
n1, n2, n3, n4 of N such that n2 = un1 and n4 = n3u implies u ∈ N .

Theorem 1. Let N be a submonoid of A∗. Then N is a free submonoid of A∗

if and only if N is stable.

Let us finally recall some well-known results on codes.

Theorem 2. (Kraft-McMillan inequality) Let A be a d-letter alphabet with d ≥ 2
and let k1, . . . , kn be a finite sequence of positive integers such that

n∑

i=1

d−ki ≤ 1 .

Then k1, . . . , kn is the sequence of the code-word lengths of a prefix code over A.

Given a code X over an alphabet A, X is said to be maximal if it is not properly
contained in any other code over A. Let us recall another important result due
to Schützenberger. It provides a tight relation between maximal and complete
codes.

Theorem 3. Let A be a d-letter alphabet and let X be a regular code of A∗. The
following conditions are equivalent:

– X is a maximal code;
– X is a complete code;
–
∑

x∈X d−|x| = 1.

Given a set X over an alphabet A, X is said to be maximal prefix if it is prefix
and it is not properly contained in any other prefix code over A. In the case of
prefix codes we get:

A.Carpi et al. Černý-like problems for finite sets of words

84

Theorem 4. Let X be a prefix code of A∗ and suppose that X is a regular
language. The following conditions are equivalent:

– X is maximal prefix;
– X is right complete, that is, for every word u ∈ A∗, uA∗ ∩XA∗ 6= ∅;
– X is a maximal code.

It is worth recalling that Theorems 3 and 4 hold in the more general case of thin
codes that is, for all the subsets X of A∗ such that X ∩ A∗wA∗ = ∅, for some
word w ∈ A∗. Another relevant result concerning synchronizing and complete
codes is the following.

Theorem 5. Let X be a synchronizing and complete code. Then there exists a
constant c ∈ X∗ such that cA∗c ⊆ X∗. Conversely, if X is a code such that there
exists a word c ∈ X∗ with cA∗c ⊆ X∗, then X is synchronizing and complete.

2.2 Synchronizing automata and the Černý conjecture

A finite non-deterministic automaton is a tuple A = 〈Q,A, δ, I, F 〉 where Q is a
finite set of elements called states, δ is a map

δ : Q×A −→ P(Q),

where P(Q) is the power set of Q, and I, F are subsets of Q. The map δ is called
the transition function of A while I is called the set of the initial states and F
is the set of the final states. The canonical extension of the map δ to the set
Q × A∗ is still denoted by δ. If P is a subset of Q and u is a word of A∗, we
denote by δ(P, u) and δ(P, u−1) the sets:

δ(P, u) = {δ(s, u) | s ∈ P}, δ(P, u−1) = {s ∈ Q | δ(s, u) ∈ P}.

If no ambiguity arises, the sets δ(P, u) and δ(P, u−1) are denoted Pu and Pu−1,
respectively. With the automaton A, we can associate a directed labelled multi-
graph G = (Q,E), where the set E of edges is defined as E = {(p, a, q) ∈
Q×A×Q | q ∈ δ(p, a)}. We recall that if p, q ∈ Q, then q ∈ pu with u ∈ A∗, is

equivalent to the existence of a path c = p
u−→ q in G labelled by u. The label of

c is denoted by ||c||. A word u ∈ A∗ is said to be accepted by A if Iu∩F 6= ∅. The
language accepted by A, denoted by LA, is the set of all the words accepted by
A. An automaton A is said to be unambiguous if the following condition holds:
for every q1, q2, q3, q4 ∈ Q and for every u, v ∈ A∗ one has

q2, q3 ∈ q1u, q4 ∈ q2v ∩ q3v =⇒ q2 = q3.

An automaton A is said to be deterministic if for every q ∈ Q and for every
a ∈ A, Card(qa) ≤ 1.

An automaton A is said to be complete if for every u ∈ A∗, there exists some
q ∈ Q such that Card(qu) ≥ 1.

A.Carpi et al. Černý-like problems for finite sets of words

85

An automaton A is said to be transitive if for every p, q ∈ Q, there exists
u ∈ A∗ such that q ∈ pu. In the sequel, we will only consider automata A such
that I = F = {1}, that is, with a unique initial and final state denoted 1. In
particular, the tuple of the automaton A will be simply denoted A = 〈Q,A, δ, 1〉.
Moreover, in the sequel, we will only consider transitive automata.

An unambiguous automaton A is said to be synchronizing if there exist two
words w1, w2 ∈ A∗ such that Qw1 ∩Qw−12 = {1}.

As is well known, a deterministic automaton A is synchronizing if and only if
there is a word u such that Card(Qu) = 1. Such a word is said to be a synchro-
nizing word of A. The following celebrated conjecture has been raised in [12].

Černý Conjecture. Each synchronizing and complete deterministic automaton
with n states has a synchronizing word of length (n− 1)2.

Let us recall an important problem related to the Černý Conjecture. Let G
be a finite, directed multigraph with all its vertices of the same outdegree. Then
G is said to be aperiodic if the greatest common divisor of the lengths of all
cycles of the graph is 1. The graph G is called a Road coloring graph (RC-graph
for short) if it is aperiodic and strongly connected. A synchronizing coloring of
G is a labeling of the edges of G that transforms it into a complete, deterministic
and synchronizing automaton. The Road coloring problem asks for the existence
of a synchronizing coloring for every RC-graph. In 2007, Trahtman proved the
following remarkable result [19].

Theorem 6. Every RC-graph has a synchronizing coloring.

Let us conclude this section by recalling some well-known properties of the au-
tomaton that accepts the submonoid generated by a finite set (see, e.g., [6]). Let
X be a finite set of words over an alphabet A. By using a standard construction,
one can associate with X a transitive automaton denoted by AX = 〈Q,A, δ, 1〉
that accepts X∗.

Lemma 2. Let X be a regular code (resp., prefix set). Then AX is an unambigu-
ous (resp., deterministic) automaton. Conversely, let A be an automaton such
that LA = X∗ where X∩X2X∗ = ∅. If A is unambiguous (resp., deterministic),
then X is a code (resp. a prefix set).

Incompletable words of a regular set are characterized by the following.

Lemma 3. Let X be a regular set and A = 〈Q,A, δ, 1〉 be a transitive automaton
accepting X∗. Then w ∈ A∗ is a completable word of X if and only if Qw 6= ∅.

In particular, X is complete if and only if A is complete.

Similarly it is possible to characterize synchronizing pairs of regular codes [6].

Lemma 4. Let X be a regular code and A = 〈Q,A, δ, 1〉 be a transitive unam-
biguous automaton accepting X∗ and w1, w2 ∈ A∗. Then (w1, w2) is a synchro-
nizing pair of X if and only if w1w2 ∈ X∗ and Qw1 ∩Qw2

−1 = {1}.
Consequently, X is synchronizing if and only if A is synchronizing.

A.Carpi et al. Černý-like problems for finite sets of words

86

3 The main result

The main result of this paper is related to a problem that was formulated in [18]
by Restivo. Let L be a class of finite languages. For all n > 0 we set

RL(n) = sup
d≥1

RL(n, d) , CL(n) = sup
d≥1

CL(n, d) .

In [18], it was conjectured that if F is the class of all finite languages, then
RF (n) ≤ 2n2. If we restrict ourselves to prefix codes, we get

Proposition 2. ([18]) Let P be the class of finite prefix codes. Then

RP(n) ≤ 2n2.

However, in the general case, the previous bound was disproved in [14]. A more
general and larger counterexample is given in [15]. We can thus state a slightly
weaker version of the problem as follows.

Conjecture 1. (Restivo’s Conjecture) Let F be the class of all finite languages.
Then RF (n) = O(n2).

In this context, the main result of this paper is the following.

Proposition 3. Let M be the class of complete finite codes. For all n, d > 0,

CM(n, d) ≤ 2RF (n, d+ 1) + 2n− 2.

Before proving Proposition 3, it is convenient to discuss some interesting conse-
quences of this result. First, if Restivo’s conjecture is true, we get

CM(n, d) = O(n2).

Moreover, the bound above would be sharp, as we explain below. Consider the
prefix code Xn = aAn−1 ∪ bAn−2 on the alphabet A = {a, b}. The minimal
automaton accepting X∗n has been studied in [1], where it has been proved that
the minimal length of its synchronizing words is n2 − 3n + 3. From this, one
derives that any synchronizing pair (w1, w2) of Xn verifies |w1w2| ≥ (n− 1)2. In
particular, a synchronizing pair of Xn of minimal length is ((abn−2)n−1, ε). This
provides the lower bound

CM(n, 2) ≥ CP(n, 2) ≥ (n− 1)2,

for the parameter CM(n, 2).
It is also worth to do a remark on a recent result by Béal and Perrin. In [2]

(cf. also [3]), it is proved that a synchronizing complete prefix code X with n
code-words has a synchronizing word of length 2(n− 2)(n− 3) + 1. This result
is derived from an upper bound to the length of shortest synchronizing words
of synchronizing one-cluster automata. However, in view of Proposition 3 and
Restivo’s conjecture, this bound seems of no help in obtaining a good evaluation
of the parameter CP(n, 2), as one may have n ' 2`(X). This suggests that a
bound in term of the size of X may be more informative than a bound in terms
of the cardinality.

A.Carpi et al. Černý-like problems for finite sets of words

87

3.1 Proof of Proposition 3

Let us now proceed to prove Proposition 3. For this purpose, let X be a finite
complete synchronizing code over a d-letter alphabet A and let n = `(X). Let
AX = 〈Q,A, δ, 1〉 be the unambiguous automaton that accepts X∗. The proof
of Proposition 3 is based upon the following lemma.

Lemma 5. Let (v1, v2) be a synchronizing pair of X. Then, there exist words
w1, w2 ∈ A∗ such that

|w1|, |w2| ≤ RF (n, d+ 1), Qw1 ⊆ Qv1, Qw2
−1 ⊆ Qv−12 .

Indeed, assume that Lemma 5 holds. As X is complete, the word w1w2 has an X-
completion (r, s). With no loss of generality, we may suppose that |r|, |s| ≤ n−1.
Since (v1, v2) is a synchronizing pair, one has

Q(rw1) ∩Q(w2s)
−1 ⊆ Qw1 ∩Qw2

−1 ⊆ Qv1 ∩Qv2−1 = {1}.

Moreover, the word rw1w2s ∈ X∗ is accepted byAX and therefore there is a state
q ∈ Q such that q ∈ 1rw1 and 1 ∈ qw2s. Thus, q ∈ Q(rw1) ∩ Q(w2s)

−1 ⊆ {1},
that is, q = 1. This proves that rw1, w2s ∈ X∗ and by Lemma 4 (rw1, w2s) is a
synchronizing pair of X.

Now, our main goal is to prove Lemma 5. For the sake of simplicity, we will
prove the existence of the word w1 that fulfills the conditions of Lemma 5 since
the proof of the existence of the word w2 can be obtained by using a symmetric
construction. The main tool of this proof is a new automaton we construct below.

Let (v1, v2) be a synchronizing pair of X. If v1 = ε, the statement is trivially
verified by w1 = v1. Thus we assume v1 6= ε and set v1 = ua, with u ∈ A∗ and
a ∈ A.

Let a′ be a symbol not belonging to A and let A′ = A ∪ {a′}. We consider
a new automaton A′ = 〈Q,A′, δ′, 1〉 where the transition map δ′ is defined as
follows: for every q ∈ Q and a ∈ A, δ′(q, a) = δ(q, a) and

δ′(q, a′) =

{
δ(q, a) ∪ {1} if q /∈ δ(Q, u),

δ(q, a) \ {1} if q ∈ δ(Q, u).
(1)

It is useful to remark that, by construction, the automaton A′ is still transitive.
Let Y be the minimal generating set of the language accepted by A′. Thus,
LA′ = Y ∗ and Y ∩ Y 2Y ∗ = ∅.

Lemma 6. The set Y is incomplete.

Proof. By (1) one has δ′(Q, ua′) = δ(Q, ua)\{1} = δ(Q, v1)\{1} and δ′(Q, v−12) =
δ(Q, v2). Taking into account that (v1, v2) is a synchronizing pair of X, one de-
rives

δ′(Q, ua′) ∩ δ′(Q, v−12) = (δ(Q, v1) ∩ δ′(Q, v−12)) \ {1} = ∅ .
It follows that δ′(Q, ua′v2) = ∅. This equation proves that the automaton A is
not complete. Thus, by Lemma 3, Y is an incomplete set. ut

A.Carpi et al. Černý-like problems for finite sets of words

88

Lemma 7. It holds that `(Y) ≤ `(X).

Proof. In order to prove the statement, it is enough to show that, for every
y ∈ Y, there exists x ∈ X with |y| ≤ |x|.

Let y = a1 · · · ak ∈ Y , with ai ∈ A′, for i = 1, . . . , k. Since Y ∩ Y 2Y ∗ = ∅, in
the graph of A′ there is a path

c′ = 1
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk

ak−→ 1,

where, for every i = 1, . . . , k, qi 6= 1. Let us now construct a path c in the graph
of AX such that ||c|| = x ∈ X, with |x| ≥ |y|, so completing the proof.

By the definition of A′, any edge p
b−→ q of the graph of A′ with b 6= a′ is

also an edge of the graph of A. Moreover, if p
a′−→ q is an edge of the graph of A′

with q 6= 1, then p
a−→ q is an edge of the graph of A. Thus, by replacing in c′,

every transition qi
a′−→ qi+1, by qi

a−→ qi+1 and deleting the last edge qk
ak−→ 1,

we find a path

d = 1
b1−→ q1

b2−→ q2 · · ·
bk−1−→ qk

of the graph of A. Since A is transitive, one can catenate d with a simple path
from qk to 1. In such a way, we obtain a path c of the graph of A starting and
ending in 1, with all intermediate states distinct from 1 and length ≥ k + 1. As
is well known, as A is unambiguous, the label x of such a path is a word of the
minimal generating set X of X∗. Since |x| ≥ k + 1 = |y|, this completes the
proof. ut

We now prove the following lemma.

Lemma 8. Let v be an incompletable word of Y of minimal length. There exists
a word w1 ∈ A∗ such that

|w1| ≤ |v|, Qw1 ⊆ Qv1.

Proof. Let v be an incompletable word of Y of minimal length, with the number
|v|a′ as small as possible. Then, by Lemma 3, one has δ′(Q, v) = ∅.

The letter a′ necessarily occurs in v, since by the completeness of A, one
has δ′(Q, r) = δ(Q, r) 6= ∅ for all r ∈ A∗. Thus, we can write v = u1a

′u2, with
u1 ∈ A∗ and u2 ∈ A′∗.

Let us verify that δ(Q, u1) ⊆ δ(Q, u). Indeed, suppose the contrary. Then,
by (1), one has

δ′(Q, u1a
′) = δ(Q, u1a) ∪ {1} = δ′(Q, u1a) ∪ {1}

and consequently, δ′(Q, u1au2) ⊆ δ′(Q, u1a′u2) = ∅. Thus, u1au2 is an incom-
pletable word of Y , but this contradicts the minimality of |v|a′ .

We conclude that δ(Q, u1) ⊆ δ(Q, u) and therefore taking w1 = u1a and
recalling that v1 = ua, one has δ(Q,w1) ⊆ δ(Q, v1) and |w1| ≤ |v|. The statement
follows. ut

A.Carpi et al. Černý-like problems for finite sets of words

89

Let us finally remark that Lemma 7 and Lemma 8 yield

|w1| ≤ RF (n, d+ 1), Qw1 ⊆ Qv1.

The proof of Lemma 5 is thus complete.

4 Reduction to the binary case

The aim of this section is to study how much the parameters RL(n, d) and
CL(n, d) vary according to the cardinal number d of the alphabet. We start to
analyze the parameter RL(n, d). In the sequel, B denotes the binary alphabet
B = {a, b}. The following lemmas are needed for the proof of Proposition 4.

Lemma 9. Let Y ⊆ A∗ be a complete finite set. Then any word w of A∗ has a
Y -completion (y, s) with y ∈ Y ∗.

Lemma 10. Let h : A∗ → B∗ be a prefix encoding and Y ⊆ A∗. The set h(Y)
is complete if and only if Y and h(A) are complete.

Encoding a d-letter alphabet on a suitable complete binary prefix code one
obtains

Proposition 4. Let L be the class of finite languages (resp. codes). Then

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
. (2)

Proof. Let A be a d-letter alphabet and let X be a finite incompletable language
over A of size n. By Theorems 2 and 3, there exists a maximal prefix code Y
over B such that Card(Y) = d and, for every y ∈ Y , blog2 dc ≤ |y| ≤ dlog2 de.
Let h : A∗ → B∗ be a monomorphism constructed by Y . In particular, for every
a ∈ A, we have

blog2 dc ≤ |h(a)| ≤ dlog2 de. (3)

By (3) the size of h(X) is not greater than ndlog2 de. By Lemma 10, since X is
incompletable, h(X) is incompletable as well. Let v be an incompletable word
in h(X) of minimal length. Hence we have

|v| ≤ RL(dlog2 den, 2). (4)

Since h(A) is a complete prefix code, by Theorem 4, there exist u ∈ A∗ and
s ∈ B∗ such that h(u) = vs and by (3)

|u| ≤
⌈ |v|
blog2 dc

⌉
. (5)

Let us check that u is incompletable. By contradiction, deny. Then r′us′ ∈
X∗, for some r′, s′ ∈ A∗. Consequently, h(r′us′) = h(r′)vsh(s′) ∈ h(X∗), thus
implying that v is completable in h(X). Now (2) easily follows from the latter,
(4) and (5). ut

A.Carpi et al. Černý-like problems for finite sets of words

90

Let us now analyze the parameter CL(n, d). The next two lemmas are useful
for this purpose. In particular the following lemma is algebraically similar to
Lemma 10.

Lemma 11. Let h : A∗ → B∗ be a monomorphism and let Y ⊆ A∗ be a complete
set. The set h(Y) is synchronizing if and only if Y and h(A) are synchronizing.

Lemma 12. Let k1, . . . , kn, d > 0 be such that

gcd(k1, k2, . . . , kn) = 1 ,

n∑

i=1

d−ki = 1.

Then k1, . . . , kn are the code-word lengths of a synchronizing complete prefix code
over d letters.

Remark 1. It is worth noticing that a finite synchronizing complete prefix code
over d letters satisfies both the conditions of Lemma 12. Indeed, by Theorem 3,
if X = {x1, . . . , xn} is a complete code over d letters, one gets

∑n
i=1 d

−ki = 1.
Moreover, by Theorem 5, there exists a constant x ∈ X∗ for X such that xA∗x ⊆
X∗. Let γ = gcd(k1, k2, . . . , kn). Since, by the latter result, x2, xax ∈ X∗, with
a ∈ A, γ should divide both 2|x| and 2|x|+ 1, whence γ = 1.

As an application of the two lemmas above, encoding a d-letter alphabet on a
suitable complete binary synchronizing code, one obtains the following result:

Proposition 5. Let L be the class of finite complete languages (resp. codes,
prefix codes). Then

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
. (6)

A similar bound can be found also in the case where completeness is not
required:

Proposition 6. Let L be the class of finite languages (resp. codes, prefix codes).
Then

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

dlog2(d+ 1)e

⌉
. (7)

References

1. D. S. Ananichev, V. V. Gusev, M. V. Volkov, Slowly synchronizing automata and
digraphs, in: P. Hliněný, A. Kučera eds., MFCS 2010 Mathematical Foundations of
Computer Science, Lecture Notes in Comput. Sci. Vol. 6281, pp. 55–65, Springer,
Berlin, 2010.

2. M.-P. Béal, D. Perrin, A quadratic upper bound on the size of a synchronizing word
in one-cluster automata, in: V. Diekert, D. Nowotka eds., DLT 2009 Developments
in Language Theory, Lecture Notes in Computer Science, Vol. 5583, pp. 81–90,
Springer, Berlin, 2009.

A.Carpi et al. Černý-like problems for finite sets of words

91

3. M.-P. Béal, M. V. Berlinkov, D. Perrin, A quadratic upper bound on the size of
a synchronizing word in one-cluster automata, Int. J. Found. Comput. Sci., 22,
277–288, 2011.

4. J. Berstel, D. Perrin, Ch. Reutenauer, Codes and Automata, Encyclopedia of Math-
ematics and its Applications, 129, Cambridge University Press, 2009.

5. J. M. Boë, A. de Luca, A. Restivo, Minimal complete sets of words, Theoret.
Comput. Sci., 12, 325–332, 1980.

6. A. Carpi, On synchronizing unambiguous automata, Theoret. Comput. Sci., 60,
285–296, 1988.

7. A. Carpi, F. D’Alessandro, The Synchronization Problem for Strongly Transitive
Automata, in: M. Ito, M. Toyama eds., DLT 2008 Developments in Language The-
ory, Lecture Notes in Computer Science, Vol. 5257, pp. 240–251, Springer, Berlin,
2008.

8. A. Carpi, F. D’Alessandro, Strongly transitive automata and the Černý conjecture
Acta Informatica, 46, 591–607, 2009.

9. A. Carpi, F. D’Alessandro, The synchronization problem for locally strongly transi-
tive automata, in: R. Královič, D. Niwiński eds., MFCS 2009 Mathematical Founda-
tions of Computer Science, Lecture Notes in Comput. Sci., Vol. 5734, pp. 211–222,
Springer, Berlin, 2009.

10. A. Carpi, F. D’Alessandro, On the Hybrid Černý-Road coloring problem and
Hamiltonian paths, in: Y. Gao, H. Lu, S. Seki, S. Yu eds., DLT 2010 Develop-
ments in Language Theory, Lecture Notes in Comput. Sci., Vol. 6224, pp. 124–135,
Springer, Berlin, 2010.

11. A. Carpi, F. D’Alessandro, Independent sets of words and the synchronization
problem, Advances in Applied Mathematics, 50, 339–355, 2013.

12. J. Černý, Poznámka k. homogénnym experimenton s konečnými automatmi, Mat.
fyz. cas SAV, 14, 208–215, 1964.

13. A. de Luca, F. D’Alessandro, Teoria degli Automi Finiti, 68, Springer Italia, 2013.
14. G. Fici, E. V. Pribavkina, J. Sakarovitch, On the Minimal Uncompletable Word

Problem, CoRR, arXiv: 1002.1928, 2010.
15. V. V. Gusev, E. V. Pribavkina, On Non-complete Sets and Restivo’s Conjecture, in:

G. Mauri, A. Leporati eds., DLT 2011 Developments in Language Theory, Lecture
Notes in Comput. Sci., Vol. 6795, pp. 239–250, Springer, Berlin, 2011.

16. J. E. Pin, Le problème de la synchronization et la conjecture de Cerny, Thèse de
3ème cycle, Université de Paris 6, 1978.

17. J. E. Pin, Sur un cas particulier de la conjecture de Cerny, in: G. Ausiello, C.
Böhm eds., 5th ICALP Lecture Notes in Computer Science, Vol. 62, pp. 345–352,
Springer, Berlin, 1978.

18. A. Restivo, Some remarks on complete subsets of a free monoid, in: A. de Luca ed.,
Non-Commutative Structures in Algebra and Geometric Combinatorics, Interna-
tional Colloquium, Arco Felice, July 1978, Quaderni de “La Ricerca Scientifica”,
CNR, 109, 19–25, 1981.

19. A. N. Trahtman, The road coloring problem, Israel J. Math., 172, 51–60, 2009.
20. M. V. Volkov, Synchronizing automata and the Cerny conjecture, in: C. Mart́ın-

Vide, F. Otto, H. Fernau eds., LATA 2008 Language and Automata Theory and
Applications, Lecture Notes in Comput. Sci., Vol. 5196, pp. 11–27, Springer, Berlin,
2008.

A.Carpi et al. Černý-like problems for finite sets of words

92

Reasoning about connectivity without paths?

Alberto Casagrande Eugenio Omodeo
acasagrande@units.it eomodeo@units.it

Dep. of Mathematics and Geosciences
University of Trieste

Trieste, Italy

Abstract. In graph theory connectivity is stated, prevailingly, in terms
of paths. While exploiting a proof assistant to check formal reasoning
about graphs, we chose to work with an alternative characterization of
connectivity: for, within the framework of the underlying set theory, it
requires virtually no preparatory notions.
We say that a graphs devoid of isolated vertices is connected if no subset of
its set of edges, other than the empty set and the set of all edges, is vertex
disjoint from its complementary set. Before we can work with this notion
smoothly, we must prove that every connected graph has a non-cut vertex,
i.e., a vertex whose removal does not disrupt connectivity.
This paper presents such a proof in accurate formal terms and copes with
hypergraphs to achieve greater generality.

1 Introduction

Connectivity plays a crucial role not only in graph theory, but also in topology.
The number of connected components of a graph is a topological invariant,
it corresponds to the multiplicity of the eigenvalue 0 in the Laplacian matrix
that represents the graph, and, in the recent years, it has been related to the
number of claw-free subgraphs of the graph itself [1]. Because of the ubiquity of
this notion, it deserves an autonomous and insightful treatment in a large scale
formalization effort, such as the one envisioned in [8] or in [6].

Non-cut vertices are vertices whose removal preserves the graph connectivity.
The notion of connectivity is traditionally given in term of paths, and in such
terms one proves that any graph contains non-cut vertices. These vertices are
largely used in inductive proofs over connected graphs: the pattern is to apply
the inductive hypothesis to a graph deprived of a non-cut vertex and, then, to
prove that the investigated property is retained when the vertex is reinstated.

While formally defining the notion of path is not really a problem, from a
foundational point of view, it appears to be an out-of-focus effort in this context:
it would in fact bring into play notions (e.g., natural numbers) which are barely
related to the theme of discourse.
? This work has been partially supported by Istituto Nazionale di Alta Matematica

(INdAM).

93

This paper exploits a path-free notion of connectivity to formally prove that
connected undirected hypergraphs are always endowed with non-cut vertices.

Our immediate motivation for undertaking this study on connectivity is
a formalization task that has been successfully carried out recently with the
assistance of the proof checker Referee/Ætnanova [6]: as reported in [5], taking
advantage of the Milanič and Tomescu representation theorem for connected
claw-free graphs [4], we could achieve with relative ease the proof that any such
graph owns a near-perfect matching and has a Hamiltonian cycle in its square.
We took it for granted that every connected graph has a spanning tree. This left
us with a proof obligation, and since the existence of a spanning tree plainly
reduces to the proof that every connected graph has a non-cut vertex, we are
now beginning to fill the gap, with the formalization task on which we will
report below.

This paper is organized as follows: Section 2 introduces the notation and all
the needed notions. Section 3 formalizes the result aimed at and splits the proof
of it into multiple steps that are detailed in Sections 3.1, 3.2, and 3.3 (some basic
properties and technical lemmas are proved in the appendix). Finally, Section 4
draws our conclusions and suggests future work.

2 Preliminaries

We work with in the Zermelo-Fraenkel set theory (ZF) and all the notions treated
in this paper are defined through it. Besides the standard Boolean propositional
functions (i.e., ∧, ¬), the used formal language provides intersection (∩), union
(∪), and difference (\) over sets as well as both the membership (∈) and inclusion
(⊇) relations. From a formal point of view, the Boolean functions ∨ and→ and
the relations over sets <,), ⊆, (, =, and , are shortcuts for non-atomic formulæ
whose semantics is the standard one. While the notion of cardinality of a set is
not formally included in the adopted language, it is worthwhile to introduce
the relation |·|≥n that associates each finite set with the number of elements
belonging to it. This relation is not really necessary, but it enables more natural
definitions for the subsequent notions. The relation |·|≥n is defined as:

|S|≥n D
{ > if n = 0
∃v ∈ S |S \ {v}|≥n−1 otherwise

It is easy to see that, for any natural number n ∈ N and any set S, |S|≥n holds if
and only if |S| ≥ n.

We characterize finitude as proposed by Tarski [7]: a set S is finite if and only
if every not empty class of subsets of S contains an element which is minimal
with respect to ⊆. This clue is captured by the following definition

Finite (S) D ∀P ∈ ℘(℘(S)) \ {∅} ∃M ℘(M) ∩ P = {M}.
Tarski himself proved that if S is finite then every not empty class of subsets of
S contains also a maximal element [7].

The basic notions of (hyper)graph, edge, and node are defined as follows.

A.Casagrande et al. Reasoning about connectivity without paths

94

Definiton 1 An edge is a finite set endowed with at least two elements. A hypergraph
G is a finite set of edges, i.e., Graph (G) D Finite (G)∧∀e ∈ G

(|e|≥2 ∧ Finite (e)
)
. The

elements of the edges of G are called nodes, or vertices, of G.

By standard terminology, the word graph refers to hypergraphs whose edges
have cardinality 2. However, we take the freedom to abbreviate “hypergraph”
into “graph” because this work deals exclusively with the more general notion.

In accordance with the literature (e.g., see [2, 3]), our definition does not allow
graphs to have self-loops, namely singleton edges, and it explicitly requires that
each of the edges contains at least 2 distinct elements.

Any subset of a graph is a graph.

Lemma 1 P ⊆ G ∧Graph (G)→ Graph (P)

Proof. The claim follows directly from the definition of Graph (·).
Let Nodes (G), Cov (G,P), and Contains (G, v) represent the set of nodes of

G, the set of edges in G that share nodes with any edge in P, and the set of edges
in G that contain the node v. More formally,

Nodes (G) def
=

⋃

e∈G
e Cov (G,P) def

= {e ∈ G | e ∩Nodes (P) , ∅}

Contains (G, v) def
= {e ∈ G | v ∈ e}

If Contains (G, v) is a singleton, then v is said to be a boundary vertex.

a

c

b

d e

f

g

h

(a) A graph P ⊆ G

a

c

b

d e

f

g

h

(b) Cov (G,P)

a

c

b

d e

f

g

h

(c) Contains (G, a)

Fig. 1: In above figures, ovals represent the elements of G.

If, for every nonnull set P (G, P shares some nodes with the graph G \ P,
then G is said to be connected (in short, Conn (G)).

Conn (G) D Graph (G) ∧ ∀P (∅ (P (G→ Nodes (P) ∩Nodes (G \ P) , ∅)
If the graph G is connected and G \ {e} is not connected, then e is said to be a
cutting edge.

A.Casagrande et al. Reasoning about connectivity without paths

95

a

c

b

d e

f

Fig. 2: Let G and P be {{a, b}, {a, f }, {c, d, e}, {d, e}} and {{a, b}, {a, f }}, respectively.
The graph G is not connected as Nodes (P) ∩Nodes (G \ P) is empty and P (G.

Let us notice that it is not always the case that by removing a node v from
all edges of a graph G we get a graph. As a matter of fact, some of the edges of
G that contain v may have cardinality 2. If we remove v from such edges, we
obtain sets whose cardinality is 1 and, by definition of edge, these are not edges.
For instance, if G contains an edge {a, b} and v is a, then {a, b} \ {a} is {b}which is
not an edge because has cardinality 1.

Filter (G, v) is the set obtained by first removing v from all edges of G and
then filtering out all the resulting sets whose cardinality is less than 2. Since all
the elements of Filter (G, v) have cardinality 2 at least, Filter (G, v) is a graph by
definition of graph.

Filter (G, v) def
= {e \ {v} | e ∈ G ∧ |e \ {v}|≥2}

Notice that, if {v,w} is the only edge in G that contains w, then w does not be-
long to Nodes (Filter (G, v)). When we write Nodes (G), Cov (G,P), Contains (G, v),
or Filter (G, v), we implicitly assume that both of G and P are graphs.

Let G and v be a graph and a node, respectively. We define Lost (G, v) to be
the set of nodes of G that are not nodes of Filter (G, v) and differ from v.

Lost (G, v) def
= Nodes (G) \ (Nodes (Filter (G, v)) ∪ {v})

If Lost (G, v) is nonnull, then we say that v is a losing vertex of G and all of its
elements are said to be lost by v.

Whenever G is connected and either Filter (G, v) is not connected or some of
the nodes in G other than v do not belong to Filter (G, v), v is a cut vertex of G
(Cutting (G, v) holds).

Cutting (G, v) DConn (G) ∧ |G|≥2 ∧ (¬Conn (Filter (G, v)) ∨ Lost (G, v) , ∅)

We call non-cut vertex any vertex that is not a cut vertex.

3 Hypergraphs have non-cut vertices

Our goal is to provide a proof that every connected hypergraph contains a
non-cut vertex. This is encoded by the following corollary.

A.Casagrande et al. Reasoning about connectivity without paths

96

a

c

b

d e

f

(a) A graph G

c

b

d e

(b) Filter (G, a)

a b

d e

f

(c) Filter (G, c)

Fig. 3: The property Cutting (G, v) holds whenever Filter (G, v) is not con-
nected or it contains fewer nodes than Nodes (G) \ {v}. Both Cutting (G, a)
and Cutting (G, c) do hold since Filter (G, a) lost the node f (see Fig. 3b) and
Filter (G, c) is not connected (see Fig. 3c).

Corollary 1 Conn (G)→ (
G = ∅ ∨ ∃v ∈ Nodes (G) ¬Cutting (G, v)

)

We split the proof of above corollary into the proofs of two statements: (1)
if G has a losing vertex, then G has is a non-cut vertex (see Section 3.1); (2) any
connected hypergraph G contains a node v such that Filter (G, v) is connected
(see Section 3.3). By definition of Cutting (·), this suffices to yield the claim of
Corollary 1.

3.1 Losing vertices yield non-cut vertices

In this section, we prove that, if G has a losing vertex, then it has a non-cut
vertex too. The following theorem formalizes this statement.

Theorem 1 (Graph (G) ∧ Lost (G, v) , ∅)→ ∃v′ ∈ Nodes (G) ¬Cutting (G, v′)

First of all we need to prove that v is a losing vertex if and only if there exists
a vertex lost by v such that Contains (G, v′) = {{v, v′}}. By definition of Filter (·),
Filter (G, v) contains all the set e \ {v} such that e is an edge of G and e \ {v} has at
least cardinality 2. Hence, v′ , v is a node of G and it is not a node of Filter (G, v)
if and only if there exists an edge e ∈ G such that |e \ {v}| < 2. Since e has at least
cardinality 2 by definition of Graph (·), we can conclude that e equals {v, v′}.
Lemma 2 Graph (G)→ (v′ ∈ Lost (G, v)↔ Contains (G, v′) = {{v, v′}})
Proof. (→) By definition of Nodes (·), if v′ ∈ Nodes (G), then there exists e ∈ G
such that v′ ∈ e. Analogously, if v′ < Nodes (Filter (G, v)), then v′ < e′ for all
e′ ∈ Filter (G, v). However, Filter (G, v) = {e \ {v} | e ∈ G∧ |e \ {v}|≥2} by definition.
Hence, if v′ < Nodes (Filter (G, v)), either v′ < e \ {v} or |e \ {v}| < 2 for all
e ∈ G and, if v′ < Nodes (Filter (G, v)) and v′ ∈ Nodes (G), then either v′ = v or
|e \ {v}| < 2 for all e ∈ G such that v′ ∈ e. Since |e|≥2 by definition of Graph (·)
and v′ ∈ Nodes (G) \ (Nodes (Filter (G, v)) ∪ {v}) holds by hypothesis, e = {v, v′}
for all e ∈ G such that v′ ∈ e. Moreover, {v, v′} ∈ G because if v′ ∈ Nodes (G) \
(Nodes (Filter (G, v)) ∪ {v}), then v′ ∈ Nodes (G) and there exists e ∈ G such that
v′ ∈ e. By definition of Contains (·), it follows that Contains (G, v′) = {{v, v′}}.

A.Casagrande et al. Reasoning about connectivity without paths

97

(←) Let us assume that Contains (G, v′) = {{v, v′}}. By definition of Graph (·), if
e ∈ G, then |e|≥2. By definition of Contains (·), Contains (G, v′) ⊆ G and, thus,
{v, v′} ∈ G and v , v′. Moreover, v′ ∈ Nodes (G) by definition of Nodes (·) and
v′ < e for all e ∈ G\{{v, v′}} by definition of Contains (·). By definition of Filter (·),
Filter (G, v) is the set {e\{v} | e ∈ G∧|e \ {v}|≥2}. Since Contains (G, v′) = {{v, v′}} by
hypothesis, if |e \ {v}|≥2 holds, then v′ < e. Thus, v′ belongs neither to Filter (G, v)
nor to Filter (G, v)∪{v} because v , v′ and v′ ∈ Nodes (G)\(Filter (G, v)∪{v}). ut

Our next step is to prove that any boundary vertex is non-cut. Since v
belongs to a single edge, for every subset P of G, either v ∈ Nodes (P) and
v < Nodes (G \ P) or v < Nodes (P) and v ∈ Nodes (G \ P). In either case, if the
set Nodes (P) ∩ Nodes (G \ P) is nonnull, so is (Nodes (P) ∩ Nodes (G \ P)) \ {v}.
If G is connected, either G \ e is empty or v′ belongs to another edge of G. In the
former case, G \ e is connected. In the latter, Nodes (G) \ {v} = Nodes (G \ e) and
G \ e must be connected. Thus, if G is connected and v is contained exclusively
by an edge e whose cardinality is 2, then G \ e is still connected.

Lemma 3 (Conn (G) ∧ Contains (G, v) = {{v, v′}})→ Conn (G \ Contains (G, v))

Proof. Let us assume that there exist G0, v0, and v′0 such that both the for-
mulæ Conn (G0) and Contains (G0, v0) = {{v0, v′0}} hold, while the formula
Conn (G0 \ Contains (G0, v0)) does not. By definition of Conn (·), there exists
a nonnull set P0 such that P0 is a proper subset of G0 \ Contains (G0, v0) and
Nodes (P0)∩Nodes ((G0 \ Contains (G0, v0)) \ P0) = ∅. Thus, the set Nodes (P0)∩
Nodes ((G0 \ P0) \ Contains (G0, v0)) is empty. However, the formula Conn (G0)
holds and, since P0 is also a subset of G0, Nodes (P0) ∩ Nodes (G0 \ P0) must be
not empty by definition of Conn (·). By writing G0 \P0 as the union of (G0 \P0) \
Contains (G0, v0) and (G0 \ P0) ∩ Contains (G0, v0), we infer that Nodes (P0) ∩
(Nodes ((G0 \ P0) \ Contains (G0, v0))) ∪ Nodes ((G0 \ P0) ∩ Contains (G0, v0))) is
nonnull by Lemma 10. Hence, the set Nodes ((G0 \ P0) ∩ Contains (G0, v0)) ∩
Nodes (P0) , ∅, Nodes ((G0 \ P0) ∩ Contains (G0, v0)) , ∅, and, by the definition
of Nodes (·), (G0 \ P0)∩Contains (G0, v0) , ∅. Since Contains (G0, v0) = {{v0, v′0}},{v0, v′0} ∈ G0 \P0 and {v0, v′0} < P0. However, P0 ⊆ G0 and Contains (G0, v0) = {e ∈
G0 | v0 ∈ e} = {{v0, v′0}}; therefore Contains (P0, v0) = ∅, and v0 < Nodes (P0). More-
over, (G0 \ P0) ∩ Contains (G0, v0) must be subset of {{v0, v′0}} and, by Lemma 9,
Nodes ((G0 \ P0) ∩ Contains (G0, v0)) is subset of Nodes

(
{{v0, v′0}}

)
which is {v0, v′0}

by the definition of Nodes (·). The set Nodes ((G0 \ P0) ∩ Contains (G0, v0)) ∩
Nodes (P0) is nonnull; therefore it must equal {v′0}, and v′0 belongs to Nodes (P0).
It follows that:

Nodes (P0 ∪ Contains (G0, v0)) =

= Nodes (P0) ∪Nodes (Contains (G0, v0)) By Lemma 10

= Nodes (P0) ∪Nodes
(
{{v0, v′0}}

)
By hypothesis

= Nodes (P0) ∪ {v0, v′0} By definition of Nodes (·)
= Nodes (P0) ∪ {v0} Because v0 < Nodes (P0)

A.Casagrande et al. Reasoning about connectivity without paths

98

and, thus, Nodes (G0 \ (P0 ∪ Contains (G0, v0))) ∩Nodes (P0 ∪ Contains (G0, v0))
is equal to both the sets Nodes ((G0 \ Contains (G0, v0)) \ P0))∩(Nodes (P0)∪{v0})
and Nodes ((G0 \ Contains (G0, v0)) \ P0))∩ {v0}. However, G0 \Contains (G0, v0)
is equal to the set {e ∈ G0 | v0 < e} by definition of Contains (·). Hence,
v0 does not belong to Nodes (G0 \ Contains (G0, v0)) by definition of Nodes (·)
and it does not also belong to Nodes (G0 \ Contains (G0, v0) \ P0) by Lemma 9.
Thus, the set Nodes (G0 \ Contains (G0, v0) \ P0) ∩ {v0} is empty, so is the set
Nodes (G0 \ (Contains (G0, v0) ∪ P0))∩Nodes (P0 ∪ Contains (G0, v0)), and the for-
mula Conn (G0) does not hold by definition of Conn (·). Since this last statement
contradicts our assumptions, the claim must hold. ut

Lemma 3 allows us to prove that whenever a vertex v belongs to a single edge
e of G, G filtered w.r.t. v is still connected. As a matter of fact, Filter (G, v) contains
all the set e′ \ {v} that have at least cardinality 2. Since v belongs only to e, if e\ {v}
is still an edge, i.e., it contains at least two nodes, the proof is straightforward
because Nodes (G) \ {v} = Nodes (Filter (G, v)) and, thus, because of the above
remarks, Filter (G, v) is connected. If, instead, e \ {v} is not an edge, then there
exists a node v′ of G such that e = {v, v′} and Contains (G, v) = {{v, v′}}. As a matter
of fact, since G is connected either G\e is empty or v′ belongs to another edge of G.
In the former case, G\ e is connected. In the latter, Nodes (G)\ {v} = Nodes (G \ e)
and, because of the above remarks, G \ e = Filter (G, v) must be connected.

a

c

b

d e

f

(a) A graph G

a

c

d e

f

(b) Filter (G, b)

a

c

b

d e

(c) Filter
(
G, f

)

Fig. 4: If the set Contains (G, v) is a singleton and the hypergraph G is connected,
the hypergraph Filter (G, v) is connected and v is a non-cut vertex.

Lemma 4 (Conn (G) ∧ Contains (G, v) = {e})→ Conn (Filter (G, v))

Proof. By definition, the set Filter (G, v) is equal to {e′ \ {v} | e′ ∈ G ∧ |e′ \ {v}|≥2}.
Since Contains (G, v) = {e}, Filter (G, v) = (G \ {e}) ∪ {e \ {v}| |e \ {v}|≥2}. There
are two cases: |e \ {v}|≥2 does not hold or it does. In the former case, since |e|≥2
by definition of Graph (·), v ∈ e, there exists a v′ such that e = {v, v′}, and
Filter (G, v) = G \ {e}. The claim follows from Lemma 3. If, otherwise, |e \ {v}|≥2
holds, then Filter (G, v) = (G \ {e}) ∪ {e \ {v}}. Let us assume that there exist
G0, v0, and e0 such that both the formulæ Conn (G0) ∧ Contains (G0, v0) = {e0}
and ¬Conn (Filter (G0, v0)) hold. By definition of Conn (·), Nodes (G0 \ P) ∩
Nodes (P) , ∅ for all P such that ∅ (P (G0. Since ¬Conn (Filter (G0, v0))

A.Casagrande et al. Reasoning about connectivity without paths

99

holds, there exists a P0 such that ∅ (P0 ((G0 \ {e0}) ∪ {e0 \ {v0}} = Filter (G0, v0)
such that Nodes (P0) ∩ Nodes (Filter (G0, v0) \ P0) is empty. Let be P1 be one
of P0 and Filter (G0, v0) \ P0 such that e0 \ {v0} < P1. Of course, Nodes (P1) ∩
Nodes (Filter (G0, v0) \ P1) = ∅ and P1 ⊆ Filter (G0, v0) \ {e0 \ {v0}} ⊆ G0. The set
Filter (G0, v0)\P1 is equal to ((G0\{e0})\P1)∪{e0\{v0}} and to ((G0\P1)\{e0})∪{e0\
{v0}}. Thus, Nodes (Filter (G0, v0) \ P1) and Nodes (G0 \ P1) \ {v0} are the same set
by the definition of Nodes (·) and Nodes (G0 \ P1) ∩Nodes (P1) ⊆ {v0}. However,
v0 does not belong to Nodes (Filter (G0, v0)), by definition of both Nodes (·) and
Filter (G0, v0), and P1 (Filter (G0, v0). Hence, by Lemma 9, v0 < Nodes (P1) and
Nodes (G0 \ P1) ∩ Nodes (P1) = ∅. Thus, Conn (G0) does not hold by definition
of Conn (·). This contradicts our assumptions and proves the claim. ut

According to the definition of Cutting (·), Cutting (G, v) holds if and only
if G is connected, G contains at least two edges, and either there exists a node
v′ , v of G that is not a node of Filter (G, v) or Filter (G, v) is not connected.
If v is a boundary vertex and G is connected, Filter (G, v) must be connected
too by Lemma 4. It follows that, under the above conditions, Cutting (G, v)
holds if and only if G is connected, G contains at least two edges, and there
exists a node v′ , v of G that is not a node of Filter (G, v). However, the latter
condition holds if and only if Contains (G, v′) = {{v, v′}} by Lemma 2. Thus,
Conn (G \ Contains (G, v)) holds by Lemma 3 and Conn (Filter (G, v)). It follows
that if v is a boundary vertex of G, then v is a non-cut edge.

Lemma 5 Contains (G, v) = {e} → ¬Cutting (G, v)

Proof. Let us assume that there exist G0, v0, and e0 such that Contains (G0, v0) is
{e} and the formula Cutting (G0, v0) holds. By definition of Cutting (·), both the
formulæ ¬Conn (Filter (G0, v0))∨Nodes (Filter (G0, v0))∪ {v0} (Nodes (G0) and
Conn (G0)∧ |G0|≥2 hold. However, Conn (Filter (G0, v0)) must hold by Lemma 4.
It follows that Nodes (Filter (G0, v0)) ∪ {v0} (Nodes (G0), there exists a v1 ∈
Nodes (G0) \Nodes (Filter (G0, v0)) ∪ {v0}, and, by Lemma 2, Contains (G0, v1) =
{{v0, v1}}. Since Contains (G0, v0) = {e0}, from definition of Contains (·) it follows
that e0 and {v0, v1} are the same edge and, by Lemma 12, the set Cov (G0, {e0})
is equal to the set (

⋃
v∈Nodes(e0) Contains (G0, v)), which is {e0} by definition of

Nodes (·). By Lemma 13, Nodes ({e0})∩Nodes (G0 \ {e0}) is empty and Conn (G0)
does not hold by definition of Conn (·). Since this contradicts our assumptions,
the claim must hold. ut

As a direct consequence of Lemma 2 and Lemma 5, if G has a vertex v′ , v
which is not a vertex of Filter (G, v), G has a non-cut vertex too.

Proof of Theorem 1. If Nodes (Filter (G, v))∪{v} is a proper subset of Nodes (G),
then the set Lost (G, v) is nonnull and it contains a vertex a v′. By Lemma 2, the
set Contains (G, v′) is equal to {{v, v′}} and, by Lemma 5, ¬Cutting (G, v′). ut

A.Casagrande et al. Reasoning about connectivity without paths

100

3.2 Not all graphs Filter (G, v) are disconnected

This section proves that if G is connected, then it contains a node v such that
Filter (G, v) is connected too.

Theorem 2 Conn (G)→ (G = ∅ ∨ ∃v ∈ Nodes (G) Conn (Filter (G, v)))

First of all, let us prove that, for any nonnull set P which is a proper subset
of G and such that none of the nodes of P is a node of Filter (G, v) \P and for any
edge e ∈ G, either e does not contain any node of P or e does not contain any node
of Filter (G, v) \ P. Namely, if Filter (G, v) is partitioned into two disconnected
subgraphs (i.e., P and Filter (G, v) \ P), none of the edges of G “touches” both
of these graphs. This is due to the fact that, besides vertices lost by v, which
are boundary vertices by Lemma 2, only v belongs to Nodes (G) and not to
Nodes (Filter (G, v)). Since Filter (G, v) is disconnected, both e \ Nodes (P) and
e \ Nodes (Filter (G, v) \ P) are subsets of Lost (G, v) ∪ {v} for each e ∈ G. Thus,
either e ∩Nodes (P) or e ∩Nodes (Filter (G, v) \ P) must be empty.

Lemma 6 (Graph (G) ∧ P ⊆ Filter (G, v) ∧Nodes (P) ∩Nodes (Filter (G, v) \ P) =
∅)→ ∀e ∈ G(e ∩Nodes (P) = ∅ ∨ e ∩Nodes (Filter (G, v) \ P) = ∅)
Proof. Let us assume that there exist G0, P0, v0, and e0 such that both the formulæ
Graph (G0)∧P0 ⊆ Filter (G0, v0)∧Nodes (P0)∩Nodes (Filter (G0, v0) \ P0) = ∅ and
e0∩Nodes (Filter (G0, v0) \ P0) , ∅∧ e0∩Nodes (P0) , ∅∧ e0 ∈ G0 hold. Either (a)
v0 < e0 or (b) v0 ∈ e0 holds. In the former case e0 ∈ Filter (G0, v0), by definition of
Filter (·) and Graph (·), and we get a contradiction by Lemma 11. Hence, case (b)
must hold. By our assumptions, there exist v1 ∈ e0 ∩ Nodes (Filter (G0, v0) \ P0)
and v2 ∈ e0 ∩Nodes (P0). Since Nodes (Filter (G0, v0) \ P0) ∩Nodes (P0) is empty,
v1 , v2 and {v0, v1, v2} ⊆ e0. Moreover, v0 < Nodes (Filter (G0, v0)) by defi-
nition of Filter (·) and, since P0 ⊆ Filter (G0, v0), v0 < Nodes (P0) and v0 <
Nodes (Filter (G0, v0) \ P0) by Lemma 9. It follows that v0 , v1 and v0 , v2,
e1 = e0 \ {v0} belongs to Filter (G0, v0) by definition of Filter (·), and |e1|≥2. Since
both e1∩Nodes (P0) and e1∩Nodes (Filter (G0, v0) \ P0) are nonnull by construc-
tion and P0 ⊆ Filter (G0, v0), Nodes (P0) ∩ Nodes (Filter (G0, v0) \ P0) is nonnull
by Lemma 11. This contradict our assumptions, hence the claim must hold. ut

In the light of the above considerations, it is easy to see also that, if G is
connected and Lost (G, v) is empty, then v is the only vertex in both of the
graphs Cov (G,P) and Cov (G,Filter (G, v) \ P).

Lemma 7 (Lost (G, v) = ∅ ∧ Conn (G) ∧ v ∈ Nodes (G)∧
∅ (P (Filter (G, v) ∧Nodes (P) ∩Nodes (Filter (G, v) \ P) = ∅)→

Nodes (Cov (G,P)) ∩Nodes (Cov (G,Filter (G, v) \ P)) = {v}
Proof. By the definition of Conn (·), Graph (G) holds. By the definition of Lost (·),
if Lost (G, v) = ∅, then Nodes (Filter (G, v)) ⊇ Nodes (G) \ {v}. By Lemma 15,
Nodes (Filter (G, v)) ⊆ Nodes (G)\{v}, hence Nodes (G)\{v} = Nodes (Filter (G, v))
and, by Lemma 16, Cov (G,P) ∪ Cov (G,Filter (G, v) \ P) = G. Since Nodes (P) ∩

A.Casagrande et al. Reasoning about connectivity without paths

101

Nodes (Filter (G, v) \ P) = ∅ for all nonnull P that is also a proper subset of
Filter (G, v), Cov (G,P) ∩ Cov (G,Filter (G, v) \ P) = ∅ by Lemma 17. As a conse-
quence, Cov (G,Filter (G, v) \ P) is equal to G\Cov (G,P) and Nodes (Cov (G,P))∩
Nodes (Cov (G,Filter (G, v) \ P)) , ∅. By the definitions of Nodes (·) and Cov (·),
v′ belongs to Nodes (Cov (G,P)) ∩Nodes (Cov (G,Filter (G, v) \ P)) if and only if
there exist e, e′ ∈ G such that e ∩ Nodes (P) and e′ ∩ Nodes (Filter (G, v) \ P) are
nonnull and v′ ∈ e∩e′. Since e, e′ ∈ G, e∩e′ is equal to (e∩e′)∩Nodes (G) by the def-
inition of Nodes (·). Moreover v ∈ Nodes (G) by hypothesis, hence, Nodes (G) is
equal to Nodes (Filter (G, v))∪{v} and to Nodes (Filter (G, v) \ P)∪Nodes (P)∪{v}
by Lemma 10. Thus, v′ ∈ e ∩ e′ if and only if either (a) v′ ∈ e ∩ (e′ ∩ Nodes (P)),
(b) v′ ∈ e′ ∩ (e ∩ Nodes (Filter (G, v) \ P)), or (c) v′ ∈ (e ∩ e′) ∩ {v}. However, due
to Lemma 6, e′ ∩ Nodes (P) and e ∩ Nodes (Filter (G, v) \ P) must be empty and
both cases (a) and (b) are not possible. It follows that the claim holds. ut

By Lemma 2 and Lemma 4, if G is connected and Lost (G, v) is nonnull, then
there exists a v′ such that Filter (G, v′) is connected. In order to prove Theorem 2
we are left to prove that, whenever G is connected and Lost (G, v) is empty, there
exists a v′ such that Filter (G, v′) is connected.

Q∗

C∗

v∗

Q′ ∩ (Filter (G0, v∗) \Q∗)

Filter (G0, v′) \Q′

v′

Fig. 5: A graphical sketch of the proof of Theorem 2.

Let us assume by contradiction that the set Filter (G, v) is not connected for
all v ∈ Nodes (G). From the finiteness of G, we can deduce that, for every vertex
v of G, there exists a subset of Filter (G, v) ∩ G that is maximal and connected.
Let us call it Cv and let C be the set of all these Cv’s. Since G is finite, so is
C and, then, there exists a graph C∗ in C that is maximal. Let v∗ be such that
C∗ is subset of Filter (G, v∗) ∩ G. Since Filter (G, v∗) is disconnected, there exists
a nonnull Q∗ that is a proper subset of Filter (G, v∗) such that Nodes (Q∗) ∩
Nodes (Filter (G, v∗) \Q∗) is empty, C∗ ⊆ Q∗, and Q∗ is minimal. However, none
of the edges of G goes from Q∗ to Filter (G, v∗) \ Q∗. Hence, for any node v′ of

A.Casagrande et al. Reasoning about connectivity without paths

102

Filter (G, v∗) \ Q∗ and for any edge e of Contains (G, v′), e does not share any
nodes with Q∗. Hence, Cov (G0,C∗) is connected. Moreover, since Filter (G, v′) is
not connected either and Contains (G, v∗) must share some nodes with Q∗, there
exists a nonnull Q′ that is a proper subset of Filter (G, v′) such that Nodes (Q′)∩
Nodes (Filter (G, v′) \Q′) is empty and Q∗ (Q′. Since Contains (G, v∗) must
share some nodes with Q∗ and Q∗ is the minimal set that contains C∗, C∗ must
be a proper subset of Cov (G0,C∗). This contradicts our assumptions and, thus,
there must exist a v ∈ Nodes (G) such that Filter (G, v) is connected.

Proof of Theorem 2. As a preamble, notice that if Conn (G) and Lost (G, v) , ∅
hold together, they imply, respectively, that G is a graph and that there is
a v′ ∈ Lost (G, v); hence Contains (G, v′) = {{v, v′}} holds by Lemma 2, and
Conn (Filter (G, v′)) holds by Lemma 4. Arguing by contradiction, suppose then
that a G0 exists satisfying Conn (G0), ∀v ∈ Nodes (G0)¬Conn (Filter (G0, v)),
∀v ∈ Nodes (G0) Lost (G0, v) = ∅, and G0 , ∅. Since Nodes (Filter (G0, v0)) ⊆
Nodes (G0) \ {v} holds for all v, by Lemma 15, in view of the definition of
Lost (·) we get Nodes (Filter (G0, v)) = Nodes (G0) \ {v} for all v. Let C be the
set {P ⊆ G0 | ∃v ∈ Nodes (G0) P ⊆ Filter (G0, v) ∧ Conn (P)}. From the finiteness
of G0, we get the finiteness ofC and hence the existence of an inclusion-maximal
C∗ ∈ C; thus, for no v ∈ Nodes (G0) there exists any P ⊆ Filter (G0, v) ∩ G0 such
that Conn (P) and C∗ (P. The set C∗ is empty if and only if Filter (G0, v) ∩ G0
is empty for all v ∈ Nodes (G0), because Conn ({e}) holds for all e ∈ G0; ac-
cordingly, by Lemma 21, if C∗ = ∅ then Conn (Filter (G0, v)) holds for all v ∈
Nodes (G0). However, this would contradict our assumptions; hence C∗ , ∅
necessarily holds. It follows from C∗ ∈ C that a v∗ ∈ Nodes (G0) such that
C∗ ⊆ Filter (G0, v∗) must exist. Moreover, since Conn (Filter (G0, v)) does not hold
for any v ∈ Nodes (G0), a Q∗ must exist such that ∅ (Q∗ (Filter (G0, v∗) and
Nodes (Q∗) ∩ Nodes (Filter (G0, v∗) \Q∗) = ∅ by the definition of Conn (·). How-
ever, C∗ is a subset of Filter (G0, v∗) by construction; thus, by Lemma 18, either
C∗ ⊆ Q∗ or C∗ ⊆ Filter (G0, v∗) \ Q∗ holds. Since Filter (G0, v∗) \ (Filter (G0, v∗) \
Q∗) equals Q∗ and Nodes (Filter (G0, v∗) \Q∗) ∩ Nodes (Q∗) = ∅ if and only if
the set Nodes (Filter (G0, v∗) \ (Filter (G0, v∗) \Q∗)) ∩ Nodes (Filter (G0, v∗) \Q∗)
is empty, we can assume without loss of generality that C∗ ⊆ Q∗. By the
definition of Filter (·), it holds that v∗ < Nodes (Filter (G0, v∗)) and, therefore,
v∗ < Nodes (Q∗). By Lemma 16, G0 = Cov (G0,Q∗) ∪ Cov (G0,Filter (G0, v∗) \Q∗),
while Cov (G0,Filter (G0, v∗) \Q∗)∩Cov (G0,Q∗) = ∅ by Lemma 17. It follows that
Cov (G0,Filter (G0, v∗) \Q∗) equals G0 \ Cov (G0,Q∗) and Nodes (Cov (G0,Q∗)) ∩
Nodes (Cov (G0,Filter (G0, v∗) \Q∗)) = {v∗} by Lemma 7. Therefore we have
v∗ ∈ Nodes (Cov (G0,Q∗)), whence Conn (Cov (G0,Q∗)), by Lemma 19. Since
∅ (C∗ ⊆ Q∗ (Filter (G0, v∗), C∗ (Cov (G0,Q∗) by Lemma 9, Filter (G0, v∗) \Q∗ is
nonnull, and so is Cov (G0,Filter (G0, v∗) \Q∗) = G0 \Cov (G0,Q∗) by Lemma 14.
From Graph (G0) it follows that there are no singletons in G0. Hence, there exists
a v1 ∈ Nodes (G0 \ Cov (G0,Q∗)) \ {v∗} by the definition of Nodes (·). As a conse-
quence of Lemma 20, we get Cov (G0,Q∗) ⊆ Filter (G0, v1), which contradicts the
assumed maximality of Cv∗ in C. This contradiction proves our claim. ut

A.Casagrande et al. Reasoning about connectivity without paths

103

3.3 Every graph has a non-cut vertex

Corollary 1 is a a direct consequence of Theorem 1 and Theorem 2.

Proof of Corollary 1. Suppose that there exists a graph G0 such that Conn (G0),
G0 , ∅, and ∀v ∈ Nodes (G0) Cutting (G0, v) hold. By definition of Cutting (·),
the formula Conn (G0) ∧ |G0|≥2 holds and, for all v ∈ Nodes (G0), either the set
Lost (G0, v) is nonnull or Conn (Filter (G0, v)) does not hold. If Lost (G0, v) is
nonnull, then there exists a v0 ∈ Lost (G0, v) such that ¬Cutting (G0, v0) holds,
by Theorem 1, and we get a contradiction. Hence, it must be the case that
the formula Conn (G0) holds, Lost (G0, v) is empty, while Conn (Filter (G0, v))
does not hold for any v ∈ Nodes (G0). However, by Theorem 2, there must
exists a v′ ∈ Nodes (G0) such that Conn (Filter (G0, v′)) holds. This is the sought
contradiction which proves our claim. ut

4 Conclusions

This paper tackles the proof of a property of connected hypergraphs: every
hypergraph has non-cut vertices. While this result is not new at all, the novelty
of our work lies in the absence of the notion of path. As a matter of fact, we
define as connected only those graphs whose edges cannot be parted into two
nonnull subgraphs that do not share nodes. This approach has some relevance
from a foundational point of view as it proves that paths are not necessary to
identify non-cut vertices.

Since our proof is based on the ZF theory and it is complete down to the
details, we plan to both verify its correctness by means of the proof checker
Referee/Ætnanova [6] and to include these results in its scenarios on graphs (see,
e.g., [5]). Documentation about these new experiments will be made available
at http://aetnanova.units.it/scenarios/NonCutVertices/.

References

1. G.-B. Chae, E. M. Palmer, and R. W. Robinson. Counting labeled general cubic graphs.
Discrete Mathematics, 307(23):2979–2992, 2007.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al. Introduction to algorithms,
volume 2. MIT press Cambridge, 2001.

3. M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier, 2004.
4. M. Milanič and A. I. Tomescu. Set Graphs. I. Hereditarily Finite Sets and Extensional

Acyclic Orientations. Discrete Applied Mathematics, 161(4-5):677–690, 2013.
5. E. G. Omodeo and A. I. Tomescu. Set Graphs. III. Proof Pearl: Claw-Free Graphs

Mirrored into Transitive Hereditarily Finite Sets. Journal of Automated Reasoning,
52(1):1–29, 2014.

6. J. T. Schwartz, D. Cantone, and E. G. Omodeo. Computational Logic and Set Theory –
Applying formalized Logic to Analysis. Springer, 2011. Foreword by Martin Davis.

7. A. Tarski. Sur les ensembles finis. Fundamenta Mathematicae, 6(1):45–95, 1924.
8. F. Wiedijk. The QED Manifesto revisited. Studies in Logic, Grammar and Rhetoric,

10(23):121–133, 2007.

A.Casagrande et al. Reasoning about connectivity without paths

104

A Basic Properties

Lemma 8 ∃e (e ∈ G ∧ v ∈ e)↔ v ∈ Nodes (G)

Proof. (←) By the definition of Nodes (·), Nodes (G) =
⋃

e∈G e. Hence, if v ∈
Nodes (G), there should exists a e0 ∈ G such that v ∈ e0.

(→) By the definition of Nodes (·), Nodes (G) =
⋃

e∈G e. Hence, if there exists
a e0 such that e0 ∈ G ∧ v ∈ e0, then v ∈ Nodes (G). ut
Lemma 9 P ⊆ G→ Nodes (P) ⊆ Nodes (G)

Proof. By Lemma 8, if v ∈ Nodes (P), then there exists e ∈ P such that v ∈ e. Since
P ⊆ G by hypothesis, e ∈ G and, by Lemma 8, v ∈ Nodes (G). ut
Lemma 10 Nodes (P ∪Q) = Nodes (P) ∪Nodes (Q)

Proof. (⊇) Since P ⊆ P ∪ Q, by Lemma 9, Nodes (P) ⊆ Nodes (P ∪Q). Analo-
gously, we get that Nodes (Q) ⊆ Nodes (P ∪Q). Hence, Nodes (Q) ∪Nodes (P) ⊆
Nodes (P ∪Q) ∪Nodes (P ∪Q) = Nodes (P ∪Q).

(⊆) By Lemma 8, if v ∈ Nodes (P ∪Q) then there exists a e ∈ P ∪ Q such
that v ∈ e. Hence, e belongs to either P or Q. If e ∈ P, then v ∈ Nodes (P) by
Lemma 8. Symmetrically, if e ∈ Q, then v ∈ Nodes (Q) by Lemma 8. Thus, if
v ∈ Nodes (P ∪Q), then v ∈ Nodes (P) ∪Nodes (Q). ut
Lemma 11 P ⊆ G→ (Nodes (P) ∩Nodes (G \ P) = ∅ ↔

∀e ∈ G(e ∩Nodes (P) = ∅ ∨ e ∩Nodes (G \ P) = ∅))
Proof. By the definition of Nodes (·), Nodes (G) =

⋃
e∈G e. Thus, Nodes (P) ∩

Nodes (G \ P) = ∅ if and only if both e ∩ Nodes (P) and e′ ∩ Nodes (G \ P) are
empty for all e ∈ G \ P and for all e′ ∈ P. However, if P ⊆ G, then (G \ P) ∪ P
is equal to G. Thus, if P ⊆ G, then Nodes (P) ∩ Nodes (G \ P) = ∅ if and only if
∀e ∈ G (e ∩Nodes (P) = ∅ ∨ e ∩Nodes (G \ P) = ∅). ut
Lemma 12 Cov (G,P) =

⋃
v∈Nodes(P) Contains (G, v)

Proof. We prove that e ∈ Cov (G,P) if and only if e ∈ ⋃
v∈Nodes(P) Contains (G, v).

By definition of Cov (·), e ∈ Cov (G,P) if and only if and only if e ∈ G and
e∩Nodes (P) , ∅. Hence, e ∈ Cov (G,P) if and only if there exists a v ∈ Nodes (P)
and a e ∈ G such that v ∈ e. By definition of Contains (·), e ∈ Contains (G, v) if
and only if v ∈ e and e ∈ G. Thus, e ∈ Cov (G,P) if and only if there exists a
v ∈ Nodes (P) such that e ∈ Contains (G, v). The thesis follows directly. ut
Lemma 13 Cov (G,P) ⊆ P↔ Nodes (G \ P) ∩Nodes (P) = ∅
Proof. By the definition of Cov (·), Cov (G,P) is equal to {e ∈ G |e∩Nodes (P) , ∅}.
Hence, Cov (G,P) ⊆ P if and only if e ∩Nodes (P) = ∅ for all e ∈ G \ P and if and
only if (

⋃
e∈G\P e)∩Nodes (P) = ∅. By definition of Nodes (·), this is equivalent to

Nodes (G \ P) ∩Nodes (P) = ∅ and, thus, the thesis holds. ut

A.Casagrande et al. Reasoning about connectivity without paths

105

Lemma 14 Nodes (P) ⊆ Nodes (G) ∧Nodes (P) , ∅ → Cov (G,P) , ∅
Proof. Let us assume that there exist G0 and P0 such that both Nodes (P0) ⊆
Nodes (G0)∧Nodes (P0) , ∅ and Cov (G0,P0) = ∅ hold. Since Cov (G0,P0) is equal
to {e ∈ G0 | e∩Nodes (P0) , ∅} by the definition of Cov (·), Cov (G0,P0) = ∅ if and
only if Nodes (G0)∩Nodes (P0) is empty. However, from Nodes (P0) ⊆ Nodes (G0),
we deduce that Nodes (G0) ∩ Nodes (P0) and Nodes (P0) are the same set and,
from Nodes (P0) , ∅, we get that Nodes (G0)∩Nodes (P0) is not empty. This leads
to a contradiction and proves our goal. ut
Lemma 15 Nodes (Filter (G, v)) ⊆ Nodes (G) \ {v}
Proof. By the definition of Nodes (·), if Nodes (Filter (G, v)) =

⋃
e′∈Filter(G,v) e′.

However, by the definition of Filter (·), e′ ∈ Filter (G, v) if any only if there
exists a e ∈ G such that e′ = e \ {v} and |e \ {v}|≥2. Thus, Nodes (Filter (G, v)) =⋃

e∈G | |e\{v}|≥2
e \ V. Since {e ∈ G | |e \ {v}|≥2} ⊆ G, Nodes (Filter (G,V)) ⊆ ⋃

e∈G e \
{v} =

(⋃
e∈G e

) \ {v}. Hence, by the definition of Nodes (·), Nodes (Filter (G, v)) ⊆
Nodes (G) \ {v}. ut

B Auxiliary Lemmas

Lemma 16 (Graph (G) ∧Nodes (Filter (G, v)) = Nodes (G) \ {v} ∧
P ⊆ Filter (G, v))→ Cov (G,P) ∪ Cov (G,Filter (G, v) \ P) = G

Proof. Let us assume that there exist G0, P0, and v0 such that both the for-
mulæ Graph (G0)∧Nodes (Filter (G0, v0)) = Nodes (G0)\{v0}∧P0 ⊆ Filter (G0, v0)
Cov (G0,P0)∪Cov (G0,Filter (G0, v0) \ P0) , G0 hold. By the definition of Cov (·),
Cov (G0,P) is the set {e ∈ G0 | e ∩ Nodes (P) , ∅}. Thus, Cov (G0,P) ⊆ G0
and Cov (G0,P0) ∪ Cov (G0,Filter (G0, v0) \ P0) ⊆ G0. However, Cov (G0,P0) ∪
Cov (G0,Filter (G0, v0) \ P0) , G0 by assumption, hence, there exists a e0 ∈ G0
that belongs to neither Cov (G0,P0) nor Cov (G0,Filter (G0, v0) \ P0). By the defi-
nition of Cov (·), e0∩Nodes (P0) = ∅ and e0∩Nodes (Filter (G0, v0) \ P0) = ∅. Thus
e0∩(Nodes (P0)∪Nodes (Filter (G0, v0) \ P0)) = ∅ and e0∩Nodes (Filter (G0, v0)) is
empty by Lemma 10. Since Nodes (Filter (G0, v0)) = Nodes (G0)\{v0} by assump-
tion, e0 ∩ (Nodes (G0) \ {v0}) is empty and e0 ∩ Nodes (G0) ⊆ {v0}. By definition
of Nodes (·), e0 ⊆ Nodes (G0). Thus, e0 ∩Nodes (G0) = e0 and e0 ⊆ {v0}. However,
this contradicts |e0|≥2 which must hold because of the definition of Graph (·).
The claim of this lemma follows readily. ut
Lemma 17 (Graph (G) ∧Nodes (Filter (G, v) \ P) ∩Nodes (P) = ∅ ∧

P ⊆ Filter (G, v))→ Cov (G,P) ∩ Cov (G,Filter (G, v) \ P) = ∅
Proof. By Lemma 6, either e∩Nodes (P) or e∩Nodes (Filter (G, v) \ P) are empty
for all e ∈ G. By the definition of Cov (·), it follows that either e < Cov (G,P) or e <
Cov (G,Filter (G, v) \ P) for all e ∈ G. Thus, Cov (G,P) ∩ Cov (G,Filter (G, v) \ P)
is empty and the claim holds. ut

A.Casagrande et al. Reasoning about connectivity without paths

106

Lemma 18 (Nodes (Q) ∩Nodes (G \Q) = ∅ ∧ P ⊆ G ∧ Conn (P))→
(P ⊆ G \Q ∨ P ⊆ Q)

Proof. Let us assume that there exist G0, P0, and Q0 such that both the formulæ
Nodes (Q0)∩Nodes (G0 \Q0) = ∅∧P0 ⊆ G0∧Conn (P0) and P0 * G0\Q0∧P0 * Q0
hold. Hence, there exist an e0 ∈ P0 that does not belong to G0 \Q0 and an e1 ∈ P0
that does not belong to Q0. It follows that both the sets P0 \Q0 and P0 \ (G0 \Q0)
are nonnull. Since P0 ⊆ G0, e0 belongs to Q0. Thus, P0 \Q0 is a nonnull set that is
also proper subset of P0. By definition of Conn (·), Conn (P0) holds if and only
if the set Nodes (P0 \ S) ∩ Nodes (S) is nonnull for all not empty S that are also
proper subsets of P0. In particular, the set Nodes (P0 \ (P0 \Q0))∩Nodes (P0 \Q0)
is nonnull. Thus,

∅ (Nodes (P0 \ (P0 \Q0)) ∩Nodes (P0 \Q0)
=Nodes (P0 ∩Q0) ∩Nodes (P0 \Q0)
⊆Nodes (Q0) ∩Nodes (P0 \Q0) Since P0 ∩Q0 ⊆ P0, by Lemma 9
⊆Nodes (Q0) ∩Nodes (G0 \Q0) Since P0 ⊆ G0, by Lemma 9

This contradicts our assumptions and proves the claim. ut

Lemma 19 (Conn (P ∪Q) ∧Nodes (P) ∩Nodes (Q) = {v})→ Conn (P)

Proof. Let us assume that there exist P0, Q0 and v0 such that both the formulæ
Conn (P0 ∪Q0) ∧ Nodes (P0) ∩ Nodes (Q0) = {v0} and ¬Conn (P0) hold. By def-
inition of Conn (·), there exists a P1 such that ∅ (P1 (P0 and Nodes (P1) ∩
Nodes (P0 \ P1) is empty. Furthermore,

{v0} =Nodes (P0) ∩Nodes (Q0) By assumption
=Nodes ((P0 \ P1) ∪ P1) ∩Nodes (Q0) Since P1 ⊆ P0

= (Nodes (P0 \ P1) ∪Nodes (P1)) ∩Nodes (Q0) By Lemma 10
= (Nodes (P0 \ P1) ∩Nodes (Q0))∪

(Nodes (P1) ∩Nodes (Q0))

Thus, either v0 ∈ Nodes (P0 \ P1) ∩ Nodes (Q0) or v0 ∈ Nodes (P1) ∩ Nodes (Q0).
Since Nodes (P0 \ P1) ∩ Nodes (P1) = ∅, either v0 < Nodes (P0 \ P1) or v0 <
Nodes (P1). Moreover, (Nodes (P0 \ P1)∩Nodes (Q0))∪ (Nodes (P1)∩Nodes (Q0))
is equal to {v0}, hence, one of the two sets Nodes (P0 \ P1) ∩ Nodes (Q0) and
Nodes (P1) ∩ Nodes (Q0) is empty. Let be P2 be such that P2 ∈ {P1,P0 \ P1} and
Nodes (P2) ∩Nodes (Q0) is empty. Since ∅ (P1 (P0, P2 is nonnull, it is a proper
subset of P0 and (P0 \ P2) ∪ P2 = P0. Moreover, P1 = P0 \ (P0 \ P1) and, hence,
Nodes (P2) ∩Nodes (P0 \ P2) = Nodes (P1) ∩Nodes (P0 \ P1) = ∅ is empty. By the
definition of Nodes (·), Nodes (P0) ∩Nodes (Q0) = {v0} if and only if e ∩ e′ ⊆ {v0}
for all e ∈ P0 and for all e′ ∈ Q0. Hence, |e ∩ e′|≥2 does not hold and, by the defi-
nition of Graph (·), this means that P0 ∩Q0 = ∅. Since P2 (P0, P2 ∩Q0 ⊆ P0 ∩Q0

A.Casagrande et al. Reasoning about connectivity without paths

107

and P2 ∩Q0 is empty. It follows that

∅ =(Nodes (P2) ∩Nodes (P0 \ P2))∪
(Nodes (P2) ∩Nodes (Q0))

=Nodes (P2) ∩ (Nodes (P0 \ P2) ∪Nodes (Q0))
=Nodes (P2) ∩Nodes ((P0 \ P2) ∪Q0) By Lemma 10
=Nodes (P2) ∩Nodes ((P0 ∪Q0) \ P2) Since Q0 ∩ P2 = ∅

By the definition of Conn (·), Conn (P0 ∪Q0) does not hold. This contradicts our
assumptions and prove the claim. ut
Lemma 20 (Graph (P ∪Q) ∧Nodes (P) ∩Nodes (Q) = {v})→

∀v′ ∈ Nodes (Q) \ {v} (P ⊆ Filter (P ∪Q, v′))

Proof. By definition of Filter (·),
Filter (P ∪Q, v′) ={e \ {v′} | e ∈ (P ∪Q) ∧ |e \ {v′}|≥2}

={e \ {v′} | e ∈ P ∧ |e \ {v′}|≥2} ∪ {e \ {v′} | e ∈ Q ∧ |e \ {v′}|≥2}
Since v′ ∈ Nodes (Q) \ {v} and Nodes (P) ∩Nodes (Q) = {v}, then v′ < Nodes (P).
By definition of Nodes (·), it follows that v′ < e and e = e\ {v′} for any e ∈ P. Thus,

Filter (P ∪Q, v′) ={e| e ∈ P ∧ |e|≥2} ∪ {e \ {v′} | e ∈ Q ∧ |e \ {v′}|≥2}
=P ∪ {e \ {v′} | e ∈ Q ∧ |e \ {v′}|≥2}

The claim readily follows from the last equation. ut
Lemma 21 (Graph (G) ∧ ∀v ∈ Nodes (G) Filter (G, v) ∩ G = ∅)→

∀v ∈ Nodes (G) Conn (Filter (G, v))

Proof. The graph Filter (G, v) ∩ G is empty for all v ∈ Nodes (G) if and only if
Contains (G, v) = G for all v ∈ Nodes (G), i.e., every edge of G contains all nodes
of G. It follows that G is a singleton and that each Filter (G, v) is either empty or
a singleton; hence, by the definition of Conn (·), Conn (Filter (G, v)) holds for all
v ∈ Nodes (G). The claim follows readily. ut

A.Casagrande et al. Reasoning about connectivity without paths

108

Binary 3-compressible automata

Alessandra Cherubini1? and Andrzej Kisielewicz2??

1 Politecnico di Milano, Dipartimento di Matematica
2 Department of Mathematics and Computer Science, University of Wroc law
alessandra.cherubini@polimi.it, andrzej.kisielewicz@math.uni.wroc.pl

Abstract. A finite deterministic automaton A = (Q,Σ, δ) is k-com-
pressible if there is a word w ∈ Σ+ such that the image of the state
set Q under the natural action of w is reduced by at least k states. In
such case w is called a k-compressing word for A. It is known that, for
any alphabet Σ and any k ≥ 2, there exist words that are k-compressing
for each k-compressible automaton with the input alphabet Σ. Such
words are called k-collapsing. It has been proved that recognizing 2-
collapsing words over a 2-element alphabet may be done in polynomial
time, while recognizing 2-collapsing words over an alphabet of size ≥ 3
is co-NP-complete. A natural question in this context, whether recog-
nizing 3-collapsing words over a 2-element alphabet is easy or hard, has
remained open. In this paper we provide results on 3-compressible bi-
nary automata, which allow to prove that that the latter problem is
co-NP-complete.

1 Introduction

Let T (Q) be the full transformation monoid on a finite set Q. For f ∈ T (Q), we
define the deficiency df(f) of f to be the difference between the cardinalities of
Q and the image Imf under f , df(f) = |Q| − |Imf |. At the beginning of 1990’s
Sauer and Stone [12] introduced the property ∆k defined as follows. For a finite
alphabet Σ and a positive integer k, a word w ∈ Σ+ has the property ∆k for Σ
if for all homomorphisms φ : Σ+ → T (Q), where Q is any finite set, df(wφ) ≥ k
whenever df(vφ) ≥ k for some v ∈ Σ+. They proved the nonobvious fact that
such words exist for each positive integer k and for each finite alphabet Σ giving

an elegant recursive construction that produces a word whose length is O(22
k

).
Their construction was improved in [9], where better but yet unrealistic upper
bounds for the length of shortest words with the property ∆k were given.

Words with the property ∆k have a natural interpretation in the language of
finite automata theory. Each complete deterministic automaton A = (Q,Σ, δ)
over the alphabet Σ can be viewed as the transformation monoid generated by
transformations on Q induced via δ by the letters of Σ. Namely, for each α ∈ Σ
we define the induced transformation by qα = δ(q, α). This action of the letters

? Supported in part by PRIN: “Automi e linguaggi formali: aspetti matematici e ap-
plicativi”.

?? Supported in part by Polish NCN grant 2012/07/B/ST1/03318.

109

on Q extends naturally into the action of words w ∈ Σ+ on Q which is denoted
briefly by qw = δ(q, α).

Conversely, to define an automaton it is enough to assign to any letter of
Σ a transformation on Q. Thus an automaton A can be identified with a spe-
cific homomorphism φA of Σ+ in T (Q). If there exists a word v ∈ Σ+ such
that df(vφA) ≥ k—that is, if |Q| − |Qv| ≥ k—the automaton A is called k-
compressible and v is a k-compressing word for A (it k-compresses A). A word
that is k-compressing for each k-compressible automaton with the input alpha-
bet Σ is called k-collapsing. Obviously, a word has the property ∆k (or witnesses
for deficiency k, in the terminology of [9]) if and only if it is k-collapsing. Hence,
besides the original motivations coming from combinatorics and algebra, the
interest in such words comes from the fact that they can be seen as universal
testers whose action on the set of states of an automaton exposes whether or
not the automaton is k-compressible. The problem of the length of the shortest
k-collapsing word over an alphabet Σ can be considered as a black-box version
of the generalized Černý’s conjecture stated by Pin [7, 8].

In [10] it is proved that the membership of a given word w ∈ Σ+ to the lan-
guage of k-collapsing words is decidable. The decision procedure is in the class
co-NP and requires linear space, which shows that the language of k-collapsing
words is context-sensitive. In [11] it is shown that it is not context-free even in the
very simple case of the language of 2-collapsing words over a 2-letter alphabet.
Most results so far concern 2-collapsing words. In particular, 2-collapsing words
were characterized in [2] and in [5]. From the first characterization, that has a
group theoretical flavor, a non-deterministic polynomial algorithm to recognize
whether a word w ∈ Σ+ is 2-collapsing was derived [3]. A refinement of this
algorithm was used in [4] to give the list of shortest 2-collapsing words over a
3-letter alphabet. The second characterization is in terms of systems of permuta-
tion conditions and it is used in [6] to show that the membership problem of the
language of 2-collapsing words over an alphabet of size ≥ 3 is a co-NP-complete
problem. The algorithms for recognizing whether a word w ∈ Σ+ is 2-collapsing,
derived by both the characterizations of 2-collapsing words, become polynomial
algorithms when |Σ| = 2 even if w is represented in the compressed form [5].
In view of these results a question arose whether for k ≥ 3, k-collapsing words
over a binary alphabet can also be recognized in polynomial time. This natural
question has remained open so far. In this paper we show that the answer is
negative. We prove that the problem of recognizing whether a word w ∈ {α, β}+
is 3-collapsing is co-NP-complete.

The difficulty in this case is that we have no characterization of 3-collapsing
words similar to that for the case of 2-collapsing words. Yet, we have a certain
classification of proper 3-compressible automata on 2 input letters [1], and we
can see that the problem looks differently depending on the class. In some classes
it is easy to recognize whether a word w 3-compresses all the automata in the
class. There is however at least one class where this problem leads to solving
a sort of a system of permutation conditions, similarly as in [6], and it seems
computationally hard.

A.Cherubini et al. Binary 3-compressible automata

110

Our idea is the following. First, we reduce the problem whether a word w
is 3-collapsing to the problem of recognizing those words w that 3-compress all
automata in a restricted class D of 3-compressible automata. Next, we show that
in this restricted class the problem is equivalent to the existence of a solution
of a certain system of permutation/transformation conditions similar to those
considered in [6]. Then, using the tools worked out in [6], we show that the
problem of the existence of a solution of such systems is NP-hard. Since our
reductions induce suitable polynomial transformations, we obtain a proof that
the initial problem is co-NP-complete. In this paper, we present the first part of
the plan, showing how to reduce the problem to a problem concerning systems
of transformation conditions. The full proof will appear in the extended version
of this paper.

2 Preliminaries

We deal with binary automata over the alphabet Σ = {α, β}. The letters α and
β are identified with transformations they induce on the set Q of the states.
The image of q ∈ Q by a letter (transformation) α is denoted qα. The words
w = α1α2 . . . αt over Σ are identified with transformations they induce. The
inverse image is denoted by xα−1.

We use special notation for concrete transformations α (similar to permuta-
tion notation), where round brackets (x1x2 . . . xt) denote a cycle: x1α = x2, . . . ,
xtα = x1, and square brackets [x1x2 . . . xt] denote a path: x1α = x2, . . . , xt−1α =
xt. This notation is not unique: for example [123][42](357) = [12][423](357). Yet,
we always write full cycles, and refer to them as the cycles of α, and usually omit
all the fixed points. If x is an element of a cycle in α, then we write Cycα(x) to
denote the cycle containing x, or a set of elements in this cycle, and we write
|Cycα(x)| to denote the length of this cycle (the number of elements). We will
also use a part of the structure of a transformation to speak about transforma-
tions of a given form. For example, a transformation (permutation) is of the form
β = (12y)(xa)(zb) . . . for some elements y, x, z, a, b ∈ Q if β = (12y)(xa)(zb)τ for
some transformation τ . We do not exclude that some of these elements may be
equal, and some of these cycles coincide. For example, we may have x = z and
(consequently) a = b, in which case the cycle (xa) is the same as the cycle (zb).
We may have also x = a, which means that (xa) is, in fact, a fixpoint (x) = (a).
But, assuming 1 6= 2, we cannot have x = y, because y is in a cycle of length 3,
while x is in a cycle of length 2 or 1. Thus saying that a transformation is of the
form β = (a1a2 . . . at) . . . we assume that the length of the cycle is t or a divisor
of t.

Treating words over Σ = {α, β} as compositions of transformations on the
set Q with 1, 2 ∈ Q, we shall consider systems of transformation conditions of
the form

1u1, 1u2, . . . , 1us ∈ {1, 2}
stating that the image of 1 by each of words u1, u2, . . . , us belongs to the set
{1, 2}. If all transformations in Σ fix 1 or all fix the set {1, 2}, then they form

A.Cherubini et al. Binary 3-compressible automata

111

a solution of the system (1), which is called trivial. The problem whether there
exists a nontrivial solution for a system of permutation conditions has been
proved to be NP-complete in [6]. Similarly one can prove that the problem is
hard if we look for a solution in transformations of given types. We will exploit
this in our proof.

We recall that a factor of a word w ∈ Σ+ is a word v ∈ Σ+ such that w = uvz
for some u, z ∈ Σ∗. If A is k-compressible at least one letter of its input alphabet
has deficiency greater than 0. It is known that each k-collapsing word over a fixed
alphabet Σ is k-full [12], that is, contains each word of length k over the alphabet
Σ among its factors. A k-compressible automaton is called proper k-compressible
if it cannot be k-compressed by any word of length k. Thus, k-collapsing words
are k-full words that k-compress all proper k-compressible automata. In partic-
ular, in our consideration we may restrict to proper k-compressible automata.

We will consider types of transformations with regard to which states are
sent into the same element, and which states are missing in the image. We
say that a transformation α is of type I\M , where M is a subset of Q, and
I is a family of disjoint subsets of Q, if M = Q \ Qα is a set of elements
missing in the image Qα, while I is the family of those inverse images of el-
ements of Q that have more than one element. In other words, we write that
a letter α is of type [x11 , . . . , xj1][x12 , . . . , xj2] . . . [x1r , . . . , xjr]\y1, y2, ..., ym, if
{y1, . . . ym} = Q \ Im(α) and {x11 , . . . , xj1}, {x12 , . . . , xj2}, . . . , {x1r , . . . , xjr}
are the equivalence classes of the kernel of transformation induced by α that
have more than one element. We say that α ∈ Σ is a permutation letter if it in-
duces a permutation on the set Q of the states, i.e., it has deficiency 0. Otherwise,
a letter is a non-permutation.

The following fact leading to a classification of proper 3-compressible au-
tomata is not difficult to prove (see e.g. [1]).

Proposition 1. If A is a proper 3-compressible automaton over the alphabet
Σ = {α, β} then each letter in Σ is either a permutation or is one of the following
types:

1. [x, y, z]\x, y;
2. [x, y][z, t]\x, z;
3. [x, y]\x;
4. [x, y]\z with za ∈ {x, y}.
where x, y, z, t are different states of A.

Since we wish to classify proper 3-compressible automata up to renaming the
states in Q, we may assume that Q = {1, 2, . . . , n}, and {x, y, z, t} = {1, 2, 3, 4}.
Then, following [1], we say that an automaton A over a two-letter alphabet
Σ = {α, β} is an (i., j.)-automaton, where i, j ∈ {1,2,3,4}, if the letter α is of
type i., while the letter β is of type j., above. We say also that A is a (i.,p) (or
(p, i.)-automaton, if it is an automaton in which the letter α (β) is of type i.,
while the other letter is a permutation. By Proposition 1, up to renaming the
states, each proper 3-compressible automaton over 2 letters is a (t, s)-automaton
with some t, s ∈ {1.,2.,3.,4.,p}.

A.Cherubini et al. Binary 3-compressible automata

112

3 Automata of Type (3., p)

Let A be a (3.,p)-automaton over the alphabet Σ = {α, β} and with the state
set Q = {1, 2, . . . , n}. Without loss of generality we can also assume that the
letter α is of type [1, 2]\1 (and β is a permutation). Given such an automaton,
we call an integer k > 0 a good exponent for the permutation β, or briefly, β-
good, if 1βk /∈ {1, 2}; otherwise, it is called β-bad exponent. We will consider
transformation conditions of the form 1v ∈ {1, 2} stating the the image of 1 by
the word v is 1 or 2. For a word v ∈ Σ+ and Q1 ⊆ Q, as in [1], we denote
M(v) = Q \Qv, the set of the states missing in the image of Q under the action
of v, andM(Q1, v) = Q\ (Q\Q1)v, the set of states missing in Q after applying
the word v, provided that the set Q1 of states is already missing.

Our first result is the following characterization.

Theorem 1. Let A = 〈Q,Σ, δ〉 be a proper 3-compressible (3.,p)-automaton
with Q and Σ as above, and w be a word in Σ+. Then, w does not 3-compresses
A if and only if for every factor of w of the form αuα where

u = βk1αm1 . . . βktαmtβkt+1 ,

t ≥ 1, and k1 and kt+1 are β-good, while all other ki are β-bad, the condition
1u ∈ {1, 2} holds.

Proof. Let w = βsαr1βs1αr2 . . . βsh−1αrhβsh , where s, sh ≥ 0, rh > 0, and
ri, si > 0 for 1 ≤ i ≤ h − 1. We consider the sequence of missed states by
the action of consecutive prefixes of w. Obviously M(βsαr1) = {1}. Moreover
if s1 is a β-bad exponent then M({1}, bs1) = M(βsαr1βs1) = {1βs1} ⊆ {1, 2},
hence M(βsαr1βs1αr2) = {1} = M(βsαr1). Repeating the same argument it
turns out that if there is no β-good exponent among s1, s2, . . . , sh, then w does
not 3-compress α.

So we may assume that there is i with 1 ≤ i ≤ h − 1 such that si is a β-
good exponent and sj is a β-bad exponent for each j < i. Then we have w =
pαriβsiαri+1βsi+1 . . ., whereM(pαri) = {1}. SoM({1}, βsi) = {1βsi} * {1, 2},
and M({1βsi}, αri+1) = {1, x1} where x1 = 1βsiαri+1 6= 1 (since α is of type
[1, 2]\1). Now if si+1 is β-bad, thenM(pαriβsiαri+1βsi+1) =M({1, x1}, βsi+1) =
{y, x1βsi+1} with y ∈ {1, 2}, whence, whether x1β

si+1 ∈ {1, 2} or not, we have
M(pαriβsiαri+1βsi+1αri+2) = M({y, x1βsi+1}, αri+2) = {1, x2} where x2 =
x1β

si+1αri+2 6= 1. Then until we encounter βsm with a β-good exponent sm
the missing state set of each prefix of w ending with α has cardinality 2 and
contains 1; in particular, if there no such second β-good exponent, w does not
3-compress α.

So, assume that there is m with i < m ≤ h such that sm is a β-good exponent
and each st with i < t < m is a β-bad exponent. Then w = pαriβsiαri+1vαrm+1 . . .,
where v = βsi+1αri+2 . . . βsm . Now,

M(αriβsiαri+1v) =M({1, x1}, v) =M({1, xm−i}, betasm) = {1βsm , xm−iβsm},

A.Cherubini et al. Binary 3-compressible automata

113

where xm−iβsm = 1v (since x1 = 1βsiαri+1 , x2 = x1β
si+1αri+2 , etc.). Hence if

1v /∈ {1, 2} then M({1βsm , 1v}, α) has cardinality 3, and w is a 3-compressing
word. If 1v ∈ {1, 2} then 1vαrm+1 = 1αrm+1 , hence M(pαriβsiαri+1vαrm+1) =
{1βsm , 1αrm+1}. So we are in the analogous situation as with M(pαriβsiαri+1),
and we can use the above argument with i replaced by m, the prefix p replaced
by p1 = pαriβsi . . . βsm−1 , and β-good exponent si replaced by β-good exponent
sm. Thus, the reasoning may be repeated for consecutive factors αuα with the
property stated in the theorem, and the claim easily follows. ut

The theorem above means that to check whether there exists a (3.,p)-
automaton that fails to be 3-compressed by a given word w, we need to consider
all the possibilities for β leading to various sets of good and bad exponents. This
means that we consider whether 1 and 2 are in the same orbit of β. If so, we
consider various lengths of this orbit and distances between 1 and 2, and if not,
the only thing that counts is the length of the orbit of 1. For each such case
we establish β-good and β-bad exponents, find all the factors of w of the form
described in the theorem above, and form the corresponding system of transfor-
mation conditions. If the system has a solution, then w fails to 3-compress the
corresponding automaton A with a non-permutation α and a permutation β.
The solution represents an automaton that is not 3-compressed by word w. It
is nontrivial, if the resulting automaton is 3-compressible (some solutions corre-
spond to automata that fails to be 3-compressible).

In principle, there are infinitely many cases to consider. But given the word
w, if k is the largest exponent for β (when w is written in the compact form with
exponents), then only k − 1 elements following 1 in the cycle of 1 in β are what
really counts. So, in practice, for every word, we may distinguish and consider
only finitely many cases.

In fact, we may view α as (almost) a permutation without 1 (1 is not an image
of any state; we need only to keep in mind that 1 has the same image as 2). The
system of transformation conditions may be treated very similarly to the system
of suitable permutation conditions, and the method of trees with distinguished
nodes developed in [6] may be used to solve it. (This is so, in spite of that the
two letters involved come in the both cases from very different considerations.)

4 Reduction to a Smaller Class of Automata

To prove that solving systems of transformations in Theorem 1 is hard we need
to restrict considerations to one class in which the conditions may be stated in a
unique and relatively simple form. Therefore, we define the class D to contain all
proper 3-compressible automata A over alphabet Σ = {α, β}, such that α is a
transformation of type [1, 2]\1, and β is a permutation of the form β = (12y)
For such permutation the β-good exponents are positive integers k = 2 modulo
3. We will refer to them as to (12y)-good. Other positive integers are (12y)-bad.

In order to reduce our problem to automata in D, to each word w ∈ {α, β}+
we assign a word w∗ = w′w such that w∗ is 3-collapsing if and only if w 3-
compresses all automata in D. The idea is to find a set of words that 3-compress

A.Cherubini et al. Binary 3-compressible automata

114

all automata not in D, and do not 3-compress automata in D. These words will
be used to form w′. We wish that these words have no (12y)-good exponents,
because then w∗ and w have the same factors described in Theorem 1, which
guarantees that they 3-compress the same proper automata in D. This cannot
be achieved exactly, and the few exceptions we allow will be handled further in
a different way.

We start from (3.,p)-automata not in D. The following technical lemma
established in [1] will be useful here.

Lemma 1. ([1], Lemma 3) Let A be a (3.,p)-automaton with α of type [1, 2]\1.
Then A is not 3-compressible if, and only if (up to renaming the states) one of
the following conditions holds:

(i) β fixes 1 or the set {1, 2},
(ii) β = (13)π for some permutation π on Q \ {1, 3} and 3α = 3,

(iii) β = (13)(2)π, β = (132)π or β = (123)π for some permutation π on
Q \ {1, 2, 3} and {2, 3}α = {2, 3},

(iv) β = (13)(24)π or β = (1324)π for some permutation π on Q\{1, 2, 3, 4} and
{3, 4}α = {3, 4}.

In all other cases A is a proper 3-compressible automaton, and one of the words
{ababa, abab2a, aba2ba, abab2aba, ab2ab2a, ab2a2b2a, ab2abab2a, ab2aba, ab3aba,
abab3a, ab3ab3a} 3-compresses A.

Using it we get the following.

Lemma 2. Each proper 3-compressible (3.,p)-automaton A /∈ D can be 3-
compressed by a word of the form αβiαkβjα, where i, j ∈ {1, 3, 4}, k ∈ {1, 2, 3}
or αβ4αβ2αβ4α.

Proof. Let A be a (3.,p)-automaton A /∈ D, then by (i) of Lemma 1, b fixes
neither 1 nor the set {1, 2}.

First, assume that 1β = x /∈ {1, 2}. Then, M(αβαk) = {1, xαk}. If xαkβ /∈
{1, 2} for some k then the word αβαkβα 3-compresses the automaton A. Obvi-
ously, if xαkβ /∈ {1, 2}, for some k we can always assume that k ≤ 3. Otherwise,
either xα = x or xα2 = x and xαkβ ∈ {1, 2} for all k.

Then let xαkβ ∈ {1, 2} for each k ∈ {1, 2, 3}.
First assume xα = x. If xαβ = xβ = 1 then β = (1x) . . . and by (ii), A is

not 3-compressible. So xαβ = xβ = 2 and β = (1x2 . . .) If β = (1x2) . . .
then 2α 6= 2 otherwise A is not 3-compressible by (iii). Then M(αβ1+3hαβ2) =
{1, 2} for each h ≥ 0. Since M({1, 2}, α) = {1, 2α} and 2α /∈ {1, 2, x}, then
αβ1+3hαβ2αβ1+3kα 3-compresses A. So let β = (1x2y . . .) ThenM(αβ3α) =
{1, yα} and if yαβ /∈ {1, 2} then αβ3αβα 3-compresses A. We know that yαβ 6=
xαβ = 2, so let yαβ = 1. If yα = y then A is not 3-compressible by (iv). If
yα 6= y then αβ3αβ4α 3-compresses A.

Then let xα 6= x and xα2 = x. Put xα = y, then yα = x and yαβ = xα2β =
xβ ∈ {1, 2}. If xβ = 1 then β = (1x)(y2z . . .) . . . where y, z, 2 are all distinct
by (iii) and (iv). Hence αβαβ3α 3-compresses A. So let xβ 6= 1, hence xβ = 2,

A.Cherubini et al. Binary 3-compressible automata

115

and again by (iv), β = (1x2z . . . y) . . . where 1, x, 2, z, y are distinct states, then
αβαβ4α is a 3-compressing A. This completes all the cases when 1β = x 6= 1, 2.

Lastly, let 1β = 2. Then β = (12xy . . .) . . . where 1, 2, x, y are distinct el-
ements, otherwise A ∈ D. Then M(αβ3α) = {1, yα}. If yαβ3 /∈ {1, 2} then
αβ3αβ3α is 3-compressing, similarly if yαβ4 /∈ {1, 2} then αβ3αβ4α is 3-com-
pressing. So yαβ3 = 1 and yαβ4 = 2 whence y 6= yα and so yα 6= yα2, and so
yα2β3 6= 1. If yα3β3 6= 2 then αβ3α2β3α is 3-compressing, if yα3β3 = 2, then
yα3β4 = x and αβ3α2β4α is 3-compressing. ut

For the automata of types other than (3.,p) we make use of Proposition 1
and other lemmas established in [1]. These lemmas have been established in [1]
to compute a bound for the length of the shortest 3-collapsing word. We extract
from them information we need to our aim. We have the following.

(i) no 3-compressible (i., j.)-automaton with i ∈ {1,2}, j ∈ {1,2,4} or with
j ∈ {1,2}, i ∈ {1,2,4} is proper; [1, Lemma 5];

(ii) each proper 3-compressible (1.,p)-automaton and each proper 3-compressible
(1.,3)-automaton is 3-compressed by αβ2α; hence (by switching the letters),
each proper 3-compressible (p.,1) or (3.,1)-automaton is 3 compressed by
βα2β; [1, Lemma 1 and Lemma 6];

(iii) each proper 3-compressible (2.,p) and each proper 3-compressible (2.,3)-
automaton is 3-compressed by a word in the set {αβ2α, αβ3α}; each proper
3-compressible (p.,2) and each proper 3-compressible (3.,2)-automaton is
3-compressed by a word in the set {βα2β, βα3β}; [1, Lemma 2 and Lemma 7];

For the future reference we underline words that have an occurrence of β with
a (12y)-good exponent inside the word. Here, this is limited only to occurrences
of β2. These words will be handled in a different way than those words that have
no occurrence β with a (12y)-good exponent or they have such an occurrence
only at the beginning or at the end of the word. We will see that only the exact
form of underlined words is what really counts in our proof.

In order to find a set of words 3-compressing all (p,3.)-automata we use
again Lemma 1, yet switching the letters α and β. It yields the following set:
{βαβαβ, βαβα2β, βαβ2αβ, βαβα2βαβ, βα2βα2β, βα2β2α2β, βα2βαβα2β,
βα2βαβ, βα3βαβ, βαβα3β, βα3βα3β}. Some of these words are factors of others,
so we may infer the following:

(iv) each proper 3-compressible (p,3.)-automaton is 3-compressed by any word
with a factor of the form βαβαβ, βαβ2αβ, βαβα2βαβ, βα2βα2β, βα2β2α2β,

βα2βαβα2β, βα3βαβ,βαβα3β, βα3βα3β; [1, Lemma 3];

Similarly we get the following

(v) each proper 3-compressible (4.,p) is 3-compressed by any word with a factor
of the form αβαβα, α2β2α2, α2βα2, α2β3α, αβ3αβ3α, α2βαβ2α; each proper
3-compressible (p.,4) is 3-compressed by any word with a factor of the form
βαβαβ, β2α2β2, β2αβ2, β2α3β, βα3βα3β, β2αβα2β; [1, Lemma 4];

A.Cherubini et al. Binary 3-compressible automata

116

(vi) each proper 3-compressible (3.,3)-automaton is 3-compressed by a word in
the set {αβαβ, αβ2αβ, αβα2β, αβ2α2β, βαβα, βα2βα, βαβ2α, βα2β2α}; [1,
Lemma 9];

(vii) each proper 3-compressible (3.,4)-automaton is 3-compressed by a word
in the set {β2αβ2, β2α2β2, β2α3β2, β2αβαβ2}; each proper 3-compressible
(4.,3)-automaton is 3-compressed by a word in the set {α2βα2, α2β2α2,

α2β3α2, α2βαβα2}; [1, Lemma 10];
(viii) each proper 3-compressible (4.,4) is 3-compressed by a word in the set

{α2βα2, α2β2, β2αβ2, β2α2}; [1, Lemma 11].

Using the lemmas above we can see that any word containing as factors the
following words

(I) α2βαβ2α, βα2β2α2β, αβ4αβ2αβ4α,

(II) αβ3αβ3α, βα3βα3β, β2αβα2β, βαβα2βαβ, βα2βα2β, βα2βαβα2β, βα3βαβ,
βαβα3β, βα3βα3β, β2α2β2, β2α3β2, β2αβαβ2, α2β3α2.

(III) αβiαkβjα, where i, j ∈ {1, 3, 4}, k ∈ {1, 2, 3}.
3-compresses all 3-compressible automata except those in the D.

To form a single word that 3-compresses all automata not in D it is enough
to concatenate all the words listed in (I-III) above. Yet, we wish to have such a
word without (12y)-good exponents. So, at this moment, we have only a partial
solution. Let wD be the word obtained from concatenation of words in (II) and
(III), in arbitrary order, adding the suffix α2βα at the beginning, and replacing
all β2 by β3 (more precisely replacing all factors αβ2α by αβ3α; note that the
factors αβ2α in the word obtained from concatenation of words in (II) and (III)
can only come from the concatenation of words in (II-III) ending and starting
with β). Then obviously, wD has all words in (II-III) as factors and has no
occurrences of (12y)-good exponents. The fact that it has the suffix α2βα will
be used later in the proof. We observe that wD is also 3-full, since all words of
length 3 appear as factors in words listed in (II). This means we may state the
following.

Proposition 2. Let w ∈ {α, β}∗ be a word such that w∗ = wDw has as factors
all the three words listed in (I) above. Then, w 3-compresses all proper automata
in D if and only if the word w∗ = wDw described above is 3-collapsing.

5 Reduction to a System of Transformation Conditions

Now, our aim is to express the problem of 3-compressibility of proper automata
in D in terms of solving a system of transformation conditions. The base for this
is Theorem 1. Our attention is restricted to transformations α and β satisfying
the following conditions.

(C1) α is a transformation of type [1, 2]\1;
(C2) β is a permutation of the form β = (12y) . . . for some y /∈ {1, 2};
(C3) either 2α or yα is not in {2, y}.

A.Cherubini et al. Binary 3-compressible automata

117

Given a word w ∈ {α, β}+, by u1, u2, . . . , us we denote the set of all factors of w
such that αu1α, αu2α, . . . , αusα are all the factors of w defined in Theorem 1
for the permutation β = (12y) Then we have the following.

Proposition 3. Let w ∈ {α, β}+, and let u1, u2, . . . , us be the factors of w
described above. Then, there exists a proper automaton A ∈ D such that w does
not 3-compresses A if and only if the system

1u1, 1u2, . . . , 1us ∈ {1, 2} (1)

has a solution in transformations α, β on a finite set Q = {1, 2, . . . , n} satisfying
the conditions (C1-C3).

Proof. First, suppose that a required solution exists, and let A be an automa-
ton with the state set Q = {1, 2, . . . , n} and two input letters whose transition
function is defined by the action of the letters α and β given by the solution.
Then conditions (C1) and (C2) mean simply that A ∈ D, provided it is proper
3-compressible. It is 3-compressible by Lemma 1, item (iii). Finally, it is not
difficult to see that any word 3-compressing A has a length exceeding 4. Indeed,
we need first a letter α to get 1 missing in the image, then a factor β2, to get
y missing in the image, and the next α, to get two states missing. Thus A ∈ D
and, by Theorem 1, w does not 3-compress A.

Conversely, if A ∈ D and w does not 3-compresses it, then we may assume
that its set of the states is Q = {1, 2, . . . , n}. Then, the transformations α and β
corresponding to the letters of A satisfy, by definition of D, the condition (C1)
and (C2), and as above, by Lemma 1, they satisfy also condition (C3). Thus, by
Theorem 1, they form a required solution of the system (1). ut

In such a way the problem of 3-compressibility of automata in D is reduced to
solving a system of transformation conditions 1u ∈ {1, 2} with all u of the form
u = βkαu′αβ`, where k, ` are (12y)-good exponents, and u′ has no occurrence
of (12y)-bad exponents. We are going to show that solving a certain subclass of
such systems is computationally hard.

Given words v1, . . . , vs ∈ {α, β}+, we add to them two further words v0 = α2

and vs+1 = αβ4α, and consider the following system of transformation condi-
tions.

1β2v0β
2, 1β2v1β

2, . . . , 1β2vs+1β
2 ∈ {1, 2} (2)

We define a specific decision problem:

PROBLEM (*)
Instance: words v1, . . . , vs ∈ {α, β}+ such that each word vi starts and ends
with α, and has no occurrence of β with a (12y)-good exponent;
Question: Is there a solution (α, β) of the system (2) satisfying conditions (C1-
C3)?

We have the following.

A.Cherubini et al. Binary 3-compressible automata

118

Theorem 2. Problem (*) formulated above is NP-complete.

The proof ot this theorem uses tools worked out in [6], where solving systems
of such conditions is expressed in terms of coloring trees with distinguished nodes.
It will be given in the extended version of the paper. Having this theorem we
can can easily prove our main result.

Theorem 3. The problem whether a given word w ∈ {α, β}∗ is 3-collapsing is
co-NP-complete.

Proof. First observe that the problem belongs to co-NP class. Indeed, to see that
a word w is not 3-collapsing a nondeterministic algorithm needs only to guess
the smallest automaton that is not 3-compressed by w. By [10, Theorem 1]
such an automaton has not more than 4|w| + 2 states, and the facts that it
is 3-compressible and that w does not 3-compress it can be checked easily in
polynomial time with respect to |w|.

We transform problem (*) to our problem. Let v1, . . . , vs be an instance of
(*). First we form the word

w′ = β2v0β
2v0β

2v1β
2v2β

2 . . . β2vsβ
2vs+1β

2vs+1β
2.

Note that this word has doubled occurrences of factors v0 and vs+1. By assump-
tion, the only occurrences of β in w′ with (12y)-good exponents are β2 separating
factors v0, v1, v2, . . . , vs, vs+1. Thus, by Proposition 3, system (2) has a solution
satisfying conditions (C1-C3) if and only if there exists a proper automaton
A ∈ D such that w does not 3-compress A.

Now, we observe that w = wDw′, defined as in Proposition 2, has as factors
all the three words listed in (I). Indeed, α2βαβ2α is a factor of w since wD, by
definition, has the suffix α2βα, and w′ starts from β2α. The prefix β2v0β

2v0β
2 =

β2α2β2α2β2 of w′ has the second word in (I) as a factor. Finally, the suffix
vs+1β

2vs+1β
2 = αβ4αβ2αβ4αβ2 of w′ has the third word in (I) as a factor.

Therefore, by Proposition 2, there exists a proper automaton A ∈ D such that w
does not 3-compresses A if and only if the word w∗ = wDw is not 3-collapsing.
Obviously, this transformation may be performed in polynomial time, which
completes the proof. ut

References

1. A. Frigeri, A. Cherubini and Z. Liu. Composing short 3-compressing words on a 2
letter alphabet. to appear, (arxiv.org: 1406.1413v1, 2014).

2. D. S. Ananichev, A. Cherubini, and M. V. Volkov. Image reducing words and
subgroups of free groups. Theor. Comput. Sci., 307(1):77–92, 2003.

3. D. S. Ananichev, A. Cherubini, and M. V. Volkov. An inverse automata algorithm
for recognizing 2-collapsing words. In Developments in Language Theory, volume
2450 of LNCS, pages 270–282, 2003.

4. D. S. Ananichev and I. V. Petrov. Quest for short synchronizing words and short
collapsing words. In WORDS. Proc. 4th Int. Conf., pages 411–418, 2003.

A.Cherubini et al. Binary 3-compressible automata

119

5. A. Cherubini, P. Gawrychowski, A. Kisielewicz, and B. Piochi. A combinatorial
approach to collapsing words. In MFCS, pages 256–266, 2006.

6. A. Cherubini and A. Kisielewicz. Collapsing words, permutation conditions and
coherent colorings of trees. Theor. Comput. Sci., 410(21-23):2135–2147, 2009.

7. J. E. Pin. Le problème de la synchronization. contribution à l’étudia de la conjec-
ture de Černý. Thèse 3e cycle, Paris, 1978.

8. J. E. Pin. Sur le mots synchronisants dans un automata fini. Elektron. Informa-
tionverarbeigtung und Kybernetik, 14:283–289, 1978.

9. S. W. Margolis, J.-E. Pin, and M. V. Volkov. Words guaranteeing minimum image.
Internat. J. Foundations Comp. Sci., 15:259–276, 2004.

10. I. V. Petrov. An algorithm for recognition of n-collapsing words. Theoret. Comput.
Sci., 391(1-2):99–108, 2008.

11. E. V. Pribavkina. On some properties of the language of 2-collapsing words. In
Developments in Language Theory, volume 3572 of LNCS, pages 374–384, 2005.

12. N. Sauer and M. G. Stone. Composing functions to reduce image size. Ars Com-
binatoria, 1:171–176, 1991.

A.Cherubini et al. Binary 3-compressible automata

120

Extendibility of Choquet rational preferences on
generalized lotteries

Giulianella Coletti1, Davide Petturiti2, and Barbara Vantaggi2

1 Dip. Matematica e Informatica, Università di Perugia, Italy
coletti@dmi.unipg.it

2 Dip. S.B.A.I., Università di Roma “La Sapienza”, Italy
{davide.petturiti,barbara.vantaggi}@sbai.uniroma1.it

Abstract. Given a finite set of generalized lotteries, that is random
quantities equipped with a belief function, and a partial preference rela-
tion on them, a necessary and sufficient condition (Choquet rationality)
has been provided for its representation as a Choquet expected utility of
a strictly increasing utility function. Here we prove that this condition
assures the extension of the preference relation and it actually guides the
decision maker in this process.

Keywords: Generalized lottery, preference relation, belief function, prob-
ability envelope, Choquet expected utility, Choquet rationality

1 Introduction

In the classical von Neumann-Morgenstern decision theory under risk [23, 18],
the decision maker faces “one-shot” decisions [17] by specifying a preference
relation on lotteries, i.e., random quantities endowed with a probability distri-
bution. If the preference relation satisfies suitable axioms then the preference is
representable by an expected utility (EU) and the decision maker behaves like an
EU maximizer.

The assumptions behind the EU theory rely on a complete probabilistic de-
scription of the decisions, which is rarely met in practice. Indeed, in situations of
incomplete and revisable information, uncertainty cannot be handled through a
probability but it is unavoidable to refer to non-additive uncertainty measures,
for which the EU model is no more appropriate.

Here, we refer to Dempster-Shafer belief functions [7, 19] as uncertainty mea-
sures and to Choquet expected utility (CEU) as decision model (see for instance
[20, 21, 15, 1]). We recall that in some probabilistic inferential problems belief
functions can be obtained as lower envelopes of a family of probabilities, pos-
sibly arising as coherent extensions of a probability assessed on a set of events
different from those of interest (see for instance [7, 5, 10, 14, 6]).

Another issue typical of real problems is the partial observability of the world
which leads the decision maker to act under partial knowledge. Both in the
classical expected utility and in the Choquet expected utility frameworks it can
be difficult to construct the utility function u and even to test if the preferences

121

agree with an EU (or a CEU). In fact, to find the utility u the classical methods
ask for comparisons between “lotteries” and “certainty equivalent” or, in any
case, comparisons among particular large classes of lotteries (for a discussion in
the EU framework see [13]). For that, the decision maker is often forced to make
comparisons which have little or nothing to do with the given problem, having
to choose between risky prospects and certainty.

In [4], referring to the EU model, a different approach (based on a “rationality
principle”) is proposed: it does not need all these non-natural comparisons but,
instead, it can work by considering only the (few) lotteries and comparisons
of interest. Moreover, when new information is introduced, the same principle
assures that the preference relation can be extended maintaining rationality,
and, even more, the principle suggests how to extend it.

In [2] and in an extended version [3], we proposed a similar approach for the
CEU model by generalizing the usual definition of lottery. In detail, a generalized
lottery L (or g-lottery for short) is a random quantity with a finite support XL

endowed with a Dempster-Shafer belief function BelL [7, 19, 22] (or, equivalently,
a basic assignment mL) defined on the power set ℘(XL).

Assuming that the elements of the set X = {x1, . . . , xn} resulting by the
union of the supports of the considered g-lotteries is totally ordered as x1 <
. . . < xn (which is quite natural, thinking at elements of X as money payoffs),
then for every g-lottery L the Choquet integral of any strictly increasing utility
function u : X → R, not only is a weighted average (as observed in [12]), but
the weights have a clear meaning. In fact, this allows to map every g-lottery L
to a “standard” lottery whose probability distribution is constructed (following
a pessimistic approach) through the aggregated basic assignment ML.

The “Choquet rationality principle” (namely, condition (g-CR)) requires
that it is not possible to obtain two g-lotteries L and L′ with ML = ML′ , by
combining in the same way the aggregated basic assignments of two groups of g-
lotteries, if every g-lottery of the first group is not preferred to the corresponding
one of the second group, and at least a preference is strict.

Condition (g-CR) turns out to be necessary and sufficient for the existence
of a strictly increasing u : X → R whose CEU represents our preferences on
a finite set L of g-lotteries, under a natural assumption of agreement of the
preference relation with the order of X.

In this paper we show that condition (g-CR) assures also the extendibility
of a preference relation and actually “guides” the decision maker in this process.
An algorithm for the extension of a preference relation to a new pair of g-lotteries
is also provided. Such algorithm relies on the solution of at most three linear
programming problems and can be used “interactively” by the decision maker
in a step by step enlargement of his preferences.

The paper is structured as follows. In Section 2 some preliminary notions
are given, while Section 3 copes with preferences on g-lotteries and introduces
the condition (g-CR). Finally, Subsection 3.1 presents a motivating example,
and Subsection 3.2 deals with the extendibility of a Choquet rational preference
relation providing an algorithm for this task.

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

122

2 Numerical model of reference

Let X be a finite set of states of nature and denote by ℘(X) the power set of X.
We recall that a belief function Bel [7, 19, 22] on an algebra of events A ⊆ ℘(X) is
a function such that Bel(∅) = 0, Bel(X) = 1 and satisfying the n-monotonicity
property for every n ≥ 2, i.e., for every A1, . . . , An ∈ A,

Bel

(
n⋃

i=1

Ai

)
≥

∑

∅6=I⊆{1,...,n}
(−1)|I|+1Bel

(⋂

i∈I
Ai

)
. (1)

A belief function Bel on A is completely singled out by its Möbius inverse,
defined for every A ∈ A as

m(A) =
∑

B⊆A
(−1)|A\B|Bel(B).

Such a function, usually called basic (probability) assignment, is a function m :
A → [0, 1] satisfying m(∅) = 0 and

∑
A∈Am(A) = 1, and is such that for every

A ∈ A
Bel(A) =

∑

B⊆A
m(B). (2)

A set A in A is a focal element for m (and so also for the corresponding Bel)
whenever m(A) > 0.

Given a set X = {x1, . . . , xn} and a normalized capacity ϕ : ℘(X) → [0, 1]
(i.e., a function monotone with respect to the inclusion, and satisfying ϕ(∅) = 0
and ϕ(X) = 1), the Choquet integral of a function f : X → R, with f(x1) ≤
. . . ≤ f(xn) is defined as

C

∫
f dϕ =

n∑

i=1

f(xi)(ϕ(Ei)− ϕ(Ei+1)) (3)

where Ei = {xi, . . . , xn} for i = 1, . . . , n, and En+1 = ∅ [8].

In the classical von Neumann-Morgenstern theory [23] a lottery L consists of
a probability distribution on a finite support XL, which is an arbitrary finite set
of prizes or consequences.

In this paper we adopt a generalized notion of lottery L, by assuming that a
belief function BelL is assigned on the power set ℘(XL) of XL.

Definition 1. A generalized lottery, or g-lottery for short, on a finite set
XL is a pair L = (℘(XL), BelL) where BelL is a belief function on ℘(XL).

Let us notice that, a g-lottery L = (℘(XL), BelL) could be equivalently
defined as L = (℘(XL),mL), where mL is the basic assignment associated to
BelL. We stress that this definition of g-lottery generalizes the classical one in
which mL(A) = 0 for every A ∈ ℘(XL) with cardA > 1.

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

123

For example, a g-lottery L on XL = {x1, x2, x3} can be expressed as

L =

(
{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} {x1, x2, x3}
b1 b2 b3 b12 b13 b23 b123

)

where the belief function BelL on ℘(XL) is such that bI = BelL({xi : i ∈ I})
for every I ⊆ {1, 2, 3}. Notice that as one always has BelL(∅) = mL(∅) = 0,
the empty set is not reported in the tabular expression of L. An equivalent
representation of previous g-lottery is obtained through the basic assignment
mL associated to BelL (where mI = mL({xi : i ∈ I}) for every I ⊆ {1, 2, 3})

L =

(
{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} {x1, x2, x3}
m1 m2 m3 m12 m13 m23 m123

)
.

Given a finite set L of g-lotteries, let X =
⋃{XL : L ∈ L}. Then, any

g-lottery L on XL with belief function BelL can be rewritten as a g-lottery on
X by defining a suitable extension Bel′L of BelL.

Proposition 1. Let L = (℘(XL), BelL) be a g-lottery on XL. Then for any
finite X ⊇ XL there exists a unique belief function Bel′L on ℘(X) with the same
focal elements of BelL and such that Bel′L|℘(XL) = BelL.

Given L1, . . . , Lt ∈ L, all rewritten on X, and a real vector k = (k1, . . . , kt)
with ki ≥ 0 (i = 1, . . . , t) and

∑t
i=1 ki = 1, the convex combination of L1, . . . , Lt

according to k is defined as

k(L1, . . . , Lt) =

(
A∑t

i=1 kimLi
(A)

)
for every A ∈ ℘(X) \ {∅}. (4)

Since the convex combination of belief functions (basic assignments) on ℘(X) is
a belief function (basic assignment) on ℘(X), k(L1, . . . , Lt) is a g-lottery on X.

For every A ∈ ℘(X)\{∅}, there exists a degenerate g-lottery δA onX such that
mδA(A) = 1, and, moreover, every g-lottery L with focal elements A1, . . . , Ak
can be expressed as k(δA1 , . . . , δAk

) with k = (mL(A1), . . . ,mL(Ak)).

3 Preferences over a set of generalized lotteries

Consider a set L of g-lotteries with X =
⋃{XL : L ∈ L} and assume X is

totally ordered by the relation ≤, which is a quite natural condition thinking
at elements of X as money payoffs. Denote with < the total strict order on X
induced by ≤.

In what follows the setX is always assumed to be finite, i.e.,X = {x1, . . . , xn}
with x1 < . . . < xn. Under previous assumption, we can define the aggregated
basic assignment of a g-lottery L, for every xi ∈ X, as

ML(xi) =
∑

xi∈B⊆Ei

mL(B), (5)

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

124

where Ei = {xi, . . . , xn} for i = 1, . . . , n. Note that ML(xi) ≥ 0 for every xi ∈ X
and

∑n
i=1ML(xi) = 1, thus ML determines a probability distribution on X.

Let - be a preference/indifference relation on L . For every L,L′ ∈ L the
assertion that “L is indifferent to L′”, denoted by L ∼ L′, summarizes the two
assertions L - L′ and L′ - L. Observe that not all the pairs of g-lotteries are
necessarily compared. An additional strict preference relation can be elicited by
assertions such as “L is strictly preferred to L′”, denoted by L ≺ L′. Let ≺• be
the asymmetric relation formally deduced from -, namely ≺•=- \ ∼. If the pair
of relations (-,≺) represents the opinion of the decision maker, then it is natural
to have ≺⊂≺•: in fact, it is possible that, at an initial stage of judgement, the
decision maker has not decided yet if L ≺ L′ or L ∼ L′ and he expresses his
opinion only by L - L′. Obviously if - is complete then ≺=≺• and so for every
L,L′ ∈ L either L ≺ L′ or L′ ≺ L or L ∼ L′.

Remark 1. Since the set X is totally ordered by ≤, it is natural to require that
the partial preference relation (-,≺) agrees with ≤ on degenerate g-lotteries
δ{x}, for x ∈ X, that correspond to decisions under certainty. For this, L must
contain the set of degenerate g-lotteries on singletons L0 = {δ{x} : x ∈ X}
and it must be x ≤ x′ if and only if δ{x} - δ{x′}, for x, x′ ∈ X. Actually, the
decision maker is not asked to provide such a set of preferences, but in this case
the initial partial preference (-,≺) on L must be extended in order to reach this
technical condition and, of course, the decision maker is asked to accept such an
extension.

We call the pair (-,≺) strengthened preference relation if ≺ is not empty,
moreover, we say that a function U : L → R represents (or agrees with) (-,≺)
if, for every L,L′ ∈ L

L - L′ ⇒ U(L) ≤ U(L′) and L ≺ L′ ⇒ U(L) < U(L′). (6)

In analogy with [4], given (-,≺) on L, our aim is to find a necessary and
sufficient condition for the existence of a utility function u : X → R such that
the Choquet expected utility of g-lotteries in L, defined for every L ∈ L as

CEU(L) = C

∫
udBelL, (7)

represents (-,≺). In particular, sinceX is totally ordered by≤ and CEU(δ{x}) =
u(x) for every x ∈ X, we search for a strictly increasing u.

The next axiom requires that it is not possible to obtain two g-lotteries
having the same aggregated basic assignment, by combining in the same way
the aggregated basic assignments of two groups of g-lotteries, if each g-lottery
in the first group is not preferred to the corresponding one in the second group,
and at least a preference is strict.

Definition 2. A strengthened preference relation (-,≺) on a set L of g-lotteries
is said to be Choquet rational if it satisfies the following condition:

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

125

(g-CR) For all h ∈ N and Li, L
′
i ∈ L with Li - L′i (i = 1, . . . , h), if

k(ML1
, . . . ,MLh

) = k(ML′
1
, . . . ,ML′

h
)

with k = (k1, . . . , kh), ki > 0 (i = 1, . . . , h) and
∑h
i=1 ki = 1, then it can

be Li ≺ L′i for no i = 1, . . . , h. In particular, if - is complete, it must be
Li ∼ L′i for every i = 1, . . . , h.

Note that the convex combination referred to in condition (g-CR) is the
usual one involving probability distributions on X. Moreover, it is easily proven
that if k(L1, . . . , Lh) = k(L′1, . . . , L

′
h), then it also holds k(ML1 , . . . ,MLh

) =
k(ML′

1
, . . . ,ML′

h
) but the converse is generally not true.

The following theorem, proved in [2], shows that (g-CR) is a necessary and
sufficient condition for the existence of a strictly increasing utility function u
whose Choquet expected value on g-lotteries represents (-,≺).

Theorem 1. Let L be a finite set of g-lotteries, X =
⋃{XL : L ∈ L} with X

totally ordered by ≤, and (-,≺) a strengthened preference relation on L. Assume
L0 ⊆ L and for every x, x′ ∈ X, x ≤ x′ if and only if δ{x} - δ{x′}. The following
statements are equivalent:

(i) (-,≺) is Choquet rational (i.e., it satisfies (g-CR));

(ii) there exists a strictly increasing function u : X → R (unique up to a positive
linear transformation), whose Choquet expected utility (CEU) on L repre-
sents (-,≺).

The proof of previous result provides an operative procedure to compute
a strictly increasing utility function u on X in case (g-CR) is satisfied. For
this, introduce the collections S = {(Lj , L′j) : Lj ≺ L′j , Lj , L

′
j ∈ L} and R =

{(Gh, G′h) : Gh - G′h, Gh, G
′
h ∈ L} with s = cardS and r = cardR. Then

condition (g-CR) is equivalent to the non-existence of a row vector k of size
(1× s+ r) with ki > 0 for at least a pair (Li, L

′
i) ∈ S and

∑s+r
i=1 ki = 1 such that

k(ML1
, . . . ,MLs

,MG1
, . . . ,MGr

) = k(ML′
1
, . . . ,ML′

s
,MG′

1
, . . . ,MG′

r
).

In turn, setting k = (y, z), previous condition is equivalent to the non-solvability
of the following linear system (in which || · ||1 denotes the L1-norm)

S ′ :





yA+ zB = 0
y, z ≥ 0
y 6= 0
||y||1 + ||z||1 = 1

(8)

where A = (aj) and B = (bh) are, respectively, (s×n) and (r×n) real matrices
with rows aj = ML′

j
−MLj for j = 1, . . . , s, and bh = MG′

h
−MGh

for h = 1, . . . , r,

and y and z are, respectively, (1× s) and (1× r) unknown row vectors.

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

126

By virtue of a well-known alternative theorem (see, e.g., [11]), in [2] the
non-solvability of S ′ has been proven to be equivalent to the solvability of the
following system

S :

{
Aw > 0
Bw ≥ 0

(9)

where w is a (n × 1) unknown column vector. In detail, setting u(xi) = wi,
i = 1, . . . , n, the solution w induces a utility function u on X which, taking into
account Remark 1, is strictly increasing and whose CEU represents (-,≺).

3.1 A paradigmatic example

To motivate the topic dealt with in this paper we introduced the following ex-
ample, which is inspired to the well-known Ellsberg’s paradox [9].

Example 1. Consider the following hypothetical experiment. Let us take two
urns, say U1 and U2, from which we are asked to draw a ball each. U1 contains
1
3 of white (w) balls and the remaining balls are black (b) and red (r), but in
a ratio entirely unknown to us, analogously, U2 contains 1

4 of green (g) balls
and the remaining balls are yellow (y) and orange (o), but in a ratio entirely
unknown to us.

In light of the given information, the composition of U1 singles out a class
of probability measures P1 = {P θ} on the power set ℘(S1) of S1 = {w, b, r} s.t.
P θ({w}) = 1

3 , P θ({b}) = θ, P θ({r}) = 2
3 − θ, with θ ∈

[
0, 23
]
. Analogously, for

the composition of U2 we have the class P2 = {Pλ} on ℘(S2) with S2 = {g, y, o}
s.t. Pλ({g}) = 1

4 , Pλ({y}) = λ, Pλ({o}) = 3
4 − λ, with λ ∈

[
0, 34
]
.

Concerning the ball drawn from U1 and the one drawn from U2, the following
gambles are considered:

w b r
L1 100e 0e 0e
L2 0e 0e 100e
L3 0e 100e 100e
L4 100e 100e 0e

g y o
G1 100e 10e 10e
G2 10e 10e 100e
G3 10e 100e 100e
G4 100e 100e 10e

If we express the strict preferences L2 ≺ L1, L4 ≺ L3, then for no value of θ
there exists a function u : {0, 100} → R s.t. its expected value on the Li’s w.r.t.
P θ represents our preferences on the Li’s. Indeed, putting w1 = u(0) and w2 =
u(100), both the following inequalities must hold 1

3w1+θw1+
(
2
3 − θ

)
w2 <

1
3w2+

θw1 +
(
2
3 − θ

)
w1 and 1

3w2 + θw2 +
(
2
3 − θ

)
w1 <

1
3w1 + θw2 +

(
2
3 − θ

)
w2, from

which, summing memberwise, we get w1 + w2 < w1 + w2, i.e., a contradiction.
The same can be proven if we express the strict preferences G2 ≺ G1, G4 ≺ G3.

Now take P 1 = min P1 and P 2 = min P2, where the minimum is intended
pointwise on the elements of ℘(S1) and ℘(S2), obtaining:

℘(S1) ∅ {w} {b} {r} {w, b} {w, r} {b, r} S1

P 1 0 1
3 0 0 1

3
1
3

2
3 1

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

127

℘(S2) ∅ {g} {y} {o} {g, y} {g, o} {y, o} S2

P 2 0 1
4 0 0 1

4
1
4

3
4 1

It is easily verified that both P 1 and P 2 are belief functions.
The gambles Li’s and Gi’s allow to transport the belief functions P 1 and P 2

to the whole set of prizes {0, 10, 100}, obtaining the following g-lotteries with
the corresponding aggregated basic assignments

{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}
L1

2
3 0 1

3
2
3 1 1

3 1
L2

1
3 0 0 1

3 1 0 1
L3

1
3 0 2

3
1
3 1 2

3 1
L4 0 0 1

3 0 1 1
3 1

G1 0 3
4

1
4

3
4

1
4 1 1

G2 0 1
4 0 1

4 0 1 1
G3 0 1

4
3
4

1
4

3
4 1 1

G4 0 0 1
4 0 1

4 1 1

0 10 100
ML1

2
3 0 1

3
ML2

1 0 0
ML3

1
3 0 2

3
ML4

2
3 0 1

3
MG1

0 3
4

1
4

MG2 0 1 0
MG3

0 1
3

3
4

MG4
0 3

4
1
4

It is easily proven that for every strictly increasing u : {0, 10, 100} → R the
strict preferences L2 ≺ L1, L4 ≺ L3, G2 ≺ G1, G4 ≺ G3 are represented by their
Choquet expected utility. Indeed, putting w1 = u(0), w2 = u(10), w3 = u(100),
the following system

S :





w1 <
2
3w1 + 1

3w3
2
3w1 + 1

3w3 <
1
3w1 + 2

3w3

w2 <
3
4w2 + 1

4w3
3
4w2 + 1

4w3 <
1
4w2 + 3

4w3

w1 < w2 < w3

is such that any choice of values satisfying w1 < w2 < w3 is a solution.
Now, suppose to toss a fair coin and to choose among L1 and G1 depending

on the face shown by the coin. In analogy, suppose to choose among L2 and G1

with a totally similar experiment. Let us denote with F1 and F2 the results of
the two experiments. This implies that F1 and F2 can be defined as the convex
combinations F1 = 1

2L1 + 1
2G1 and F2 = 1

2L2 + 1
2G1, obtaining the g-lotteries

with the corresponding aggregated basic assignments

{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}
F1

8
24

9
24

7
24

17
24

15
24

16
24 1

F2
4
24

9
24

3
24

13
24

15
24

12
24 1

0 10 100
MF1

8
24

9
24

7
24

MF2

12
24

9
24

3
24

If we add to previous preferences the further strict preference F1 ≺ F2 then
there is no strictly increasing u : {0, 10, 100} → R whose Choquet expected
utility represents our preferences. Indeed, in this case, the extended system

S :





w1 <
2
3w1 + 1

3w3
2
3w1 + 1

3w3 <
1
3w1 + 2

3w3

w2 <
3
4w2 + 1

4w3
3
4w2 + 1

4w3 <
1
4w2 + 3

4w3
8
24w1 + 9

24w2 + 7
24w3 <

12
24w1 + 9

24w2 + 3
24w3

w1 < w2 < w3

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

128

admits no solution. Notice that, taking into account Remark 1, condition (g-
CR) fails since it holds

3

4
MF1

+
1

8
Mδ{0} +

1

8
Mδ{10} =

3

4
MF2

+
1

8
Mδ{10} +

1

8
Mδ{100} .

3.2 Extension of Choquet rational preferences

In previous section it has been shown that condition (g-CR) is equivalent to the
existence of a strictly increasing utility function u on X, whose CEU represents
(-,≺), moreover, such a u can be explicitly determined by solving the linear
system S defined in (9). It is straightforward that once a utility u has been
fixed, a complete preference relation on L (or any finite superset L′ of g-lotteries
on the same finite set X) extending (-,≺) is induced by the corresponding CEU
functional.

Nevertheless, system S has generally infinite solutions which can give rise to
possibly very different complete preference relations, thus any choice of a utility
function causes a loss of information, moreover, it is not clear why one should
choose a utility function in place of another.

This is why it is preferable to face the extension in a qualitative setting
by considering the entire class of utility functions whose CEU represents the
preference (-,≺) and suggesting to the decision maker those pairs of g-lotteries
where all the utility functions unanimously agree. In this view, the following
Theorem 2 proves the extendibility of a Choquet rational relation and shows
how condition (g-CR) guides the decision maker in assessing his preferences.

Theorem 2. Let X be a finite set totally ordered by ≤, L and L′ finite sets of
g-lotteries on X, with L ⊆ L′, and (-,≺) a strengthened preference relation on
L. Assume L0 ⊆ L and for every x, x′ ∈ X, x ≤ x′ if and only if δ{x} - δ{x′}.
Then if (-,≺) satisfies condition (g-CR) there exists a family {-γ : γ ∈ Γ}
of complete relations on L′ satisfying (g-CR) which extend (-,≺). Moreover,
denoting with ≺γ and ∼γ , respectively, the strict and symmetric parts of -γ , for
γ ∈ Γ , condition (g-CR) singles out the relations

≺?=
⋂
{≺γ : γ ∈ Γ} and ∼?=

⋂
{∼γ : γ ∈ Γ}.

Proof. Suppose X = {x1, . . . , xn} with x1 < . . . < xn. By the proof of Theorem 1
(see [2]), (-,≺) satisfies condition (g-CR) if and only if system S defined in (9)
admits a (n × 1) column vector w as solution. In turn, setting u(xi) = wi, for
i = 1, . . . , n, we get a strictly increasing utility function u on X whose Choquet
expected value represents (-,≺) on L. Defining for every L,L′ ∈ L′

L -γ L′ ⇔ CEU(L) ≤ CEU(L′),

we get a relation -γ on L′ which is complete and satisfies (g-CR) by virtue of
Theorem 1. This implies that the family {-γ : γ ∈ Γ} is not empty and all its
members are obtained varying the solution w of system S. The correspondence

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

129

between the set of solutions and the family of relations {-γ : γ ∈ Γ} is onto but
not one-to-one, as every positive linear transformation of a solution w gives rise
to the same relation -γ .

The relations ≺? and ∼? express, respectively, the pairs of g-lotteries in L′
on which all the strict ≺γ and symmetric ∼γ parts, for γ ∈ Γ , agree. It trivially
holds that ≺? and ∼? extend the relations ≺ and ∼ obtained from (-,≺),
moreover, in order to determine ≺? and ∼?, for every F,G ∈ L′ such that it
does not hold F ≺ G or G ≺ F or F ∼ G it is sufficient to test the solvability of
the three linear systems

S≺?

:

{
A′w > 0
Bw ≥ 0

S�?

:

{
A′′w > 0
Bw ≥ 0

S∼?

:

{
Aw > 0
B′w ≥ 0

where w is an unknown (n×1) column vector, A and B are, respectively, (s×n)
and (r×n) real matrices defined as in (8), A′ is a ((s+1)×n) real matrix obtained
adding to A the (s + 1)-th row a(s+1) = MG −MF , A′′ is a ((s + 1) × n) real
matrix obtained adding to A the (s+ 1)-th row a(s+1) = MF −MG, and B′ is a
((r+2)×n) real matrix obtained adding to B the (r+1)-th row b(r+1) = MG−MF

and the (r + 2)-th row b(r+2) = MF −MG.
Depending on the solvability of systems S≺?

,S�?

,S∼?

we can have the fol-
lowing situations:

(a) F ≺? G if and only if S≺?

is solvable and S�?

,S∼?

are not, as this happens
if and only if CEU(F) < CEU(G) for every u given by a solution of S;

(b) G ≺? F if and only if S�?

is solvable and S≺?

,S∼?

are not, as this happens
if and only if CEU(G) < CEU(F) for every u given by a solution of S;

(c) F ∼? G if and only if S∼?

is solvable and S≺?

,S�?

are not, as this happens
if and only if CEU(F) = CEU(G) for every u given by a solution of S.

In all the remaining cases, the Choquet expected utilities determined by solutions
of S do not unanimously agree in ordering the pair F and G. �

Relations ≺? and ∼? determined in the proof of previous theorem express
“forced” preferences that the decision maker has to accept in order to maintain
Choquet rationality. On the other hand, pairs of g-lotteries not ruled by ≺?
and ∼? are subject to a choice by the decision maker. In the latter situation, a
subjective elicitation is required or, in case of a software agent [17], a suitable
automatic choice criterion can be adopted.

We stress that each choice made by the decision maker imposes a new con-
straint in system S, thus the set of utility functions whose CEU represents the
current strengthened preference (-,≺) is possibly reduced.

Previous discussion suggests the following Algorithm 1 which is thought to
guide the decision maker in enlarging a Choquet rational preference relation
(-,≺) to a (possibly new) pair of g-lotteries F and G: the extended preference
is still denoted as (-,≺). In particular, Algorithm 1 returns to the decision
maker what he must do or he cannot do in order to maintain (g-CR).

Notice that possibly F,G ∈ L, thus previous algorithm can be used to pro-
duce a step by step completion of the preference relation (-,≺) on L.

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

130

Algorithm 1 Extension of a Choquet rational relation

function Extension((-,≺), F , G)
if S≺?

and S�?

are solvable then free preference between F and G
else if S≺?

is solvable and S∼?

is not then it must be F ≺ G
else if S�?

is solvable and S∼?

is not then it must be G ≺ F
else if S≺?

and S∼?

are solvable then it cannot be G ≺ F
else if S�?

and S∼?

are solvable then it cannot be F ≺ G
else it must be F ∼ G

end function

Algorithm 1 requires as input a Choquet rational preference relation (-,≺)
on a set of g-lotteries L, and two (possibly new) g-lotteries F and G, all rewritten
on X = {x1, . . . , xn} with x1 < . . . < xn. The g-lotteries in L ∪ {F,G} can be
simply regarded as basic assignments on ℘(X), i.e., as real (1×q) row vectors with
q = 2n− 1. The formation of matrices A,A′, A′′, B,B′ requires the computation
of the aggregated basic assignment ML for every L ∈ L ∪ {F,G}, which can be
done in polynomial time with respect to q.

The extension is faced through the solution of at most three linear program-
ming problems, whose solution has time complexity which is a polynomial in
n = log2(q+ 1) and the digital size of the coefficients in matrices A′, B or A′′, B
or A,B′, respectively [16].

The following example shows an application of Algorithm 1.

Example 2. Consider the situation described in Example 1. It has already been
observed that adding the further strict preference F1 ≺ F2 implies that the global
preference relation has no more a Choquet expected utility representation. We
use Algorithm 1 to guide the decision maker in judging his preference between
F1 and F2 in order to preserve Choquet rationality. It is easily seen that only
system

S�?

:





w1 <
2
3w1 + 1

3w3
2
3w1 + 1

3w3 <
1
3w1 + 2

3w3

w2 <
3
4w2 + 1

4w3
3
4w2 + 1

4w3 <
1
4w2 + 3

4w3
12
24w1 + 9

24w2 + 3
24w3 <

8
24w1 + 9

24w2 + 7
24w3

w1 < w2 < w3

is solvable while S≺?

and S∼?

are not. In turn, this implies that F2 ≺? F1 and
so the decision maker is forced to strictly prefer F1 to F2 to respect condition
(g-CR).

On the other hand, considering the g-lotteries L1 and G1, both systems

S≺?

:





w1 <
2
3w1 + 1

3w3
2
3w1 + 1

3w3 <
1
3w1 + 2

3w3

w2 <
3
4w2 + 1

4w3
3
4w2 + 1

4w3 <
1
4w2 + 3

4w3
2
3w1 + 1

3w3 <
3
4w2 + 1

4w3

w1 < w2 < w3

S�?

:





w1 <
2
3w1 + 1

3w3
2
3w1 + 1

3w3 <
1
3w1 + 2

3w3

w2 <
3
4w2 + 1

4w3
3
4w2 + 1

4w3 <
1
4w2 + 3

4w3
3
4w2 + 1

4w3 <
2
3w1 + 1

3w3

w1 < w2 < w3

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

131

are solvable, thus in this case the decision maker is totally free to choose his
preference between L1 and G1.

References

1. Chateauneuf, A., Cohen, M.: Choquet expected utility model: a new approach to
individual behavior under uncertainty and social choice welfare. Fuzzy Meas. and
Int.: Th. and App., pp. 289–314, Heidelberg: Physica (2000).

2. Coletti, G., Petturiti, D., Vantaggi, B.: Choquet expected utility representation of
preferences on generalized lotteries. IPMU 2014, Part II, CCIS 443, A. Laurent et
al. (Eds.), pp. 444–453 (2014).

3. Coletti, G., Petturiti, D., Vantaggi, B.: Rationality principles for preferences on
belief functions. Submitted to Kybernetika.

4. Coletti, G., Regoli, G.: How can an expert system help in choosing the optimal
decision?. Th. and Dec., 33(3), 253–264 (1992).

5. Coletti, G., Scozzafava, R.: Toward a General Theory of Conditional Beliefs. Int.
J. of Int. Sys., 21, 229–259 (2006).

6. Coletti, G., Scozzafava, R., Vantaggi, B.: Inferential processes leading to possibility
and necessity. Inf. Sci., 245, 132–145 (2013).

7. Dempster, A.P.: Upper and Lower Probabilities Induced by a Multivalued Mapping.
Ann. of Math. Stat., 38(2), 325–339 (1967).

8. Denneberg, D.: Non-additive Measure and Integral. Theory and Decision Library:
Series B, Vol. 27, Kluwer Academic, Dordrecht, Boston (1994).

9. Ellsberg, D.: Risk, Ambiguity and the Savage Axioms. Quart. Jour. of Econ., 75,
643–669 (1961).

10. Fagin, R., Halpern, J.Y.: Uncertainty, belief and probability. Comput. Int., 7(3),
160–173 (1991).

11. Gale, D.: The Theory of Linear Economic Models. McGraw Hill (1960).
12. Gilboa, I., Schmeidler, D.: Additive representations of non-additive measures and

the Choquet integral. Ann. of Op. Res., 52, 43–65 (1994).
13. Mc Cord, M., de Neufville, R.: Lottery Equivalents: Reduction of the Certainty

Effect Problem in Utility Assessment. Man. Sci., 23(1), 56–60 (1986).
14. Miranda, E., de Cooman, G., Couso, I.: Lower previsions induced by multi-valued

mappings. J. of Stat. Plan. and Inf., 133, 173–197 (2005).
15. Quiggin, J.: A Theory of Anticipated Utility. J. of Ec. Beh. and Org., 3, 323–343

(1982).
16. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover, New York (1998).
17. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Second edition.

Prentice Hall, Upper Saddle River (2003).
18. Savage, L.: The foundations of statistics. Wiley, New York (1954).
19. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976).
20. Schmeidler, D.: Subjective probability and expected utility without additivity.

Econometrica, 57(3), 571–587 (1989).
21. Schmeidler, D.: Integral representation without additivity. Proc. of the Am. Math.

Soc., 97(2), 255–261, 1986.
22. Smets, P.: Decision making in the TBM: the necessity of the pignistic transforma-

tion. Int. J. Approx. Reas., 38(2), 133–147 (2005).
23. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.

Princeton University Press (1944).

G.Coletti et al. Extendibility of Choquet rational preferences on generalized lotteries

132

On multiple learning schemata in conflict driven solvers

Andrea Formisano1 and Flavio Vella2

1 Università di Perugia formis@dmi.unipg.it
2 IAC-CNR and Sapienza Università di Roma vella@di.uniroma1.it

Abstract. In this preliminary paper we describe a general approach for multiple
learning in conflict-driven SAT solvers. The proposed formulation of the conflict
analysis task turns out to be expressive enough to reckon with different orthogonal
generalizations of the standard learning schemata, such as the conjunct analysis
of multiple conflicts, the generation of possibly interdependent learned clauses,
the imposition of global optimality criteria.
We formalize the general learning problem as a search for a collection of vertex
cuts in a directed acyclic graph. Optimality of the solution may be evaluated with
respect to a given global objective function intended to encode search strategies
and heuristics affecting the behavior of the solver. We also outline some algo-
rithmical solutions by exploiting standard algorithms proposed to solve cut and
multicut problems on DAGs.

1 Introduction

Most of the successful SAT solvers available nowadays originate from refinements of
the DPLL procedure [11] and integrate powerful techniques such as conflict driven
learning and non-chronological backtracking. As a matter of fact, the combination of
suitable learning schemata with smart branching heuristics and efficient (Boolean) con-
straint propagation algorithms [4], remarkably improved the efficiency and effective-
ness of modern SAT solvers. Analogous techniques, often migrated from SAT tech-
nology, have been exploited in developing solvers in various fields of Automated Rea-
soning, such as Answer Set Programming, Constraint Programming, and Satisfaction
Modulo Theory (cf., among many, [13, 26, 23] and the references therein).

In what follows we focus on clause-based SAT solving, albeit similar arguments can
be advanced concerning other kind of solvers. More specifically, we will consider the
problem of determining the satisfiability of a set of clauses, built up from a collection
of propositional variables. (As usual, a literal is a variable or its complement. Clauses
are sets of literals.)

Let us briefly recall the main traits of a DPLL-like SAT solver. For a formal and
detailed treatment the reader is referred to [4], among many). Given an instance of SAT
(i.e., a set of clauses), a DPLL-like SAT solver proceeds by alternating decision steps
and propagation phases. By making a decision, the solver assigns one propositional
variable a truth value. Then, it propagates the effects of such a decision to (possibly)
derive implied assignments. Each decision has a decision level associated to it and prop-
agation takes place, within the current decision level, whenever all but one literals in a
clause have been assigned false (with a slight abuse, let us call unit this kind of clause).

133

In order to find a satisfying assignment for the unit clause (and then, for the whole
instance), the unassigned literal must be set true. The propagation stage continues as
long as units are produced. Then, the decision level is increased and another decision is
taken. The process stops as soon as a solution is found (namely, all variables have been
consistently assigned) or a conflict is detected. Normally, a conflict arises when, through
the propagation phase, all the literals in a clause become assigned to false. At this point
a conflict analysis procedure derives a new conflict clause to be added to the instance.
Then, some of the previously taken decisions are undone and the solver backjumps to
a previous decision level, before continuing the search for a solution. The presence
of the new clause drives subsequent propagation phases and prevents the solver from
generating again the very same conflicting assignment.

In this paper we propose a schema for conflict analysis general enough to enable the
conjunct analysis of several conflicts and the consequent generation of more that one
learned clause. Multiplicity may arise not only from generating more than one conflict
in a single propagation phase, or by admitting multiple decisions at each decision level,
but also from concurrently running different instances of the above outlined procedure
(each one performing a different visit of the solution space). Designing a global learn-
ing procedure in such a general context has several potential advantages. On the one
hand, it might take advantage from the results of all searches in order to derive more ef-
fective conflict clauses. On the other hand, learned clauses convey knowledge exchange
between the concurrent threads of the parallel solver.

The paper is organized as follows. After recalling the basic notions about conflict-
driven SAT solving (Section 2), in Section 3 we formalize our general learning schema.
Sections 4 and 5 concretize our proposal by introducing some algorithmical solutions.
Finally, Section 6 provides some concluding remarks and hints for future development.

2 Conflict analysis and implication graphs

Let us consider in more detail the conflict analysis procedure described earlier. Fol-
lowing [34, 22], the dependencies between decided and propagated variables can be de-
scribed by means of an implication graph. It is a directed acyclic graph (DAG, for short)
in which vertices represent truth value assignments for literals. We will often identify a
vertex with the literal it represents: a variable x assigned true (resp., false) is rendered
by a vertex x (resp., −x). Moreover, given a literal x, let x denote its complement.

Edges express the reasons that lead the assignments. In particular, decided variables
correspond to vertices having no incident edges. If a literal x has been assigned true by
propagation, because of a unit clause {x, y1, . . . , yk}, then the vertex x has each yi as
direct antecedents in the implication graph.

To simplify the following treatment, let us introduce a special kind of vertex. A
conflict vertex, not corresponding to any variable, is introduced in the graph whenever a
pair of contradictory assignments is produced for the same propositional variable x. A
conflict vertex has exactly two antecedent vertices, representing two inconsistent value
assignments for a variable.

In this setting, given an implication graphG(V,E), we can identify the set of source
vertices S ⊆ V (corresponding to decisions) and the set of conflict vertices T ⊆ V .

A.Formisano et al. On multiple learning schemata in conflict driven solvers

134

-h(2) g(2) -d(2)

-e(2)

e(2)

t

-b(1) a(1)

c(1)

f(1)

Fig. 1. Implication graph G1 for Example 1.

Example 1. Consider the following clauses: {a, b}, {c,¬a}, {¬a, f}, {h, g}, {¬g,¬d},
{¬f, d,¬e}, {e, d,¬c}. Fig. 1 shows an implication graph G1 obtained by assigning
true the two literals ¬b and ¬h. Hence, two sources are present in G1, corresponding
to such decisions. (For the time being, let us ignore the decision levels indicated by the
vertices’ superscripts.) As mentioned, edges denote propagation steps. For instance, an
edge from ¬b to a is introduced because of the first clause. In fact, being b false, in
order to satisfy the clause, a must be set true. Similarly, two edges from a, to vertices c
and f , respectively, are introduced because of the second and the third clause, resp., and
so on. Note that, once completed, the propagation steps introduces a pair of conflicting
assignments for the literal e. A conflict vertex t denotes this fact. ut

For simplicity, let us consider a graph G having a single conflict vertex t (having x
and x as antecedents, for a variable x).1 Every vertex cut X in G that separates S from
t and such that {x, x} 6⊆ X , corresponds to a partial assignment sufficient to imply
the conflict.2 In other words, X can be translated into a conflict clause made of the
complements of the literals in X .

Example 2. Consider the graphG1 in Fig. 1. The vertex cut made of the vertices a and g
separates all the sources from the conflict. Consequently, a partial assignment sufficient
to imply the conflict consists in assigning true to both a and g.

Clearly, more that one vertex cut may exist. For instance, in G1, two other possible
vertex cuts are {a,¬d} and {c, f,¬d}. ut

If a vertex cut contains only one literal that has been assigned at a certain decision
level `, then such a literal is a unique implication point (UIP). Notice that, if s` is the
literal decided at level `, a UIP dominates (in the sub-graph of level `) the conflict vertex
t with respect to s`: each path from the source s` to t must go through the UIP.

The maximum decision level of the vertices in the cut (except the decision level of
the conflict) is the decision level to backjump. After backjumping, the conflict clause
becomes an asserting clause: all its literals but one are assigned false, so the remaining

1 Such a situation can be always achieved by isolating a single conflict vertex t, and by restricting
the implication graph to the S−t-connected portion of G.

2 Let a and b be two distinct vertices such that b is reachable from a in a directed graph G.
Recall that, a vertex cut (resp., edge cut) that separates a from b, is defined as a set of vertices
(resp., edges) such that their removal from G eliminates all directed paths from a to b.

A.Formisano et al. On multiple learning schemata in conflict driven solvers

135

literal is determined by propagation. Consequently, the solver will be “guided” toward
a different portion of the search space.

With respect to the same conflict, several UIPs may occur in the implication graph.
These are ordered depending on the distance from the conflict vertex: the UIP closest
to the conflict vertex is called first UIP, and so on.

Clearly, not all the possible vertex cuts involve a UIP. Nevertheless, each of them
identifies a different conflict clause that can be, in principle, profitably added to the SAT
instance in order to prune the search space.

Example 3. Consider again the graph G1 in Fig. 1 and assume that ¬b has been as-
signed first, at the decision level 1. (Decision levels are denoted by superscripts in the
graph.) All the vertices assigned by propagation as a consequence of this decision be-
long to such decision level. Then, a subsequent decision, at level 2, assigned true to the
literal ¬h and caused the propagation of the other vertices. Hence, the conflict occurs
at level 2. The first UIP is ¬d. Indeed it dominates t (each path from ¬h to the con-
flict must go through the vertex ¬d) and it is the dominator closest to t. The procedure
proceeds by learning the clause corresponding to such UIP, namely {¬f,¬c, d}, and
backjumping to level 1 (hence, the decision regarding ¬h is undone). In this situation,
a propagation step, using the newly introduced clause forces d to be assigned true. In
turn, because of clauses {¬g,¬d} and {h, g} also ¬g and h are set true. ut

3 Generalizing conflict analysis and learning

The effectiveness of a solver largely depends on the strategy used to identify suitable
conflict clauses, among all the possible candidates, by analyzing the implication graph.
Notice that, the structure of the implication graph substantially affects the learning pro-
cedure, because, as mentioned, conflict clauses correspond to vertex cuts. In turn, the
structure of the graph depends on:
(a) the selection of decision variables (branching strategy). This determines the set of

sources of the graph.
(b) The specific sequence of propagations performed in each propagation phase. If

different asserting clauses are activable at each time, different orders of their activa-
tion induce different topologies of the graph.

Many of the existing solvers perform just a single decision at each step and stop the
propagation phase as soon as the first conflict arises. Moreover, conflict analysis is usu-
ally focused on UIPs (often, only conflict clauses involving the first-UIP are learned).
One reason for this choice is that such conflict clauses can be obtained by developing
a linear derivation by propositional resolution. The steps of this derivation use as resol-
vents (in the reverse order) the asserting clauses used along the path from the (first) UIP
to the conflict. Hence, in some sense, once the conflict is present, the generation of the
conflict clause is deterministic [4, 34].

In what follows we generalize the basic learning schema described so far. More
specifically, we design a general schema for conflict analysis that takes into account the
following aspects:

A.Formisano et al. On multiple learning schemata in conflict driven solvers

136

-b(1) a(1)

c(1)

f(1)

e(3)

-e(3)

-h(2) g(2)

-d(2)

r(2)

-u(2)

t1

p(3)

q(3)

v(3)

s(3)

u(3)

t2

Fig. 2. Implication graph G2 for Example 4.

• Multiple decisions taken at each decision level. This corresponds to focusing the
search for a solution on a more restricted portion of the search space. This increases
the effect of subsequent propagation phases. In addition, this splitting of the search
space may be exploited by parallel solvers.

• Multiple conflicts. These might be generated both because of multiple decisions or
because the propagation phase does not necessarily end when the first conflict is
produced. For example, it might proceed until no further inference is possible.

• Weights associated to vertices and/or edges of the implication graph. This enables
the application of some kind of heuristics in selecting conflict clauses. We will not
enter into the details of how these weights are assigned. For the time being, it suf-
fices observing that weights may be generated in various manners, depending on
the involved heuristics. For instance, one could consider static measures, concern-
ing the structure of the SAT instance at hand, or dynamic parameters such as the
“relevance” exhibited by each variable during the previous part of the computation
(as an immediate example, think about exploiting criteria somewhat akin to those
used by branching strategies).

Most of the learning schemata appeared in the literature essentially consider only
cuts involving UIPs. In this context, some comparative empirical evaluation of different
learning schemata can be found in [34] and in [27]. Very few proposals concern multi-
ple clauses learning. We just mention here the interesting work [17], that explores the
advantage of learning several clauses from the same conflict.

Example 4. Consider this set of clauses: {a, b}, {c,¬a}, {¬a, f}, {h, g}, {¬g,¬d},
{e,¬v,¬c}, {¬f,¬v,¬e}, {q,¬p}, {v,¬p}, {r,¬g}, {d,¬u}, {p,¬s}, {u,¬r,¬q}.
Suppose we proceed by deciding a single literal in each decision level and we develop an
implication graph by first deciding ¬b to be set true (decision level 1). After propagating

A.Formisano et al. On multiple learning schemata in conflict driven solvers

137

the effect of this decision (literals a, c, f are set true, cf., the implication graph G2 in
Fig. 2), we step to decision level 2 and set true the literal ¬h. Again, a propagation phase
is executed and this determines the truth values of the literals g,¬d, r, and ¬u. Since no
conflict arises and there are still unassigned literals, we step to decision level 3. Suppose
we perform a decision setting true the literal s. Fig. 2 show the literals propagated
at level 3, namely, p, q, v,¬e, e and u. Clearly, two conflicts (denoted by the conflict
vertices, t1 and t2) arise, because of the values to be assigned to u and e, respectively.

The cut corresponding to the first UIP for the conflict t1 is made of the vertices v,
f , and c. The clause learned from this conflict is {¬v,¬f,¬c}. Similarly, by analyzing
the other conflict t2, we obtain a cut made of the vertices ¬d, r, and q, corresponding
to the first UIP q, and an alternative learned clause {d,¬r,¬q}..

A solver that decides a single literal in each decision level and that takes into account
only one conflict, would learn just one of these two clauses, while both of them can be
added to the set of clauses and affect the subsequent part of the execution.

Moreover, performing a global analysis of the implication graph might help in learn-
ing alternative clauses. (Note that, the same graph can be obtained by deciding the three
literals ¬b, s,¬h at the first decision level, except for the fact that in that case all ver-
tices belong to level 1.) For instance, the pair of clauses {¬a,¬p} and {¬g,¬p} can be
obtained by considering the two sets X1 = {a, p} and X2 = {p, g}, each of them sep-
arating one of the conflicts from all source vertices ¬b, ¬h, and s. In a situation where
one heuristically prefers short clauses, the global analysis produces better results. Ob-
serve, moreover, that detecting a single vertex cut separating both conflict vertices from
all sources would produce a single learned clause. However, such a clause would con-
tain at least three literals. ut

The previous example shows that, even considering simple heuristics based on car-
dinality of learned clauses (i.e., the number of literals they include), a global analysis
may offer advantages. In general, more complex heuristics can be applied to assign
weights to literals/vertices and then to vertex cuts. Consequently, the conflict analysis
procedure will focus on minumin vertex cuts. Among the various approaches that can
be adopted in assigning weights to literals, many of the branching strategies exploited
in standard SAT-solvers can be adapted to our case [4].

Remark 1. Note that another generalization can be foreseen. Indeed, it seems natural to
consider the parallel execution of several solvers, each one adopting its own criteria and
heuristics, and exploring (possibly) different portions of the search space. Plainly, each
solver develops a different implication graph. A conjunct analysis of all these graphs
(that share the vertices and differ in the set of edges) should be advisable. Intuitively, a
common analysis could be enabled by introducing a coloring of the edges. Each color
would identify the inferences made by one of the solver. In this way, a global learn-
ing process can be developed, by applying global strategies, so as to realize forms of
communication and cooperation between the solvers. For the sake of simplicity, in what
follows we will not deal with this kind of generalization, which represents an interesting
theme for future research.

Summing up, we will consider implication graphs where weights are provided and
several conflict vertices may occur. The graphs are still acyclic and layered (as vertices

A.Formisano et al. On multiple learning schemata in conflict driven solvers

138

are partitioned by the decision levels). The conflict analysis should focus on those (sets
of) cuts that are optimal with respect to a given objective function. Typically, it may
encode “local” optimality criteria (focusing on each single conflict in isolation from
the others), as well as involve “global” criteria, aimed at optimizing the set of cuts as
a whole. To keep the following description as general as possible, we will leave these
optimality criteria implicit and simply deal with a generic objective function f(·).

Let G = (V,E) be a weighted DAG with n = |V | vertices and m = |E| edges. Let
S ⊆ V be the set of source vertices and T = {t1, . . . , tk} ⊆ (V − S) the set of sink
vertices. Assume, moreover, that each sink is reachable (through a directed path) from
at least one source.

Without loss of generality, we can assume that S = {s1, . . . , sk} and that ti is
reachable from si (for each i). 3

A weight function w : V → N assigns positive weights to the vertices in G.4 We
are interested in solving the following optimization problem (where f(·) is the objective
function).

Problem 1 Find k vertex setsXi ⊆ (V −T) that minimize the value of f(X1, . . . , Xk)
and such that, for each i ∈ {1, . . . , k}, Xi is a vertex cut separating si from ti.

Example 5. Consider a ‘local’ optimality criterion that, focusing on single conflict ti,
prefers the vertex cut that produces the smallest learned clause, namely, the one mini-
mizing the cardinality |Xi| of the vertex cut Xi. In presence of k conflicts, two natural
choices for the ‘global’ objective function f(X1, . . . , Xk), are:
• f(X1, . . . , Xk) =

∑
i |Xi|, and

• f(X1, . . . , Xk) = |
⋃

iXi|.
In both cases, the weight function w(·) simply evaluates 1 for each node. Clearly, more
complex weight function w(·) and objective functions f(·) can be designed. For in-
stance, w(·) might take into account the number of occurrences of literals in the set of
clauses, or the activity of literals (cf., [15]), to mention two possibilities. ut

A further remark is in order. In what follows we will take advantage from the fact
that, any given minimum vertex-cut problem can be translated into a minimum edge-cut
problem whose solutions correspond to solutions of the former problem. So, in order to
simplify the presentation, in the following sections we formalize our learning scheme
in terms of (edge) cut and multicut problems.

In the following sections we will describe some alternative approaches to the solu-
tion of Problem 1.

4 Solving the multiple learning problem

Let us start by considering the particular case in which the objective function is the sum
of the cuts’ weights, i.e., f(X1, . . . , Xk) =

∑
i w(Xi). In this case, the problem can

3 In fact, if this is not the case, we can always find k subsets S1, . . . , Sk of S, such that Si

contains all sources from which ti can be reached, and extend G by adding a new vertex si
having as successors all vertices in Si (for each i).

4 For a set of vertices X let w(X) =
∑

x∈X w(x).

A.Formisano et al. On multiple learning schemata in conflict driven solvers

139

be formulated as a minimum s-t multicut problem [12] (or dually as a multicommodity
maxflow problem [19]). Alternatively, one can translate the problem into a vertex sep-
arator problem on a network, as defined, for instance, in [3]. (The reader is referred to
the cited literature, and to [2, 7, 28, 29], for a detailed treatment of these problems.)

A drawback of adopting an encoding in an s-t multicut problem is that the obtained
solution would consist in a single vertex/edge set X that acts as a separator for each
pair si-ti. This does not fulfill the requirement of Problem 1, that asks for a collection
of k cuts (each one separating one of the pairs). Consequently, it is necessary to convert
the single cut, by splitting it in k subsets (not necessarily pairwise disjoint). In doing
this one has to exploit the si-ti-connectedness of G (for each i) in order to determine
which part ofX is actually related to the pair si-ti. Computing this step may add a com-
putational cost which is in any case polynomially bounded. (Actually, such an overhead
could be absent, if connectedness computations are part of the algorithm used to solve
the minimum s-t multicut instance).

Recall that, for general graphs, the problem of finding the minimum s-t multicut
is Max SNP-hard [8]. Nevertheless, in undirected graphs [12] proposes an O(log k)
approximate algorithm based on LP relaxation.

An alternative approach consists in solving Problem 1 through the solution of sev-
eral minimum s-t cut problems. We outline here two possibilities. The first one consists
in independently solving k minimum s-t cut problems, one for each pair si-ti (by ig-
noring, in each of them, all other pairs sj-tj , for j 6= i). Clearly, the computational
cost of this approach depends on the algorithm exploited to solve each of the k sim-
pler problems. For instance, [14] proposes an algorithm for minimum s-t cut, based on
push-relabel methods, having O(n × m × log(n2/m)) time complexity. Notice that,
the Hao-Orlin algorithm solves this problem by computing n − 1 s-t cuts and attains
an overall complexity which asymptotically matches that of computing a single s-t cut
(cf., [6]). Notice that, in general, the union of the k single minimum s-t cuts does not
necessarily represent an optimal solution of the s-t multicut problem. Indeed, it can
be easily shown that it is a k-factor approximation of such optimal solution. A similar
criticism applies with respect to Problem 1, because finding each single s-t cut inde-
pendently, does not allow one to impose any global optimization criteria.

The second approach can be adopted when the objective function f(X1, . . . , Xk)
has an intrinsically global nature, i.e., it is not possible to express it as a simple combina-
tion of k simpler functions, each concerning a single pair si-ti (as we did by restraining
to the minimization of the sum of the cuts’ weights), then a more general technique
has to be designed. A viable possibility consists in exploiting some kind of enumera-
tion technique (complete or bounded), such as those proposed in [29, 3, 30], in order to
compute one sequence of si-ti-cuts, for each i. Then, the solution to Problem 1 can be
obtained by suitably combining k single solutions, each one coming from one of the
sequences. More details will be provided in the next section.

5 An optimal solution for the general case

In this section we outline a viable algorithmic approach to Problem 1 that guarantees to
achieve the optimal solution. The basic idea consists in enumerating, for each of the k

A.Formisano et al. On multiple learning schemata in conflict driven solvers

140

si-ti pairs, the admissible solutions of the corresponding si-ti cut problem. Then, the
optimal solution of the global problem can be sought for by evaluating the objective
function f(X1, . . . , Xk) directly on the k-tuples of single solutions. In this manner one
can carry out the optimization of an objective function in its most general form.

Concerning each single si-ti cut problem, this technique requires to produce an
enumeration of all its solutions ordered by non-decreasing weights. Such a specific
problem has been formalized precisely in [31] and it turns out to be a #P -complete
problem [25].

Concerning the cut problem, instead of the s-t cut problem, a remarkable approach
has been proposed in [33], by combining the technique described in [31] with the
faster Hao-Orlin algorithm [16]. The resulting algorithm can enumerate all cuts, in
non-decreasing order of weight, with a O(n × m × log(n2/m)) delay, between two
consecutive solutions.

In our case, we propose the adoption of the same technique (see below), slightly
re-engineered in order to obtain an enumeration of all s-t cuts. The resulting naive
algorithm is able to solve Problem 1 within O(N × n×m× log(n2/m)) steps, where
N is the number of all si-ti cuts. Notice that, in general, N may be exponential in the
size of the given graph [31, 24].

Let us briefly outline the enumeration technique of [33, 31] and how to adapt it to
our case. Given a DAG G(V,E), the vertices in V are numbered from 1 to n. In this
way, we can represent each cut inG by means of a binary string b1, b2, . . . , bn composed
of n bits, where bi = 0 if and only if the vertex indexed i is in the cut. Conversely, each
binary string represents a possible cut.

Consequently, the set of all (strings representing) potential cuts can be organized in
a complete binary tree of height n. For example, the picture shown below, borrowed
from [33], illustrates such a tree for n = 4.

In such a tree, each leaf is associated with one of the possible strings b1, b2, . . . , bn,
and vice versa. Each internal node, at level h represents a partially specified cut, not
involving the vertices indexed from h + 1 to n. In other words, such a node of the tree
represents the collection of all cuts that agree on the first h vertices. Let this collection
be denoted by C(X,Y) with X = {i|bi = 0} and Y = {i|bi = 1}. The root of the
tree represents all cuts and is denoted by ε. For the sake of simplicity, let us identify a
node v of the tree with the partially specified cut it represents and let mc(v) denote the
minimum cut among those represented by v.

A.Formisano et al. On multiple learning schemata in conflict driven solvers

141

Let Π = {(ε,mc(ε))} be a working set of pairs where the first component is a
node of the tree and the second one is the value of the corresponding minimum cut.
The algorithm proceeds by extracting the element (v,mc(v)) from Π that minimizes,
among the pairs in Π , the value of mc(v). The pair (v,mc(v)) is produced as output.
Then, the leaf corresponding to the minimum cut mc(v) is considered. Let l be such a
cut/leaf (c.f., the above picture). At this point, the path in the tree connecting v to l is
considered and for each of the immediate children u in such path the pair (u,mc(u))
is added to Π . The immediate children are all the nodes which are not in the path, are
adjacent to some node in the path, and belong to the tree rooted in v. (They are depicted
in gray color in the figure.) Each value mc(u) is obtained by means of an auxiliary
computation (for instance, by exploiting the algorithm in [16, 14]). This procedure is
repeated until Π is empty.

It is easy to verify that the cuts are enumerated in non-decreasing weight order.
Consider once again the above figure. At each step, each of the immediate children u
added to Π cannot represent a collection of cuts that includes l. Since l is the optimal
solution among all the cuts represented by v, no cut among those represented by u can
have weight lower than l. In [31] it is shown that such algorithm, if implemented using
suitable data structures, can enumerate all cuts with a Õ(n2m) time delay.5

In order to adapt this technique to our purpose, it suffices to consider that to repre-
sent s-t cuts we only need a tree of height n− 2, because s and t must be separated in
each cut. Clearly, an auxiliary algorithm will be used to compute minimum s-t cuts, at
each step. It might be the case that not all the leaves of the binary tree actually represent
s-t cuts. Hence, there might be internal nodes that represent empty collections of s-t
cuts. This particular cases are easily dealt with by simply ignoring the corresponding
sub-tree. (Notice that, at least one minimum s-t cut exists and it is determined at the
beginning of the execution.)

A very inefficient algorithm for Problem 1 is composed of two steps. First, the
above outlined enumeration algorithm is used to compute all si-ti cuts l(i)1 , . . . , l

(i)
ni , for

each i ∈ {1, . . . , k}, where ni ≤ 2n−2 is the number of si-ti cuts. Then, the objective
function is optimized on the set of k-tuples of the form l(1), . . . , l(k), obtaining the set
l(1) ∪ · · · ∪ l(k) that minimizes the value of f(l(1), . . . , l(k)).

Clearly, the computational complexity of this algorithm is unsatisfactory, even for
small graphs. However, one may exploit the specific properties the implication graph
exhibits to gain greater efficiency. The structure of the graph G(V,E) has to be con-
sidered. Indeed, G is a layered DAG and the application of suitable heuristics might
sensibly improve the naive algorithm. For instance, the Padberg-Rinaldi or the Karger
heuristics [6] are certainly exploitable. Moreover, the fact that the DAG is an implication
graph built up by reflecting the logical relationships between propositional variables,
implicitly encoded in the set of clauses, has great relevance. In fact, the DAG encodes
logical implications between each vertex/literal and the set of its antecedents. By ap-
plying simple propositional properties, one can locally re-write the graph G so as to

5 Actually, one of the crucial points in reducing the overall complexity of the algorithm consists
in handling a set Π of pairs (v,mc(v)) instead of simple elements v. In this way, in fact, one
has to compute the value of mc(v) just once for each node v (see [31] for the details).

A.Formisano et al. On multiple learning schemata in conflict driven solvers

142

transform it into a graph G′ which is equivalent to G w.r.t. the learning process, but
belongs to a class of DAGs having better computational properties. Examples of graph
classes that are desirable targets for this rewriting process are planar graphs and series-
parallel graphs. (Note that instead of explicitly applying these rewritings on the graph,
one could encode their effect directly in the algorithms user to compute the cuts.)

Another, not antithetic, possibility consists in introducing a bound on the number
of non-decreasing cuts to be computed for each si-ti pair. This, in principle, corre-
sponds to accept a solution that approximates the optimal one. To achieve this, the s-t
cut algorithm is used to compute the first c ≤ 2n si-ti cuts, for each i, where c is a
fixed constant value; Then, the algorithm proceeds as before, but minimizing the ob-
jective function w.r.t. the prefixes of the k sequences of si-ti cuts. The quality of the
approximation depends on c and on the specific order in which the single si-ti cuts are
enumerated by the si-ti cut algorithm.

Further investigation is needed to study all these issues.

6 Concluding remarks and future work

In this paper we considered one of the most crucial component of modern DPLL-based
SAT solvers, namely, the conflict analysis procedure.

The purpose of this procedure is the detection of the reasons behind a failure oc-
curred during the search for a satisfying assignment of a SAT instance. By analyzing
the failure, caused by a conflicting set of assignments performed by the solver while
visiting a solution space, one or more new clauses are learned and added to the problem
being solved. The effect of this addition consists in driving the solver “away from the
failure”, preventing the solver to make again the same contradictory assignments. Such
a kind of solving strategy is typical of the so-called conflict-driven SAT-solvers, but sim-
ilar techniques have been successfully applied in several other fields of computational
logic (such as, ASP, CP, SMT, to mention some).

We proposed a formulation of the conflict analysis task in a form expressive enough
to reckon with different orthogonal generalizations of the basic schema. Features such
as the analysis of multiple conflicts, the generation of multiple learned clauses, the
imposition of global optimality criteria, the treatment of multiple decisions, are easily
dealt with in the same framework. Extensions to the case of parallel solvers are also
foreseeable.

We formalized the general learning problem as the search for a collection of vertex
cuts in a directed acyclic graph. Optimality of the solution is evaluated with respect
to a given global objective function. Such a function is basically conceived to express
(complex) search strategies and heuristics that control the behavior of the solver. Nev-
ertheless, by considering a single conflict and by choosing a simple objective function
(e.g., minimizing set cardinality), one can recover the standard conflict analysis schema,
normally exploited in common solvers.

We provided ways to face the general learning problem by exploiting well-known
algorithms proposed in literature to solve cut and multicut problems on DAGs.

Clearly, the computational effort required to accomplish the learning task in its most
general form, is higher than the one needed to learn a collection of single clauses, each

A.Formisano et al. On multiple learning schemata in conflict driven solvers

143

of them justifying a single conflict, independently. The advantage of the general tech-
nique comes from the potentially higher quality of the learned (sets of) clauses. For
instance, the adoption of suitable global objective functions may enable the identifi-
cation of common reasons for multiple conflicts or the derivation of conflict clauses
that involve “heavy” literals, i.e., relevant literals with respect to the heuristics used
to determine vertex weights. This may reduce the number of clauses that are learned.
Another possibility consists in encoding in the objective-function criteria that tend to
minimize the literals shared among the learned clauses. Consequently, a smaller set of
clauses would better affect the search, because they would prune different and distant
(i.e., loosely related) portions of the search space.

In case the visit of the search space is split in different searches (this can be achieved
by assigning from the beginning a set of variables; this corresponds to making a multiple
decision at the first decision level) and/or by running different solvers in parallel, the
adoption of a global perspective in conflict analysis may help in learning conflict clauses
that act as a communication channel between the different searches.

It should be noted that the difference in the computational efforts required by solv-
ing the global problem as a whole and solving k simpler problems, reduces whenever
one resorts to approximated algorithms. In this context one might benefit even from
recent results on fixed-parameter tractability of multicut problems on DAGs [18]. For
example, think about the fact that it seems reasonable to fix the number of conflicts to
be considered in each analysis (namely, the parameter k) to a predefined value, or to
limit the search to those cuts/clauses having a specific cardinality.

In this paper we restrained ourselves to proposing an initial formalization of a gen-
eral learning schema. We also outlined some simple algorithmic solutions. Much has
to be done and there are many challenging themes for future research. As regards the
algorithmic aspects, one may explore the applicability to our context of several heuris-
tics and techniques developed for standard multicut problems, such as, for instance, the
Padberg-Rinaldi and the Karger heuristics [6].

Introducing a global perspective for multiple learning is certainly interesting per se.
It might be the case that one benefits from this new perspective in identifying new learn-
ing schemata, different from those currently described in literature, especially concern-
ing parallel solvers.

Clearly, the practical advantage of our proposal has to be validated through an exten-
sive experimental activity. In doing this one may proceed by implementing a concrete
prototypical solver. Alternatively, one may integrate a general learning schema into an
existing solver. The solvers described in [9, 32, 10], are good candidates for this last
possibility. In fact, these solvers (as well as those described in [5, 20, 1, 21], to men-
tion some proposals not necessarily concerned with SAT-solving) take advantage from
a high-performance parallel architecture, and offer solid support to the implementation
of parallel algorithms for conflict analysis.

Acknowledgments

The authors would like to thank Massimo Bernaschi, Alessandro Dal Palù, Agostino Dovier,
Giuseppe Italiano, Luca Labellarte, and Enrico Pontelli for suggestions and enlightening discus-
sions on the topics presented in this paper. This work is supported by the GNCS-2014 project.

A.Formisano et al. On multiple learning schemata in conflict driven solvers

144

References

1. A. Arbelaez and P. Codognet. A GPU implementation of parallel constraint-based local
search. In PDP, pages 648–655. IEEE, 2014.

2. C. Bentz. On the hardness of finding near-optimal multicuts in directed acyclic graphs.
Theor. Comput. Sci., 412(39):5325–5332, 2011.

3. A. Berry, J.-P. Bordat, and O. Cogis. Generating all the minimal separators of a graph. In
Graph-Theoretic Concepts in Computer Science, pages 167–172. Springer, 1999.

4. A. Biere. Handbook of satisfiability, vol. 185. Ios PressInc, 2009.
5. F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, and E. Pontelli. Exploring the use of

GPUs in constraint solving. In M. Flatt and H.-F. Guo, eds., PADL, vol. 8324 of LNCS,
pages 152–167. Springer, 2014.

6. C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental
study of minimum cut algorithms. In Proc. of the 8th ACM-SIAM Symposium on Discrete
Algorithms, pages 324–333. Society for Industrial and Applied Mathematics, 1997.

7. M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer multiflow:
a survey. European Journal of Operational Research, 162(1):55–69, 2005.

8. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiway cuts. In Proc. of the 24th ACM Symposium on Theory of Computing,
pages 241–251. ACM, 1992.

9. A. Dal Palù, A. Dovier, A. Formisano, and E. Pontelli. Exploiting unexploited computing
resources for computational logics. In Proc. of the CILC-12, vol. 857 of CEUR Workshop
Proceedings, pages 74–88. CEUR-WS.org, 2012.

10. A. Dal Palù, A. Dovier, A. Formisano, and E. Pontelli. CUD@SAT: SAT solving on GPUs.
Journal of Experimental and Theoretical Artificial Intelligence, 2014.

11. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394–397, 1962.

12. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi) cut theo-
rems and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

13. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer set solving in practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(3):1–238, 2012.

14. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. of the
ACM, 35(4):921–940, 1988.

15. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. Discrete Applied
Mathematics, 155(12):1549–1561, 2007.

16. J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. In
Proc. of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 165–174. Society for
Industrial and Applied Mathematics, 1992.

17. H. Jin and F. Somenzi. Strong conflict analysis for propositional satisfiability. In G. G. E.
Gielen, ed., Proc. of the DATE 2006, pages 818–823. European Design and Automation
Association, Leuven, Belgium, 2006.

18. S. Kratsch, M. Pilipczuk, M. Pilipczuk, and M. Wahlström. Fixed-parameter tractability of
multicut in directed acyclic graphs. In A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Watten-
hofer, eds., Proc. of ICALP, vol. 7391 of LNCS, pages 581–593. Springer, 2012.

19. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in de-
signing approximation algorithms. J. of the ACM, 46(6):787–832, 1999.

20. P. Manolios and Y. Zhang. Implementing survey propagation on graphics processing units.
In A. Biere and C. P. Gomes, eds., SAT, vol. 4121 of LNCS, pages 311–324. Springer, 2006.

21. R. Marques, L. G. Silva, P. F. Flores, and L. M. Silveira. Improving SAT solver efficiency
using a multi-core approach. In C. Boonthum-Denecke and G. M. Youngblood, eds., FLAIRS
Conference. AAAI Press, 2013.

A.Formisano et al. On multiple learning schemata in conflict driven solvers

145

22. J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfiabil-
ity. IEEE Transactions on Computers, 48(5):506–521, 1999.

23. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an
abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM, 53(6):937–
977, 2006.

24. J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and appli-
cations. In V. Rayward-Smith, ed., Combinatorial Optimization II, vol. 13 of Mathematical
Programming Studies, pages 8–16. Springer, 1980.

25. J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the proba-
bility that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.

26. F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier, 2006.
27. L. Ryan. Efficient algorithms for clause-learning SAT solvers. Simon Fraser University,

2004. Master thesis in computer science.
28. H. Shen, K. Li, and S.-Q. Zheng. Separators are as simple as cutsets. In P. S. Thiagarajan

and R. H. C. Yap, eds., Proc. of Advances in Computing Science - ASIAN’99, vol. 1742 of
LNCS, pages 347–358. Springer, 1999.

29. H. Shen and W. Liang. Efficient enumeration of all minimal separators in a graph. Theor.
Comput. Sci., 180(1-2):169–180, 1997.

30. K. Takata. Space-optimal, backtracking algorithms to list the minimal vertex separators of a
graph. Discrete Applied Mathematics, 158(15):1660–1667, 2010.

31. V. V. Vazirani and M. Yannakakis. Suboptimal cuts: Their enumeration, weight and number.
In Automata, Languages and Programming, pages 366–377. Springer, 1992.

32. F. Vella, A. Dal Palù, A. Dovier, A. Formisano, and E. Pontelli. CUD@ASP: Experimenting
with GPGPUs in ASP solving. In Proc. of the CILC-12, vol. 1068 of CEUR Workshop
Proceedings, pages 163–177. CEUR-WS.org, 2013.

33. L.-P. Yeh, B.-F. Wang, and H.-H. Su. Efficient algorithms for the problems of enumerating
cuts by non-decreasing weights. Algorithmica, 56(3):297–312, 2010.

34. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning
in Boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

A.Formisano et al. On multiple learning schemata in conflict driven solvers

146

A metamodeling level transformation from
UML sequence diagrams to Coq

Chao Li, Liang Dou and Zongyuan Yang

East China Normal University Shanghai, China
email: zerochaoli@gmail.com,{ldou,yzyuan}@cs.ecnu.edu.cn

Abstract. Modeling is an important aspect of UML formal verifica-
tion that directly affects the quality and efficiency of the verification.
Formal models are the foundation of formal verification. As UML dia-
grams only have semi-formal semantics, they cannot be used for formal
verification directly. Recent studies present model transformation from
semi-formal UML models to formal models to solve the issues. In this
paper, a metamodeling level transformation tool from UML sequence
diagrams to formal Coq codes is presented. Using Kermeta (a metamod-
eling language) and predefined transformation rules that directly added
to the metamodel of UML sequence diagrams, models of UML sequence
diagrams are transformed into XMI, an intermediate format, and finally
to formal Coq codes. This paper is part of our formal verification work for
UML sequence diagrams, and the automatically generated Coq codes can
be used for further formal verification using the theorem proof assistant
Coq in our related works. This paper perfects the whole verification work
and provides useful support to improve the integration density of formal
verification in the formalization process of UML sequence diagrams.

Keywords: UML sequence diagrams, model transformation, formal verifica-
tion, metamodeling, Kermeta, Coq.

1 Introduction

Unified Modeling Language (UML) [1] is standardized by Object Management
Group (OMG), and has a set of notations to specify and model target system
at varying levels of abstraction. For its powerful modelling capability, UML is
increasingly popular in the design stage of model-based software development.

Despite the wide use of UML, a number of problems have been identified
due to its semi-formal semantics. For example, a developer’s understanding of
UML models may differ from the designer’s understanding, tools for analyzing
UML models may be limited to syntactic analysis [2], and system flaws may fail
to be revealed in the design phase. In order to provide UML correct foundation
of formal semantics, formal methods are getting popular to analyze UML mod-
els. Formal methods are the application of precise mathematical fundamentals
and techniques to specify systems (formal specification) [3], and provide a sys-
tematical way to check the soundness and correctness of system models (formal

147

verification) [4]. Hence, UML formal verification (UFV) makes up for the defi-
ciencies of UML itself and eliminates the inconsistency of different understanding
to system design.

UML sequence diagrams have been widely used in the early stage of software
development process. Different objects or processes are represented by parallel
vertical lines in a sequence diagram. Objects or processes communicate with each
other via messages that are represented by horizontal arrows. UML sequence
diagrams play an important role in helping developers understand the runtime
behaviours of system. Thus, it is important to verify the models when using
UML sequence diagrams in the design stage.

A great deal of UFV works have been done, most of them focus on two as-
pects: the transformation rules from models of UML diagrams to formal models,
and the verification process based on the formal models. In previous work [5]
[6], we presented formal semantics of UML sequence diagrams and implemented
formal verification of the correctness of the semantics in Coq [7], but the transfor-
mation for UML sequence diagrams to Coq presentations is implemented man-
ually and transformation rules are not presented systematically. Manual trans-
formation has low efficiency in dealing with large scale models. In this work, we
present the systematic transformation rules, and implement the automatic meta-
modeling level transformation from UML sequence diagrams models to formal
Coq presentations, which is the foundation for further formal verification. We
have developed a prototype transformation tool using metamodeling languages
Kermeta [8].

Metamodeling is the process to define a modeling language completely and
precisely. The abstract syntax of modeling language is described by a metamodel,
which is also defined in a metamodeling language. A metamodeling language
is a superior language to describe modeling languages and it is also defined
with a metamodel. The metamodel of a metamodeling language is called meta-
metamodel, which is self-descibing [9]. Model transformation is used to create
new models based on existing models. In stead of creating models from scratch,
model transformation enables the reuse of information that was once modeled.
Metamodeling level transformation ensures that the target model confirms to
the target metamodel specification, hence, the transformation is syntactically
correct. In addition, metamodeling and model transformation are fully supported
by Kermeta. Kermeta is an executable metamodeling language which supports
metamodeling level transformation. Moreover, Kermeta stores data of model
and metamodels in XML Metadata Interchage (XMI) files, which is widely used
among different modeling tools. Hence, it is sufficient for Kermeta to transform
UML sequence diagrams to Coq.

The rest of the paper is structured as follows. Firstly, the related work is
reviewed in Section 2. Section 3 recalls the model transformation in Kermeta
and briefly introduces Coq. Transformation rules and a case study are showed
in Section 4. Finally, we conclude in Section 5.

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

148

2 Related Work

A variety of formalization work has been proposed for UML diagrams over the
years. A formal framework is provided to support visual simulation of UML
models that composed of class, object, state, sequence and collaboration dia-
grams, and an integrated semantics of these models is presented in [11]. How-
ever, it only focus on the semantics building and transformation rules of UML
diagrams, but further verification of modeling process is not considered. In [12],
some useful rules for transforming sequence diagram to petri net are presented,
but the transformation process in that work is done manually. In [13], conven-
tional programming language, Java, is used to navigate, create, read or delete
models and model elements via specific libraries, all the transformations are at
modeling level. However, we use the metamodeling language Kermeta to imple-
ment a metamodeling transformation tool, which can transform models of UML
sequence diagrams to formal presentations and ensure the syntactic correctness
of the transformation at the same time. In [14] [15], UML state diagrams or
activity diagrams are firstly formalized with operational semantics, and then
translated into input code of formal verification, but they do not provide an
automatic transformation tool. In contrast, an automatic translation of state
charts and sequence diagrams into generalized stochastic nets is proposed in [16]
[17], and their transformation are at metamodeling level.

Our work not only presents transformation rules at metamodeling level, but
also implement a transformation process from UML sequence diagrams to Coq
codes automatically in Kermeta. The generated codes can be used for further
formal verification.

3 Background

3.1 Metamodeling and Model Transformation in Kermeta

Kermeta is an executable metamodeling language which supports describing
both structures and behaviours of metamodels. Kermeta is integrated with Eclipse,
and distributed as Eclipse plug-in. It is fully compatible with the OMG Essential
Meta-Object Facility (EMOF) [18] and Ecore of Eclipse Modeling Framework
(EMF) [19]. It provides an action language to specify the body of operations in
metamodels. The action language of Kermeta is imperative and object-oriented.
It also integrates aspect-oriented features, and supports some design-by-contract
features.

As Kermeta relies on EMF for model storage, regular EMF metamodels,
Ecore files, can be used. These metamodels can be created and edited using the
generic model editor provided with the EMF. Operations can be added to any
class in metamodels using the action language provided by Kermeta. In addition,
once the source metamodel is created, source model that confirms to the source
metamodel can be generated manually using the model editor.

Model transformation in Kermeta takes one source model as input, and pro-
duces one target model as output. Both source model and target model should

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

149

conform to specific metamodel or abstract syntax, and transformation rules
should be defined to drive the transformation. That is, given the source model,
source and target metamodel (or abstract syntax), and transformation rules,
target model can be generated automatically.

In order to write a model transformation in Kermeta, the source and target
metamodels (or abstract syntax) should be defined at first. In our work, UML
sequence diagrams is the source modeling language and Coq is the target mod-
eling language. Metamodel of UML sequence diagrams and abstract syntax of
Coq are explained in the following sections.

3.2 Metamodel of UML Sequence Diagrams

Figure 1 displays the metamodel of UML sequence diagrams which has been
defined in Ecore using the EMF editor. This metamodel has been simplified,
but covers most of the important elements. SeqDiagram represents a model of
UML sequence diagrams, it is the top-level class of the metamodel. The main
graphical element of the diagram is Interaction.

Fig. 1. The Metamodel of UML Sequence Diagram.

Lifeline, Message and InteractionFragment are contained by Interaction.
Lifeline, message and fragment are the basic elements of UML sequence dia-
grams. A lifeline represents a specific object. Lifelines communicate with each
other through messages, each message triggers two events: send event and re-
ceive event. A fragment is an instance of Event and CombinedFragment that
inherit from the abstract class InteractionFragment. Fragments describe the

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

150

behaviour information of UML sequence diagrams. Events are the basic behav-
ioral constructs of UML sequence diagrams and can be combined to form larger
behavioral constructs called CombinedFragment. A combined fragment consists
of an interaction operator, one or more operands which are comprised of events
or combined fragments, and an optional guard condition. A combined fragment
covers a set of lifeline and decides the execution mode and condition of fragments
(events or combined fragments).

3.3 Abstract Syntax of UML Sequence Diagrams in Coq

Coq is a theorem proof assistant. The Calculus of Inductive Constructions (CIC)
is the underlying core language of Coq. CIC is based on the calculus of construc-
tions extended by inductive definitions as they are known from the constructive
type theory.

The Coq abstract syntax represents UML sequence diagrams as an inductive
type as below, which enables reasoning by case analysis and induction.

Inductive Seq : Set :=

|Skip : Seq

|E : Event -> Seq

|Alt : Seq -> Seq -> Seq

|Opt : Seq-> Seq

|Strict : Seq -> Seq -> Seq

|Loop : nat -> Seq -> Seq

|Par : Seq -> Seq -> Seq.

Seq is defined inductively as events and operators in the Coq abstract syntax.
Skip represents an empty graph. An E represents an event. Event is the basic
element, it consists of its type and a message, it is defined as :

Definition Event := Type * Message.

Type ∈ {?,!}, ! represents sending, and ? represents receiving. Message is defined
as a triple :

Definition Message := mName * Lifeline * Lifeline.

mName represents the name of the message, a message has two lifelines, the first
one represents a lifeline sends the message, the second one represents a lifeline
receives the message. Furthermore, operators are considered in our work, they
decide the execution mode between fragments. We only consider five interaction
operators: alt, opt, par, loop and strict. Among the operators, opt is unary
and other operators are binary. What calls for special attention is that, two
events always occur accompanying a message, these two events are considered
as a special combined fragment with strict execution mode.

Models of UML sequence diagrams should be transformed to events and
operators definitions that confirm to the abstract syntax. This is discussed in
the following section.

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

151

4 The metamodeling Transformation work

In the preceding sections, we have described the core concepts of our transfor-
mation tool, a more detailed description of the transformation process in our
tool is shown in Fig.2.

Fig. 2. The outline of our work.

Step1(Manually): Design model of the target system in modeling tools,
and load the model into our tool.

Step2(Automatically): Transform the model of UML sequence diagrams
to Coq codes with the transformation rules, all these rules are added to classes
of UML sequence diagrams metamodel using our tool. This process is also im-
plemented automatically.

Step3(Automatically): Output of model transformation are provided to
Coq as input. Further formal verification is based on this output.

4.1 Transformation Rules

Once the source metamodel and the target abstract syntax are defined, models of
target system can be transformed to Coq codes confirms to the abstract syntax.
The transformation has two steps. In the first step, all the events of source
model are transformed to events definition in Coq. In the second step, behaviour
elements of source model, i.e. events and combined fragments, are transformed
to operators definition in Coq. Before transformation rules of events are given,
transformation rule of message is defined in Rule 1.

Rule 1. In UML sequence diagrams, a message is transmitted from one
lifeline to another lifeline, this message should be mapped to message variable
definition in Coq.

According to Rule 1, we can obtain the Coq codes of the message in Fig.3:

Definition m_m1: Message :=("m1","L1","L2").

Once the transformation rules of message is defined, Rule 2 for events trans-
formation is given as below.

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

152

Fig. 3. Message definition.

Rule 2. In UML sequence diagrams, when a message named m1 is transmit-
ted, two related events occur, one is send event: sm1, another is receive event:
rm1, these two events should be mapped to event variable definition and initial-
ization in Coq.

According to Rule 2, we can obtain the Coq input codes of the events in
Fig.3:

Definition sm1: Event := (!,m_m1).

Definition rm1: Event := (?,m_m1).

According to the two definitions above, we can obtain the ultimate Coq input
codes of the events in Fig.3 :

Definition sm1: Event := (!,("m1","L1","L2"))

Definition rm1: Event := (?,("m1","L1","L2"))

Execution modes between fragments describe the structure information of
UML sequence diagrams. In the second step, we define the transformation rules
of behaviour information. We start with the transformation rule of events.

Rule 3. In UML sequence diagrams, two events, send event and receive event,
always accompanies a message, the execution mode between them is strict. Two
events of this message are considered as a special combined fragment with strict

execution mode and should be mapped to operators definition and initialization
in Coq.

According to Rule 3, we can obtain the operators codes of the two events in
Fig.3:

strict(E sm1)(E rm1)

Rule 4. In UML sequence diagram, a combined fragment is comprised of
one operator and fragments, fragments ∈ {Event,CombinedFragment}, and
we specify that any two adjacent fragments without operators are in strict ex-
ecution mode. Combined fragments in sequence diagrams should be transformed
to operators definition in Coq.

According to the Rule 4, we can obtain the Coq codes of the combined
fragment in Fig.4:

Alt(Strict (E sm1)(E rm1))(Strict (E sm2)(E rm2))

// sm2 and rm2 is defined in the same way as sm1 and rm1

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

153

Fig. 4. Combined fragment definition.

4.2 Transformation Algorithm

Using action language and aspect-orientation mechanism in Kermeta, transfor-
mation rules can be added to corresponding class in the metamodel of UML
sequence diagrams.

procedure main()

//import a sequence diagram model

seq :SeqModel = loadModel(seq.xmi);

//call the method toCoq to perform transformation

coqCode : String = seq.toCoq();

//save the transformation result

saveModel(coqCode);

end main

//toCoq is added to the top level class SeqModel

procedure toCoq():String

result :String;

foreach m in message

result = result + m.message2Coq();

foreach f in fragment

result = result + f.fragment2Coq();

return result;

end toCoq

//message2Coq is added to class Message

procedure message2Coq():String

mName = self.name;

sLineName = getSendLineName();

rLineName = getRecLineName();

sendEvent=write2Coq(!, mName, sLineName, rLineName);

recEvent = write2Coq(?, mName, sLineName, rLineName);

return sendEvent + recEvent;

end message2Coq

// fragment2Coq is added to class InteractionFragment

procedure fragment2Coq():String

//(1)when fragment is event

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

154

if(self.isInstanceOf(OcreenceSpecification))then

if(self.type ==send)then

result = result + event2Coq(self.name, send);

else if(self.type ==receive)then

result = result + event2Coq(self.name, receive);

//(2) when fragment is combinedFragment

else if(self.isInstanceOf(CombinedFragment))then

if(self.operand == opt)then

result = result + CombinetoCoq (operand, self.name);

else

leftOp = self;

rightOp = nextFragment;

result = result + CombinetoCoq(operand, leftOp, rightOp);

//transform every subfragment in combinedfragment

foreach f in self.operand.fragment

result = result + f.fragment2Coq();

return result;

end fragment2Coq

Operation event2Coq transforms a send or receive event to Coq codes,and op-
eration Combine2Coq transforms a combined fragment with unary or binary op-
erators to Coq codes.

4.3 A Case Study

In this section, a simple example is presented to illustrate our transformation.
Fig.5 shows a scene that a user sends his account id and password to the Au-
tomatic Teller Machine (ATM)and get a reply from it. If logged in successfully,
the user can check balance or withdraw money.

After reading the XMI file of Fig.5 and parse it, our transformation tool
automatically extract the useful information and transform it to formal Coq
codes that confirms to the abstract syntax we have defined:

Definition sid :Event :=(!,("id","User","ATM")

Definition rid :Event :=(?,("id","User","ATM")

Definition spwd :Event :=(!,("pwd","User","ATM")

Definition rpwd :Event :=(?,("pwd","User","ATM")

Definition sloginSucc :Event :=(!,("loginSucc","ATM","User")

Definition rloginSucc :Event :=(?,("loginSucc","ATM","User")

Definition swithdraw :Event :=(!,("withdraw","User","ATM")

Definition rwithdraw :Event :=(?,("withdraw","User","ATM")

Definition scheck :Event :=(!,("check","User","ATM")

Definition rcheck :Event :=(?,("check","User","ATM")

Definition sloginFail :Event :=(!,("loginFail","ATM","User")

Definition rloginFail :Event :=(?,("loginFail","ATM","User")

Definition ExampleSeq :Seq :=

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

155

Fig. 5. An example model of UML Sequence Diagram.

Strict (Strict (Strict (E sid)(E rid))(Strict (E spwd)(E rpwd)))

(Alt(Strict(Strict (E sloginsucc)(E rloginsucc))(Opt (Strict (Strict

(E swithdraw)(E rwithdraw))(Strict (E scheck)(E rcheck)))))

(Strict (E sloginfail)(E rloginfail))).

5 Conclusion

Modeling is an important step in the UML diagrams formalization, it lays the
foundation for further formal verification. In this paper, we focus on the model
transformation for UML sequence diagrams and implement a metamodeling
transformation tool in Kermeta. Firstly, metamodel of UML squence diagrams
and exact definition of Coq abstract syntax are given. Then, using predefined
transformation rules that directly added to the classes in UML sequence dia-
grams metamodel, models of UML sequence diagrams are automatically trans-
formed to Coq codes so that further verification could be done. Finally, we
present a case study to show the result of model transformation. The result can
be as the input codes for formal verification in Coq theorem prover.

We consider model concepts of sequence diagrams but not the whole, we can
further define and extend our transformation rules. Another future direction is
to extend the transformation to implement the transformation of UML state
diagrams. In addition, our transformation tool is integrated with Kermeta, but
separated with the verification process, we hope to combine them together and
package them as a new exe or web-based tool in future.

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

156

Acknowledgment

This work is supported by National Natural Science Foundation of China (No.61070226).

References

1. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modelling Language Refer-
ence Manual, 1999.

2. R. France, The UML as a formal modeling notation, Computer Standards and
Interfaces, vol. 19, pp. 325–334, 1998.

3. M. Gogolla, F. Bttner, and M. Richters, USE: A UML-based specification environ-
ment for validating UML and OCL, Science of Computer Programming, vol. 69,
pp. 27–34, 2007.

4. R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers, Using description
logic to maintain consistency between UML models, Modeling Languages and Ap-
plications, pp. 326–340, 2003.

5. Y. Zuo, L. Dou, L. Xu, and Z. Yang, Mechanized sementics of UML sequence
diagrams, International Conference on Engineering and Applied Science, Colombo,
Sri Lanka, Dec. 27-29 2012.

6. L. Dou, L. Lu, Z. Yang, and J. Xie, Towards mechanized semantics of UML se-
quence diagrams and refinement relation, The 24th IASTED International Confer-
ence on Modelling and Simulation, Banff, Canada, vol. 69, July 17-19 2013.

7. Coq, http://coq.inria.fr.
8. Kermeta, http://www.kermeta.org.
9. D. Cetinkaya and A. Verbraeck, Metamodeling and model transformations in mod-

eling and simulation, Proceedings of the Winter Simulation Conference, Winter
Simulation Conference, 2011.

10. OMG, XML Metadata Interchange, version 1.2, http://www.omg.org/, 2002.
11. M. Gogolla, P. Ziemann, and S. Kuske, Towards an integrated graph based seman-

tics for uml, Electr. Notes Theor. Comput. Sci, vol. 72, 2003.
12. O. R. Ribeiro and J. M. Fernandes, Some rules to transform sequence diagrams

into Coloured Petri Nets,7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools (CPN 2006), pp. 37–56, 2006.

13. D. H. Akehurst, B. Bordbar, and M. J. Evans, SiTra: Simple transformations in
java, Model Driven Engineering Languages and Systems. Springer Berlin Hei-
delberg, pp. 351–364.

14. S. Gnesi and F. Mazzanti, A model checking verification environment for UML
statecharts, In XLIII Annual Italian Conference AICA, Udine, 2004.

15. R. Eshuis, Symbolic model checking of UML activity diagrams, ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 15, pp. 1–38, 2006.

16. S. Bernardi, S. Donatelli, and J. Merseguer, From UML sequence diagrams and
statecharts to analysable Petri Net models, Proceedings of the 3rd international
workshop on Software and performance, 2002.

17. S. Bernardi and J. Merseguer, Performance evaluation of UML design with stochas-
tic well-formed nets, Journal of Systems and Software, vol. 11, pp. 1843–1865, 2007.

18. OMG, MOF 2.0 Core Final Adopted Specification, http://www.omg.org/cgi-
bin/doc?ptc/03-10-04, 2004.

19. Mark A. Pinsky, The EMF Book, Warner Books,1995.

C.Li et al. A metamodeling level transformation from UML sequence diagrams to Coq

157

158

An efficient algorithm for generating
symmetric ice piles?

Roberto Mantaci1, Paolo Massazza2, and Jean-Baptiste Yunès1

1 LIAFA, Université Paris 7 Denis Diderot, Case 7014, 75205 Paris Cedex 13, France
Roberto.Mantaci@liafa.univ-paris-diderot.fr,
Jean-Baptiste.Yunes@univ-paris-diderot.fr

2 Università degli Studi dell’Insubria, Dipartimento di Scienze Teoriche e Applicate -
Sezione Informatica, Via Mazzini 5, 21100 Varese, Italy

paolo.massazza@uninsubria.it

Abstract. We define the Symmetric Ice Pile Model SIPMk(n), a gen-
eralization of the Ice Pile Model IPMk(n), and we show an efficient
algorithm for generating the symmetric ice piles with n grains. More
precisely, we show how to exploit an existing algorithm for generating
IPMk(n) in order to generate SIPMk(n) in amortized time O(1) and in
space O(

√
kn).

1 Introduction

In this paper, we consider the problem of generating particular unimodal se-
quences that describe the reachable states of the symmetric version of the well-
known Ice Pile Model IPMk(n), a discrete dynamical system introduced by Goles
Morvan and Phan [7] as a restriction of the discrete dynamical model proposed
in 1973 by Brylawski [2] in order to study linear partitions of an integer n.

IPMk(n) admits a description in terms of a simple game that simulates the
movements of ice grains organized into adjacent columns of decreasing heights. If
there are two adjacent columns, say i and i+1, with heights differing by at least
2, a grain can fall down from column i to column i+ 1 (the game starts with n
grains stacked in column 0). Moreover, if a column i of height p is separated from
a column j of height p− 2 by a plateau of at most k− 1 columns of height p− 1,
then a grain can slide from i to j crossing the plateau. IPMk(n) is an extension
of the Sand Pile Model SPM(n), in which only the fall rule is permitted. SPM(n)
has been widely studied in combinatorics, poset theory, physics, and in the theory
of cellular automata to represent granular objects, see [1], [6], [7], [8].

A natural extension of SPM(n) has been introduced [5], [12] in order to fix
the lack of symmetry (grains either stay or move to the right). Thus, a grain
possibly falls down nondeterministically from column i either to column i− 1 or
to column i+1. This new model, called Symmetric Sand Pile Model and denoted
by SSPM(n), consists of all the integer sequences describing the reachable states
? Partially supported by Project M.I.U.R. PRIN 2010-2011: Automi e linguaggi for-
mali: aspetti matematici e applicativi

159

of a system starting with n grains in column 0 (the index of a column can be
negative).

Despite the simplicity of this rule, the underlying structure drastically changes.
While SPM(n) turns out to be a distributive lattice with exactly one fixed point
(the bottom, easily characterized), SSPM(n) is neither a lattice nor admits a
unique fixed point. Nevertheless, a characterization of fixed points exists [5, Sec-
tion 3.2], [12, Th. 2] and their number is known [5, Lemmas 15,16,17].

In this paper we introduce the symmetric version of IPMk(n), denoted by
SIPMk(n), where left and right slide moves on plateaux of length smaller than
or equal to k − 1 are also permitted, in addition to the left and right fall rules.
In particular, we show that SIPMk(n) can be generated by means of a CAT
(Constant Amortized Time) algorithm. We recall that CAT algorithms for gen-
erating sand and ice piles have been presented in [9] and [10], and that a CAT
algorithm for generating symmetric sand piles has been proposed in [11], where
a decomposition property of symmetric sand piles in terms of product of sand
piles is exploited. We prove that a similar decomposition property holds for sym-
metric ice piles: this lets us design a CAT algorithm that sequentially generates
the elements of SIPMk(n) using O(

√
kn) space.

In Section 2 we lay down preliminaries such as definitions as well as properties
and characteristics of unimodal sequences and generalized unimodal sequences,
the combinatorial objects used for modeling symmetric ice piles. We also recall
some properties of sand and ice piles, as well as the basics of the CAT algorithm
used to generate IPMk(n). In Section 3 we characterize unimodal sequences that
can be forms of symmetric ice piles and generalized unimodal sequences that can
be configurations of SIPMk(n). These properties are the key for proving that our
algorithm is correct and computing its complexity. The algorithm is outlined in
Section 4 whereas its complexity is analysed in Section 5.

2 Preliminaries

A linear partition of n is a non-increasing sequence of strictly positive integers,
s = (s0, . . . , sl), such that

∑l
i=0 si = n; the height, the length and the weight

of s are h(s) = s0, l(s) = l + 1 and w(s) = n, respectively. We consider the
set LP(n) of linear partitions of n equipped with the negative lexicographic or
neglex ordering, <nlex, defined as follows: (s0, . . . , sl) <nlex (t0, . . . , tm) if and
only if there exists i, 0 ≤ i ≤ min(l,m) such that si > ti and sj = tj for j < i. A
unimodal sequence of n is a sequence of strictly positive integers, a = (a0, . . . , al),
such that

∑l
i=0 ai = n and a0 ≤ a1 ≤ . . . ≤ aj ≥ aj+i ≥ . . . ≥ al for some j.

The smallest index q such that aq−1 ≤ aq ≥ aq+1 ≥ · · · ≥ al is called the center
of a, noted by c(a). Obviously, h(a) = ac(a) and, if a is a constant sequence
then c(a) = 0. From here on, for i ≥ 0 we let a<i = (a0, a1 . . . , ai−1) and a≥i =
(ai, ai+1, . . . , al). Given h > 1, we indicate by p[h] the sequence (p, p, . . . , p︸ ︷︷ ︸

h

),

interpreted as a plateau of h columns of height p. The catenation product of
sequences is denoted by “ · ”, (a0, . . . , al) · (b0, . . . , bp) = (a0, . . . , al, b0, . . . , bp),

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

160

and the reversal of a by a = (al, . . . , a0). If a = b · c we say that b and c are a
prefix and a suffix of a, respectively.

We equip the set US(n) of unimodal sequences of n with a particular linear
order “ < ”. Thus, let a, b ∈ US(n), x1 = h(a), x2 = h(b) and consider the
(unique) factorizations a = c · x[p1]

1 · d, b = e · x[p2]
2 · f with h(c), h(d) < x1

and h(e), h(f) < x2. We say that a < b if and only if either (x1 > x2) or
(x1 = x2, p1 > p2) or (x1 = x2, p1 = p2, w(d) > w(f)) or (x1 = x2, p1 =
p2, w(d) = w(f), d <nlex f) or (x1 = x2, p1 = p2, d = f, c <nlex e).

By possibly considering negative indices, we say that (aj , aj+1 . . . , al) is a
generalized unimodal sequence of form b = (b0, . . . , bl−j) if and only if b is a
unimodal sequence and bi = ai+j , 0 ≤ i ≤ l − j. Index j is the position of
a. In other words, a generalized unimodal sequence is obtained by a unimodal
sequence by (right- or left-) shifting all its entries by j places. We identify a
generalized unimodal sequence by means of a pair (a, j) where a is a unimodal
sequence (the form) and j an integer (the position). We also write a to indicate
a generalized unimodal sequence whenever the value j does not matter.

We extend the linear order < to the set GUS(n) of generalized unimodal
sequences of n by setting (a, i) < (b, j) if and only if either a < b or a = b and
i < j. Trivially, one has LP(n) ⊂ US(n) ⊂ GUS(n). If a = (a, j) ∈ GUS(n)
then for any i with j ≤ i ≤ j + l(a) − 1 we set a<i = (aj , . . . , ai−1) and
a≥i = (ai, . . . , aj+1(a)−1). The right height difference of a = (a, j) at i is defined
as δr(a, i) = ai− ai+1 (assume ai = 0 for i > j+ l(a)− 1 or i < j). Analogously,
the left height difference of a at i is δl(a, i) = ai − ai−1.

We interpret the elements of GUS(n) as blocks of n grains disposed into ad-
jacent columns and define four (partial) functions called moves. Let a = (a, j) ∈
GUS(n), then the right fall of a grain in column i with j ≤ i ≤ j + l(a)− 1 is

RFall(a, i) =

{
(aj , . . . , ai−1, ai − 1, ai+1 + 1, . . . , aj+l(a)−1) if δr(a, i) > 1,

⊥ otherwise

The function RSlidek allows the crossing of a plateau of length at most k − 1:

RSlidek(a, i) = (aj , . . . , ai−1, p, p, . . . , p︸ ︷︷ ︸
k′+2

, ai+k′+2, . . . , aj+l(a)−1)

if there is k′ < k such that

a = (aj , . . . , ai−1, p+ 1, p, p, . . . , p︸ ︷︷ ︸
k′

, p− 1, ai+k′+2, . . . , aj+l(a)−1)

otherwise RSlidek(a, i) = ⊥. The functions LFall(a, i), and LSlidek(a, i) are
defined symmetrically.

Whenever the value k is obvious, we simply write a
i⇒ b if either b =

LFall(a, i) or b = RFall(a, i) or b = LSlidek(a, i) or b = RSlidek(a, i). In general,
we write a

?⇒ b if there is a sequence of moves leading from a to b.

2.1 The Ice Pile Model

IPMk(n) consists of the closure of {(n)} under RFall and RSlidek. Linear parti-
tions of IPMk(n) have been characterized combinatorially in [7, Th. 3].

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

161

LFall(a,−1)

RFall(a,0)

0−1 1

��
��
��
��
��
��
��

��
��
��

0−1 1−2−3 2

��
��
��
��

���
���
���

���
���
�����

��
��

��
��
��

Fig. 1. Moves in GUS(n): RFall and LFall, RSlide3 and LSlide3.

Such theorem implies two upper bounds that are important for our purposes :

– For any ice pile a with height h one has w(a) ≤ h+ k (h+1)h
2 .

– For any ice pile a ∈ IPMk(n) one has l(a) ≤ O(
√
kn).

Given a, b ∈ IPMk(n) we say that b dominates a, noted by a ≺ b, if and only
if for all e ≥ 0 one has

∑e
i=0 bi ≥

∑e
i=0 ai. Note that a ≺ b implies b <nlex a.

The dominance order ≺ is related to the order induced by ⇒. Indeed, if a ≺ b
then b ?⇒ a (see [7]).

An ice pile a is called a staircase of height h if and only if either a = h[k0] ·
(h− j0), with 0 < k0 < k and 0 ≤ j0 ≤ h, or

a = h[k] · (h− 1)[k] · (h− 2)[k] · · · (h− i)[k] · (h− i− 1)[k1] · (h− i− 1− j)

with i ≥ 0, 0 ≤ k1 < k and j > 0. We indicate by IPMk,h(n) the set of ice
piles of height at most h with n grains, IPMk,h(n) = {a ∈ IPMk(n) | h(a) ≤
h}. Note that for a suitable n with (k + 1)h < n ≤ h + k (h+1)h

2 , the ice pile
min <nlex(IPMk,h(n)) is

h[k+1] · (h− 1)[k] · (h− 2)[k] · · · (h− i)[k] · (h− i− 1)[k1] · (h− i− 1− j).

Definition 1. For any h > 0, we call h-critical an ice pile a ∈ IPMk,h−1(n))
such that h[k+1] · a is not an ice pile.

An ice pile a ∈ IPMk,h(n)) is (h+ 1)-critical if and only if it has a prefix in the
set of ice piles

Πh = {a ∈ IPMk(r)|r > 0 ∧ ∃e, 0 ≤ e < h, a =

e∏

i=0

(h− i)[k](h− e)}.

The set of moves of a is M(a) = {i|0 ≤ i ≤ l(a), RFall(a, i) 6= ⊥ or RSlidek(a, i) 6=
⊥}. If a is a staircase or a = min <nlex(IPMk,h(n)) then |M(a)| ≤ 3, indeed
M(a) ⊆ {l(a)− j, l(a)− 2, l(a)− 1} for a suitable j ≤ k. If M(a) = ∅ then a is a
fixed point. We denote by a(e) the eth ice pile of IPMk(n) (w.r.t. <nlex) and by
G(a) the set of ice piles generated from a, G(a) = {b|a ?⇒ b}.
Lemma 1. Let a = min <nlex(IPMk,h(n)). Then G(a) = IPMk,h(n).

All ice piles of height h which are smaller than a staircase of height h are
(h+ 1)-critical:

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

162

1
k

l(a)−1

l(a)−2l(a)−j

k

k

k

k

Fig. 2. Possible moves for a staircase.

Lemma 2. Let a, b ∈ IPMk,h(n) and suppose that a is a staircase of height h.
Then (b <nlex a)⇐⇒ b is (h+ 1)-critical.

Corollary 1. Let a ∈ IPMk,h(n) be a staircase of height h. Then,

G(a) = {b ∈ IPMk,h(n)|b is not (h+ 1)-critical}.

For complexity evaluation purposes, we give a bound for the number of ice piles
generated by a staircase or by the smallest ice pile of given height. (see fig. 3).

Lemma 3. Let a be either min <nlex(IPMk,h(n)) or a staircase in IPMk,h(n).
If a is not a fixed point then |G(a)| = Ω(l(a)

k).

��
��
��
����

��
��
�����

���
���
�����

��
��

��
��
��

��
��
��

��
��
��

k kk k

Fig. 3. A sequence of Ω(l(a)
k

) moves in a staircase.

We recall here a result [10, Lemma 2.16] on which the CAT generation of
IPMk(n) is based.

Lemma 4. For any e > 0, let ie = max(M(a(e))). Then we have

A(a(e))
ie⇒ a(e+1)

where A(a(e)) = min <nlex{a ∈ IPMk(n) | a<ie+1 = a
(e)
<ie+1, ie ∈M(a)}.

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

163

We consider a function Next : IPMk(n) 7→ IPMk(n) such that for e > 0,
Next(a(e)) = a(e+1) (Next(a(e)) = ⊥ if a(e) is a fixed point). In [10] it is shown
how this function can be implemented so that if a = (n) then, for any fixed
integer k, the iteration of the instruction a:=Next(a) (until M(a) 6= ∅) gener-
ates IPMk(n) = G((n)) in time O(|G((n))|) (and so is a CAT algorithm) using
O(
√
n) space. More generally, for any a ∈ IPMk(n) one can generate G(a) in

time O(|G(a)|).

3 The Symmetric Ice Pile Model

In [5] and [12] the Symmetric Sand Pile Model SSPM(n) (obtained by closing
{(n)} with respect to RFall and LFall) has been studied and its relation with
SPM(n) analysed. Here we define the Symmetric Ice Pile Model SIPMk(n) as the
set of integer sequences (called symmetric ice piles) obtained by closing {(n)} w.
r. t. RFall, RSlidek, LFall and LSlidek. Note that if (a, j) = (aj , . . . , al(a)+j−1) ∈
GUS(n) is reached from the initial configuration (n) (all the grains in column
0) then one has j ≤ 0 ≤ l(a) + j − 1, since the evolution rules never empty a
column completely (positions j of sequences in SIPMk(n) are nonpositive).

1(1)2111

(5)11

1(2)211112(2)1

(3)2111(2)2211(2)2112(2)1122(2)1112(3)

(3)221(2)3111(2)32(2)213(2)1111(3)1112(2)213(2)122(3)

(3)311(3)212(2)32(3)113(2)211(3)212(3)113(3)

(4)211(4)111(3)32(3)23(3)111(4)112(4)

(5)2

(6)1

(4)31(4)22(4)13(4)11(5)

1(5)12(5)

1(6)

(7)

111(4) (4)111

111(3)1112(3) 1(3)111 (3)211

122(2) 111(2)2 2(2)111 (2)22113(1)11 11(1)31

1112(2) 122(1)1
111(2)11

122(2) 22(1)11 11(2)111 11(1)22 1(1)221 (2)2111

1112(1)1 112(1)11 11(1)211

Fig. 4. The poset SIPM2(7) (w.r.t. the order relation induced by ⇒).

Figure 4 shows several elements having the same form but with different
positions (parentheses are used to indicate column 0). For example (111211,−2),
(111211,−3) and (111211,−4) are all in SIPM2(7).

As a matter of fact, symmetric ice piles are closely related to ice piles.

Definition 2. Let a = (a0, . . . , al) be a unimodal sequence. Then a is decom-
posable at i if and only if ai = h(a) and a<i, a≥i are ice piles.

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

164

The elements of SIPMk(n) have a form which can be decomposed into the
concatenation of a reversed ice pile with an ice pile. More precisely, we extend
to SIPMk(n) a decomposition property proved for SSPM(n) in [12, Lemma 3].

Lemma 5. Let a ∈ US(n), then the two following conditions are equivalent:

1. there is an integer i such that a is decomposable at i, with a<i ∈ IPMk(r),
a≥i ∈ IPMk(s) and r + s = n;

2. there is an integer j such that (a, j) ∈ SIPMk(n).

Definition 3. For a ∈ US(n) (resp. a ∈ GUS(n)) we denote by D(a) (resp.
D(a)) the set of all indices i such that a (resp. a) admits a decomposition at i
(or equivalently, is decomposable at i).

Remark 1. Obviously, if a = (a, j) ∈ GUS(n), one has D(a) = D(a) + j =
{i + j | i ∈ D(a)}. Note also that D(a) is always an integer interval. Indeed,
the set {e | ae = h(a)} is an integer interval [e1, e2] (with e1 = c(a)) and then
D(a) = [i1, i2] where :

i1 =

{
max(e1, e2 − k + 1), if a≥e2+1 is h(a)-critical
max(e1, e2 − (k + 1) + 1) = max(e1, e2 − k), otherwise

i2 =

{
min(e2, e1 + k − 1), if a<e1 is h(a)-critical
min(e2, e1 + (k + 1)− 1) = min(e2, e1 + k), otherwise

Now, we want to determine when a generalized unimodal sequence belongs
to SIPMk(n). Following [12], we start defining a unilateral (possibly reversed)
ice pile f(a, i) associated with a pair a ∈ GUS(n) and i ∈ D(a).

Definition 4. Let a ∈ GUS(n) and i ∈ D(a). If i ≥ 0, we define f(a, i),
called the completion of a at i, as the ice pile s = (s0, s1, . . .) of minimal weight
such that s≥i = a≥i. In this case we will call complement of a at i the ice pile
c(a, i) = (s0, s1, . . . , si−1).
Similarly, if i < 0, we define f(a, i) as the generalized unimodal sequence s =
(. . . , s−2, s−1, s0) such that s is the reversed ice pile of minimal weight with
s<i = a<i. In this case the complement of a at i is the reversed ice pile c(a, i) =
(si, si+1, . . . , s−1, s0). In either case, w(a, i) denotes the weight of f(a, i).

Example 1. Let n = 21, k = 2, a = (1, 2, 2, 3, 4, 4, 4, 1) and a = (a,−1).
Then c(a, 3) = (6, 5, 5) and hence f(a, 3) = (6, 5, 5, 4, 4, 4, 1), while c(a, 5) =
(6, 5, 5, 4, 4) but still the same completion f(a, 5) = (6, 5, 5, 4, 4, 4, 1) = f(a, 3).
To study a case with i < 0, let b = (1, 2, 2, 3, 4, 4, 4, 1) and b = (b,−7). Then
f(b,−2) = ((1, 2, 2, 3, 4, 4, 4, 5),−7) = f(b,−1) = f(b,−3).

For any symmetric ice pile a which is decomposable at i, the weight of c(a, i) is
uniquely determined by either a<i (i < 0) or a≥i (i ≥ 0) and easily computed.

Lemma 6. Let a = (a, j) ∈ GUS(n) be decomposable at i. Then w(c(a, i)) can
be computed in time O(1).

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

165

The following Lemma is used for proving Lemma 8, which provides a char-
acterization for the configurations of SIPMk(n).

Lemma 7. Let t ∈ SIPMk(n) such that t = (t, 0) and let a = (a, j) be another
generalized unimodal sequence such that j < 0, l(a) = |j| + l(t), a ∈ IPMk(n)
and such that for all i with 0 ≤ i < l(t) one has ai ≤ ti. Then a is reachable
from t.

Lemma 8. A sequence a = (a, j) ∈ GUS(n) belongs to SIPMk(n) if and only if
∃ i with j ≤ i ≤ l(a)− 1 + j such that a is decomposable at i and w(a, i) ≤ n.

The condition of the previous lemma characterizing generalized unimodal
sequences belonging to SIPMk(n), can be replaced by an equivalent (although
apparently stronger) condition.

Lemma 9. Let a = (a, j) ∈ GUS(n). Then, there exists an integer i0 ∈ D(a)
such that w(a, i0) ≤ n if and only if for all i ∈ D(a), one has w(a, i) ≤ n.

Corollary 2. Let a ∈ GUS(n). If 0 ∈ D(a) then a ∈ SIPMk(n).

Lemma 9 also allows to deduce that for all unimodal sequence a, the set S(a)
of integers j such that (a, j) is in SIPMk(n) is an integer interval.

Corollary 3. Given a ∈ US(n), let j1, j2 be two integers such that (a, j1), (a, j2) ∈
SIPMk(n). Then for all j with j1 ≤ j ≤ j2 one has (a, j) ∈ SIPMk(n).

Our algorithm generates all possible unimodal sequences a that are form of
some symmetric ice pile, and, for each form, all integers j such that (a, j) ∈
SIPMk(n). We only need to determine the bounds of S(a).

Corollary 4. Let a ∈ US(n) Then (a, j) ∈ SIPMk(n) if and only if j ∈ [jmin, jmax]
with jmin = min{j|(a, j) ∈ SIPMk(n)} and jmax = max{j|(a, j) ∈ SIPMk(n)}.

For the computation of the two integers jmin, jmax we have:

Corollary 5. Let a ∈ US(n) Then jmin = min{j|(a, j) ∈ SIPMk(n)} and
jmax = max{j|(a, j) ∈ SIPMk(n)} are computed in time O(1).

Example 2. Let n = 21, k = 2 and a = (1, 2, 2, 3, 4, 4, 4, 1) with D(a) = [i1, i2] =
[4, 6]. Clearly [jmin, jmax] ⊇ [−i2,−i1] = [−6,−4] because (a,−6) and (a,−4) are
decomposable at 0. However the largest δ > 0 such that (a,−4+δ) ∈ SIPM2(21)
is 1. Indeed, (a,−3) is decomposable at 1 and w((a,−3), 1) = 18 < 21, whereas
(a,−2) is decomposable only at j, 2 ≤ j ≤ 4, but with weight w((a,−2), 2) =
23 > 21. On the other hand, (a,−7) /∈ SIPM2(21) since it is decomposable only
at j, −3 ≤ j ≤ −1 with w((a,−7),−1) = 25 > 21. Therefore (a, j) ∈ SIPM2(21)
if and only if j ∈ [−6,−3].

We conclude this section with a slightly different characterization of forms of
symmetric ice piles which is more suitable for our generation algorithm.

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

166

Lemma 10. A unimodal sequence a is the form of an element in SIPMk(n)
if and only if a = c · x[p] · d with c̄ ∈ IPMk(t1), d ∈ IPMk(t2), h(c̄), h(d) < x,
t1+t2+xp = n and either p < 2k+1 (1) or p = 2k+2 and c̄, d are not x-critical
(2) or p = 2k + 1 and at least one of c̄, d is not x-critical (3).

Given a unimodal sequence a = c · x[p] · d that is the form of an element in
SIPMk(n), the triple (x, p, w(d)) is said the type of a (by Lemma 10 p ≤ 2k+ 2).
In other words, a triple of integers (x, y, z) is a type for SIPMk(n) if and only if
there are a unimodal sequence a = c · x[y] · d, with c̄ ∈ IPMk(n − xy − z) and
d ∈ IPMk(z), and an integer j such that (a, j) ∈ SIPMk(n). Obviously one has√
n− 1 ≤ x ≤ n, 1 ≤ p ≤ min(bn/xc, 2k + 2) and 0 ≤ r ≤ kx(x− 1)/2 + x− 1.

4 The algorithm

The idea is that of generating in order (with respect to <) all unimodal sequences
that are forms of elements in SIPMk(n). By Lemma 10, such forms are the
product of three sequences, c · x[p] · d, which satisfy suitable constraints. Thus,
we consider all the triples (x, p, r) corresponding to types, then we generate all
the forms associated with each type, and lastly, for each form, we compute all
the positions of the symmetric ice piles having that form. So, consider a type
(x, p, r) and distinguish three cases depending on p.

When p ≤ 2k all the forms can be written as a = c · x[p] · d where c̄ and d
are arbitrary ice piles in IPMk,x−1(n − px − r) and IPMk,x−1(r), respectively.
In fact, x[j1] · c̄ and x[j2] · d are always ice piles for all j1, j2 ≤ k. By choosing
two values such that j1 + j2 = p we can guarantee the existence of a value i
such that a<i and a≥i are ice piles. Then, Lemma 5 states that the unimodal
sequence c · x[p] · d is the form of an element in SIPMk(n).

Obviously, c · x[p]d 6= c′ · x[p] · d′ if h(c), h(d), h(c′), h(d′) < x and c′ 6= c or
d′ 6= d. Thus, we get all the forms of this type, if we generate all the elements of
IPMk,x−1(r) and, for each of these, all the ice piles in IPMk,x−1(n− px− r).

Consider the case p = 2k + 2. In order to get all the forms c · x[2k+2] · d, by
condition (2) in Lemma 10 we need to generate all ice piles c̄ and d that are not
x-critical. By Corollary 1 these are the ice piles in G(s) and G(t), where s and t
are the highest staircases in IPMk,x−1(n−px−r) and IPMk,x−1(r), respectively.

Lastly, let p = 2k+ 1. If r < (k+ 1)(x− 1) it is sufficient to generate all d in
IPMk,x−1(r) and (for each of these) all c̄ ∈ IPMk,x−1(n− (2k+1)x−r). Observe
that d is not x-critical and thus condition (3) of Lemma 10 is satisfied. Otherwise
(r ≥ (k + 1)(x − 1)), let t be the staircase of height x − 1 in IPMk,x−1(r) and
consider the partition A∪B = IPMk,x−1(r) where A = {a ∈ IPMk,x−1(r)|a <nlex
t} and B = {b ∈ IPMk,x−1(r)|t ≤nlex b}. By Lemma 2 each element of A is x-
critical and then for each d ∈ A we have to generate all ice piles c̄ that are not
x-critical (so that x[k+1] · c̄ is an ice pile): these are exactly the ice piles c̄ ∈ G(s)
where s is the staircase of height x − 1 in IPMk,x−1(n − (2k + 1)x − r). Then,
for each d ∈ B we generate all c̄ ∈ IPMk,x−1(n− (2k + 1)x− r) (x[k+1] · d is an
ice pile). Observe that by Lemma 1 and Corollary 1 one has A = G(g) \ G(t),
where g = min <nlex(IPMk,x−1(r)), and B = G(t).

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

167

Once a form c ·x[p]d has been generated, all the positions j such that (c ·x[p] ·
d, j) ∈ SIPMk(n) are computed using Corollary 5.

This idea leads immediately to Algorithm 1. We represent ice piles in IPMk(r)
as structures with six fields: the number of grains r, the current length, the linear
partition (an array of integers), the set of moves (an ordered stack of integers),
the integer k and a flag which is on if and only if the ice pile is x-critical. This
last field is included only to simplify the computation of the positions.

The algorithm consists of three nested loops (associated with the three entries
of a type (x, p, r)). The repeat-loop is used to set the height x of the symmetric ice
pile, starting from the initial value n. The for-loop sets the number p of columns
of height x, from the the largest allowed value min(bn/xc, 2k + 2) downto 1.
Lastly, the while-loop sets the weight r of the ice pile d in c · x[p] · d, from the
largest admissible value (the smallest between the number of available grains
n− px and either kx(x− 1)/2 or kx(x− 1)/2 + x− 1, depending on p) downto
the smallest one (i.e. a value r such that (x, p, r) is a type for SIPMk(n) while
(x, p, r − 1) is not).

Algorithm 1 Exhaustive Generation of SIPMk(n).
1: Procedure SIPGeneration(n,k)
2: x := n;
3: repeat
4: for p := min(bn/xc, 2k + 2) downto 1 do
5: m := n− p · x;
6: if p = 2k + 2 then max := kx(x− 1)/2; else max := kx(x− 1)/2 + x− 1;
7: r := min(m,max);
8: while IsType(n,k,x,p,r) do
9: if p < 2k + 1 then Gen1(m− r,r,x− 1,p,k);
10: else if p = 2k + 2 then Gen2(m− r,r,x− 1,k);
11: else if p = 2k + 1 then Gen3(m− r,r,x− 1,k);
12: r:=r − 1;
13: end while
14: end for
15: x:=x− 1;
16: until TooLow(n,k,x);

At each iteration, the value p determines which case of Lemma 10 occurs.
When p < 2k+1 the call Gen1(m−r,r,x−1,p,k) generates all symmetric ice

piles having the form c · x[p] · d with c̄ ∈ IPMk,x−1(m− r) and d ∈ IPMk,x−1(r).
Similarly, if p = 2k + 2 Gen2(m − r,r,x − 1,k) generates all symmetric ice
piles having the form c · x[2k+2] · d with c̄ ∈ G(s), and d ∈ G(t), where s and
t are the highest staircases in IPMk,x−1(m − r) and IPMk,x−1(r), respectively.
Lastly, when p = 2k+ 1, the call Gen3(m− r,r,x− 1,k) generates all symmetric
ice piles having the form c · x[2k+1] · d and such that c̄ ∈ IPMk,x−1(m − r) or
d ∈ IPMk,x−1(r) is not x-critical.

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

168

The algorithm halts as soon as a value x is reached such that no symmetric ice
pile of height x exists (TooLow(n,k,x) at line 24 returns true iff IPMk,x(n) = ∅).

Procedures Gen [1-3] are easily developed by means of the following functions
and procedures. MinIcePile(x,r,k) costructs the smallest ice pile in IPMk,x(r)
while Staircase(x,r,k) constructs the highest staircase in IPMk,x(r). Both func-
tions return a reference to an ice pile (the former possibly sets the flag indicating
x-criticality). IsStaircase(a) (IsBottom(a)) returns the boolean value true iff
a is a staircase (fixed point). The generation of the ice piles c̄ and d which ap-
pear in c · x[p] · d is done by means of Next. This function sets its argument to
the next ice pile in the neglex order, and returns a reference to it (see Section
2.1). Once the components c, x, p and d of a form are known, the Procedure
Positions computes the range of positions for that form.

Example 3. SIPGeneration(7, 2) produces the following sequence of symmet-
ric ice piles (see Fig. 4): (7), (6)1, 1(6), (5)2, (5)11, 1(5)1, . . . , 111(2)11, 11(1)211.

5 Complexity

With respect to the space complexity, we point out that the algorithm uses
O(
√
kn) space, since to represent a form c ·x[p] · d we need only two ice piles c̄, d

(represented by two structures of size O(
√
kn)) and two integers x, p. Moreover,

recall that for any a ∈ IPMk(n) the generation of G(a) requires O(|G(a)|) time
and O(

√
kn) space (see section 2.1).

Procedures MinIcePile and Staircase have a cost which grows as the
length l = O(

√
kn) of the returned ice pile, whereas IsBottom and IsStair-

case run in time O(1). Indeed, these two functions simply check the stack ST
representing the moves of the ice pile (ST = ∅,ST ⊆ {l − 2, l − 1}).
Functions IsType and TooLow run in timeO(1) too. In fact, IsType(n, k, x, p, r)
when p ≤ 2k simply checks whether the two values r and n − px − r are
both smaller than kx(x − 1)/2 + x. Similarly, if p = 2k + 2 it verifies that
r, n − (2k + 2)x − r ≤ kx(x − 1)/2. Lastly, if p = 2k + 1 it checks whether
r ≤ kx(x− 1)/2 + x− 1 and n− (2k+ 1)x− r ≤ kx(x− 1)/2 or r ≤ kx(x− 1)/2
and n− (2k + 1)x− r ≤ kx(x− 1)/2 + x− 1. TooLow(n, k, x) returns false if
2kx(x−1)/2 ≤ n− (2k+2)x, true otherwise. At last, Corollary 5 lets us develop
a procedure Positions(c̄, x, p, d) which runs in time O(1).

In Procedure SIPGeneration, the repeat-loop iterates O(n) times, the for-
loop iterates O(k) times and the while-loop iterates O(kn2) times. Then the
overall cost is O(k2n3) plus the cost of O(k2n3) calls to Gen[1-3]. Thus, we
consider:

Lemma 11. Let C(l, r, x, p, k) be the number of symmetric ice piles generated
by either Gen1(l,r,x,p,k) (if p ≤ 2k) or Gen3(l,r,x,k) (if p = 2k + 1) or
Gen2(l,r,x,k) (if p = 2k + 2). Then, the running time of Gen1(l,r,x,p,k),
Gen2(l,r,x,k) and Gen3(l,r,x,k) is O(C(l, r, x, p, k)) +O(

√
kn).

We can now prove the main result.

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

169

Theorem 1. SIPGeneration is a CAT algorithm and uses O(
√
kn) space.

Proof. Note that all the instructions of SIPGeneration have cost O(1) except
the calls to Gen[1-3]. Thus, the cost T (n) of SIPGeneration(n,k) is O(k2n3)
(due to the three nested loops) plus the cost of O(k2n3) calls to Gen[1-3]. There-
fore, by Lemma 11 one has

T (n) = O(k2n3) +
∑

x,p,l,r

O(C(l, r, x, p, k)) = O(k2n3) +O(|SIPMk(n)|).

Since k2n3 = O(|SPM(n)|) and |SPM(n)| ≤ |IPMk(n)| ≤ |SIPMk(n)| (see [3]
for bounds for |SPM(n)|), SIPGeneration turns out to be a CAT algorithm.
With respect to the space complexity, note that the necessary space for storing
two ice piles at a time is (O(

√
kn)). ut

As an extension of this work, it is quite natural to ask whether a similar
approach can be applied to deal with the exhaustive generating problem for
other (similar) discrete models. In particular, the discrete models BSPM and
BIPM (Bidimensional Sand and Ice Pile Model) have been introduced in [4] by
adding a further dimension to SPM(n) and IPMk(n), respectively. Thus, the
elements of BSPM and BIPM are plane partitions, that is, matrices of non-
negative integers that are nonincreasing from top to bottom and from left to
right. These models are not lattices and admit several fixed points but, unlike
SIPMk(n), no characterization is known for reachable states and fixed points.

References

1. P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38
(1988), 364–374.

2. T. Brylawski, The lattice of integer partitions, Discrete Math. 6 (1973), 201–219.
3. S. Corteel, D. Gouyou-Beauchamps, Enumeration of sand piles, Discrete Math. 256
n.3 (2002), 625–643.

4. E. Duchi, R. Mantaci, H. D. Phan and D. Rossin, Bidimensional sand pile and ice
pile models, PU.M.A. vol. 17 (2007) n.1-2, 71–96.

5. E. Formenti, B. Masson and T. Pisokas, Advances in symmetric sandpiles, Funda-
menta Informaticae 20 (2006), 1–22.

6. E. Goles and M. A. Kiwi, Games on line graphs and sand piles, Theoret. Comput.
Sci. 115 (1993), 321–349.

7. E. Goles, M. Morvan and H. D. Phan, Sandpiles and order structure of integer
partitions, Discrete Appl. Math. 117 (2002), 51–64.

8. M. Latapy, R. Mantaci, M. Morvan and H. D. Phan, Structure of same sand piles
model, Theoret. Comput. Sci. 262 (2001), 525–556.

9. P. Massazza, A CAT algorithm for sand piles, PU.M.A. vol. 19 (2008) n.2-3, 147–
158.

10. P. Massazza and R. Radicioni A CAT algorithm for the exhautive generation of
ice piles, RAIRO Informatique théorique 44 (2010), 525–543.

11. P. Massazza, On the Exhaustive Generation of Symmetric Sand Piles, Proc. of
GASCom 2010 , Montréal, 2-4 September 2010.

12. H. D. Phan, Two sided sand piles model and unimodal sequences, RAIRO Infor-
matique théorique 42 (2008), 631–646.

R.Mantaci et al. An efficient algorithm for generating symmetric ice piles

170

Adding two equivalence relations
to the interval temporal logic AB

Angelo Montanari1, Marco Pazzaglia1, and Pietro Sala2

1 Department of Mathematics and Computer Science,
University of Udine, Italy

angelo.montanari@uniud.it, marco@pazzaglia.me
2 Department of Computer Science

University of Verona, Italy
pietro.sala@univr.it

Abstract. The interval temporal logic AB features two modalities that
make it possible to access intervals which are adjacent to the right of the
current interval (modality 〈A〉) and proper subintervals that have the
same left endpoint of it (modality 〈B〉). AB is one of the most significant
interval logics, as it allows one to express meaningful (metric) properties,
while maintaining decidability (undecidability rules over interval logics,
AB is EXPSPACE-complete [14]). In an attempt to capture ωS-regular
languages with interval logics [15], it was proved that AB extended with
an equivalence relation, denoted AB∼, is decidable (non-primitive re-
cursive) on the class of finite linear orders and undecidable on N. The
question whether the addition of two or more equivalence relations makes
finite satisfiability for AB undecidable was left open. In this paper, we
answer this question proving that AB∼1∼2 is undecidable.

1 Introduction

Interval temporal logics (ITL) are temporal logics where time intervals/periods,
instead of time points/instants as in the standard framework, are used as basic
building blocks. ITL are characterized by high expressiveness and high computa-
tional complexity. The main formalization of these logics is known as HS which
features one modality for each interval order relation [7] (the so-called Allen’s
relations [1]). In this paper, we analyze the complexity of the finite satisfiability
problem for the interval temporal logic AB of Allen’s relations meets and begun
by extended with two equivalence relations. AB is one of the most significant
fragments of HS since it is decidable [14] (undecidability rules over interval log-
ics [5]) and it can express various important (metric) temporal properties. As
an example, it allows one to encode the standard until operator of point-based
linear temporal logic as well as to constrain the length of an interval to be less
than/equal to/greater than a given value [14].

The trade-off between the increase in expressiveness and the complexity blow-
up induced by the addition of one or more equivalence relations to a logic has

171

been already highlighted in the literature (see, for instance, the logics for semi-
structured data [3], temporal logics [6], and timed automata [16]). Finite satis-
fiability of the two-variable fragment of first-order logic FO2 extended with one,
two, or more equivalence relations has been systematically explored in [8–10],
while the extension of FO2, interpreted over finite or infinite data words, with
an equivalence relation has been investigated by Bojańczyk et al. in [3]. Similar
results have been obtained by Demri and Lazic [6], that studied the extension of
linear temporal logic over data words with freeze quantifiers, which allow one to
store elements at the current word position into a register and then to use them
in equality comparisons deeper in the formula, and by Ouaknine and Worrell
[16], who showed that both satisfiability and model checking for metric tem-
poral logic over finite timed words are decidable with a non-primitive recursive
complexity.

The addition of an equivalence relation to an interval temporal logic was
first investigated by Montanari and Sala in [15]. They focused their attention
on the interval logic AB of Allen’s relations meets and begins extended with an
equivalence relation, denoted AB∼, interpreted over finite linear orders and N,
and they showed that the resulting increase in expressive power makes it pos-
sible to establish an original connection between interval temporal logics and
extended regular languages of finite and infinite words [2]. As for the computa-
tional complexity, they proved that AB∼ is decidable (non-primitive recursive)
on the class of finite linear orders and undecidable on N. Recently, the interval
logic of temporal neighborhood PNL, which features two modalities for Allen’s
relations meets and met by, and its metric variant MPNL, both extended with
one equivalence relation, have been proved to be decidable over finite linear or-
ders [13] (NEXPTIME-complete the former, EXPSPACE-hard the latter). In
this paper, we answer a question left open in [15], showing that the addition of
two (or more) equivalence relations makes AB undecidable also over finite linear
orders.

The paper is organized as follows. Section 2 illustrates in some detail previous
work on the interval temporal logic AB extended with one equivalence relation
and some related work. Section 3 introduces syntax and semantics of the logic
AB∼1∼2 and gives some background knowledge about counter machines. The
next two sections provide a reduction from the undecidable 0-0 reachability
problem for Minsky counter machines to the finite satisfiability problem for
AB∼1∼2. More precisely, Section 4 outlines the general structure forced on each
model (if any) by the formulas given in Section 5. Finally, in Section 6 we prove
that the proposed encoding is correct. Conclusions provide an assessment of the
work and outline future research directions.

2 Related work

The present paper can be viewed as the natural completion of the work reported
in [15], where Montanari and Sala proved that the satisfiability problem for
AB∼ is decidable over finite linear orders, with non-primitive recursive complex-

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

172

ity, and undecidable over N. Undecidability has been proved by a reduction from
the (undecidable) 0-n reachability problem for lossy counter machines [11]. As
for finite satisfiability, they initially reduced the problem of finding a model for a
given AB∼ formula ϕ to the existence of a particular compass structure exploit-
ing the correspondence that can be established between intervals and points
in the positive octant of the Cartesian plane, that is, the map that links any
interval [x, y] to the corresponding point (x, y). Then, by exploiting a suitable
model contraction technique, they showed that if ϕ is finitely satisfiable, then a
structure satisfying it can be obtained via a bottom-up generation of candidate
(finite) compass structures. Since the number of pairwise incomparable rows of
any candidate structure can be proved to be finite, termination easily follows.
The complexity bound has been obtained by encoding in AB∼ the 0-0 reacha-
bility for lossy counter machines (LCM) which is known to be a non-primitive
recursive (decidable) problem [17].

The general structure of the AB∼ encoding of the 0-0 reachability problem
for LCM is similar to the one provided in this paper for (non-lossy) counter
machines (CM). However, when only one equivalence relation is available, it is
possible to enforce the presence of certain points in a configuration (depending
on the points of the previous configuration), but not to restrict the number of
points in it. This last constraint is necessary for the encoding of CM and it can
be enforced only by making use of two equivalence relations.

From a technical point of view, our work presents some similarities to the
one by Bojańczyk et al. in [4], where it is shown, among other results, that the
logic FO2(+1,∼1,∼2) over finite data words is undecidable. To prove it, they
provide a reduction from the Post correspondence problem to finite satisfiabil-
ity for FO2(+1,∼1,∼2), that exploits the interconnections between equivalence
relations in a way that is similar to what we do here. However, their encoding
strongly depends on constraints of the form ∀∃ which are not expressible in AB.
To overcome these limitations, we will exploit some metric properties definable
in AB.

3 Preliminaries

In this section, we first introduce syntax and semantics of AB∼1∼2 and then we
provide background knowledge about Minsky counter machines.

3.1 The interval temporal logic AB∼1∼2

The interval temporal logic AB∼1∼2 features two modalities 〈A〉 and 〈B〉 corre-
sponding to Allen’s relations meets and begun by, respectively, and two special
binary relation symbols ∼1 and ∼2. Formally, given a set Prop of propositional
variables, formulas of AB∼1∼2 are built up from Prop and ∼1,∼2 using the
Boolean connectives ¬, ∨ and the modalities 〈A〉 and 〈B〉. Moreover, we make
use of shorthands ϕ1 ∧ϕ2 for ¬(¬ϕ1 ∨¬ϕ2), [A]ϕ for ¬〈A〉¬ϕ, [B]ϕ for ¬〈B〉¬ϕ,
> for p ∨ ¬p, and ⊥ for p ∧ ¬p, with p ∈ Prop.

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

173

We interpret formulas of AB∼1∼2 in interval temporal structures over (pre-
fixes of) N endowed with the ordering relations meets (denoted by A) and begun
by (denoted by B), and two equivalence relations ∼1 and ∼2. More precisely,
we identify any given ordinal N < ω with the prefix of length N of N and we
accordingly define I(N) as the set of all closed intervals [i, j], with i, j ∈ N and
i ≤ j. A special role will be played by point-intervals (intervals of the form [i, i],
with i ∈ N) and unit-intervals (intervals of the form [i, i + 1]), which can be
respectively defined as [B] ⊥ (abbreviated π) and [B][B] ⊥ (abbreviated unit).
For any pair of intervals [i, j], [i′, j′] ∈ I(N), relations A and B are defined as
follows:

– meets relation: [i, j] A [i′, j′] iff j = i′;
– begun by relation: [i, j] B [i′, j′] iff i = i′ and j′ < j.

The (non-strict) semantics of AB∼1∼2 is given in terms of interval models
S = 〈I(N), A,B,∼1,∼2, V 〉, where ∼1 and ∼2 are two equivalence relations over
N and V : I(N)→ ℘(Prop) is a valuation function that assigns to every interval
[i, j] ∈ I(N) the set of propositional variables V ([i, j]) that are true on it. The
truth of an AB∼1∼2 formula over a given interval [i, j] in a model S is defined
by structural induction as follows:

– S, [i, j] � p iff p ∈ V ([i, j]), for all p ∈ Prop;
– S, [i, j] � ¬ψ iff S, [i, j] 2 ψ;
– S, [i, j] � ϕ ∨ ψ iff S, [i, j] � ϕ or S, [i, j] � ψ;
– S, [i, j] � 〈X〉ψ iff there exists an interval [i′, j′] such that [i, j] X [i′, j′], and
S, [i′, j′] � ψ, for X ∈ {A,B};

– S, [i, j] �∼k iff i ∼k j, for k ∈ {1, 2}.
Given an interval structure S and a formula ϕ, we say that S satisfies ϕ if

there is an interval I in S such that S, I � ϕ. We say that ϕ is (finitely) satisfiable
if there exists a (finite) interval structure that satisfies it. We define the (finite)
satisfiability problem for AB∼1∼2 as the problem of establishing whether a given
AB∼1∼2 formula ϕ is (finitely) satisfiable.

3.2 Counter machines

A k counter machine (kCM) is a triple of the form M = (Q, k, δ), where Q is a
finite set of control states, k is the number of counters, whose values range over
N, and δ is a function that maps each state q ∈ Q to a transition rule having
one of the following forms:

1. value(h)← value(h) + 1; goto q′, for some 1 ≤ h ≤ k and q′ ∈ Q (abbrevi-
ated (q, h+ +, q′)), meaning that, whenever M is at state q, it increases the
counter h and it moves to state q′;

2. if value(h) = 0 then goto q′ else value(h) ← value(h) − 1; goto q′′, for
some 1 ≤ h ≤ k and q′, q′′ ∈ Q (abbreviated (q, h?0, q′, q′′)), meaning that,
whenever M is at state q and the value of the counter h is 0 (resp., greater
than 0), it moves to state q′ (resp., it decrements the counter h and it moves
to state q′′).

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

174

A computation of M is any sequence of configurations that conforms to the
transition relation. The reachability problem for a counter machineM = (Q, k, δ)
is the problem of deciding, given two configurations (q0, z0) and (qf , zf), whether
there is a computation that takes M from (q0, z0) to (qf , zf). The reachability
problem for counter machines is undecidable even for machines with only two
counters [12]. For convenience, we will use a restricted, but equally undecidable,
form of this problem, called 0-0 reachability problem, where z0 and zf are both
0. Moreover, without loss of generality, we restrict our attention to computations
where q0 and qf occur only at the beginning and at the end, respectively.

4 The structure of intended models

The main contribution of the paper is the proof of the following theorem.

Theorem 1. The satisfiability problem for AB∼1∼2 over the class of finite lin-
ear orders is undecidable.

To prove it, we provide a reduction from the 0-0 reachability problem for Minsky
two-counter machines to the satisfiability problem for AB∼1∼2. More precisely,
given a two-counter machine M = (Q, 2, δ) and two states q0, qf ∈ Q, we build
a formula ψM,q0,qf such that there exists a computation in M from the configu-
ration (q0, 0, 0) to the configuration (qf , 0, 0) if and only if ψM,q0,qf is satisfiable.
First, in the present section, we delineate the structure that we want to give to
each model (if any) of ψM,q0,qf (the intended model). Then, in Section 5, we
show how to encode in AB∼1∼2 such a structure. We conclude the paper with
the proof of the correctness of the encoding.

The structure of the models of the encoding formula can be described as
follows. To start with, we partition the set of point-intervals (points for short)
in two subsets: points labeled by a state in Q (state-points) and points labeled
by c1 or c2 (counter-points). A configuration (q, v1, v2) is represented as a set
of contiguous points, where the first point is a state-point with label q and the
remaining ones are counter-points such that exactly v1 points have label c1 and
v2 points have label c2, in any order. Counter-points with label del are points
which have been “deleted” and thus do not count for the value of a counter in a
configuration.

The computation of the two-counter machine M (from q0 to qf) consists
of a sequence of contiguous configurations. Counter-points with label plus and
minus indicate, respectively, points added in a configuration as a result of a
counter increment or eliminated in the next configuration as a result of a counter
decrement. Each configuration, but the first one, is obtained from the previous
one by applying a transition of M , which amounts to say that the sequence of
configurations is a valid computation of M .

In Figure 1, we give an example of the proposed model representation for the
computation (q, 1, 1)→ (q′, 1, 0)→ (q′′, 2, 0). The second configuration (q′, 1, 0)
is obtained from the initial configuration (q, 1, 1) by decrementing the second

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

175

counter; the third configuration is obtained from the second one by increment-
ing the first counter. Notice that points with label minus are deleted, that is,
labeled by del, in the configuration that immediately follows the one in which
the decrement of the counter takes place.

.

q c1 c2

minus

q′ c1 c2

del

q′′ c1 c2

del

c1

plus

Fig. 1. Labels of the points in a model representing the partial computation (q, 1, 1)→
(q′, 1, 0)→ (q′′, 2, 0).

5 Encoding of 0-0 reachability in AB∼1∼2

In this section, we show how to encode intended models, representing valid com-
putations of the two-counter machine, by an AB∼1∼2 formula.

Let us consider the AB∼1∼2 formula ψM,q0,qf , which is defined as follows:

ψM,q0,qf ≡ ψ0→0 ∧ [G](ψpoints ∧ ψδ ∧ ψ∼),

where [G]ϕ is an shorthand for [B]ϕ∧ϕ∧ [B][A]ϕ∧ [A][A]ϕ (universal modality)
and

– ψ0→0 forces the initial and final configurations of the computation to be
respectively (q0, 0, 0) and (qf , 0, 0);

– ψpoints specifies conditions on points: (i) points are partitioned in state-
points and counter-points, (ii) labels plus and minus can label counter-
points only, and (iii) in a configuration, there is at most one point with label
minus and at most one point with label plus;

– ψδ ensures the consistency of state-points and plus/minus points with the
transitions in M , that is, if a configuration τ ′, with state-point q′, immedi-
ately follows a configuration τ , with state-point q, then one of the following
three cases must hold: (i) there is a transition δi = (q, h + +, q′) ∈ δ, there
is no point with label minus in τ , and there is one point with labels ch and
plus in τ ′; (ii) there is a transition δi = (q, h?0, q′, q′′), there is no point with
label ch and without label del in τ , and there is no point with label plus in
τ ′; (iii) there is a transition δi = (q, h?0, q′′, q′), there is one point with label
ch and without label del in τ , and there is no point with label plus in τ ′;

– ψ∼ guarantees that each configuration is obtained from the previous one by
an increment/decrement/no-action transition (notice that the fact that the
transition actually belongs to M is checked by ψδ and not by ψ∼).

Formulas ψ0→0, ψpoints, and ψδ can be easily expressed in AB, that is, equiv-
alence relations play no role in the encoding of the corresponding conditions.

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

176

The main component of the encoding is the formula ψ∼, which acts like a con-
troller of the form of configurations by preventing the addition of any unwanted
counter-point. More precisely, it forces each configuration to be an isomorphic
copy of the previous configuration, that is, to feature the same counter-points in
the same order, plus at most one extra point with label plus.

We now show how to express each of above conditions in AB∼1∼2. To fa-
cilitate the reading of the formulas, we make use of the following abbreviations:
we denote the formula

∨n
i=1 qi by the symbol q and the formula

∨2
i=1 ci by the

symbol c. Moreover, we define the following formula, parametric in ϕ:

succ(ϕ) ≡ 〈A〉(unit ∧ 〈A〉(π ∧ ϕ))

which states the truth of ϕ at the point immediately after the current interval,
that is, at the successor of the right endpoint of the current interval. Finally,
we introduce a derived modality 〈P〉, which is defined in terms of modalities 〈A〉
and 〈B〉, that allows one to force a given formula ϕ to be true at some point of
the current interval, endpoints included. The modality 〈P〉 is formally defined as
follows:

〈P〉ϕ ≡ 〈B〉〈A〉(π ∧ ϕ) ∨ 〈A〉(π ∧ ϕ).

The dual of the above modality is defined as usual, that is, [P]ϕ ≡ ¬〈P〉¬ϕ, and
it states that ϕ holds at each point of the current interval (endpoints included).

The initial and final configurations are encoded by the formula:

ψ0→0 ≡ q0 ∧ succ(q) ∧ 〈A〉〈A〉qf ∧ [A][A](qf → succ([A][A](¬q ∧ (c→ del)))).

It states that the initial configuration is (q0, 0, 0) (the first state-point q0 is
followed by a state-point) and that the final configuration is (qf , 0, 0) (the last
state-point is qf and every counter-point after it, if any, is deleted).

The formula ψpoints is defined as the conjunction of the following conditions
(hereafter, we explicitly provide the encoding of the most complex conditions
only):

(A1) every point of the domain has one and only one label from the set
Q ∪ {c1, c2};

(A2) labels in Q∪{c1, c2}∪{plus,minus, last, del} are given to points only;
(A3) at most one counter-point per configuration can be labeled with plus

and at most one with minus;
(A4) the label last is associated with the points of the final configuration

only:

(last→ π) ∧ (last↔ [A](¬π → [A]¬q));

(A5) only counter-points can be labeled with del and a point can not have
both label del and label plus (or minus).

The formula ψδ is defined as the conjunction of the following conditions:

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

177

(B1) all configurations but the initial one (and only them) have one (and
only one) label in δ = {δ1, ..., δm}. We label the first configuration with
a dummy transition δ0. If a configuration is labeled with δi, for some
i > 0, it means that it is obtained from the previous configuration by
the application of the transition δi;

(B2) transition labels are consistent with state-points of each configuration:

∧

δi=(q,h++,q′)∈δ
(δ ∧ succ(〈A〉δi))→

(〈B〉q ∧ succ(q′ ∧ 〈A〉(δi ∧ 〈P〉(ch ∧ plus))))
∧

∧

δi=(q,h?0,q′,q′′)∈δ
(δ ∧ [P](ch → del) ∧ succ(〈A〉δi))→ (〈B〉q ∧ succ(q′))

∧
∧

δi=(q,h?0,q′,q′′)∈δ
(δ ∧ 〈P〉(ch ∧ ¬del) ∧ succ(〈A〉δi))→

(〈B〉q ∧ succ(q′′) ∧ 〈P〉(ch ∧minus)),

where δ is a shorthand for the formula
∨m
i=0 δi;

(B3) there are no points labeled with plus in configurations labeled with
non-increment transitions or point labeled withminus in configurations
that precede configurations labeled with non-decrement transitions;

(B4) every (non-final) configuration devoid of counter-points is followed by
a configuration with at most one counter-point (labeled with plus).

In order to define the formula ψ∼, it turns out to be useful to introduce the
following formula:

ψ∃!q ≡ ([B](〈A〉q → [B]〈A〉¬q) ∧ 〈B〉〈A〉q ∧ 〈A〉¬q) ∨ (〈A〉q ∧ [B][A]¬q),

which guarantees the existence of a unique state-point inside the current interval
(endpoints included).

We call an interval labeled with both ∼1 and ∼2 and containing exactly one
state-point a linking interval, that is, a linking interval is an interval that satisfies
the formula ∼1 ∧ ∼2 ∧ψ∃!q, and we say that its endpoints are linked together
(the use of linking intervals in the encoding will be explained in Section 6).

The formula ψ∼ is defined as the conjunction of the following conditions:

(C1) a unit interval can not be labeled with both ∼1 and ∼2:

unit→ ¬(∼1 ∧ ∼2);

(C2) there is no interval, whose endpoints belong to the same configuration,
which is neither a point interval nor a unit interval and is labeled with
∼1 or ∼2:

(¬π ∧ ¬unit ∧ [P]¬q)→ ¬(∼1 ∨ ∼2);

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

178

(C3) two consecutive counter-points are in relation ∼1 or ∼2:

(unit ∧ 〈B〉c ∧ 〈A〉c)→ (∼1 ∨ ∼2)

(C4) each counter-point, which does not belong to the last configuration,
starts a linking interval:

(c ∧ ¬last)→ 〈A〉(∼1 ∧ ∼2 ∧ψ∃!q);

(C5) the labels of the endpoints of a linking interval must satisfy the follow-
ing constraints:

(∼1 ∧ ∼2 ∧ψ∃!q)→
(
((〈B〉c1 ∧ 〈A〉c1) ∨ (〈B〉c2 ∧ 〈A〉c2))

∧ (〈B〉del→ 〈A〉del)
∧ (〈B〉minus→ 〈A〉del)
∧ (〈B〉(¬minus ∧ ¬del)→ 〈A〉¬del)
∧ (〈A〉¬plus)

)
;

(C6) the first point of all configurations, but the final one, is linked to the
first point of the next configuration:

(unit ∧〈B〉(q ∧ ¬last) ∧ 〈A〉c)
→ 〈A〉(∼1 ∧ ∼2 ∧ψ∃!q ∧ [B](〈A〉q ∨ [P]¬q)).

We would like to observe that the formula [B](〈A〉q ∨ [P]¬q)) enforces
the second to last point of the linking interval to be the only state-point.
Let [x, y] be this interval. If y′, with x < y′ < y − 1, were a state-point
(it can not be the final point y since [x, y] is a linking-interval, and,
by C5, linking intervals have counter-points as their endpoints), then
[x, y − 1] would satisfy neither 〈A〉q (there can only be one state-point
between x and y) nor [P]¬q (since y′ is between x and y − 1 and it is
a state-point);

(C7) the last point of every configuration, but the final one, is linked to a
point that is followed by a state-point or by a counter-point with label
plus followed by a state-point:

(δi ∧ 〈B〉¬last)→〈A〉
(
∼1 ∧ ∼2 ∧ ψ∃!q ∧
(succ(q) ∨ succ(plus ∧ succ(q)))

)
.

We would like to emphasize the crucial role of condition (C5). First of all, it
constrains linking intervals to connect counter-points with the same label (either
c1 or c2). Moreover, it transfers logical deletion (counter-points labeled by del)
from one configuration to the next one, it forces the actual execution of a new
deletion by connecting a counter-point labeled by minus to a counter-point
labeled by del, and it prevents unwanted deletions or insertions to take place.

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

179

6 Proof of correctness of the encoding

The proof of correctness for the formulas ψpoints, ψδ, and ψ0→0 is straightforward.
The only thing that we really need to show is that the behavior of the formula
ψ∼ is actually the one we described in Section 5, that is, we need to prove that
ψ∼ forces each configuration to be the result of the application of a transition of
a (generic) counter machine to the previous configuration. To this end, we show
that each configuration τi+1 contains an exact copy of the counter-points of
the previous configuration τi in its initial part plus possibly an additional point
labeled with plus at the end (if it is obtained from the previous configuration
by an increment transition).

Let S = (I(N), A,B,∼1,∼2, V) be a model of ψM,q0,qf and q0, q1, . . . , qm

be the enumeration of its state-points according to the order of the domain
(therefore, by ψ0→0, q0 = q0 and qm = qf). The configuration τi is defined as
the set of points from qi (included) to qi+1 (excluded). τm consists of qm and
the points that follows it, till the end of the domain I(N). We denote by ∼k any
of the relations ∼1 or ∼2. If τ is an ordered set of points, we write τ j to denote
the j-th point of τ .

Let f be the set of all and only those pairs of points, belonging to two
consecutive configurations τi and τi+1, which are connected by a linking interval,
that is, (x, y) ∈ f if and only if there exist τi, τi+1 such that x ∈ τi, y ∈ τi+1,
x ∼1 y, and x ∼2 y.

First of all, we observe that for each counter-point x in τi there exists a
counter-point y in τi+1 such that (x, y) ∈ f (by (C4)). Moreover, by condition
(C5), every pair in f consists of counter-points with the same label ck. We
now prove that f is (the map of) an injective function that preserves adjacency
between points, that is, if x, x′ are consecutive counter-points, then f(x), f(x′)
are consecutive counter-points as well:

– f is a function: suppose that there exist y, y′, with y < y′, in τi+1 which
have the same counter-image x, with x ∈ τi, in f , then y ∼1 x ∼1 y

′ and
y ∼2 x ∼2 y

′, and thus y ∼1 y
′ and y ∼2 y

′, which violates condition (C1) or
condition (C2), depending on the distance between y and y′ (if |y′ − y| = 1,
then it violates (C1); otherwise, it violates (C2));

– f is injective: the proof is similar to the one given for the previous point.
Suppose that there exist x, x′, with x < x′, in τi which have the same image
y, with y ∈ τi+1, in f , then x ∼1 y ∼1 x

′ and x ∼2 y ∼2 x
′, and thus x ∼1 x

′

and x ∼2 x
′, that violates condition (C1) or condition (C2);

– f preserves adjacency: let x, x′ be two consecutive points in τi, that is, x′

is the successor of x, and let y and y′ be their respective images (since
f is a injective function, it immediately follows that they are unique). By
condition (C3), it holds that∼k∈ V ([x, x′]), and thus y ∼k x ∼k x′ ∼k y′ and
∼k∈ V ([y, y′]), which, by condition (C2), implies that y, y′ are consecutive.

By the properties of f and condition (C6), it follows that f(τ ji) = τ ji+1 for j =
2, . . . , |τi| (order preservation). A graphical account of the relationships between
pairs of counter-points belonging to two consecutive configurations is given in

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

180

q c1 c2 c1 q′

p1 p2 p3 p4 p5

∼1 ∼2

∼1∼2

c1

p6

∼1∼2

∼1∼2

c2 c1

p7 p8

∼1 ∼2

Fig. 2. Correspondence between counter-points of two consecutive configurations.

Figure 2. Moreover, thanks to condition (C7), the inequality |τi| ≤ |τi+1| ≤ |τi|+1
holds, and thus the possible extra point of τi+1 must have label plus. By this fact
and the consistency of the labels plus,minus, and del guaranteed by condition
(C5), it follows that τi+1 is obtained from τi by an increment transition (if it
has an extra point labeled with plus) or by a decrement transition (if it has no
extra point), as desired.

It is worth emphasizing that the role of ψ∼ is not to guarantee that the
transition applied to τi to obtain τi+1 is a valid transition for M (which is the
job of ψδ), but to ensure that τi+1 could be obtained from τi by a transition of
a counter machine.

7 Conclusions

In [15], Montanari and Sala studied complexity and expressiveness of the interval
temporal logic AB∼, that extends AB with an equivalence relation. Complex-
ity and (un)decidability results are given by means of suitable reductions from
reachability problems for lossy counter machines. The resulting picture is as fol-
lows: one gets decidability over finite linear orders with nonprimitive recursive
complexity and undecidability over N. In addition, they showed that decidabil-
ity can be recovered by suitably restricting the class of models over which AB∼
formulas are interpreted. In this paper, we proved that decidability of finite
satisfiability is lost when two or more equivalence relations are added to AB.

As for future work, in analogy to what Montanari and Sala did for AB∼
over the natural numbers, we are thinking of possible ways of restricting the
class of models over which AB∼1∼2 formulas are interpreted in order to re-
cover finite satisfiability. We are also studying the effects of the addition of two
or more equivalence relations to other interval logics, such as (metric) proposi-
tional neighborhood logic, which preserves decidability when extended with one
equivalence relation only [13].

References

1. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2. M. Bojańczyk. Weak MSO with the unbounding quantifier. Theory of Computing
Systems, 48(3):554–576, 2011.

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

181

3. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Transactions on Computational Logic, 12(4):27,
2011.

4. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Transactions on Computational Logic, 12(4):27,
2011.

5. D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. Interval temporal
logics: a journey. Bulletin of the EATCS, 105:73–99, 2011.

6. S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), 2009.

7. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, 1991.

8. E. Kieronski, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable
first-order logic with equivalence closure. In Proc. of the 27th LICS, pages 431–
440. IEEE, 2012.

9. E. Kieronski and M. Otto. Small substructures and decidability issues for first-
order logic with two variables. In Proc. of the 20th LICS, pages 448–457. IEEE,
2005.

10. E. Kieronski and L. Tendera. On finite satisfiability of two-variable first-order logic
with equivalence relations. In Proc. of the 24th LICS, pages 123–132. IEEE, 2009.

11. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297(1-3):337–354, 2003.

12. M. L. Minsky. Computation: finite and infinite machines, 1967. Cited on, page 54,
1967.

13. A. Montanari, M. Pazzaglia, and P. Sala. Metric propositional neighborhood logic
with an equivalence relation. In Proc. of the 21st TIME. IEEE, 2014.

14. A. Montanari, G. Puppis, P. Sala, and G. Sciavicco. Decidability of the interval
temporal logic ABB̄ on natural numbers. In Proc. of the 27th STACS, pages
597–608, 2010.

15. A. Montanari and P. Sala. Adding an equivalence relation to the interval logic
ABB̄: Complexity and expressiveness. In Proc. of the 28th LICS, pages 193–202.
IEEE, 2013.

16. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

17. P. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters, 83(5):251–261, 2002.

A.Montanari et al. Adding two equivalence relations to the interval temporal logic AB

182

Efficient channel assignment for cellular
networks modeled as honeycomb grid

Soumen Nandi1, Nitish Panigrahy2, Mohit Agrawal2,
Sasthi C. Ghosh1, and Sandip Das1

1 Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India,

{soumen.nandi r, sasthi, sandipdas}@isical.ac.in.
2 Department of Computer Science and Engineering,

National Institute of Technology, Rourkela, India,
{nitish.pani, mohitag25}@gmail.com.

Abstract. The channel assignment problem with separation is formu-
lated as a vertex coloring problem of a graph G = (V,E) where each
vertex represents a base station and two vertices are connected by an
edge if their corresponding base stations are interfering to each other.
The L(δ1, δ2, · · · , δt) coloring of G is a mapping f : V → {0, 1, · · · , λ}
such that |f(u) − f(v)| ≥ δi if d(u, v) = i, where d(u, v) denotes the
distance between vertices u and v in G and 1 ≤ i ≤ t. Here λ, the largest
color assigned to a vertex of G, is known as the span. The same color can
be reused in two vertices u and v if d(u, v) ≥ t+1, where t+1 is the reuse
distance. The objective is to minimize λ over all such coloring function
f . Here (δ1, δ2, · · · , δt) is called the separation vector where δ1, δ2, · · · , δt
are positive integers with δ1 ≥ δ2 ≥ · · · ≥ δt. Let λ∗ be the minimum
span such that there exists an L(1, 1, · · · , 1) coloring of G. We denote
the separation vector (1, 1, · · · , 1) as (1t). We deal with the problem of
finding the maximum value of δ1 such that there exists an L(δ1, 1

t−1)
coloring with span equal to λ∗. So far bounds on δ1 have been obtained
for L(δ1, 1

t−1) coloring with span λ∗ for the square and triangular grids.
Shashanka et al. [18] posed the problem as open for the honeycomb grid.
We give lower and upper bounds of δ1 for L(δ1, 1

t−1) coloring with span
λ∗ of the honeycomb grid. The bounds are asymptotically tight. We also
present color assignment algorithms to achieve the lower bound.

1 Introduction

In cellular networks, a large number of base stations is expected to cover a
communication region. Such a covering can be achieved by placing the base
stations according to a regular plane tessellation. It is well-known that only
three different regular tessellations of the plane exist [6]. Specifically, the honey-
comb, square and triangular tessellations cover the plane respectively by regular
hexagons, squares, and triangles leading to three well-known topologies: hon-
eycomb, square and triangular grids [6]. These three grid structures are shown
in Figs. 1 (a), (b) and (c) where each vertex represents a base station and two

183

vertices have an edge between them if their corresponding base stations are in-
terfering to each other. Considering the network cost as a product of degree and
diameter the honeycomb grid beats both the triangular and square grids as ar-
gued by Bertossi et al. [6]. The brick representation of the honeycomb grid has
been shown in Fig. 1 (d) [6]. In this brick representation, the honeycomb grid
can be viewed as a 2-dimensional grid. Thus each vertex can be represented by
a 2-dimensional cartesian co-ordinate (i, j) where i and j are integers.

(a) (b) (c) (d)

Fig. 1: (a) Honeycomb grid, (b) Square grid, (c) Triangular grid and (d) Brick structure
of honeycomb grid.

The assignment of frequency channels to the base stations became a problem
for enormous growth of wireless network. Since the number of available frequency
channels is very limited, they must be utilized in an efficient manner. The main
difficulty in efficient use of these frequency channels is the interference caused
by unconstrained simultaneous transmissions of nearby stations. The same fre-
quency channel can be reused by two stations provided that they are sufficiently
far away so that the interference arisen between them can be negligible. However,
the frequencies assigned to two nearby stations must differ by certain minimum
value depending on the distance between them to avoid the channel interfer-
ence. The channel assignment problem (CAP) deals with the task of assigning
frequency channels to the stations such that there is no interference between
the frequencies assigned to the nearby stations. The objective is to minimize
the required span (bandwidth) where the span is represented by the difference
between the least and the highest channel used. The minimum distance at which
a channel can be reused with no interference is called the reuse distance.

The cellular network is often modeled as a graph G = (V,E) where each
vertex represents a base station and there is an edge between two vertices if
their corresponding base stations are within the interference range of each other.
Thus the channel assignment problem is basically a graph coloring problem on
this graph. More formally, the L(δ1, δ2, · · · , δt) coloring of a graph G = (V,E)
is a way to assign colors in {0, 1, · · · , λ} to the vertices of G using as small λ
as possible such that the colors assigned to the vertices say u and v which are
distance i apart differ by at least δi where 1 ≤ i ≤ t and the same color can be
reused to two vertices if they are distance t+ 1 or more apart [14]. Here t+ 1 is
the reuse distance, λ is the span and (δ1, δ2, · · · , δt) is known as the separation
vector where δ1, δ2, · · · , δt are positive integers with δ1 ≥ δ2 ≥ · · · ≥ δt. Let λ∗

be the minimum span required for any L(1t) coloring of G. It is evident that

S.Nandi et al. Efficient channel assignment for cellular networks

184

minimum span required for any L(δ1, 1
t−1) coloring of G must be greater than or

equal to λ∗ for any δ1 > 1. In this paper, we deal with the problem of finding the
maximum value of δ1 such that there exists an L(δ1, 1

t−1) coloring of G using the
span equal to λ∗. Keeping the span restricted to the value of λ∗ ensures that such
an L(δ1, 1

t−1) coloring is always optimal. The rationale behind maximizing δ1 is
as follows. The interference between two adjacent channels can be prevented by
using a guard band which is an unused part of the radio spectrum. Interference
can also be prevented by using a specific channel separation requirement between
two adjacent channels. It has been argued by Bertossi et al. [6] that when no extra
colors are used, use of channel separation is always a better option than using
guard bands between two adjacent channels. Moreover, higher channel separation
between adjacent vertices will give the better quality of communication. So far
bounds on δ1 have been obtained for L(δ1, 1

t−1) coloring with span λ∗ for square
and triangular grids [5, 18]. Bertossi et al. [6] proposed an algorithm for optimal
L(1t) coloring for the honeycomb grid. Shashanka et al. [18] posed L(δ1, 1

t−1)
coloring of honeycomb grid for δ1 > 1 as an open problem. We found lower and
upper bounds of δ1 for L(δ1, 1

t−1) coloring with span λ∗ of the honeycomb grid.
We also present color assignment algorithms to achieve the lower bound. The
obtained bounds are asymptotically tight.

This paper is arranged in the following way. In section 2, we have described
some related works. In section 3, we have presented the basic concepts and
notations. In section 4, we have provided the bounds of δ1 in L(δ1, 1

t−1) coloring
of the honeycomb grid. We have also given assignment algorithms to achieve the
lower bound in this section. Section 5 concludes the paper.

2 Related work

The L(1t) coloring has been widely studied by several authors [2, 3, 10, 15, 16] for
many special type of graphs. The intractability of optimal L(1t) coloring, for any
positive integer t, has been proved by McCormick [15] for arbitrary graphs. The
optimal L(1t) colorings for rings, square grids, and honeycomb grids have been
proposed in [6, 3] and in [1] for trees and interval graphs. The optimal L(δ1, 1

t−1)
colorings have been proposed in [5, 18] for rings, square grids, and cellular grids.
The optimal L(δ1, δ2) coloring on square and triangular grids have been proposed
[11]. Chang et al. [9] gave bounds for L(δ1, 1) coloring of chordal graphs and
trees. Griggs and Jin [12, 13] provided optimal L(δ1, 1) coloring for buses, rings,
wheels, trees, and regular grids where δ1 is a non-negative real number. The
optimal L(2, 1, 1) coloring for square grids [11] and triangular grids, honeycomb
grids, and rings [4, 5] have been proposed. The L(δ1, δ2, 1) coloring for squared
and eight-regular grids has been studied in [8]. The L(2, 1) coloring has been
investigated in [7, 19] for different graphs.

All these results stated above basically deal with finding minimum span for
the concerned coloring of different graphs. Our focus is, however, to find the
maximum separation between two colors assigned to two adjacent vertices in an

S.Nandi et al. Efficient channel assignment for cellular networks

185

L(δ1, 1
t−1) coloring of the honeycomb grid. Though the problem has been solved

for the triangular and square grids, it was open for the honeycomb grid [18].

3 Basic Concepts and Notations

The required span for L(δ1, 1
t−1) coloring will definitely be greater or equal to

the required span for L(1t) coloring. We now define the Distance-t clique of a
graph G in order to establish bounds on the required minimum span for L(1t)
coloring of G.

Definition 1. The Distance-t clique of a graph G = (V,E) is an induced sub-
graph G′ = (V ′, E′) where distance between every pair of vertices in V ′ is at
most t. A maximum Distance-k clique is the Distance-k clique where cardinality
of V ′ is maximum [17]. We denote a maximum Distance-t clique of a graph by
Dt.

The standard graph theoretic term, maximum clique, is a Distance-t clique
with t = 1. So, Distance-t clique of a graph G = (V,E) is a subgraph of G with
diameter t. Though finding Dt for general graph is a hard problem, it can be
found for the honeycomb grid [6]. As for example, D1 with 2 vertices, D3 with 6
vertices, D5 with 14 vertices, D0 with 1 vertex, D2 with 4 vertices and D4 with
10 vertices of the honeycomb grid are shown in Figs. 2 (a), (b), (c), (d), (e) and
(f) respectively.

(a) (c)(b) (d) (e) (f)

Fig. 2: (a) D1, (b) D3, (c) D5, (d) D0, (e) D2 and (f) D4.

The required span for any L(1t) coloring of G will be at least the cardinality
of Dt. Our objective is to find the maximum value of δ1 such that there exists an
L(δ1, 1

t−1) coloring of G using the set of colors from {0, 1, · · · , λ− 1}, where λ
is the cardinality of Dt. We denote δmax1 as the maximum value of δ1. Note that
δ1 represents the minimum frequency separation requirement between any two
adjacent vertices. In [6], the minimum λ for L(1t) coloring of Dt in honeycomb
grid was computed by considering 8 cases with t = 8p+q where 0 ≤ q ≤ 7. Based
on the results reported in [6], we can state the following result by considering
only 4 cases with t = 4p+ q where 0 ≤ q ≤ 3.

S.Nandi et al. Efficient channel assignment for cellular networks

186

Result 1 In honeycomb grid, the minimum λ for any L(1t) coloring of Dt can
be computed as:

λ ≥





6p2 + 6p+ 2, if t = 4p+ 1

6p2 + 12p+ 6, if t = 4p+ 3

6p2 + 3p+ 1, if t = 4p

6p2 + 9p+ 4, if t = 4p+ 2,

where p is a non negative integer.

4 L(δmax
1 , 1t−1) coloring of the honeycomb grid

4.1 Upper bound of δmax
1

Let us consider p = 1 and t = 4× 1 + 1 = 5. By putting these values in Result 1,
minimum λ is found to be 14. The subgraph D5 constituted by these 14 vertices
is shown in Fig. 2 (c). Observe that in D5 (Fig. 2 (c)) all the cycles are of even
length, i.e., it is a bipartite graph. We see that there are 7 disjoint edges. For
a bipartite graph like this each partition contains 7 nodes. We can select seven
nodes of one partition and assign colors 0 to 6 to them and for the remaining
seven nodes from the other partition, we can assign colors 7 to 13 as shown in
Fig. 3. The δmax1 obtained by this assignment is found to be 7. We now state a
bound on δmax1 in the following Lemma 1.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 3: A coloring of D5 where δmax1 = λ
2

.

a

b

i

j

o

left vertex

right vertex

Fig. 4: 18 nodes of label a which are neigh-
bors of 12 nodes of label b.

Lemma 1. For any L(δmax1 , 1t−1) coloring of Dt of a honeycomb grid, δmax1 ≤
λ
2 , where λ is the cardinality of Dt.

Proof. For λ number of nodes there can be at most λ
2 number of disjoint edges

in Dt. So we can form a maximum independent set of length at most λ
2 . And

our δmax1 therefore, can be at most λ
2 . Thus we can conclude that δmax1 ≤ λ

2 . We
can compute λ for Dt by applying Result 1. �

S.Nandi et al. Efficient channel assignment for cellular networks

187

Remark 1. The above result considers the assignment of colors to Dt only. How-
ever, as practical networks are very large, we have to repeat the assignment of
this subgraph in a regular fashion so as to cover the entire honeycomb grid. If we
want to repeat an assignment of Dt in a regular fashion with a view to covering
the entire grid, we will see that δmax1 = λ

2 may not be achievable. Consider the
assignment of D5 as shown in Fig. 3. It can easily be verified that with this
assignment, δmax1 = λ

2 = 7. Note that here we have considered the assignment
of D5 only but not considered the possibility of repeating this assignment to
cover the entire grid. We now consider two different assignments of D5 and their
repetition pattern to cover the entire grid. As for example one of them is shown
in Fig. 5 (a). With this repetition pattern, δmax1 6= 7, rather δmax1 = 2. The other
one is shown in Fig. 5 (b), where δmax1 = 4 is achieved. Our objective is to find
an assignment of the entire grid for which the value of δmax1 is maximized.

As far as the assignment of Dt is concerned, there are three types of vertices
with degrees 1, 2 and 3. Here the degree of a vertex is computed based on the
number of adjacent vertices which are already assigned within the subgraph.
If we consider the repetition of the assignment of this subgraph to cover the
entire grid, the degree of each vertex will eventually become 3. Moreover, the
assignment of Dt should be repeated to infinity in such a way that the colors
of the adjacent three vertices of a vertex with a particular color remain fixed
throughout the entire grid. Such assignment is possible which is given in Fig. 5
(b). As for example, the vertex of color 3 is having the vertices of colors 7, 8 and
10 as its adjacent everywhere. We now have the following result on δmax1 that
considers the assignment of the entire honeycomb grid.

Lemma 2. In L(δmax1 , 1t−1) coloring of honeycomb grid δmax1 ≤ λ
2 − 1, where

λ is the cardinality of Dt.

Proof. From Lemma 1, it follows that the maximum value for δmax1 without rep-
etition is λ

2 . So with repetition, δmax1 cannot exceed this value due to additional
constraints on the vertices of degree not equal to 3 which have now become
vertices of degree 3 each. Now consider the vertex colored as δmax1 − 1. Because
of the color separation δmax1 between two adjacent vertices, the neighbors of
the vertex colored with δmax1 − 1, must have a color larger than δmax1 − 1. So
its adjacent vertices are of colors with a difference of at least δmax1 which are
2δmax1 − 1, 2δmax1 and 2δmax1 + 1. But a vertex can have a color at most λ − 1.
So 2δmax1 + 1 ≤ λ− 1, i.e., δmax1 ≤ λ

2 − 1. �

Remark 2. The honeycomb grid is a bipartite graph. We label the vertices of
one partition as a and that of other partition as b. The basic idea behind the
result stated in Lemma 2 is that there are exactly 3 vertices of label a which
are adjacent to a vertex of label b. We observe that there are a minimum of 5
vertices of label a which are adjacent to two vertices of label b. This is because if
we choose any two vertices of label b there can be at most one common adjacent
(neighbor) vertex of those two b labeled vertices. With a view to generalizing
this idea, we required to find the minimum number of vertices of label a which
are adjacent to n vertices of label b. Consider l = 1+max {i | ∑i

j=1 j < n}.

S.Nandi et al. Efficient channel assignment for cellular networks

188

0

1

1

1

1

1

1

1

0

0

0

0

0

2

2

2

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

5

5

6

6

6

6

6

6

6

7

7

7

7

7

7

7

8

8

8

8

8

8

8

9

9

9

9

9

9

9

10

10

10

10

10

10

10

11

11

11

11

11

11

11

12

12

12

12

12

12

12

13

13

13

13

13

13

13

(b)

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

5

5

6

6

6

6

6

6

6

7

7

7

7

7

7

7

8

8

8

8

8

8

8

9

9

9

9

9

9

9

10

10

10

10

10

10

10

11

11

11

11

11

11

11

12

12

12

12

12

12

12

13

13

13

13

13

13

13

(a)

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

13

13

13

13

13

13

13

13

13

13

13

13

13

12

i

j

(c)

Fig. 5: (a) Coloring of D5 with repetition where δmax1 ≤ λ
2

is not achieved, (b) Infinite
repetition of D5 in a honeycomb grid where reuse distance is satisfied and (c) Coloring
of D5 with repetition where δmax1 = 4.

Observe that l depends on n and can be expressed as l = d
√
8n+1−1

2 e. We now
have the following result.

Lemma 3. The minimum number of neighbors of n nodes of label b in a hon-
eycomb grid is n+ l + 1, where no two b labeled vertices are adjacent.

Proof. Let us consider the honeycomb grid which is shown in Fig. 4. Consider l
consecutive columns in that graph. Assume that the number of b labeled vertices
in ith column is ki, 1 ≤ i ≤ l, where no two b labeled vertices are adjacent. So,∑l
i=1 ki = n. Note that each b labeled vertex has two neighbors within the same

column and one neighbor in the (i+ 1)th column. We denote the two neighbors
of a b labeled vertex within the same column as the same column neighbors and
the neighbor in the adjacent column ((i + 1)) as the adjacent column neighbor.
Observe that the number of same column neighbors of the b labeled vertices of
ith column is at least (ki + 1) and at most 2ki. The number of adjacent column
neighbors of the b labeled vertices of ith column is exactly ki. Note, however,
that the adjacent column neighbors of the b labeled vertices of ith column may
share some same column neighbors of the b labeled vertices of (i+ 1)th column.
Observe that the least number of same column neighbors of the b labeled vertices
of ith column is (ki + 1) when all the b labeled vertices are placed one after
another at two distance apart. So the total number of same column neighbors of
the b labeled vertices across all the l consecutive columns is

∑l
i=1(ki + 1). Note

S.Nandi et al. Efficient channel assignment for cellular networks

189

that the ki number of adjacent column neighbors of the b labeled vertices of ith
column may equal or less or greater than the ki+1 + 1 number of same column
neighbors of the b labeled vertices of (i+ 1)th column. Let Ni be the number of
adjacent column neighbors of the b labeled vertices of ith column. So the total
number of adjacent column neighbors of the b labeled vertices across all the l
consecutive columns is

∑l
i=1Ni, where

Ni =





ki, if i = l

ki − (ki+1 + 1), if ki > ki+1 + 1 and 1 ≤ i ≤ l − 1

0, if ki ≤ ki+1 + 1 and 1 ≤ i ≤ l − 1.

So, the total number of neighbors of b labeled vertices across all the l con-
secutive columns is

∑l
i=1(ki + 1) +

∑l
i=1Ni. If ki < ki+1 + 1, for all i, then the

value of kl becomes largest and if ki > ki+1 + 1, for all i, then the total number
of adjacent column neighbors will be increased. As our objective is to find the
minimum number of neighbors, the best possible situation is

ki =

{
1, if i = l

ki+1 + 1, if 1 ≤ i ≤ l − 1.

So, the minimum value of the above expression is
∑l
i=1(ki + 1) +

∑l
i=1Ni =

n + l + 1. We conclude that the minimum number of neighbors of n nodes of b
labeled vertices in a honeycomb grid is n+ l + 1. �

Example 1. Corresponding to Lemma 3, we are presenting one example for n =
12 in Fig. 4, where 12 can be expressed as 2 + 4 + 3 + 2 + 1. Here all the 12
nodes of label b are shown by dots and nodes of label a are circled which are the
neighbors of b labeled vertices. We see that minimum number of neighbors of 12
nodes of label b is 12 + 5 + 1 = 18.

Theorem 1. In L(δmax1 , 1t−1) coloring of honeycomb grid,

δmax1 ≤ λ
2 − d

√
8bλ4 c+1−1

2 e − 1, where λ is the cardinality of Dt.

Proof. We know that any consecutive δmax1 non negative integers will be forming
an independent set. Let us consider such an independent set S = {a1, a2, · · · ,
aδmax1

} such that all its elements are consecutive and in increasing order. As Dt is

a bipartite graph with cardinality λ and λ is even, we can label λ2 vertices of it by

a label say a and the remaining λ
2 vertices by an another label say b. Let us denote

the vertices colored by 0, 1, · · · , λ2 −1 as label a vertices and the vertices colored

by λ
2 ,

λ
2 +1, · · · , λ−1 as label b vertices. We can easily construct an independent

set S with δmax1 − 2 vertices of label a and 2 vertices of label b. Essentially S
contains the a labeled vertices colored by λ

2−(δmax1 −2), λ2−(δmax1 −3), · · · , λ2−1

and the b labeled vertices colored by λ
2 and λ

2 + 1. Now to form an independent
set any one of the δmax1 vertices of set S must not be adjacent to other vertex of
S. At minimum there can be 5 vertices which will be adjacent to these 2 vertices

S.Nandi et al. Efficient channel assignment for cellular networks

190

of label b. To form an independent set these 5 nodes should not be in the set
S. So to choose δmax1 − 2 vertices of label a in the set S we are left with λ

2 − 5

number of choices of a labeled vertices. Hence δmax1 −2 ≤ λ
2 −5 i.e. δmax1 ≤ λ

2 −3.

Similarly, we can construct an independent set S with δmax1 −bλ4 c vertices of

label a and bλ4 c vertices of label b. If we take the number of vertices of label b

more than bλ4 c, then we can think of switching the labels, i.e., all the a labeled
vertices will be changed to label b and all the b labeled vertices will be changed
to label a so that same case will again be happened. So bλ4 c is the threshold

value. Hence, by Lemma 3, the minimum number of neighbors of bλ4 c vertices

of label b is bλ4 c + d
√

8bλ4 c+1−1
2 e + 1. Therefore, to choose δmax1 − bλ4 c vertices

of label a in the set S we are left with λ
2 − [bλ4 c+ d

√
8bλ4 c+1−1

2 e+ 1] vertices of

label a. So δmax1 − bλ4 c ≤ λ
2 − [bλ4 c+ d

√
8bλ4 c+1−1

2 e+ 1]. Hence the result. �

4.2 Lower bound of δmax
1

As mentioned earlier, the honeycomb grid can be viewed as a 2-dimensional grid
where each vertex can be represented as (i, j) for some integers i and j. We call a
vertex (i, j) as a right vertex if its adjacent 3 vertices are (i, j+ 1), (i, j− 1) and
(i+ 1, j). Similarly a vertex (i, j) is called a left vertex if its adjacent 3 vertices
are (i, j + 1), (i, j − 1) and (i − 1, j). Note that a left vertex has a neighbor at
left side and a right vertex has a neighbor at right side. In Fig. 4, the vertices
marked by circle and dots are left and right vertices respectively. It is easy to
verify that all the left and right vertices are forming two separate independent
sets. So we can label all the left vertices by a and all the right vertices by b. Let
us consider the assignment of the first λ

2 colors 0, 1, · · · , λ2 − 1 to the b labeled

vertices and the rest λ
2 colors λ

2 ,
λ
2 + 1, · · · , λ − 1 to the a labeled vertices in

some fashion. We now describe an assignment scheme for L(δmax1 , 1t−1) coloring
of the honeycomb grid, where t is odd and p is any non negative integer.

L(δmax
1 , 1t−1) coloring of a honeycomb grid for odd t: We first deal with

the L(δmax1 , 1t−1) coloring algorithm for the case of t = 4p+ 1. As our objective
is to maximize the value of δmax1 , we assign the colors ranging from 0 to λ

2 − 1
to the right vertices of D4p+1 sequentially starting from the left most column,
top to bottom, towards the 2nd right most column. Similarly, the colors ranging
from λ

2 to λ − 1 are assigned to the left vertices of D4p+1 sequentially starting
from the 2nd left most column, top to bottom, towards the right most column.
Though there are (2p + 2) columns in D4p+1 only the first (2p + 1) columns
contain vertices of label b. In each column from left most to 2nd right most
there are (p+ 1), (p+ 2), · · · , 2p, (2p+ 1), 2p, · · · , (p+ 2), (p+ 1) number of b
labeled vertices respectively. So, the number of colors in column i is denoted by

S.Nandi et al. Efficient channel assignment for cellular networks

191

ti and can be defined by

ti =





p+ i, if 1 ≤ i ≤ p
2p+ 1, if i = (p+ 1)

3p+ 2− i, if (p+ 2) ≤ i ≤ (2p+ 1).

We see that (t1 + tp+2) = (t2 + tp+3) = · · · = (tp + t2p+1) = (3p + 1). An
example of execution of this algorithm to the subgraph D4p+1 is shown in Fig. 5
(c) for the case where p = 1. So far we have considered the color assignment of
the vertices of D4p+1 only. We now consider the repetition of these colors to cover
the entire grid. We use the following repetition pattern to extend the coloring of
D4p+1 to the entire grid: a color assigned to vertex (i, j) is repeated to exactly six
vertices (i+p+1, j+3p+1), (i+2p+1, j−1), (i+p, j−3p−2), (i−p−1, j−3p−1),
(i− 2p− 1, j+ 1) and (i− p, j+ 3p+ 2) forming a hexagon of radius t+ 1 (reuse
distance) centered around the vertex (i, j). In Fig. 5 (c), the repetition of color 3
has been explicitly shown by filled circle. The same repetition pattern holds for
each color assigned to the vertices of D4p+1. It is evident that this pattern can
be repeated infinitely and it satisfies the reuse distance. Using this pattern of
repetition, when the assignment of D4p+1 is repeated infinitely, we observe that

all
∑2p+1
i=1 ti colors are placed in each column. The sequence of colors used in

each column can be described as follows: The sequence is actually composed of
(2p+ 1) subsequences where kth subsequence starts with color fk and ends with
color fk + Tk − 1, where 1 ≤ k ≤ 2p+ 1. That means, there are Tk many colors
in the kth subsequence. Let us define Tk = t k+1

2
when k is odd and Tk = tp+ k+2

2

when k is even. We now define fk as follows: f1 = 0, f2 =
∑p+1
i=1 ti = 3p2+5p+2

2
and in general,

fk =





∑ k−3
2

i=0 T2i+1, if 2p+ 1 ≥ k > 2 and k is odd

fk = 3p2+5p+2
2 +

∑ k−2
2

i=1 T2i, if 2p+ 1 ≥ k > 2 and k is even.

Thus the sequence of colors used in each column is as follows: f1, f1 +
1, · · · , f1 + T1 − 1; f2, f2 + 1, · · · , f2 + T2 − 1; · · · ; fk, fk + 1, · · · , fk + Tk − 1;
· · · ; f2p+1, f2p+1 +1, · · · , f2p+1 +T2p+1−1. If color f1 is placed on (i, j), then on
that same ith column f1 is again placed at (i, j + 6p2 + 6p+ 2) and on (i+ 1)th
column f1 is placed at (i+ 1, j − (6p+ 3)). The same pattern holds for all other
colors. The coloring of D5 and its repetition to cover the entire grid has been
shown in Fig. 5 (c). In this case, there are 3 subsequences 0, 1; 5, 6; and 2, 3, 4.
So, the sequence of colors used in each column are 0, 1, 5, 6, 2, 3, 4.

So far we have considered the assignment of label b vertices only. We now
consider the assignment of a labeled vertices ranging from λ

2 to λ− 1. Let color

x ∈ [0, λ2 −1] has been assigned to vertex (i, j). Then color x+ λ
2 ∈ [λ2 , λ−1] will

be assigned to vertex (i+ 1, j). It can now be seen that the infinite honeycomb
grid will be filled up by λ colors ranging from 0 to λ− 1 where λ = 6p2 + 6p+ 2
and t = 4p+1. We observe that this assignment is a no-hole assignment meaning
every colors ranging from 0 to λ − 1 has been used. An example of execution

S.Nandi et al. Efficient channel assignment for cellular networks

192

of the algorithm to the entire grid for t = 4p + 1 is shown in Fig. 5 (c) for the
case where p = 1. Similarly the coloring scheme for the case of t = 4p + 3 can
be obtained, which we omitted here due to space restriction.

Theorem 2. For L(δmax1 , 1t−1) coloring of the honeycomb grid,

δmax1 ≥
{

3p2 + p, if t = 4p+ 1 (1)

3p2 + 3p+ 1, if t = 4p+ 3 (2)

where λ is the cardinality of Dt and p is a non-negative integer.

Proof. Consider Dt with odd t. Depending on the value of t there are 2 cases.
Case 1. t = 4p + 1: We observe that 1st b labeled vertex in D4p+1 from

the top of pth column is given by
∑p−1
i=1 ti = 3p2−3p

2 . The 1st and 2nd b labeled

vertices from the top of (p+ 1)th column are
∑p
i=1 ti = 3p2+p

2 and
∑p
i=1 ti+ 1 =

3p2+p+2
2 respectively. The 1st a labeled vertex from the top of (p+ 1)th column

is λ
2 + 3p2−3p

2 , which is adjacent to all three said b labeled vertices. The color gap
between the 2nd b labeled vertex of (p + 1)th column and 1st a labeled vertex
of (p+ 1)th column is minimum which is found to be:

δmax1 =
λ

2
+

3p2 − 3p

2
− 3p2 + p+ 2

2
= 3p2 + p.

Case 2. t = 4p+3: We observe that 1st b labeled vertex in D4p+3 of (p+2)th

column is
∑p+1
i=1 ti = 3p2+7p+4

2 . The 1st a labeled vertex of (p + 1)th column is
λ
2 +

∑p
i=1(p+ i) = λ

2 + 3p2+p
2 . The color gap between these two adjacent colors

is minimum which is found to be:

δmax1 =
λ

2
+

3p2 + p

2
− 3p2 + 7p+ 4

2
= 3p2 + 3p+ 1.

�

Observation 1 For any L(δmax1 , 1t−1) coloring of a honeycomb grid, the lower
bound of δmax1 obtained from Theorem 2 and the upper bound of δmax1 obtained
from Theorem 1 are asymptotically equal.

Proof. Observe that the bound of δmax1 obtained from Theorem 1 can be ex-
pressed as 3p2 + cp+ d where 1.268 ≤ c ≤ 4.268 and d is a constant. Hence the
result. �

L(δmax
1 , 1t−1) coloring of a honeycomb grid for even t: It follows from

Lemmas 2 and 6 of [6] that the L(δmax1 , 1t−1) coloring of Dt for any even t can
not be repeated to cover the entire grid using the colors from 0 to λ−1, where λ
is the cardinality of Dt. It is observed that Dt with even t can be considered as a
subgraph of Dt+1 where t+1 is odd. Note that difference between the cardinality
of Dt+1 and Dt is 3p + 1 when t = 4p and 3p + 2 when t = 4p + 2. Thus by

S.Nandi et al. Efficient channel assignment for cellular networks

193

putting these minimum number of extra colors, we can cover the entire grid for
the case of even t. So the lower and upper bounds of δmax1 is same as that of the
case of odd t. Hence we can conclude the following theorem.

Theorem 3. For L(δmax1 , 1t−1) coloring of the honeycomb grid,

δmax1 ≥
{

3p2 + p, if t = 4p (3)

3p2 + 3p+ 1, if t = 4p+ 2 (4)

where λ is the cardinality of Dt and p is a non-negative integer.

5 Conclusion

We have derived upper and lower bounds of δmax1 for any L(δmax1 , 1t−1) coloring
with span λ∗ of honeycomb grid, where λ∗ is the minimum span required for
any L(1t) coloring. We have shown that the bounds are asymptotically tight.
We have also given assignment algorithms for finding the lower bounds of δmax1 .

References

1. G. Agnarsson, R. Greenlaw, and M. Halldorson. On powers of chordal graphs and
their colorings. Congressus Numerantium, 144:41–65, 2000.

2. R. Battiti, A. Bertossi, and M. Bonuccelli. Assigning codes in wireless networks:
Bounds and scaling properties. Wireless Networks, 5:195–209, 1999.

3. A. Bertossi and M. Pinotti. Mappings for conflict-free access of paths in bidimen-
sional arrays, circular lists, and complete trees. Journal of Parallel and Distributed
Computing, 62:1314–1333, 2002.

4. A. Bertossi, M. Pinotti, and R. Tan. Efficient use of radio spectrum in wireless
networks with channel separation between close stations. DIAL M for Mobility:
Intl ACM Workshop on Discrete Algorithms and Methods for Mobile Computing,
Boston, 2000.

5. A. Bertossi, M. Pinotti, and R. Tan. Channel assignment with separation for
interference avoidance in wireless networks. IEEE Transactions on Parallel and
Distributed Systems, 14:222–235, 2003.

6. A. A. Bertossi, C. M. Pinotti, R. Rizzi, and A. M. Shende. Channel assignment
for interference avoidance in honeycomb wireless networks. Journal of Parallel and
Distributed Computing, 64:1329–1344, 2004.

7. T. Calamoneri. The l(h, k)-labelling problem: An updated survey and annotated
bibliography. Comput. J., 54(8):1344–1371, 2011.

8. T. Calamoneri. Optimal l(δ1, δ2, 1)-labeling of eight-regular grids. Information
Processing Letters, 113:361–364, 2013.

9. G. J. Chang, W. T. Ke, D. Kuo, and R. K. Yeh. l(d, 1)-labeling of graphs. Discrete
Math., 220:57–66, 2000.

10. I. Chlamtac and S. Pinter. Distributed nodes organizations algorithm for channel
access in a multihop dynamic radio network. IEEE Transactions on Computers,
36:728–737, 1987.

11. J. V. den Heuvel, R. A. Leese, and M. Shepherd. Graph labelling and radio channel
assignment. Journal of Graph Theory, 29:263–283, 1998.

S.Nandi et al. Efficient channel assignment for cellular networks

194

12. J. R. Griggs and X. T. Jin. Optimal channel assignments for lattices with condi-
tions at distance two. 5th IEEE International Parallel and Distributed Processing
Symposium, extended abstruct, 2005.

13. J. R. Griggs and X. T. Jin. Real number graph labellings with distance conditions.
SIAM J. Discrete Math., 20:302–327, 2006.

14. J. R. Griggs and R. K. Yeh. Labelling graphs with a condition at distance 2. SIAM
J. Discrete Math., 5:586–595, 1992.

15. S. McCormick. Optimal approximation of sparse hessians and its equivalence to a
graph coloring problem. Mathematical Programming, 26:153171, 1983.

16. A. Sen, T. Roxborough, and S. Medidi. Upper and lower bounds of a class of
channel assignment problems in cellular networks. Proc. of the INFOCOM, 3:1284–
1291, 1998.

17. A. Sen, T. Roxborough, and B. P. Sinha. On an optimal algorithm for channel
assignment in cellular network. Proc. of IEEE ICC, pages 1147–1151, 1999.

18. M. V. S. Shashanka, A. Pati, and A. M. Shende. A characterisation of optimal
channel assignments for cellular and square grid wireless networks. Mobile Networks
and Applications, 10:89–98, 2005.

19. R. Yeh. A survey on labeling graphs with a condition at distance two. Discrete
Mathematics, 306(12):1217–1231, 2006.

S.Nandi et al. Efficient channel assignment for cellular networks

195

196

Programmable enforcement framework of
information flow policies

Minh Ngo and Fabio Massacci

University of Trento, Italy
{surname}@disi.unitn.it

Abstract. We propose a programmable framework that can be eas-
ily instantiated to enforce a large variety of information flow proper-
ties. Our framework is based on the idea of secure multi-execution in
which multiple instances of the controlled program are executed in par-
allel. The information flow property of choice can be obtained by sim-
ply implementing programs that control parallel executions. We present
the architecture of the enforcement mechanism and its instantiations
for non-interference (NI) (from Devriese and Piessens), non-deducibility
(ND) (from Sutherland) and some properties proposed by Mantel, such
as removal of inputs (RI) and deletion of inputs (DI), and demonstrate
formally soundness and precision of enforcement for these properties.

Keywords: Non-Interference, Non-Deducibility, Possibilistic Informa-
tion Flow Properties, Programming Language, Secure Multi Execution

1 Introduction

Computing systems often process data classified as sensitive, or, secret. To ensure
security, treatment of these data has to comply with designated information flow
policies that regulate whether the publicly visible behavior of a system can be
influenced by secret data.

Non-interference (NI) [7] totally prevents leakage of secrets to public channels
by requiring that the confidential information does not interfere with all events at
the public levels. With or without the confidential information, observations at
the public levels are still the same. By weakening or strengthening the definition
of NI, security researchers have proposed different information flow properties.
For example, declassification policies accept the behaviors in which some selected
secret data can be released [14]. Sutherland defines [15] non-deducibility (ND), a
stronger property than NI [6]. It assumes that an attacker knows the design of the
observed program, and has partial access to the public program interfaces, and
tries to infer the occurrence and non-occurrence of sequences of high input events.
ND prevents the attacker from deducing which confidential event sequences have
occurred or not.

Existing mechanisms for information flow policies enforcement and secure
information release are based on several techniques: e.g., type systems [13], sym-
bolic execution [2], multi-execution [5, 11], faceted values [1], etc. Yet these all

197

Table 1. EMs for the selected information flow policies

Policy
Components

MAP REDUCE TM/TR

Termination (in)sensitive non-interference [5] Fig. 3a Fig. 3b Fig. 3

Termination (in)sensitive non-deducibility [15] Fig. 3a Fig. 3b Fig. 7

Removal of inputs [9] Fig. 8a Fig. 3b Fig. 8

Deletion of inputs [9] Fig. 9a Fig. 3b Fig. 9

I0 π[0] O0

Ii π[i] Oi

ITOP π[TOP] OTOP

REDUCEMAP

Input Queue Output Queue

Local Executions

Local Input Queue Local Output Queue
TRTM

Fig. 1. Architecture of enforcement mechanisms

fall short in the same aspect: these approaches work only for a single informa-
tion flow policy, typically NI or NI equipped with declassification. Modification
of these mechanisms to enforce another information flow policy (for example,
ND) is not straight-forward. Moreover, no run-time enforcement mechanism is
proposed for ND.

1.1 The contribution of this paper

We propose a programmable enforcement mechanism (EM) that can be easily
configured to enforce NI, ND and other information flow policies. Configurations
of the EMs are summarized in Tab. 1. Our proposal is the first run-time EM that
covers ND. SME by Devriese and Piessens [5] is a special case. Our EM relies on
the secure multi-execution technique (SME) [5] in which multiple instances of the
controlled program are executed in parallel and their input and output behaviors
are controlled. To this construction we add two programmable components that
map each input to the multiple instances and reduce output of the instances
to a single output. We demonstrate soundness and precision of the proposed
mechanisms using the operational semantics.

The rest of the paper is organized as follows. §2 gives an overview of the
idea behind our approach and the architecture of the enforcement framework.
Selected information flow policies and implementations of their EMs are intro-
duced respectively in §3 and §4. Semantics of controlled programs and framework
is introduced in §5. The soundness and precision of the EMs constructed are pre-
sented in §6. We discuss related work and conclude in §7.

M.Ngo et al. Programmable enforcement framework of information flow policies

198

2 Overview

π ::= program instructions :

|x := e assignment

|π;π sequence

|if e then π else π if

|while e do π while

|skip skip

|input x from c input

|output e to c output

(a) Basic instructions

πM ::=π instructions :

|map(e, c, PRED[]) map

|wake(PRED[]) wake

|clone(PRED[], PRIVTM
, PRIVTR

) clone

(b) MAP instructions

πR ::=π instructions :

|retrieve x from (i, c) retrieve

|wake(PRED[]) wake

|clean(c, PRED[]) clean

(c) REDUCE instructions

π, e, x, and c are meta-variables for respectively in-
structions, expressions, variables, and input/output
channels. A (controlled, MAP, or REDUCE) program
is a sequence of instructions.

Fig. 2. Language instructions

Fig. 1 depicts the general archi-
tecture of the EM for an informa-
tion flow property on a program
π. It is composed by the MAP
and REDUCE components, a stack
EX of local executions (π[0], . . . ,
π[TOP], where TOP is the index
of the top of the stack), global in-
put and output queues, and the ta-
bles TM and TR. Instructions used
to compose controlled programs,
MAP, and REDUCE programs are
in respectively Fig. 2a, Fig. 2b, and
Fig. 2c.

Local executions are instances
of the original program, are exe-
cuted in parallel and are unaware
of each other. They are separated
from the environment input and
output actions by the EM. The lo-
cal input (resp. output) queue of a
local execution contains the input
(resp. output) items that can be
freely consumed (resp. generated)
by this local execution. MAP and
REDUCE are responsible for respectively the global input queue containing the
input items from the external environment, and the global output queue con-
taining the output items filtered by the EM to the environment. When a local
execution needs an input item that is not yet ready in its local input queue it will
request the help of MAP by emitting an interrupt signal. When a local execution
generates an output item it emits a signal to request the help of REDUCE.

MAP and REDUCE can autonomously send and, respectively, collect items
from local queues. The actions of MAP (resp. REDUCE) on an input (resp. out-
put) request from a local execution depend on the configuration information
in the table TM (resp. TR). This configuration is based on two privileges: ask
(a) and tell (t). These components of the EM are customized depending on the
desired information flow policy.

All local executions with the tell privilege on the input channel c can get
the real value from the channel c when MAP broadcasts the input item to local
executions, otherwise they will get a default value. If a local execution has the tell
privilege on the output channel c, REDUCE can tell its value to the environment.
Otherwise, REDUCE will just replace it with a default value.

If a local execution has the ask privilege on the input channel c, then MAP
can fetch the input item from the environment upon receiving a signal from a

M.Ngo et al. Programmable enforcement framework of information flow policies

199

local execution. A local execution with the ask privilege on the output channel
c can ask REDUCE to start processing outputs from the local executions.

An execution with only the ask but not the tell privilege in TR will activate
REDUCE to retrieve output items, but REDUCE will not put the value in the
external output (i.e. will not tell it to anyone). The execution will have to wait
for somebody else with the tell privilege on the channel to produce an output.

3 Information flow policies

In this section we briefly present some policies.

Non-Interference. Let (π, I) ⇓ O denote a terminating execution of π that con-
sumes input sequence I and generates output sequence O. Given a security level
l (where l is in {L,H}), I|l (resp. O|l) returns the projection of the sequence
I (resp. O) containing only items at level l. For NI, for two arbitrary input se-
quences I and I ′ that are low-equivalent (I ′|L = I|L), the generated outputs O
and O′ are also low-equivalent (O′|L = O|L). NI comes in termination-sensitive
(TSNI) or termination-insensitive (TINI) flavors.

Definition 1 (TINI). A program π is TINI iff

∀I, I ′ : I ′|L = I|L ∧ (π, I) ⇓ O ∧ (π, I ′) ⇓ O′ =⇒ O′|L = O|L
The formal definition of TSNI can be derived from TINI by moving (π, I ′) ⇓

O′ after the implication.

Non-Deducibility. Sutherland defines ND by using two views: the first view cor-
responds to secret events, and the second view corresponds to observations of
attackers at the low level [15]. There are no flows from from the former to the
latter if the two views can always be combined. In this way an attacker can-
not know whether a particular high input took place, because it can be always
replaced by another valid input and still yield a valid execution.

Termination-insensitive ND (TIND) is defined in Def. 2. TIND requires that
for any two inputs I and I∗, such that the program terminates with these in-
puts, there exists another input I∗∗, which is low-equivalent with I (I|L = I∗∗|L),
high-equivalent to I∗ (I∗|H = I∗∗|H), and if the program terminates with I∗∗,
the generated output visible to attackers at the low level (L) is not changed.
Termination-sensitive ND (TSND) assumes that attackers can observe termi-
nations of executions and the existence of the default view where we replaced
input values with default values. If the default values could not be accepted by
an execution then it would be possible to deduce that the high information is
actually different from the default value.

Definition 2 ((Input-Output) TIND). A program π is TIND iff

∀I, I∗ : (π, I) ⇓ O ∧ (π, I∗) ⇓ O∗ =⇒ (∃I∗∗ : I|L = I∗∗|L ∧ I∗|H = I∗∗|H ∧
∧ ((π, I∗∗) ⇓ O∗∗ =⇒ O|L = O∗∗|L))

M.Ngo et al. Programmable enforcement framework of information flow policies

200

The formal definition of TSND can be derived from TIND by requiring that
(π, I∗∗) ⇓ O∗∗ holds and the execution where all input values have been replaced
by default values is always present and terminates.

Removal of Inputs. RI [9] requires that if a possible trace is perturbed by remov-
ing all high input items, then the result can be corrected into a possible trace. In
our notation, an input (resp output) is a queue of input (resp. output) vectors

(see §5). If all high input items in an input I are replaced by default items (~df)
or removed, the input can be modified to an input I ′ such that the program
terminates when executing on I ′ and the generated output will be equivalent at
the low level with the original output. I|c returns an input I ′ whose items are
in I and from channel c.

Definition 3 (RI). A program π satisfies RI iff

∀I, ∀ values of valdef : (π, I) ⇓ O =⇒ ∃I ′ :I ′|L = I|L ∧ ∀c, ‖ I ′|c ‖≤‖ I|c ‖ ∧
∧ I ′|H = (~df)∗ ∧
∧ (π, I ′) ⇓ O′ ∧O′|L = O|L

where ~df contains the default value, and ‖ Q ‖ returns the length of Q.

Deletion of Inputs. DI [9] requires that if we perturb a possible trace t = β.e.α
(there is no high input event in α) by deleting the high input event e, the result
can be corrected into a possible trace t′ (t′ = β′.α′). Parts β and β′ and α
and α′ are equivalent on the low input events and the high input events; α
and α′ are also equivalent on low output events. In our notation, if we have an
input I = I1.~v.I2, where ~v contains a value from a high channel (~v[c] 6= ⊥ and
LV L[c] = H) and in I2 there are either no high items or only high items with

default values (I2|H = (~df)∗), then this input can be changed by replacing ~v by

a default vector (~df). The obtained input can be sanitized by removing existing
default high input items in I2 or adding other default high input items to I2.
The sanitized queue is consumed completely by the program and the output is
still low-equivalent to the original output generated with input I (O′|L = O|L).

Definition 4 (DI). A program π satisfies DI iff

∀I, ∀ values of valdef : I = I1.~v.I2 ∧ LV L[c] = H ∧ I2|H = (~df)∗ ∧ (π, I) ⇓ O
=⇒ ∃I ′ : I ′ = I1.I

′
2 ∧ I ′|L = I|L ∧ I ′2|H = (~df)∗ ∧ (π, I ′) ⇓ O′ ∧O′|L = O|L

where ~v[c] 6= ⊥ and ~df contains a default value.

4 Implementing the policies

M.Ngo et al. Programmable enforcement framework of information flow policies

201

1: if a ∈ TM [i][c] then
2: input x from c
3: map(x, c, canTell(c))
4: map(valdef , c,¬canTell(c))
5: wake(isReady(c))
6: else
7: if t 6∈ TM [i][c] then
8: map(valdef , c, identical(i))
9: wake(identical(i))
10: else
11: skip

(a) MAP for an input from c from π[i]

1: x := valdef
2: if a ∈ TR[i][c] then
3: retrieve x from (i, c)
4: if t ∈ TR[i][c] then
5: output x to c
6: clean(c, identical(i))
7: wake(identical(i))

(b) REDUCE for an output to c from π[i]

TM π[0] π[1]
LV L[c] = H at −
LV L[c] = L t at

TR π[0] π[1]
LV L[c] = H at −
LV L[c] = L − at

Fig. 3. Implementation of NI

Non-Interference. Implementation of NI is in Fig. 3. The EM of NI on a pro-
gram π needs only two local executions: the high execution (π[0]) and the low
execution (π[1]). When the low execution needs a high input item, MAP sends a
fake value to it. Thus, the execution of the low is independent from high input
items consumed by the EM. In addition, only the low execution can send output
items to low output channels. Put differently, high input items do not influence
consumed low inputs and generated low outputs.

When MAP is activated on signal c from π[i] having the ask privilege on c,
MAP performs an input action, sends the real value to all local copies having the
tell privilege on c, and sends a fake value to others. When MAP is activated on a
signal c from π[i] that has no privilege on c, MAP sends a fake value to π[i] and
wakes it up. Function canTell(c) , λx.t ∈ TM [x][c] indicates whether a local
copy π[x] has the tell privilege on c. A local copy is ready to be waken up if it has
received the required input item, isReady(c) , λx.EX[x].stt = S∧EX[x].prg =
input y from c;π ∧ EX[x].in = I ∧ dequeue(I, c) = (val, I ′) ∧ val 6= ⊥, where
dequeue(I, c) = (val, I ′) means there is an item from c in I. Function identical()
is defined as identical(i) , λx.x = i.

When REDUCE is activated on a signal c from π[i], it checks whether π[i] has
the ask privilege on c (a ∈ TR[i][c]). If so, REDUCE gets the output value from
the local output queue of π[i]. Otherwise a fake output value is used. REDUCE
only sends an output value to c if π[i] has the tell privilege on c (t ∈ TR[i][c]).
After that, the output queue of π[i] is cleaned and π[i] is waken.

In [10] we give a full proof that SME as identified by [5] is captured by our
mechanism. In [5] soundness and precision are proved w.r.t a specific scheduler,
our proof works for any scheduler respecting the configuration.

We illustrate the execution of the EM on a sample program presented in
Fig. 4. The execution of this program requires confidential information about
salary and bonus (at lines 2 and 5). This program does not satisfy NI since the
desired salary can be sent to public channels (evil.com at line 7).

The execution of local executions of the EM is described in Fig. 5 with the
input sequence (cL1 = T) (cH1 = M)(cH2 = m) which means that the position
chosen by the applicant is “CEO”, his desired salary is M , and the bonus is m.
The high and the low copies execute instructions from line 1 to 7. The value

M.Ngo et al. Programmable enforcement framework of information flow policies

202

1 input l1 from cL1 //Get the position selected by the applicant.
2 input h1 from cH1 //Get the desired salary entered by the applicant.
3 h2 = 0
4 if l1 then //If the selected position is CEO,
5 input h2 from cH2 //Get the bonus from https://goodCompany/getBonus.
6 output h1 + h2 to cH3 //Show the income to users.
7 output h1 + h2 to cL2 //Send the income to http://evil.com/.

The script gets the desired position chosen by a prospective applicant from a public channel; and
retrieves the desired annual salary from a confidential channel. If the chosen position is CEO, the
script fetches also the annual bonus from goodCompany/getBonus, a confidential channel. Then, it
shows the desired salary and the bonus to the applicant via cH2, and sends everything to evil.com.

Fig. 4. Running Example Program

1 input l1 from cL1 //Use T asked by π[1].
2 input h1 from cH1 //Get M from cH1.
3 h2 = 0;
4 if l1 then
5 input h2 from cH2 //Get m from cH2.
6 output h1 + h2 to cH3 //Send M +m to cH3.
7 output h1 + h2 to cL2 //The output is ignored.

(a) The high execution π[0]

1 input l1 from cL1 //Get T from cL1.
2 input h1 from cH1 //The default value is used.
3 h2 = 0;
4 if l1 then
5 input h2 from cH2 //The default value is used.
6 output h1 + h2 to cH3//The output is ignored.
7 output h1+h2 to cL2 //Send ∗ to cL3.

(b) The low execution π[1]

Fig. 5. Executions of local copies for NI

Input to MAP:
0 1 2

cL1 T ⊥ ⊥
cH1 ⊥ M ⊥
cH2 ⊥ ⊥ m

Output by REDUCE:
0 1 2 3 4

cH3 ⊥ ⊥ ⊥ M+m ⊥
cL2 ⊥ ⊥ ⊥ ⊥ ∗

Local Executions:
High execution π[0]:
Local input: Local output:
cL1 T ⊥ ⊥
cH1 ⊥ M ⊥
cH2 ⊥ ⊥ m

cH3 ⊥ ⊥ ⊥ M+m ⊥
cL2 ⊥ ⊥ ⊥ ⊥ •

Low execution π[1]:
Local input: Local output:
cL1 T ⊥ ⊥
cH1 ⊥ ∗ ⊥
cH2 ⊥ ⊥ ∗

cH3 ⊥ ⊥ ⊥ • ⊥
cL2 ⊥ ⊥ ⊥ ⊥ ∗

• is an output value that is ignored. ∗ is a default
value or is calculated based on default values.

Fig. 6. Input and output queues for NI

generated by the output instruction of the high copy (resp. the low copy) at line
7 (resp. line 6) is ignored. To facilitate the presentation we present the contents
of the global and local input and output queues in Fig. 6. The global input queue
is consumed completely by the execution of the EM. The values sent to cH3 and
cL2 are respectively M + m and ∗, where ∗ denotes values calculated based
on default values. Each column in the table corresponds to an input/output
operation. Input and output tables should be read from left to right; columns
describe the input/output to each channel at time t = 0, t = 1, etc.

TM π[0] π[1] π[2]
LV L[c] = H t at −
LV L[c] = L t − at

TR π[0] π[1] π[2]
LV L[c] = H at − −
LV L[c] = L − − at

Fig. 7. Impl. of ND

Non-Deducibility. The configuration of the mechanism
of ND requires three local copies. The low execution
(π[2]) can consume only low input items and generate
low output item. The high execution (π[0]) can consume
real values from all channels and can send high output
items to the environment. The purpose of the shadow
execution (π[1]) is to make sure that low inputs do not
determine high inputs. Indeed the shadow execution is

M.Ngo et al. Programmable enforcement framework of information flow policies

203

the only one that can ask for high inputs but only receives dummy low inputs.
We used the word shadow as its output are ignored (only legitimate high output
from the high is going to see the light). In other words, the low inputs and the
high inputs consumed by the EM are independent from each other.

The programs of MAP and REDUCE are the same as the ones of NI. Privileges
of the low execution are the same as those of the low execution of NI. The only
difference is that the high execution can be told but cannot ask input values and
can output its values to high output channels. The shadow execution is the only
one that can ask for high input items. Fig. 7 shows configuration of TM and TR.
Our EM is slightly stronger as it will generate the correct low output even if the
high execution might not terminate.

1: if a ∈ TM [i][c] then
2: input x from c
3: map(x, c, canTell(c))
4: map(valdef , c,¬canTell(c))
5: wake(isReady(c))
6: else
7: skip

(a) MAP for an input from c from π[i]

TM π[0] π[1]
LV L[c] = H at a
LV L[c] = L t at

Fig. 8. Implementation of RI

Removal of Inputs. The configuration of RI
is in Fig. 8. The EM of RI is similar to the
one of NI except the way of handling signals
on high input channels from the low execution
(π[1]). To ensure the existence of I ′ as in the
definition, MAP is allowed to ask high input
items for the low execution. To ensure that the
behaviors visible to attackers do not change,
the low execution receives only default high
input items and only it can send outputs to
low output channels.

The configuration table TM is similar to the one of NI except that the low
execution has the ask privilege on high input channels. The MAP program is
also similar to the one of RI except the cases of handling signals from the low
execution on high input channels. In these cases, MAP performs an input action,
sends the read value to the high, and send a default value to the low. Functions
canTell(c), isReady(c) and identical(i) are as in the ones in NI.

1: if LV L[c] == H and i == 0 then
2: clone(identical(i), PRIVTM

, PRIVTR
)

3: if a ∈ TM [i][c] then
4: if t ∈ TM [i][c] then
5: input x from c
6: map(x, c, canTell(c))
7: map(valdef , c,¬canTell(c))
8: wake(isReady(c))
9: else
10: map(valdef , c, identical(i))
11: wake(identical(i))
12: else
13: skip

(a) MAP for DI for an input from c from π[i]

TM π[0] π[1] π[i]>1
LV L[c]=H at − −
LV L[c]=L t at t

TR π[0] π[1] π[i]>1
LV L[c]=H at − −
LV L[c]=L − at −

Fig. 9. Implementation of DI

Deletion of Inputs. DI is en-
forced with the idea that
whenever the high execution
(π[0]) requests a high input
item, this execution will be
cloned. The clones have to
reuse low input items asked
by the low execution (π[1]),
will not receive real values
from high channels and can-
not send output to the envi-
ronment. As in NI, the low
execution can only receive
fake high input values.

Implementation of EM
of DI is presented in Fig. 9.

M.Ngo et al. Programmable enforcement framework of information flow policies

204

INP
π = input x from c I = ~v.I

′
~v[c] 6= ⊥

∆, prg:π,mem:m, in:I
_ ∆, prg:skip,mem:m[x 7→ ~v[c]], in:I′

OUTP
π = output e to c ~v = ~⊥[c 7→ m(e)]

∆, prg:π, out:O
_ ∆, prg:skip, out:O.~v

Fig. 10. Semantics of input and output instructions of programs

The program of REDUCE is identical to the one in NI. The EM of DI requires
more than two local executions. Only the high execution π[0] can ask for and get
the high input items, other local executions will use default values. Each time
the high execution asks a high input item, it is cloned. In Fig. 9 the configura-
tion of the clones for input and output is presented in respectively TM and TR
in the columns with title π[i] > 1; These columns are the privilege templates for
PRIVTM

and PRIVTR
in clone instruction in Fig. 9a. As in NI, only the low

execution π[1] can ask for low input items and generate low output items; other
local executions will reuse the low input items retrieved by the low execution.
Functions canTell(c), isReady(c) and identical(i) are as in the ones in NI.

5 Semantics

Semantics of controlled programs. Our model language is close to the one used
in the SME paper [5]. Valid values in this language are boolean values (T and
F) or non-negative integers. A program π is an instruction described in Fig. 2a
where π, e, x, and c are meta-variables for respectively instructions, expres-
sions, variables, and input/output channels. Since a program is just a sequence
of instructions (i.e. a complex instruction itself), we will use program and in-
struction interchangeably when referring to complex instructions. We model an
input (output) item as a vector ~v and define input (output) of program instances
as queues I, O so that ~v.I (resp. ~v.O) adds the element ~v to the queue. We use
vectors of channel to accommodate forms in which multiple fields are submitted
simultaneously but are classified differently (e.g. credit card numbers vs. user
names). Given a vector ~v and a channel c, the value of the channel is denoted by
~v[c]. To simplify the formal presentation, in the sequel w.l.o.g. we assume that
each input and output operation only affect one channel at a time. Thus, for
each vector, there is only one channel c such that ~v[c] 6= ⊥.

To define an execution configuration, we use a set of labelled pairs. A labelled
pair is composed by a label and an object and in the form label:object. The label
is attached to the object in order to differentiate this object from others, so
each label occurs only once. An (execution) configuration of a program is a set
{prg:π,mem:m, in:I, out:O}, where π is the program to be executed, m is the
memory (a function mapping variables to values), I (resp. O) is the queue of
input (resp. output) vectors. The operational semantics of the input and output
instructions of the model language is the natural one. Fig. 10 illustrates some
examples. See also [5] for similar one and [10] for detail. The conclusion part of
each semantic rule is written as ∆,Γ ⇒ ∆,Γ ′, where ∆ denotes the elements of

M.Ngo et al. Programmable enforcement framework of information flow policies

205

the execution configuration that are unchanged upon the transition. We abuse
the notation m(.) and use it to evaluate expressions to values. When an output

command sends a value to the channel c, an output vector ~v = ~⊥[c 7→ val] is
inserted into the output queue, where ~v is the vector with all undefined channels,
except c that is mapped to m(e), so ~v[c′] = ⊥ for all c′ 6= c and ~v[c] = m(e).

Semantics of the Enforcement Mechanism. A configuration of an EM is a set
{tm:TM , tr:TR, top:TOP,map.prg:πM ,map.mem:mM , red.prg:πR, red.mem:mR, in:
I, out:O,

⋃
i LECSi}, where TM and TR are configuration tables for respectively

MAP and REDUCE, TOP is the index of the top of the stack of configurations
of local executions EX, πM and mM (resp. πR and mR) are the program to be
executed and the memory of MAP (resp. REDUCE), I and O are respectively the
input and output queues of the EM, and LECSi is the configuration of the i-th
local execution.

For the initial configuration, all local input and output queues will be empty,
all local executions will be in the executing state, and skip is the only instruction
in MAP and REDUCE programs. The EM terminates when all local executions,
MAP and REDUCE programs terminate, and the global input queue is consumed
completely.

The semantics of EM is the interleaving of concurrent atomic instructions
of the various programs so each transition rule either by a local execution, by
MAP, or by REDUCE is a step of the EM as a whole.

Local Executions. Each local execution is identified by a unique identifier i,
which is its number on stack EX. A local copy can be in one of two states: E
(Executing) or S (Sleeping). A local copy moves from E to S when it needs an
input item that is not available in its local queue or when it generates an output
item. A local copy moves from S to E when the required input item is ready or
its output item is consumed.

A configuration of i-th local copy is LECSi , {EX[i].stt : st, EX[i].int :
s, EX[i].prg :π,EX[i].mem :m,EX[i].in :I, EX[i].out :O}, where st is its state,
s is a signal, π, m, I, and O are as in configuration of controlled programs, EX
is the global stack of local execution. The initial configuration of i-th local copy
is {EX[i].stt:E, EX[i].int:⊥, EX[i].prg:π,EX[i].mem:m0, EX[i].in:ε, EX[i].out:ε}.
A local copy terminates if there is only a skip instruction to be executed.

The semantics of assignment, composition, if, while, skip instructions is es-
sentially identical to the one of the controlled programs. The only difference is
the explicit condition that the local state must be E. When the input instruction
of π[i] is executed and the required input item is not in the local input queue
(dequeue(I, c) = (⊥, I ′)), π[i] emits a signal c and moves to a sleep state (rule
LINP2 in Fig. 11). Otherwise, the first available item will be consumed. A signal
c is generated when the output instruction is executed (rule LOUTP in Fig. 11).

MAP. In addition to the instructions in Fig. 2a (except the output instruction),
the program πM is also composed by instructions in Fig. 2b, where PRED[] ,

M.Ngo et al. Programmable enforcement framework of information flow policies

206

LINP2
EX[i].stt = E EX[i].prg:π = input x from c dequeue(I, c) = (⊥, I′)

∆,EX[i].stt:E, EX[i].int:⊥ ⇒ ∆,EX[i].stt:S, EX[i].int:c

LOUTP
EX[i].stt = E π = output e to c EX[i].mem = m ~v = ~⊥[c 7→ m(e)]

∆,EX[i].stt:E, EX[i].int:⊥, EX[i].prg:π,EX[i].out:O
⇒ ∆,EX[i].stt:S, EX[i].int:c, EX[i].prg:skip, EX[i].out:O.~v

Fig. 11. Semantics of input and output instructions of controlled π[i]

MAP

πM = map(e, c, PRED[]) m = map.mem S = {i ∈ {0, . . . , TOP} : PRED[i]}
LECS =

⋃

i∈S

{EX[i].in:I} ~v = ~⊥[c 7→ m(e)] LECS′
=

⋃

i∈S

{EX[i].in:I.~v}

∆,map.prg:πM , LECS⇒ ∆,map.prg:skip, LECS′

RETR
πR = retrieve x from (i, c) EX[i].out = O dequeue(O, c) = (val, O

′
) val 6= ⊥

∆, red.prg:πR, red.mem:m⇒ ∆, red.prg:skip, red.mem:m[x 7→ val]

Fig. 12. Semantics of map and retrieve instructions of MAP and REDUCE

λx.Pred(x) is a meta-variable for predicates. The evaluation of the predicate
PRED[] on π[i] is denoted as PRED[i].

The execution of map, wake, or clone instruction is applied simultaneously
to all local executions π[i] such that PRED[i] is true. For map, the value of
expression e (which is considered from c) is sent to the input queues of all
π[i]. The semantics of map instruction is described in Fig. 12. For wake, all
local executions π[i] are awaken and interrupt signals in their configurations are
removed. For clone, the configuration of each π[i] is cloned. The list PRIVTM

(resp. PRIVTR
) is an input (resp. output) privilege template for clones which

varies depending on the enforced property. We give an example of such templates
in §4, where the enforced property requires cloning.

The initial configuration of MAP is {map.prg:πM ,map.mem:m0}. The execu-
tion of MAP terminates if skip is the only instruction in the MAP program. MAP
is activated when the previous execution of MAP has terminated, and there is a
local execution asking for help for an input item.

REDUCE. Except the input instruction, in addition to the instructions in Fig. 2a,
the program of REDUCE may contain instructions in Fig. 2c. The execution of
retrieve instruction reads the value from the output queue of π[i] and stores it
into x. The execution of clean instruction is applied to all π[i] such that PRED[i]
is true. This instruction removes the first output item to c from O of π[i]. The
execution of the wake instruction is similar to the one of MAP. Configuration,
activation and termination of REDUCE are similar to the ones of MAP. The
semantics of retrieve instruction is shown in Fig. 12 where dequeue(O, c) returns
a first item to c in O.

M.Ngo et al. Programmable enforcement framework of information flow policies

207

6 Formal Properties

Prop. 1

Input of EM(π)

Prop. 2

Output of EM(π)

NIND

Prop. 3
Semantics

Equivalence

Prop. 4
Clones in DI

RI DI

similar

Fig. 13. Proof Strategy for Soundness

[The full versions of the
proofs are available in [10].]
The soundness property states
that the EM correctly en-
forces the desired policy on
an arbitrary program. Our
notion of soundness is taken
from [5, 4] and is close to the
one used in [8]. It has some
known limitations (see [11] for a different definition) but we retained it because it
is widely used and understood. Soundness does not hold for EMs of termination-
sensitive properties because one local copy might terminate but the others might
not. Thus, the whole EM does not terminate.

Theorem 1 (Soundness of Enforcement). For all programs π, each EM
executed on π in Tab. 1 satisfies the corresponding policy, except for termination-
sensitive policies.

The proof strategy of soundness is sketched in Fig. 13. Prop. 1 states that
the input handling in MAP is correct w.r.t. the specification: e.g., we prove that
for NI, MAP only asks input items from the environment for high input requests
from the high execution. Prop. 2 states that the output handling by REDUCE
is correct w.r.t. to the specification: e.g., only the high execution sends items to
high output channels. Prop. 3 states that the semantics of controlled programs
and the semantics of local executions are equivalent (for I1 and I2, which coincide
for all channels, the execution of the original program on I1 and the execution
of a local copy on I2 yield the same output queues).

To prove the soundness theorem for NI and ND we perform case-based rea-
soning showing that outputs produced by EMs satisfies the respective definitions.
This proof strategy is also used to prove the soundness theorem for RI. For DI,
we need another proposition (Prop. 4) stating that the clones do not influence
the consumed inputs and the generated outputs of the EM.

The notion of precision for enforcement of a property is taken from [5, 4].
The intuition is that the EM does not change the visible behavior of a program
that is secure with respect to the property (and in particular the I/O behaviour
on specific channels).

Definition 5. An EM is precise w.r.t a property, if for any program π satisfying
the property, and for every input I, where (π, I) ⇓ O, the actually consumed input
I∗ and the actual output O∗ of the EM, regardless of the order of executing local
copies, are s.t. EM terminates and I∗|c = I|c and O∗|c = O|c for all channels c.

Theorem 2 (Precision of Enforcement). Each EM in Tab. 1 is precise w.r.t.
the corresponding policy except for termination-insensitive policies.

M.Ngo et al. Programmable enforcement framework of information flow policies

208

Prop. 2

Output of EM(π)

Prop. 3
Semantics of controlled

programs and local executions

NI ND

Prop. 5
Local Input

consumption

Prop. 6

Wake of π[i]

Prop. 7
Relationship between Global

Queue and Local Queue

Lem. 1
Input

Consumption
of NI

Lem. 2
Input

Consumption
of ND

RI DI

similar
similar

Fig. 14. Proof Strategy for Precision

Fig. 14 shows the proof strategy for
precision. We prove simple properties
regarding the correct handling of inter-
rupt signals (Prop. 5 and Prop. 6). We
show that from the input of the high
execution we can reconstruct the origi-
nal global input (Prop. 7). The proof of
the precision theorem of the EM of NI
(resp. ND) follows directly from Lem. 1
(resp. Lem. 2). Lem. 1 shows that if a
program π satisfies TSNI, terminates,
and all local executions consume input
correctly, then the consumed input of
the mechanism is I∗ where I|c = I∗|c
for all c. The proofs of the precision the-
orem of EMs of RI and DI are similar.

Precision does not hold for mechanisms of termination-insensitive properties.
For a program satisfying a termination-insensitive property, its execution on an
input might terminate, while execution on the other inputs as in the definition of
the property might not. Thus, there is a case that the high copy might terminate
but other executions might not.

7 Related Works and Conclusions

Information flow policies can be enforced by many approaches [13, 12, 3]. Our
choice of using the multi-execution approach, despite its performance overhead,
was dictated by its advantages over the static and dynamic information flow
analysis techniques. Furthermore, the multi-execution approach is also practical
as demonstrated in [4], where SME, an instance of this approach, is implemented
in FireFox. The implementation introduces a noticeable performance overhead
but not prohibitive and the implementation works with most existing web sites.

SME [5] has inspired many researchers to push further investigation of this
technique. The influence of the order of executing local copies on timing and
termination channels is investigated in [8]. Stronger notions of precision are
investigated in [11, 16]. Our current proposal does not address timing and termi-
nation channels, and does not offer the same precision guarantees. However, our
proposal can be further extended by using the techniques proposed in [8, 11, 16].
The focus of our paper is to develop a programmable framework that is capable
of handling different information flow properties.

SME-based EMs of declassification policies are proposed in [1, 11]. Our frame-
work can be instantiated to enforce stateless declassification policies like the one
in [11] where the existence of the high input items can be released. The config-
uration of this policy is similar to the one of RI except that the low does not
have the ask privilege on high input channels. To enforce stateful declassification
policies in which the physical locations of release are specified [14], one possible

M.Ngo et al. Programmable enforcement framework of information flow policies

209

approach is to introduce declassify operators as in [1, 11]. However, by doing this
we lose one advantage of SME which treats controlled programs as black boxes.

We presented a programmable framework that can enforce multiple informa-
tion flow properties via running several copies of a program. The framework is
instantiated for enforcing non-interference (NI) [5], non-deducibility (ND) [15],
removal of inputs (RI) and deletion of inputs (DI) [9]. For these properties we
formally proved soundness and precision of enforcement.

The framework uses the MAP and REDUCE components to interact with the
environment: all input and output actions are mediated by these two compo-
nents. Local executions consume different inputs (real input values or default
ones) fed by MAP, depending on their privileges in the table TM ; for each chan-
nel the outputs are fetched by REDUCE from the dedicated execution (which
has the corresponding privilege in the table TR).

Acknowledgements This work is partly supported by the project EU-IST-
NOE-NESSOS.

References

1. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow.
SIGPLAN Not., 47(1):165–178, Jan. 2012.

2. M. Balliu, M. Dam, and G. L. Guernic. Encover: Symbolic exploration for infor-
mation flow security. In Proc. of CSF 2012, pages 30–44, 2012.

3. G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-
execution through static program transformation. In Proc. of FMOODS/FORTE
2012, 2012.

4. W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser
with flexible and precise information flow control. In Proc. of CCS 2012, 2012.

5. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
Proc. of IEEE S&P 2010, 2010.

6. R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. J. of Comp. Sec., 3:5–33, 1994.

7. J. Goguen and J. Meseguer. Security policies and security models. In Proc. of
IEEE S&P’82, 1982.

8. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In Proc. of IEEE S&P, 2011.

9. H. Mantel. Possibilistic definitions of security - an assembly kit. In Proc. of CSFW
2000, 2000.

10. M. Ngo, F. Massacci, and O. Gadyatskaya. MAP-REDUCE runtime enforcement
of information flow policies. Availabe as ArXiv report http://arxiv.org/abs/

1305.2136. Technical Report DISI-13-019, University of Trento, 2013.
11. W. Rafnsson and A. Sabelfeld. Secure multi-execution: fine-grained,

declassification-aware, and transparent. In Proc. of CSF 2013, 2013.
12. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In

Proc. of CSF 2010, 2010.
13. A. Sabelfeld and A. Myers. Language-based information-flow security. J. on Se-

lected Areas in Comm., 21(1):5 – 19, 2003.

M.Ngo et al. Programmable enforcement framework of information flow policies

210

14. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. on
Comput. Secur., 17(5):517–548, Oct. 2009.

15. D. Sutherland. A model of information. In Proc. of NCSC’86, 1986.
16. D. Zanarini, M. Jaskelioff, and A. Russo. Enforcement of confidentiality for reactive

systems. In Proc. of CSF 2013, 2013.

M.Ngo et al. Programmable enforcement framework of information flow policies

211

212

On the Stackelberg fuel pricing problem?

Cosimo Vinci1 and Vittorio Bilò2

1 Gran Sasso Science Institute, L’Aquila - Italy
cosimo.vinci.gssi@gmail.it

2 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento,
Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce - Italy

vittorio.bilo@unisalento.it

Abstract. We consider the Stackelberg fuel pricing problem in which a
company has to decide the fuel selling price at each of its gas stations
in order to maximize its revenue, assuming that the selling prices of the
competitors and the customers’ preferences are known in advance. We
show that, even in the basic case in which the road network is modeled
by an undirected planar graph and the competitors discriminate on two
different selling prices only, the problem is APX-hard. On the positive
side, we design a polynomial time algorithm for instances in which the
number of gas stations owned by the company is constant, while, in the
general case, we show that the single-price algorithm (which provides the
best-known solutions for essentially all the Stackelberg pricing problems
studied in the literature up to date) achieves an approximation ratio
which is logarithmic in some parameters of the input instance. This re-
sult, in particular, is tight and holds for a much more general class of
Stackelberg network pricing problems.

1 Introduction

A fundamental decisional process in many business activities concerns how to
set the selling prices so as to maximize its own revenue, once knowing the sell-
ing prices of the competitors and the customers’ preferences. The scenario in
which the latter are implicitly defined in terms of some optimization problem
are usually referred to as Stackelberg pricing problems [15]. These problems can
be modeled as multi-player one-round games in which there is a special player,
the leader, while all the others are followers. The first action is undertaken by
the leader who decides on some parameters (e.g., the selling prices) and then the
followers respond by deciding their actions. Each follower adopts, as her action,
the optimal solution of a certain optimization problem (e.g., satisfying her own
demand at the minimum cost) which depends on some of the parameters fixed
by the leader and on some other values on which the leader has no control (e.g.,
the selling prices of the competitors). Since the followers’ choices influence, in

? This work was partially supported by the PRIN 2010–2011 research project ARS
TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Ital-
ian Ministry of University.

213

turn, the leader’s revenue, the determination of the best possible action for the
leader often results in a challenging algorithmic problem.

A considerable research attention, see [2–8, 11, 12, 14], has been devoted in
the last years to the study of Stackelberg network pricing problems based on
some fundamental (polynomial time solvable) optimization problems, such as
shortest paths, shortest path trees and minimum spanning trees. In this paper,
we study the Stackelberg fuel pricing problem (SFPP) which is a Stackelberg
network pricing problem based on the gas station problem (GSP): an optimization
problem introduced in [9] to model situations in which drivers have to go from
one location to another and have to decide where to fill their cars with fuel so
as to minimize the travel cost, once knowing the fuel prices at the various gas
stations along the road network.

Model and Notation. For a positive integer k, let [k] denote the set {1, . . . , k}.
A road network is an edge-weighted directed graph G = (V,E,w), with |V | = n,
|E| = m and w : E → R≥0 such that, for each e = (u, v) ∈ E, w(e) specifies the
amount of fuel (expressed in gallons) needed to go from u to v.

An instance (G, s, t, S, p) of the GSP is defined by a road network G, a pair
of nodes s, t ∈ V , a set of nodes S ⊆ V and a function p : S → R≥0. The set of
nodes S represents the locations of gas stations and the function p models the
selling prices (per gallon) at each of the gas stations. There is a driver who needs
to go from s to t. For the sake of simplicity, we assume that the driver’s car is
equipped with a tank of unlimited capacity and that s ∈ S, so that the driver
can fill with as much fuel as she wants at price p(s) when starting her trip. The
driver wants to determine the best possible itinerary, that is, which (s, t)-path
to drive through and which gas stations to stop at for fueling so as to minimize
the total fuel cost3.

An instance (G, (si, ti, λi)i∈[k], L, C, pC , e) of the SFPP is defined by a road
network G, k source-destination pairs (si, ti) with an associated integer weight
λi ≥ 1 for each i ∈ [k], two sets L,C ⊆ V , a function pC : C → R≥0 and a value
e ≥ 0. The sets of nodes L and C represent the locations of gas stations: the
gas stations located at nodes in L are owned by the leader, while those located
at nodes in C are owned by her competitors, so that the function pC models
the selling prices established by the competitors at each of their gas stations4.
Note that we do not require L and C to be disjoint, i.e., either the leader and
one of her competitors may own a gas station at the same location. The leader
buys (or produces) the fuel at price e per gallon. There are k types of drivers
(the followers) such that, for each i ∈ [k], the driver of type i wants to go from
si to ti along the cheapest path in G, where λi denotes the number of drivers
of type i, that is, how many drivers want to go from si to ti. Once the leader
has established a pricing function pL : L → R≥0 defining the fuel prices at
her own gas stations, each follower of type i ∈ [k] determines her action by

3 The amount of fuel bought at each gas station s is implicitly defined by the minimum
distance between s and the successive station chosen for fueling

4 In the case in which more than one competitor owns a gas station in a given location
v, pC(v) will denote the cheapest fuel price among them.

C.Vinci et al. On the Stackelberg fuel pricing problem

214

solving the instance (G, si, ti, L∪C, p) of the GSP, in which, for each v ∈ L∪C,
p(v) := min{pL(v), pC(v)}. The leader has to determine the pricing function
pL : L → R≥0 providing her with the highest possible revenue. To this aim, we
make the following simplifying assumption which is common in the setting of
Stackelberg pricing problems: when the gas station problem has more than one
optimal solution, the follower always chooses the one providing the leader with
the highest revenue5. Furthermore, we assume that si ∈ C ∀i ∈ [k], otherwise,
either the problem is not feasible or the revenue is unbounded.

More formally, given a node v ∈ V and a pricing function pL for the leader, let
q(pL, v) := 1pL(v)≤pC(v). For a pair of nodes u, v ∈ V , let d(u, v) be the distance
from u to v in G and B(u, v) be the set of itineraries connecting u to v, that is,
the set of sequences of nodes [u = vi1 , vi2 , . . . , vir = v] such that vis ∈ L ∪C for
each s ∈ [r − 1]. Set ps := p(vis), ds := d(vis , vis+1

) and qs := q(pL, vis) for each
s ∈ [r− 1]. Given pL and B ∈ B(u, v), a driver choosing itinerary B experiences
a cost c(pL, B) and yields a contribution g(pL, B) to the leader’s revenue which
are defined as follows:

c(pL, B) :=

r−1∑

s=1

ps · ds, g(pL, B) :=

r−1∑

s=1

(ps − e) · ds · qs.

Let cg(pL, B) = (c(pL, B), g(pL, B)) and define a total ordering relation ≺ on
R≥0 × R≥0 such that [x1, y1] ≺ [x2, y2] ⇔ x1 < x2 ∨ {x1 = x2 ∧ y1 > y2}. Let
B∗(u, v) ⊆ B(u, v) be the set of itineraries B ⊆ B(u, v) minimizing cg(pL, B) ac-
cording to the ordering relation ≺. Let cg(pL, u, v) := [c(pL, u, v), g(pL, u, v)] :=
minB∈B(u,v) cg(pL, B). Given a driver of type i, we have that c(pL, si, ti) is the
cost of her cheapest path, and g(pL, si, ti) is her contribution to the leader’s

revenue, so that g(pL) :=
∑k
i=1 λi · g(pL, si, ti) is the leader’s total revenue that

has to be maximized. Let pM := maxi∈[k] pC(si). It is easy to prove that, if we
set pL(v) > min{pM , pC(v)} for some v ∈ L, no driver will stop at station v for
fueling. Similarly, whenever pC(v) > pM for some v ∈ C, no driver will stop at
station v for fueling. Therefore, we can suppose without loss of generality that
pC(v) ≤ pM ∀v ∈ C, the leader’s revenue g(pL) is bounded and, in order to be
maximized, pL can be chosen in such a way that e ≤ pL(v) ≤ pC(v) ∀v ∈ L.

Related Work. The GSP has been introduced by Khuller, Malekian and Mestre
in [9]. They give polynomial time algorithms for the basic problem and for some
of its variations.

Briest, Hoefer and Krysta author an influential work [6] on Stackelberg net-
work pricing problems which widely generalizes previous results in the field. In
particular, they consider the case in which the edges of the network are parti-
tioned into two sets: the set of fixed-price edges and that of priceable edges, with
the latter owned by the leader. Each follower buys a subnetwork of minimum
cost and so the leader wants to assign suitable prices to the priceable edges so

5 In fact, if this is not the case, the leader can decrease some selling price of a negli-
gible amount so as to achieve almost the same revenue as in the case in which the
assumption holds.

C.Vinci et al. On the Stackelberg fuel pricing problem

215

as to maximize her revenue. They study the approximation guarantee of the
single-price algorithm in this general class of problems. This algorithm, which
assigns the same (suitably computed) price to all priceable edges, has been first
analyzed in [7] for the case of a single follower buying a minimum spanning
tree. Briest, Hoefer and Krysta show that, for the case of a single follower, the
approximation guarantee is (1 + ε)Hh, where ε > 0 is an arbitrary value, h is
the number of priceable edges and Hi is the ith harmonic number, while, for
the case of k followers, it becomes (1 + ε)(Hh +Hk). Finally, when the followers
may have different weights, they show that the single-price algorithm achieves
an approximation guarantee of (1+ε)h2 and also provide a lower bound of O(hε)
on the approximability of the problem.

Determining whether there are approximation algorithms better than the
single-price one is, perhaps, the most important open problem in this field of
research. In fact, while the performance of this algorithm remains essentially the
same even when instantiated to specific optimization problems such as shortest
paths, shortest path trees and minimum spanning trees, the impossibility results
known so far in these cases only refer to APX-hardness, see [3, 5, 7].

Our Contribution. We show that the SFPP is APX-hard even in the basic
case in which the road network is modeled by an undirected planar graph and
the competitors discriminate on two different selling prices only, by means of a
reduction from the maximum independent set problem on cubic graphs. This
reduction, however, requires that |L| is a non-constant value. This assumption
is essential, anyway, since, for the case in which |L| = O(1), we show that the
problem can be solved in polynomial time.

We stress that the SFPP does not fall within the scope of the Stackelberg
network pricing problems defined by Briest, Hoefer and Krysta in [6] and that the
presence of additional parameters in the definition of the problem (in particular,
the edge-weights) makes the performance of the single-price algorithm unlikely
to be uninfluenced by the characteristics of the road network given in input.
To this aim, we define a general class of Stackelberg network pricing problems
which extends the one given by Briest, Hoefer and Krysta and includes the SFPP.
For this class of problems, we show that the single-price algorithm provides an
approximation guarantee which is logarithmic in some parameters of the input
instance (see the claim of Theorem 4 for the exact characterization) and that
this bound is tight.

Due to space limitations, some details and proofs have been removed.

2 Complexity Results

We first show that the SFPP is APX-hard even under some restrictions.

Theorem 1 The SFPP is APX-hard even when pC assigns only two different
prices and G is an undirected planar graph as long as |L| ∈ Θ(n).

Proof. We consider a polynomial reduction from the Maximum Indipendent Set
Problem on cubic graphs (MISP). Given a cubic graph (U,F), with |U | = n

C.Vinci et al. On the Stackelberg fuel pricing problem

216

and |F | = m, and an arbitrary value θ ∈]0, 1/2] polynomially representable with
respect to n, consider an instance (G, (si, ti, λi)i∈[k], L, C, pC , e) of the SFFP
that we define incrementally as follows. Suppose that the sets V , E, L and C
are initially empty. Fix an arbitrary orientation on the edges in U , insert a node
v∗ in V with pC(v∗) = 1 + 3θ, then, ∀i ∈ [n], insert in V three nodes v1i , v

2
i

and v3i with pC(v1i) = pC(v3i) = 1 + 3θ and pC(v2i) = 4θ; v1i belongs to L. Then,
∀i ∈ [n], insert in E three edges e1i = {v1i , v2i }, e2i = {v2i , v∗} and e3i = {v3i , v1i }
with ω(e1i) = θ, ω(e2i) = 1/2 − θ and ω(e3i) = 1 − θ. ∀ej = (ui, uh) ∈ F , denote
v1i with v1j , v2i with v2j , v2h with v3j , v1h with v4j and v3h with v5j . There is a driver

(v1i , v
2
i) ∀i ∈ [n], and a driver (v1j , v

5
j) ∀j ∈ [m]. Finally, set e = 3θ.

We stress that the constructed road network G is a planar graph.

Fig. 1. We consider, for example, the
polynomial reduction applied to a com-
plete graph (U,F) with |U | = 4, de-
picted on the left. In (U,F) the edges
are arbitrary oriented and there is an
enumeration of vertices and edges such
that the vertex numbers are overlined,
whereas the edge numbers are not. On
the right, we have the road network G
obtained from U . The index i indicates
the driver (v1i , v

2
i) ∀i ∈ [4], and the in-

dex j indicates the driver (v1j , v
5
j) ∀j ∈

[6]. The starting and the arriving nodes
of the source-destination pair associated
with every driver are depicted trough an
arrow.

The following lemmas hold.

Lemma 1 Consider the instance obtained by the reduction from (U,F). Given
a pricing function pL, let p′L be the pricing function such that p′L(v1i) = 4θ if
pL(v1i) ≤ 4θ and p′L(v1i) = 1 + 3θ otherwise. It holds that g(p′L) ≥ g(pL).

Proof (Sketch). We first prove that, independently from pL, the cheapest path
for driver (v1i , v

2
i) is [v1i , v

2
i] ∀i ∈ [n] and that the cheapest path for driver (v1j , v

5
j)

is [v1j , v
2
j , v
∗, v3j , v

4
j , v

5
j] ∀j ∈ [m] . At this point, we prove that, by setting to 4θ

all the prices not bigger than 4θ and to 1+3θ the remaining ones (thus obtaining
p′L), the leader gets a revenue of g(p′L) ≥ g(pL). ut

Lemma 2 Given the pricing function p′L of the previous lemma, there exists
a pricing function p∗L which can be obtained in polynomial time from p′L such
that p∗L(v1i) = 4θ if exists fj ∈ δ+(U,F)(ui) such that p′L(v1j) = p′L(v4j) = 1 + 3θ,

and p∗L(v1i) = p′L(v1i) otherwise. Moreover, it holds that g(p∗L) ≥ g(p′L) and that
g(p∗L) = |{i ∈ [n] : p∗L(vi) = 1 + 3θ}|(θ − θ2) + θ2n+ (2θ − θ2)m.

C.Vinci et al. On the Stackelberg fuel pricing problem

217

Proof (Sketch). First we prove that, given j ∈ [m] such that p′L(v1j) = p′L(v4j) =

1 + 3θ, the leader’s revenue does not decrease when decreasing the value p′L(v1j)

to 4θ. By repeating this operation ∀j ∈ [m] such that p′L(v1j) = p′L(v4j) = 1 +
3θ, we obtain p∗L which, by induction, satisfies g(p∗L) ≥ g(pL). Hence, we get
g(p∗L, v

1
i , v

2
i) = (p∗L(v1i)− 3θ)θ ∀i ∈ [n] and g(p∗L, v

1
j , v

5
j) = 2θ − θ2. By summing

these values for all drivers, we obtain the claimed value for g(p∗L). ut

Now, we prove the theorem. Let 1 + ε be a lower-bound on the approximability
of MISP (see [1] for a proof of the APX-hardness of MISP). We prove, by con-
tradiction, that SFPP cannot be (1 + δ)-approximable ∀δ < ε

13 . Suppose that
there exists a (1 + δ)-approximation algorithm for the SFPP with δ < ε

13 . Let
p∗L be an optimal pricing function and pL be the pricing function returned by
the approximation algorithm. We have that g(p∗L)/g(pL) ≤ 1 + δ. By Lemma 2,
we can suppose without loss of generality that pL verifies pL(v1i) ∈ {4θ, 1 + 3θ}
∀i ∈ [n] and pL(v1j) = 4θ or pL(v4j) = 4θ ∀j ∈ [m]. In fact, if this is not the
case, we can apply the polynomial time transformation outlined in the proof of
Lemma 2 so as to obtain from pL a pricing function p′L verifying the assumption
and such that p∗L/p

′
L ≤ p∗L/pL. Clearly, again by Lemma 2 and the optimality of

p∗L, the same assumption can also be made for p∗L.
Let M(pL) := {ui ∈ U : pL(v1i) = 1 + 3θ}. From the assumptions on p∗L

and pL, it follows that M∗ := M(p∗L) and M := M(pL) are independent sets
of (U,F). By the optimality of p∗L and because of the characterization of g(p∗L)
given in Lemma 2, M∗ has to be a maximum independent set of (U,F). Let
θ := n−2. Again by the characterization of the leader’s revenue given in Lemma
2, for a sufficiently big n, we have

g(p∗L)

g(pL)
=

(|M∗|+ 2m+ (n− |M∗| −m)n−2)n−2

(|M |+ 2m+ (n− |M | −m)n−2)n−2
∼ |M

∗|+ 2m

|M |+ 2m
≤ 1 + δ. (1)

By manipulating (1), we have that |M∗|/|M | ≤ 1 + δ + 2mδ/|M |. In a graph
of degree 3 and m edges, we can find in polynomial time an independent set
with at least dm/6e nodes. So, we can suppose that |M | ≥ m/6. Therefore,
|M∗|/|M | ≤ 1 + δ + 2mδ/|M | ≤ 1 + 13δ < 1 + ε ⇒ |M∗|/|M | < 1 + ε, thus
contradicting the 1 + ε lower bound on the approximability of the MISP. ut

Note that, in the claim of Theorem 1, we required that |L| = Θ(n). However,
if we consider instances of the SFPP such that |L| = O(1), then the problem can
be efficiently solved. We prove this fact by designing an algorithm, called SFPP-
CL, which solves a polynomial number of linear systems in order to determine
the best possible pricing function for the leader.

Let K = {(si, ti) : i ∈ [k]}. For a pair of nodes (u, v), let c∞(u, v) be the
minimum cost paid by a driver to go from u to v without stopping at gas sta-
tions in L. Given a driver going from u to v, consider an optimal itinerary
B ∈ B∗(pL, u, v). There exists an itinerary D extracted from B, that we call
strong itinerary, of the form D = (u = v11 , v

1
2 , . . . v

1
t(1) = vC1 , v

2
1 , v

2
2 , . . . v

2
t(2) =

vC2 , v
C
r−1, v

r
1, v

r
2, . . . v

r
t(r) = v), with vCs ∈ C \ L ∀s ∈ [r − 1] while all

C.Vinci et al. On the Stackelberg fuel pricing problem

218

the other nodes belong to L, such that the cost c and the revenue g with re-
spect to B can be computed as follows (set psz := pL (vsz), d

s
z := d(vsz, v

s
z+1) and

c∞(vCr , v
r+1
1) := 0):

c(pL, D) :=

r∑

s=1

t(s)−1∑

z=1

psz · dsz + cs∞, g(pL, D) :=

r∑

s=1

t(s)−1∑

z=1

(psz − e) · dsz.

Set cg(pL, D) := [c(pL, D), g(pL, D)] and let D(u, v) be the set of strong
itineraries starting at u and ending at v. It holds that cg(pL, u, v) =
minD∈D(u,v) cg(pL, D). From this fact, it follows that an optimal pricing func-
tion p∗L is an optimal solution to an LP problem LP ({Duv}(u,v)∈K), yielded by
a set of optimal strong itineraries {Duv}(u,v)∈K , whose objective function to be
maximized is g(pL) and the constraints are: (i) c(pL, Duv) ≤ c(pL, D) for each
D ∈ D(u, v), and (ii) e ≤ pL(v) ≤ pC(v) for each v ∈ L. From the LP Theory, we
know that there exist |L| constraints in LP ({Duv}(u,v)∈K) defining a linear sys-
tem of |L| equations in |L| variables whose unique solution is p∗L. By evaluating
the revenue yielded by all the pricing functions that solve all the possible linear
systems and returning the one giving the highest leader’s revenue, we obtain an
optimal pricing function p∗L.

We now describe algorithm SFPP-CL, which is based on a refinement of the
ideas outlined above. SFPP-CL is divided into two phases: an initializing phase,
in which several data structures are created and a running phase, in which SFPP-
CL evaluates the leader’s revenue yielded by several pricing functions obtained
trough the data structures defined during the initializing phase. Let KU = {u ∈
V : (u, v) ∈ K} and KV = {v ∈ V : (u, v) ∈ K}.

SFPP-CL: initializing phase

Step 1 Compute c∞(u, v) ∀u, v ∈ V .
Step 2 ∀u ∈ L, v ∈ L ∪ KV , let Xuv := [e =

xuv(0), xuv(1), . . . , xuv(ruv) = pC(u)] be the vector given by
the abscissa of all the vertices of the polyhedron Puv :=⋂
z∈C∪{v} {[x, y] : e ≤ x ≤ pC(u), y ≤ fzuv(x) := d(u, z) · x+ c∞(z, v)}

listed in increasing order (in order to compute Xuv, see [13]).
Let Zuv := [zuv(s)]s∈[ruv] be the vector such that zuv(s) =
arg maxz∈C∪{v}{d(u, z) : [xuv(s), f

z
uv(xuv(s))] is a vertex of Puv} ∀s ∈ [ruv].

The usefulness of the vectors Xuv and Zuv is that, if an optimal pricing func-
tion p∗L verifies that p∗L(u) ∈]xuv(s − 1), xuv(s)] (set xuv(−1) = −∞), then the
itinerary D∗uv := [u, zuv(s), v] minimizes cg(p∗L, D) among all the itineraries of
the form D = [u, z, v] with z ∈ C ∪{v}. This observation will imply the correct-
ness of the running phase of SFPP-CL. Before describing this phase, we present
an algorithm that, given pL, computes g(pL) and which will be used as a subrou-
tine in the running phase (note that this algorithm can also be used to certify
that the SFPP belongs to NP).

SFPP-CL-C algorithm (SFPP-CL-Certificate algorithm)

C.Vinci et al. On the Stackelberg fuel pricing problem

219

Step 1 Given a ∈ L and b ∈ L ∪ KV , let sab be the smallest strictly
positive integer such that pL(a) ≤ xab(sab) and, given (u, v) ∈ K, let
Guv = (Vuv, Euv, wuv) be a connected weighted graph that has an edge
(a, b) with w(a, b) = [c∞(a, b), 0] if a ∈ {u} \ L and b ∈ L ∪ {v}, w(a, b) =
[pL(a) · d(a, zab(sab)) + c∞(zab(sab), b), (pL(a) − e) · d(a, zab(sab))] if a ∈ L
and b ∈ L ∪ {v}.

Step 2 Evaluate the length of the shortest path from u to v in the graph Guv
∀(u, v) ∈ K, which is equal to g(pL, u, v) (because of the observation we did
when discussing the initializing phase). Finally, compute and return g(pL).

SFPP-CL: running phase

Step 1 Fix a set KL ⊆ K of |L| elements. Let KL
U := KU ∩KL and KL

V := KV ∩
KL. Given u ∈ L, let Xu = [e = xu(0), xu(1), . . . , xu(ru) = pC(u)] be the
vector obtained by sorting the elements of the vectors Xuv with v ∈ L∪KL

V .
Let Zu = (zu(t, v))t∈[ru],v∈L∪KV

be a matrix of nodes in V , in which the
generic zu(t, v) is equal to the node zuv(s) if xuv(s − 1) < xu(t) ≤ xuv(s),
where s ∈ [ruv].

Step 2 Let T = [t(u)]u∈L be a vector of integers indexed in L, such that 1 ≤
t(u) ≤ ru ∀u ∈ L. Let GT = (VT , ET) be a connected graph such that
ET has the edges (u, zu(t(u), v)), (zu(t(u), v), v), (z, v) with z ∈ KL

U , u ∈ L,
v ∈ L ∪KL

V .
Step 3 Fix L−, L+ ⊆ L such that L− ∩ L+ = ∅ and set r := |L| − |L−| − |L+|.

Let D2
T := {(Ds, D

′
s)}s∈[r] be a set of r pairs of strong itineraries such that,

∀s ∈ [r], Ds and D′s both start at u and end at v, with (u, v) ∈ KL and are
simple paths in GT .

Step 4 Solve a linear system in the unknown variables yielded by pL, with the
following |L| equations: c(pL, Ds) = c(pL, D

′
s) ∀s ∈ [r], pL(u) = xu(t(u)− 1)

∀u ∈ L− and pL(u) = xu(t(u)) ∀u ∈ L+. If the system has only one solution
pL with pL(u) ∈]xu(t(u)− 1), xu(t(u))[∀u ∈ L \ {L− ∪L+}, compute g(pL)
by using SFPP-CL-C.

Step 5 Run Steps 1, 2, 3 and 4 for all possible choices of KL, T , L−, L+ and
D2
T and return the best pricing function among the considered ones.

The following theorem holds.

Theorem 2 SFPP-CL solves the SFPP in polynomial time when |L| = O(1).

3 An Approximation Algorithm: the Class SGPS

Given a generic pricing problem, a uniform pricing function, or UPF, is an assign-
ment of the same price to all the priceable elements. An optimal uniform pricing
function, or UPF∗, maximizes the leader’s revenue among all the UPFs. We in-
troduce the class of Stackelberg Games with Priceable Sets, or SGPS, extending
that of Stackelberg Network Pricing Games described in [6], and characterize
the approximation factor provided by an UPF∗ in these games. Furthermore, we

C.Vinci et al. On the Stackelberg fuel pricing problem

220

define an algorithm that finds an UPF∗, prove that the SFPP belongs to class
SGPS and adapt such an algorithm to the SFPP.

A game in SGPS is a tuple (E,C,L, pC , w, E ,K, {λi}i∈K , {Fi}i∈K ,) such that
E is a set, {C,L} is a partition of E, pC : C → R≥0 is a pricing function,
w : L→ R≥0 is a weight function, E := {E1, E2, . . . Er} is a partition of L, K is
a set of followers and, ∀i ∈ K, λi is the weight of follower i and Fi ⊆ P(E) is the
family of sets that can be purchased by follower i. We call competitor’s elements
the elements of C and leader’s elements the elements of L. Given pL : E → R≥0
and F ⊆ E, we define a cost c and a revenue g as follows:

g(pL, F) :=
∑

E′∈E

∑

e∈E′∩F
w(e) · pL(E′), c(pL, F) :=

∑

e∈F∩C
pC(e) + g(pL, F).

Let cg(pL, F) := [c(pL, F), g(pL, F)]. Given i ∈ K, let [c(pL, i), g(pL, i)] :=
cg(pL, i) := minF∈Fi

cg(pL, F), where the minimum is defined according to the
ordering relation ≺. Informally, c(pL, i) is the cost of follower i when choosing a
subset F ∈ Fi of minimum cost and g(pL, i) is the contribution of follower i to
the leader’s revenue recalling that, when a follower has different optimal choices,
she adopts the one providing the highest revenue to the leader. Let F ∗(pL, i) ∈ Fi
be a set minimizing the function cg(pL, i), that is, an optimal choice for follower
i. The leader’s revenue g(pL) is equal to

∑
i∈K λi · g(pL, i). In order for g to be

bounded, we suppose that, ∀i ∈ K, ∃F ∈ Fi such that F ⊆ C. Our objective is
to find a pricing function p∗L maximizing g. Different families of games in SGPS
can be defined by different choices of {Fi}i∈K . The main differences with the
Stackelberg Network Pricing Games are that single elements cannot be priced
independently in general, since the leader has to assign the same price to every
set in E , and that the prices are weighted by the function w.

Given θ ≥ 0, pθ is an UPF such that pθ(E
′) = θ ∀E′ ∈ E . Let SG1 be a game in

SGPS with one follower only (it is then possible to avoid considering the follower’s
weight and to omit the index 1 in several functions) and let SG2 be the game
obtained from SG1 by setting E = {{e}}e∈L. Note that the maximum leader’s
revenue g∗1 in SG1 is lower than the maximum leader’s revenue g∗2 in SG2 and that
a same UPF gives the same leader’s revenues in both games. Hence, given the
leader’s revenues g∗1,θ and g∗2,θ yielded by an UPF∗ for SG1 and SG2, respectively,
we have that g∗1/g

∗
1,θ ≤ g∗2/g∗2,θ. From this observation, in order to find un upper

bound on the approximation factor yielded by an UPF∗ for both games SG1 and
SG2, we can restrict our analysis only to SG2. Let W,C : P(E) → R≥0 be two
functions such that W (F) =

∑
e∈F∩L w(e) ∀F ⊆ E and C(F) =

∑
e∈F∩C pC(e).

Let X := {W (F ∗(pθ)) > 0 : θ ≥ 0} be the optimal weights vector of follower 1
and consider it as a vector X := [x(j) := xj]j∈[n] sorted in increasing order.

We define three functions θ, c,∆ : X → R≥0 such that, given xj ∈ X, it
holds that θ(xj) := θj := max{θ ∈ R≥0 : W (F ∗(pθ)) = xj}, c(xj) := cj :=
min{C(F) : W (F) = xj , F ∈ F} and ∆(xj) := ∆j := c(x0) − c(xj). Note
that the function θ is decreasing in its argument. We call functions θ and c,
respectively, the optimal prices function and the optimal costs function of follower
1. We observe that, ∀j ∈ [n], assuming that θ0 · x0 = ∞ · 0 = 0, it holds that

C.Vinci et al. On the Stackelberg fuel pricing problem

221

c(pθj) = cj + θj · xj = cj−1 + θj · xj−1. This implies the following equation:

θj =
cj−1 − cj
xj − xj−1

=
∆j −∆j−1
xj − xj−1

. (2)

Let p∗L be an optimal pricing function, the following relationship holds: c(p∗L)−
g(p∗L) = C(F ∗(p∗L)) ≥ min{C(F) : F ∈ F} = C(F ∗(p0)) = cn. Moreover, we
have c(p∗L) ≤ c0. By using the previous inequalities, we get

g(p∗L) = c(p∗L)− (c(p∗L)− g(p∗L)) ≤ c0 − cn = ∆n. (3)

Let Wm := x1, WM := xn, θm := θn, θM := θ1. By exploiting inequalities
(2) and (3), it is possible to prove the following fundamental theorem in analogy
with the results in [6].

Theorem 3 Any UPF∗ pθ∗ provides an approximation guarantee of 1 +
ln(min{WM/Wm, θM/θm}) to both SG1 and SG2.

Now we can generalize the previous theorem to the case of more followers. We
use the subscript i to denote the quantities previously defined for the case of
a single follower when instantiated to follower i. Let SG0 be a generic game in
SGPS and define θm ≤ mini∈K θm,i, θM ≥ maxi∈K θM,i, Wm ≤ mini∈KWm,i,
WM ≥ maxi∈KWM,i. Let λm := mini∈K λi and λM :=

∑
i∈K λi.

The following result holds.

Theorem 4 Any UPF∗ pθ∗ provides an approximation guarantee of 1 +
ln(min{(WM/Wm) · (λM/λm), θM/θm}) to SG0.

Now, we design an algorithm to find an UPF∗. Given i ∈ K, let Xi := [xi(j) :=
xij]j∈[ni] be the optimal weights vector of follower i and let X := [x(h) :=

xh]h∈[n] be a vector sorted in increasing order containing all the values in Xi

and such that ∃F ∈ Fi : x(h) = W (F) ∀h ∈ [n], ∀i ∈ K. Moreover, let Ci :=
[ci(h) := cih]h∈[n] be the vector such that, ∀h ∈ [n], ci(h) = c(xh), where c
denotes the optimal costs function of follower i. We suppose that the vectors X
and (Ci)i∈K are known. Let Θi := [θi(j) := θij]j∈[ni] be the vector such that,

∀j ∈ [ni], θ
i(j) = θ(xij), where θ denotes the optimal prices function of follower

i. Observe that Θi is the vector given by the positive abscissa of all the vertices
of the polyhedron Pi :=

⋂
h∈[n]

{
[θ, y] : θ ∈ R, y ≤ f ih(θ) := cih + θ · xh

}
, and Xi

is the vector such that xij = max{xh : [θij , f
i
h(θij)] is a vertex of Pi}. By these

characterizations we can compute (Xi)i∈K and (Θi)i∈K in O(|K|n log(n)) time
(see [13] for further details). Let Θ = [θ(h) := θh]h∈[m] be the sorted fusion of
the vectors (Θi)i∈K without the eventual null element. Θ can be computed in
O(|K|n log(|K|)) time. Given i ∈ K and h ∈ [m], let j(h, i) ∈ [ni] be such that
θij(h,i) ≥ θh > θij(h,i)+1 (set θin1+1 := 0). Observe that W (F ∗(pθh , i)) = xij(h,i)
and then g(pθh , i) = θh · xij(h,i). Since there exists h∗ ∈ [m] such that pθh∗ is a

UPF∗, by the above arguments, we have that

g(pθh∗) = max
h∈[m]

g(pθh) = max
h∈[m]

∑

i∈K
λi · g(pθh , i) = max

h∈[m]

∑

i∈K
λi · θh · xij(h,i). (4)

C.Vinci et al. On the Stackelberg fuel pricing problem

222

Observe that g(pθh∗) can be computed in O(|K|n) time, by using the charac-
terization provided in (4). So, we can define an algorithm that returns a UPF∗

starting from X and (Ci)i∈K , and that runs in O(|K|n(log(|K|)+ log(n))) time.
We call this algorithm Perfect-Single-Price algorithm (PSP); it differs from the
Single-Price algorithm given in [6] since the approximation ratio of the latter
(which is worse than the one of PSP algorithm) and its complexity depend on
an arbitrary ε given in input. An approximation ratio provided by this algorithm
can be obtain by setting Wm := x(1), WM := x(m), θm := θ(m), θM := θ(1).

To apply the PSP algorithm to the SFPP, we reformulate the SFPP as a game
in SGPS. Given an instance I := (G,K, {λuv}(u,v)∈K , L, C, pC , e) of the SFPP,
define an instance I ′ := (E′, C ′, L′, p′C , w

′, E ,K, {λuv}(u,v)∈K , {Fuv}(u,v)∈K) in
the class SGPS as follows. Let E′ = C ′ ∪L′ be a set of edges in a graph (V ′, E′)
defined as follows: given u ∈ L, v ∈ C and z ∈ V , create a node z′uv, insert in
L′ an edge (u, z′uz) with w′((u, z′uz)) = d(u, z), insert in C ′ an edge (z′uz, z) with
p′C((z′uz, z)) = e · d(u, z), insert in C ′ an edge (v, z) with p′C((v, z)) = pC(v) ·
d(v, z). Given u ∈ L, set Eu = {(u, z′uz) ∈ L′} and E := {Eu}u∈L. Set, ∀(u, v) ∈
K, Fuv equal to the set of all the paths connecting u to v in (V ′, E′). Given two
pricing functions pL and p′L for the problems I and I ′, respectively, such that
pL(u) = p′L(Eu)+e ∀u ∈ L, we have that g(pL) = g(p′L). Moreover, by assigning
uniformly the prices θ and θ′ := θ − e to I and I ′, respectively, we obtain that
the length of the sub-path covered by follower (u, v) ∈ K by using fuel bought
from the leader in I, is equal to W (F ∗uv(pθ′)). From these observations, if one
transforms I into I ′ and applies the PSP algorithm to I ′, I can be approximated
according to the performance guarantee stated in Theorem 4.

To apply the PSP algorithm, we need a preliminary procedure to find the
vectors X and (Cuv)(u,v)∈K . Observe that we can set X := {d(u, v) > 0 : u ∈
L, v ∈ C ∪KV } := [x(h)]h∈[l] to apply the PSP algorithm, since every follower,
given an UPF, can always choose a path such that only a subpath is covered using
fuel bought from the leader. Because of this fact, we also have that Cuv(h) =
min{c∞(u, z) + e · d(z, z′) + c∞(z′, v) : d(z, z′) = x(h), z ∈ L, z′ ∈ C ∪ {v}}
∀h ∈ [l] and ∀(u, v) ∈ K. Observe that, given (u, v) ∈ K, Cuv can be computed
in O(|L| · |C|) ⊆ O(n2) time. To approximate the SFPP, compute the vectors X
and (Cuv)(u,v)∈K and apply the PSP algorithm to these vectors. The resultant
algorithm, that we call SFPP-PSP, requires O(n4) time in the worst-case.

We conclude by showing that the approximation ratio provided by the SFPP-
PSP algorithm is tight and also significantly high. Consider an instance with
V = {vi}i∈[n+1], E = {(vi, vi+1)}i∈[n], C = L = V \ {vn+1}, w((vi, vi+1)) =
2i−n and pC(vi) = 2n−i ∀i ∈ [n], e = 0, K = {(v1, vn+1)}. Observe that the
optimal assignment p∗L verifies that p∗L(vi) = pC(vi) ∀i ∈ [n− 1] and so g(p∗L) =∑n
i=1 2i−n · 2n−i = n. Observe that an UPF∗ is of the form p(2i), with i ∈

[n − 1] ∪ {0}, and we have that g(p(2i)) =
∑n−1−i
j=0 2−j . Therefore p(20) = p(1)

is an UPF∗ and g(p(1)) =
∑n−1
j=0 2−j

n→∞−→ 2. Hence, the approximation ratio
provided by the SFPP-PSP algorithm is asymptotically equal to g(p∗)/g(p(1)) =
n/2, and so it is very high. Since this instance verifies 1 + ln(WM/Wm) = 1 +

ln(
∑n
i=1 w((vi, vi+1))/w((v1, v2))) = 1+ln(

∑n−1
i=0 2i) = 1+ln(2n−1) ∼ ln(2n) =

C.Vinci et al. On the Stackelberg fuel pricing problem

223

ln(4) ·n/2 ' 1.386 ·n/2 and 1 + ln(θM/θm) = 1 + ln(2n−1) ∼ ln(4) ·n/2, we have
that the approximation ratio claimed in Theorem 3 for the SFPP may not be
asymptotically improved. By using an instance of SFPP similar to the previous
one, it is possible to prove that also the approximation ratio 1 + ln(λM/λm)
claimed in Theorem 4 is asymptotically tight.

References

1. P. Alimonti and V. Kann. Hardness of approximating problems on cubic graphs. In
Proc. of the 3rd Italian Conference on Algorithms and Complexity (CIAC), LNCS
1203, Springer, pp 288–298, 1997.

2. D. Bilò, L. Gualà, S. Leucci, and G. Proietti. Specializations and generalizations
of the Stackelberg minimum spanning tree game. In Proc. of the 6th Workshop on
Internet and Network Economics (WINE), LNCS 6484, Springer, pp. 75–86, 2010.

3. D. Bilò, L. Gualà, G. Proietti, and P. Widmayer. Computational aspects of a
2-player Stackelberg shortest paths tree game. In Proc. of the 4th Workshop on
Internet and Network Economics (WINE), LNCS 4858, Springer, pp. 251–262,
2008.

4. M. Bouhtou, A. Grigoriev, S. van Hoesel, A. van der Kraaij, F. Spieksma, and
M. Uetz. Pricing bridges to cross a river. Naval Research Logistics, 54(4):411–420,
2007.

5. P. Briest, P. Chalermsook, S. Khanna, B. Laekhanukit, and D. Nanongkai. Im-
proved hardness of approximation for Stackelberg shortest-path pricing. In Proc.
of the 6th Workshop on Internet and Network Economics (WINE), LNCS 6484,
Springer, pp. 444–454, 2010.

6. P. Briest, M. Hoefer, and P. Krysta. Stackelberg network pricing games. Algorith-
mica, 62(3-4):733–753, 2012.

7. J. Cardinal, E. D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O.
Weimann. The Stackelberg minimum spanning tree game. Algorithmica, 59(2):129–
144, 2011.

8. J. Cardinal, E. D. Demaine, S. Fiorini, G. Joret, I. Newman, and O. Weimann.
The Stackelberg minimum spanning tree game on planar and bounded-treewidth
graphs. Journal of Combinatorial Optimization, 25(1):19–46, 2013.

9. S. Khuller, A. Malekian, and J. Mestre. To fill or not to fill: The gas station
problem. ACM Transactions on Algorithms, 7(3):36, 2011.

10. D. G. Kirkpatrick, and R. Seidel. The ultimate planar convex hull algorithm. SIAM
Journal on Computing, 15(1):287–299, 1986.

11. M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its appli-
cation to optimal highway pricing. Management Science, 44(12):1608–1622, 1998.

12. S. Roch, G. Savard, and P. Marcotte. An approximation algorithm for Stackelberg
network pricing. Networks, 46(1):57-67, 2005.

13. M. I. Shamos, and D. Hoey. Geometric intersection problems. In Proc. of the 17th
Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society, pp. 208–215, 1976.

14. S. van Hoesel. An overview of Stackelberg pricing in networks. Research Memo-
randa 042, Maastricht: METEOR, Maastricht Research School of Economics of
Technology and Organization, 2006.

15. H. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Ver-
lag von Julius Springer, Vienna, 1934.

C.Vinci et al. On the Stackelberg fuel pricing problem

224

Structural complexity of multi-valued partial
functions computed by nondeterministic

pushdown automata

(Extended Abstract)

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. This paper continues a systematic and comprehensive study
on the structural properties of CFL functions, which are in general multi-
valued partial functions computed by one-way one-head nondeterministic
pushdown automata equipped with write-only output tapes (or push-
down transducers), where CFL refers to a relevance to context-free lan-
guages. The CFL functions tend to behave quite differently from their
corresponding context-free languages. We extensively discuss contain-
ments, separations, and refinements among various classes of functions
obtained from the CFL functions by applying Boolean operations, func-
tional composition, many-one relativization, and Turing relativization.
In particular, Turing relativization helps construct a hierarchy over the
class of CFL functions. We also analyze the computational complexity
of optimization functions, which are to find optimal values of CFL func-
tions, and discuss their relationships to the associated languages.

Keywords: multi-valued partial function, oracle, Boolean operation, re-
finement, many-one relativization, Turing relativization, CFL hierarchy,
optimization, pushdown automaton, context-free language

1 Much Ado about Functions

In a traditional field of formal languages and automata, we have dealt primarily
with languages because of their practical applications to, for example, a parsing
analysis of programming languages. Most fundamental languages listed in many
undergraduate textbooks are, unarguably, regular (or rational) languages and
context-free (or algebraic) languages.

Opposed to the recognition of languages, translation of words, for exam-
ple, requires a mechanism of transforming input words to output words. Aho
et al. [1] studied machines that produce words on output tapes while reading
symbols on an input tape. Mappings on strings (or word relations) that are real-
ized by such machines are known as transductions. Since languages are regarded,
from an integrated viewpoint, as Boolean-valued (i.e., {0, 1}-valued) total func-
tions, it seems more essential to study the behaviors of those functions. This

225

task is, however, quite challenging, because these functions often demand quite
different concepts, technical tools, and proof arguments, compared to those for
languages. When underlying machines are particularly nondeterministic, they
may produce numerous distinct output values (including the case of no output
values). Mappings realized by such machines become, in general, multi-valued
partial functions transforming each admissible string to a certain finite (possibly
empty) set of strings.

Based on a model of polynomial-time nondeterministic Turing machine, com-
putational complexity theory has long discussed the structural complexity of var-
ious NP function classes, including NPMV, NPSV, and NPSVt (where MV and
SV respectively stand for “multi-valued” and “single-valued” and the subscript
“t” does for “total”). See, e.g., a survey [14].

Within a scope of formal languages and automata, there is also rich litera-
ture concerning the behaviors of nondeterministic finite automata equipped with
write-only output tapes (known as rational transducers) and properties of as-
sociated multi-valued partial functions (known also as rational transductions).
Significant efforts have been made over the years to understand the functional-
ity of such functions. A well-known field of functions include “CFL functions,”
which were formally discussed in 1963 by Evey [4] and Fisher [6] and general
properties have been since then discussed in, e.g., [3, 10]. CFL functions are gen-
erally computed by one-way one-head nondeterministic pushdown automata (or
npda’s, in short) equipped with write-only output tapes. For example, the function
PALsub(w) = {x ∈ {0, 1}∗ | ∃u, v [w = uxv], x = xR} for every w ∈ {0, 1}∗ is a
CFL function, where xR is x in reverse. As subclasses of CFL functions, three
fundamental function classes CFLMV, CFLSV, and CFLSVt were recognized
explicitly in [19] and further explored in [20].

In recent literature, fascinating structural properties of CFL functions have
been extensively investigated. Konstantinidis et al. [10] took an algebraic ap-
proach toward the characterization of CFL functions. In relation to cryptogra-
phy, it was shown that there exists a pseudorandom generator in CFLSVt that
“fools” every language in a non-uniform (or an advised) version of REG [19].
Another function class CFLMV(2) in [20] contains pseudorandom generators
against a non-uniform analogue of CFL. The behaviors of functions in those func-
tion classes seem to look quite different from what we have known for context-free
languages. For instance, the single-valued total function class CFLSV can be seen
as a functional extension of the language family CFL∩ co-CFL rather than CFL
[20]. In stark contrast with a tidy theory of NP functions, circumstances that
surround CFL functions differ significantly because of mechanical constraints
(e.g., a use of stacks, one-way moves of tape heads, and λ-moves) that har-
ness the behaviors of underlying npda’s with output tapes. One such example is
concerning a notion of refinement [13] (or uniformization [10]). Unlike language
families, a containment between two multi-valued partial functions is customar-
ily replaced by refinement. Konstantinidis et al. [10] posed a basic question of
whether every function in CFLMV has a refinement in CFLSV. This question

T.Yamakami. Structural complexity of multi-valued partial functions

226

was lately solved negatively [22] and this result clearly contrasts a situation that
a similar relationship is not known to hold between NPMV and NPSV.

Amazingly, there still remains a vast range of structural properties that await
for further investigation. Thus, we wish to continue a coherent and systematic
study on the structural behaviors of the aforementioned CFL functions. This
paper aims at exploring fundamental relationships (such as, containment, sep-
aration, and refinement) among the above function classes and their natural
extensions via four typical operations: (i) Boolean operations, (ii) functional
composition, (iii) many-one relativization, and (iv) Turing relativization. The
last two operations are a natural generalization of many-one and Turing CFL-
reducibilities among languages [21]. We use the Turing relativization to introduce
a hierarchy of function classes ΣCFL

k MV, ΠCFL
k MV, and ΣCFL

k SV for each level
k ≥ 1, in which the first Σ-level classes coincide with CFLMV and CFLSV,
respectively. We show that all functions in this hierarchy have linear space-
complexity. With regard to refinement, we show that, if the CFL hierarchy of
[21] collapses to the kth level, every function in ΣCFL

k+1 MV has a refinement in

ΣCFL
k+1 SV for every index k ≥ 2.

Every nondeterministic machine with an output tape can be naturally seen as
a process of generating a set of feasible “solutions” of each instance. Among those
solutions, it is useful to study the complexity of finding “optimal” solutions. This
gives rise to optimization functions. Earlier, Krentel [11] discussed properties of
OptP that is composed of polynomial-time optimization functions. Here, we are
focused on similar functions induced by npda’s with output tapes. We denote
by OptCFL a class of those optimization CFL functions. This function class is
proven to be located between CFLSVt and ΣCFL

4 SVt. Moreover, we show the
class separation between CFLSVt and OptCFL.

To see a role of functions during a process of recognizing languages, Köbler
and Thierauf [9] introduced a //-advice operator by generalizing the Karp-Lipton
/-advice operator, and they argued the computational complexity of languages
in P//F and NP//F induced by any given function class F . Likewise, we discuss
the complexity of REG//F and CFL//F when F are various subclasses of CFL
functions, particularly CFLSVt and OptCFL.

All omitted or abridged proofs, because of the page limit, will appear shortly
in a complete version of this paper.

2 A Starting Point

Formal Languages. Let N be the set of all natural numbers (i.e., nonnegative
integers) and set N+ = N−{0}. Throughout this paper, we use the term “ poly-
nomial” to mean polynomials on N with nonnegative coefficients. In particular, a
linear polynomial is of the form ax+ b with a, b ∈ N. The notation A−B for two
sets A and B indicates the set difference {x | x ∈ A, x 6∈ B}. Given any set A,
P(A) denotes the power set of A. A set Σk (resp., Σ≤k), where k ∈ N, consists
only of strings of length k (resp., at most k). Here, we set Σ∗ =

⋃
k∈NΣ

k. The
empty string is always denoted λ. Given any language A over Σ, its complement
is Σ∗ −A, which is also denoted by A as long as Σ is clear from the context.

T.Yamakami. Structural complexity of multi-valued partial functions

227

We adopt a track notation [xy] from [15]. For two symbols σ and τ , [στ] expresses
a new symbol. For two strings x = x1x2 · · ·xn and y = y1y2 · · · yn of length n,
[xy] denotes a string [x1

y1][x2
y2] · · · [xn

yn]. Whenever |x| 6= |y|, we follow a convention
introduced in [15]: if |x| < |y|, then [xy] actually means [x#

m

y], where m = |y|−|x|
and # is a designated new symbol. Similarly, when |x| > |y|, the notation [xy]
expresses [x

y#m] with m = |x| − |y|.
As our basic computation model, we use one-way one-head nondeterministic

pushdown automata (or npda’s, in short) allowing λ-moves (or λ-transitions)
of their input-tape heads. The notations REG and CFL stand for the families
of all regular languages and of all context-free languages, respectively. For each
number k ∈ N+, the k-conjunctive closure of CFL, denoted by CFL(k), is defined

to be {⋂ki=1Ai | A1, A2, . . . , Ak ∈ CFL} (see, e.g., [19]).

Given any language A (used as an oracle), CFLAT (or CFLT (A)) expresses a
collection of all languages recognized by npda’s equipped with write-only query
tapes with which the npda’s make non-adaptive oracle queries to A, provided
that all computation paths of the npda’s must terminate in O(n) steps no
matter what oracle is used [21]. We use the notation CFLCT (or CFLT (C)) for
language family C to denote the union

⋃
A∈C CFLAT . Its deterministic version

is expressed as DCFLCT . The CFL hierarchy {∆CFL
k , ΣCFL

k , ΠCFL
k | k ∈ N+}

is composed of classes ∆CFL
1 = DCFL, ΣCFL

1 = CFL, ΠCFL
k = co-ΣCFL

k ,
∆CFL
k+1 = DCFLT (ΠCFL

k), and ΣCFL
k+1 = CFLT (ΠCFL

k) for each index k ≥ 1 [21].

Functions and Refinement. Our terminology associated with multi-valued
partial functions closely follows the standard terminology in computational com-
plexity theory. Throughout this paper, we adopt the following convention: the
generic term “function” always refers to “multi-valued partial function,” pro-
vided that single-valued functions are viewed as a special case of multi-valued
functions and, moreover, partial functions include total functions. We are in-
terested in multi-valued partial functions mapping1 Σ∗ to P(Γ ∗) for certain
alphabets Σ and Γ . When f is single-valued, we often write f(x) = y instead
of y ∈ f(x). Associated with f , dom(f) denotes the domain of f , defined to be
{x ∈ Σ∗ | f(x) 6= Ø}. If x 6∈ dom(x), then f(x) is said to be undefined. The
range ran(f) of f is a set {y ∈ Γ ∗ | f−1(y) 6= Ø}.

For any language A, the characteristic function for A, denoted by χA, is a
function defined as χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. We also use a
quasi-characteristic function ηA, which is defined as ηA(x) = 1 for any string x
in A and ηA(x) is not defined for all the other strings x.

Concerning all function classes discussed in this paper, it is natural to concen-
trate only on functions whose outcomes are bounded in size by fixed polynomials.
More precisely, a multi-valued partial function f : Σ∗ → P(Γ ∗) is called poly-
nomially bounded (resp., linearly bounded) if there exists a polynomial (resp., a
linear polynomial) p such that, for any two strings x ∈ dom(f) and y ∈ Γ ∗, if

1 To describe a multi-valued partial function f , the expression “f : Σ∗ → Γ ∗” is cus-
tomarily used in the literature. However, the current expression “f : Σ∗ → P(Γ ∗)”
matches a fact that the outcome of f on each input string in Σ∗ is a subset of Γ ∗.

T.Yamakami. Structural complexity of multi-valued partial functions

228

y ∈ f(x) then |y| ≤ p(|x|) holds. In this paper, we understand that all function
classes are made of polynomially-bounded functions. Given two alphabets Σ and
Γ , a function f : Σ∗ → P(Γ ∗) is called length preserving if, for any x ∈ Σ∗ and
y ∈ Γ ∗, y ∈ f(x) implies |x| = |y|.

Whenever we refer to a write-only tape, we always assume that (i) initially,
all cells of the tape are blank, (ii) a tape head starts at the so-called start cell,
(iii) the tape head steps forward whenever it writes down any non-blank symbol,
and (iv) the tape head can stay still only in a blank cell. An output (outcome
or output string) along a computation path is a string produced on the output
tape after the computation path is terminated. We call an output string valid
(or legitimate) if it is produced along a certain accepting computation path.

To describe npda’s, we take the following specific definition. For any given
function f : Σ∗ → P(Γ ∗), an npda N equipped with a one-way read-only in-
put tape and a write-only output tape that computes f must have the form
(Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qacc, Qrej), where Q is a set of inner states, Θ is a
stack alphabet, q0 (∈ Q) is the initial state, Z0 (∈ Θ) is the stack’s bottom
marker, and δ : (Q − Qhalt) × (Σ̌ ∪ {λ}) × Θ → P(Q × Θ∗ × (Γ ∪ {λ})) is a
transition function, where Qhalt = Qacc ∪Qrej , Σ̌ = Σ ∪ {|c, $}, and |c and $ are
respectively left and right endmarkers. It is important to note that, in accor-
dance with the basic setting of [21], we consider only npda’s whose computation
paths are all terminate (i.e., reach halting states) in O(n) steps,2 where n refers
to input size. We refer to this specific condition regarding execution time as the
termination condition.

A function class CFLMV is composed of all (multi-valued partial) functions
f , each of which maps Σ∗ to P(Γ ∗) for certain alphabets Σ and Γ and there
exists an npda N with a one-way read-only input tape and a write-only output
tape such that, for every input x ∈ Σ∗, f(x) is a set of all valid outcomes of
N on the input x. The termination condition imposed on our npda’s obviously
leads to an anticipated containment CFLMV ⊆ NPMV. Another class CFLSV is
a subclass of CFLMV consisting of single-valued partial functions. In addition,
CFLMVt and CFLSVt are respectively restrictions of CFLMV and CFLSV onto
total functions. Those function classes were discussed earlier in [19].

An important concept associated with multi-valued partial functions is re-
finement [13]. This concept (denoted by vref) is more suitable to use than set
containment (⊆). Given two multi-valued partial functions f and g, we say that
f is a refinement of g, denoted by g vref f , if (1) dom(f) = dom(g) and (2)
for every x, f(x) ⊆ g(x) (as a set inclusion). We also say that g is refined by f .
Given two sets F and G of functions, G vref F if every function g in G can be
refined by a certain function f in F . When f is additionally single-valued, we
call f a single-valued refinement of g.

2 If no execution time bound is imposed, a function computed by an npda that non-
deterministically produces every binary string on its output tape for each input
becomes a valid CFL function; however, this function is no longer an NP function.

T.Yamakami. Structural complexity of multi-valued partial functions

229

3 Basic Operations for Function Classes

Let us discuss our theme of the structural complexity of various classes of (multi-
valued partial) functions by exploring fundamental relationships among those
function classes. In the course of our discussion, we will unearth an exquisite
nature of CFL functions, which looks quite different from that of NP functions.

We begin with demonstrating basic features of CFL functions. First, let us
present close relationships between CFL functions and context-free languages.
Notice that, for any function f in CFLMV, both dom(f) and ran(f) belong
to CFL. It is useful to recall from [21] a notion of \-extension. Assuming that
\ 6∈ Σ, a \-extension of a given string x ∈ Σ∗ is a string x̃ over Σ ∪{\} satisfying
the following requirement: x is obtained directly from x̃ simply by removing all
occurrences of \ in x̃. For example, if x = 01101, then x̃ may be 01\1\01 or
\0110\\1. The next lemma resembles Nivat’s representation theorem for rational
transductions (see, e.g., [10, Theorem 2]).

Lemma 1. For any function f ∈ CFLMV, there exist a language A ∈ CFL
and a linear polynomial p such that, for every pair x and y, y ∈ f(x) iff (i)
[x̃ỹ] ∈ A, (ii) |y| ≤ p(|x|), and (iii) |x̃| = |ỹ| for certain strings x̃ and ỹ, which
are \-extensions of x and y, respectively.

An immediate application of Lemma 1 leads to a functional version of the
well-known pumping lemma [2].

Lemma 2. (functional pumping lemma for CFLMV) Let Σ and Γ be any two
alphabets and let f : Σ∗ → P(Γ ∗) be any function in CFLMV. There exist three
numbers m ∈ N+ and c, d ∈ N that satisfy the following condition. Any string
w ∈ Σ∗ with |w| ≥ m and any string s ∈ f(w) are decomposed into w = uvxyz
and s = abpqr such that (i) |vxy| ≤ m, (ii) |vybq| ≥ 1, (iii) |bq| ≤ cm+ d, and
(iv) abipqir ∈ f(uvixyiz) for any number i ∈ N. In the case where f is further
length preserving, the following condition also holds: (v) |v| = |b| and |y| = |q|.
Moreover, (i)–(ii) can be replaced by (i’) |bq| ≥ 1.

Boolean operations over languages in CFL have been extensively discussed
in the past literature (e.g., [16, 21]). Similarly, it is possible to consider Boolean
operations that are directly applicable to functions. In particular, we are focused
on three typical Boolean operations: union, intersection, and complement. Let us
define the first two operations. Given two function classes F1 and F2, let F1∧F2

(resp., F1 ∨F2) denote a class of all functions f defined as f(x) = f1(x)∩ f2(x)
(set intersection) (resp., f(x) = f1(x)∪f2(x), set union) over all inputs x, where
f1 ∈ F1 and f2 ∈ F2. Expanding CFLMV(2) in Section 1, we inductively define
a k-conjunctive function class CFLMV(k) as follows: CFLMV(1) = CFLMV
and CFLMV(k + 1) = CFLMV(k) ∧ CFLMV for any index k ∈ N+. Likewise,
CFLSV(k) is defined using CFLSV instead of CFLMV.

Proposition 3. Let k,m ≥ 1.

1. CFLMV(max{k,m}) ⊆ CFLMV(k) ∨ CFLMV(m) ⊆ CFLMV(km).

T.Yamakami. Structural complexity of multi-valued partial functions

230

2. CFLMV(max{k,m}) ⊆ CFLMV(k) ∧ CFLMV(m) ⊆ CFLMV(k +m).
3. CFLSV(k) $ CFLSV(k + 1).

Note that Proposition 3(3) follows indirectly from a result in [12].
Fenner et al. [5] considered “complements” of NP functions. Likewise, we can

discuss complements of CFL functions. Let F be any family of functions whose
output sizes are upper-bounded by certain linear polynomials. A function f is in
co-F if there are a linear polynomial p, another function g ∈ F , and a constant
n0 ∈ N such that, for any pair (x, y) with |x| ≥ n0, y ∈ f(x) iff both |y| ≤ p(|x|)
and y 6∈ g(x) holds. This condition implies that f(x) = Σ≤a|x|+b − g(x) (set
difference) for all x ∈ Σ≥n0 . The finite portion Σ<n0 of inputs is ignored.

The use of set difference in the above definition makes us introduce another
class operator 	. Given two sets F ,G of functions, F 	G denotes a collection of
functions h satisfying the following: for certain two functions f ∈ F and g ∈ G,
h(x) = f(x)− g(x) (set difference) holds for any x.

In Proposition 4, we will give basic properties of functions in co-CFLMV
and of the operator 	. To describe the proposition, we need to introduce a new
function class, denoted by NFAMV, which is defined in a similar way of intro-
ducing CFLMV using, in place of npda’s, one-way (one-head) nondeterministic
finite automata (or nfa’s, in short) with write-only output tapes, provided that
the termination condition (i.e., all computation paths terminate in linear time)
must hold.

Proposition 4. 1. co-(co-CFLMV) = CFLMV.
2. co-CFLMV = NFAMV 	 CFLMV.
3. CFLMV 	 CFLMV = CFLMV ∧ co-CFLMV.
4. CFLMV 6= co-CFLMV. The same holds for CFLMVt.

Proof Sketch. We will show only (2). (⊇) Let f ∈ NFAMV 	 CFLMV and
take two functions h ∈ NFAMV and g ∈ CFLMV for which f(x) = h(x)− g(x)
(set difference) for all inputs x ∈ Σ∗. Choose a linear polynomial p satisfying
that, for every pair (x, y), y ∈ h(x) ∪ g(x) implies |y| ≤ p(|x|). By the definition
of f , it holds that f(x) = Σ≤p(|x|) − (g(x) ∪ (Σ≤p(|x|) − h(x))) for all x. For
simplicity, we define r(x) = g(x) ∪ (Σ≤p(|x|) − h(x)) for every x. It thus holds
that f(x) = Σ≤p(|x|) − r(x). It is not difficult to show that r is in CFLMV.

(⊆) Let f ∈ co-CFLMV. There are a linear polynomial p and a function g ∈
CFLMV satisfying that f(x) = Σ≤p(|x|)− g(x) for all x. We set h(x) = Σ≤p(|x|).
Since h ∈ NFAMV, we conclude that f belongs to NFAMV 	 CFLMV. 2

Another basic operation used for functions is functional composition. The
functional composition f ◦ g of two functions f and g is defined as (f ◦ g)(x) =⋃
y∈g(x) f(y) for every input x. For two function classes F and G, let F ◦ G =

{f ◦ g | f ∈ F , g ∈ G}. In particular, we inductively define CFLSV(1) = CFLSV

and CFLSV(k+1) = CFLSV ◦ CFLSV(k) for each index k ≥ 1. For instance, the
function f(x) = {xx} defined for any x ∈ Σ∗ belongs to CFLSV(2). This fact

yields, e.g., CFLSV(2) ⊆ CFLSV(4). Unlike NP function classes (such as, NPSV

T.Yamakami. Structural complexity of multi-valued partial functions

231

and NPMV), CFLSVt (and therefore CFLSV and CFLMV) is not closed under
functional composition.

Proposition 5. CFLSVt 6= CFLSVt
(2). (Also for CFLSV and CFLMV.)

Proof Sketch. Let Σ = {0, 1, \} be our alphabet and define fdup\(x) = {x\x}
for any input x ∈ {0, 1}∗ and fdup\(x) = {λ} for any other inputs x. It is

not difficult to show that fdup\ ∈ CFLSVt
(2). To show that fdup\ 6∈ CFLSVt,

we assume that fdup\ ∈ CFLSVt. Let DUP\ be a “marked” version of DUP
(duplication), defined as DUP\ = {x\x | x ∈ {0, 1}∗}. It holds that, for every
w 6= λ, w ∈ ran(fdup\) iff there is a string x such that w ∈ fdup\(x) iff w ∈ DUP\.
Thus, DUP\∪{λ} = ran(fdup\). Note that DUP\ ∈ CFL since fdup\ ∈ CFLSVt.
However, it is well-known that DUP\ /∈ CFL. This leads to a contradiction.
Therefore, we conclude that fdup\ 6∈ CFLSVt. 2

To examine the role of functions in a process of recognizing a given language,
a //-advice operator, defined by Köbler and Thierauf [9], is quite useful. Given
a class F of functions, a language L is in CFL//F if there exists a language
B ∈ CFL and a function h ∈ F satisfying L = {x | ∃ y ∈ h(x) s.t. [xy] ∈
B}. Analogously, REG//F is defined using REG instead of CFL. This operator
naturally extends a /-advice operator of [15, 17].

In the polynomial-time setting, it holds that NP ∩ co-NP = P//NPSVt [9].
A similar equality, however, does not hold for CFL functions.

Proposition 6. 1. REG//NFASVt * CFL and CFL * REG//NFAMV.
2. REG//NFASVt is closed under complement but REG//NFAMV is not.
3. CFL ∩ co-CFL $ REG//CFLSVt.

Proof Sketch. (1) Note that the language DUP# = {x#x | x ∈ {0, 1}∗} (du-
plication) falls into REG//NFASVt by setting h(x#y) = y and B = {[xx] |
x ∈ {0, 1}∗}. The key idea is the following claim. (*) A language L is in
REG//NFAMV iff L is recognized by a certain one-way two-head (non-sensing)
nfa (or an nfa(2), in short) with λ-moves. See a survey, e.g., [7], for this model.
Now, consider Lpal = {x#xR | x ∈ {0, 1}∗} (palindromes). Since Lpal cannot be
recognized by any nfa(2), it follows that Lpal 6∈ REG//NFAMV.

(2) The non-closure property of REG//NFAMV follows from a fact that the
class of languages recognized by nfa(2)’s is not closed under complement. Use
the above claim (*) to obtain the desired result. 2

Bwfore closing this section, we exhibit a simple structural difference between
languages and functions. It is well-known that all languages over the unary
alphabet {1} in CFL belong to REG. On the contrary, there is a function f :
{1}∗ → {0, 1}∗ such that f is in CFLMV but not in NFAMV.

4 Oracle Computation and Two Relativizations

Oracle computation is a natural extension of ordinary stand-alone computation
by providing external information by way of query-and-answer communication.

T.Yamakami. Structural complexity of multi-valued partial functions

232

Such oracle computation can realize various forms of relativizations, including
many-one and Turing relativizations and thus introduce relativized languages
and functions. By analogy with relativized NP functions (e.g., [14]), let us con-
sider many-one and Turing relativizations of CFL functions. The first notion
of many-one relativization was discussed for languages in automata theory [8,
21] and we intend to extend it to CFL functions. Given any language A over
alphabet Γ , a function f : Σ∗ → P(Γ ∗) is in CFLMVA

m (or CFLMVm(A)) if
there exists an npda M with two write-only tapes (one of which is a standard
output tape and the other is a query tape) such that, for any x ∈ Σ∗, (i) along
any accepting computation path p of M on x (notationally, p ∈ ACCM (x)),
M produces a query string yp on the query tape as well as an output string zp
on the output tape and (ii) f(x) equals the set {zp | yp ∈ A, p ∈ ACCM (x)}.
Such an M is referred to as an oracle npda. Given any language family C, we
further set CFLMVCm (or CFLMVm(C)) to be

⋃
A∈C CFLMVA

m. Similarly, we

define CFLSVA
m and CFLSVCm by additionally demanding the size of each out-

put string set is at most 1. Using CFLSVA
m, a relativized language family CFLAm

defined in [21] can be expressed as CFLAm = {L | ηL ∈ CFLSVA
m}.

Lemma 7. 1. CFLMVREG
m = CFLMV and CFLSVREG

m = CFLSV.

2. CFLSV(k+1) = CFLSVCFL(k)
m .

Proposition 8. 1. REG//CFLSVt ⊆ CFLCFL(2)
m ∩ co-CFLCFL(2)

m .

2. CFL//CFLSVt ⊆ CFLCFL(3)
m .

Proof Sketch. We will prove only (2). For convenience, we write [x, y]T for [xy]
in this proof. Let CFLAm[1] = CFLAm and CFLAm[k+1] = CFLm(CFLAm[k]) for every
index k ≥ 1 [21]. Let L ∈ CFL//CFLSVt and take an npda M and a function
h ∈ CFLSVt for which L = {x | M accepts [x, h(x)]T }. Let M ′ be an npda
with an output tape computing h. An oracle npda N is also defined as follows.
On input x, N simulates M ′ on x and nondeterministically produces [x̃, ỹ]T on its
query tape when M ′ outputs y, where x̃ and ỹ are appropriate \-extensions of x
and y, respectively. An oracle A receives a \-extension [x̃, ỹ]T and decides whether
M accepts [x, y]T by removing all \s. Clearly, L belongs to CFLAm via N . Define
another npda N1. On input w = [x̃, ỹ]T , N1 simulates M on [x, z]T by guessing
z symbol by symbol. At the same time, it writes [ỹ′, z̃]T on a query tape and
accepts w exactly when M enters an accepting state. Let B = {[ỹ′, z̃]T | y = z}.
Note that B is in CFLCFL

m . Hence, A is in CFLBm ⊆ CFLCFL
m[2], and thus L is in

CFLCFL
m[3]. Since CFLCFL

m[3] = CFLCFL(3)
m [21], the desired conclusion follows. 2

The second relativization is Turing relativization. A multi-valued partial func-
tion f belongs to CFLMVA

T (or CFLMVT (A)) if there exists an oracle npda M
having three extra inner states {qquery, qyes, qno} that satisfies the following three
conditions: on each input x, (i) if M enters a query state qquery, then a valid
string, say, s written on the query tape is sent to A and, automatically, the con-
tent of the query tape becomes blank and the tape head returns to the start cell,
(ii) oracle A sets M ’s inner state to qyes if s ∈ A and qno otherwise, and (iii) all
computation paths of M terminate in time O(n) no matter what oracle is used.

T.Yamakami. Structural complexity of multi-valued partial functions

233

Obviously, CFLMVA
T = CFLMVA

T holds for any oracle A. Define CFLMVCT (or
CFLMVT (C)) to be the union

⋃
A∈C CFLMVA

T for a given language family C.
Analogously to the well-known NPMV hierarchy, composed of Σp

kMV and
Πp
kMV for k ∈ N+ [14], we inductively define ΣCFL

1 MV = CFLMV, ΠCFL
k MV =

co-ΣCFL
k MV, and ΣCFL

k+1 MV = CFLMVT (ΠCFL
k) for every index k ≥ 1. In a

similar fashion, we define ΣCFL
k SV using CFLSVA

T in place of CFLMVA
T . The

above CFLMV hierarchy is useful to scaling the computational complexity of
given functions. For example, the function f(w) = {x ∈ {0, 1}∗ | ∃u, v [w =
uxxv]} for every w ∈ {0, 1}∗ belongs to ΣCFL

2 MV. Moreover, it is possible to
show that CFLMV ∪ co-CFLMV ⊆ CFLMV 	 CFLMV ⊆ ΣCFL

4 MV.

Proposition 9. Each function in
⋃
k∈N+ ΣCFL

k SVt can be computed by an ap-
propriate O(n) space-bounded multi-tape deterministic Turing machine.

Proof Sketch. It is known in [21] that ΣCFL
k ⊆ DSPACE(O(n)) for every k ≥ 1.

It therefore suffices to show that, for any fixed language A ∈ DSPACE(O(n)),
every function f in CFLSVt

A can be computed using O(n) space. This is done
by a direct simulation of f on a multi-tape Turing machine. 2

For k ≥ 3, it is possible to give the exact characterization of REG//ΣCFL
k SVt.

This makes a sharp contrast with Proposition 6(3).

Proposition 10. For every index k ≥ 3, ΣCFL
k ∩ΠCFL

k = REG//ΣCFL
k SVt.

Proof Sketch. By extending the proof of Proposition 6(3), it is possible to show
that ΣCFL

k ∩ ΠCFL
k ⊆ REG//ΣCFL

k SVt. Similarly to Proposition 6(2), it holds
that REG//ΣCFL

k SVt is closed under complement. It thus suffices to show that
REG//ΣCFL

k SVt ⊆ ΣCFL
k . This can be done by a direct simulation. 2

Lemma 11. Let e ≥ 2 and k ≥ 1. ΣCFL
k SV = ΣCFL

k+1 SV ⇒ ΣCFL
k = ΣCFL

k+1 ⇒
ΣCFL
k+1 SV = ΣCFL

k+e SV.

Proof Sketch. Assuming ΣCFL
k SV = ΣCFL

k+1 SV, let us take any language A ∈
ΣCFL
k+1 and consider ηA. It is not difficult to show that, for any index d ∈ N+,

A ∈ ΣCFL
d iff ηA ∈ ΣCFL

d SV. Thus, ηA ∈ ΣCFL
k+1 SV = ΣCFL

k SV. This implies

that A ∈ ΣCFL
k . Next, assume that ΣCFL

k = ΣCFL
k+1 . It is proven in [21] that

ΣCFL
k = ΣCFL

k+1 iff ΣCFL
k = ΣCFL

k+e for all e ≥ 1. Hence, for every e ≥ 2, we obtain

ΣCFL
k = ΣCFL

k+e−1, which is equivalent to ΠCFL
k = ΠCFL

k+e−1. It then follows that

ΣCFL
k+e SV = CFLSVT (ΠCFL

k+e−1) = CFLSVT (ΠCFL
k) = ΣCFL

k+1 SV. 2

Regarding refinement, from the proof of [8, Theorem 3] follows NFAMV vref
NFASV. This result leads to NFAMV ◦CFLSV vref CFLSV in [10]. By a direct
simulation, nevertheless, it is possible to show that ΣCFL

k MV vref ΣCFL
k+1 SV for

every k ≥ 1. Lemma 11 together with this fact leads to the following consequence.

Proposition 12. Let k ≥ 2. If ΣCFL
k = ΣCFL

k+1 , then ΣCFL
k+1 MV vref ΣCFL

k+1 SV.

Recently, it was shown in [22] that CFLMV 6vref CFLSV holds. However, it
is not known if this can be extended to every level of the CFLMV hierarchy.

T.Yamakami. Structural complexity of multi-valued partial functions

234

5 Optimization Functions

An optimization problem is to find an optimal feasible solution that satisfy a given
condition. Krentel [11] studied the complexity of those optimization problems.
Analogously to OptP of Krentel, we define OptCFL as a collection of single-
valued total functions f : Σ∗ → Γ ∗ such that there exists an npda M and an
opt ∈ {maximum,minimum} for which, for every string x ∈ Σ∗, f(x) denotes the
opt output string of M on input x along an appropriate accepting computation
path, assuming that M must have at least one accepting computation path. Here,
we use the dictionary (or alphabetical) order < over Γ ∗ (e.g., abbe < abc and
ab < aba) instead of the lexicographic order to compensate the npda’s limited
ability of comparing two strings from left to right. For example, the function
f(w) = max{PALsub(w)} for w ∈ {0, 1}∗, where PALsub is defined in Section
1, is a member of OptCFL. It holds that CFLMVt vref OptCFL.

Proposition 13. CFLSVt $ OptCFL ⊆ ΣCFL
4 SVt.

The first part of Proposition 13 comes from a fact that the function f(w) =
max{g(w)}, where g(w) = {λ} ∪ {xiyi | w = x1\x2\x3#y1\y2\y3, xi = yRi , i ∈
{1, 2, 3}}, is in OptCFL but not in CFLSVt. This latter part is proven by ap-
plying the functional pumping lemma.

Note that, in the polynomial-time setting, a much sharper upper-bound of
OptP ⊆ Σp

2SVt is known. Similarly to OptCFL, let us define OptNFAEL using
nfa’s M instead of npda’s with an extra condition that M(x) outputs only strings
of the equal length. This new class is located within ΣCFL

2 SVt.

Proposition 14. OptNFAEL ⊆ ΣCFL
2 SVt.

Proof Sketch. Let f ∈ OptNFAEL and take an underlying nfa N that forces
f(x) to equal max{N(x)} for every x. Define an oracle npda M1 to simulate N
on x and output, say, y. Simultaneously, query y#xR using a stack wisely. If
its oracle answer is 1, enter an accepting state; otherwise, reject. Make another
npda M2 receive y#xR, simulate NR on xR, and compare its outcome with yR,
where the notation NR refers to an nfa that reverses the computation of N . 2

Proposition 15. 1. CFL ∪ co-CFL ⊆ REG//OptCFL ⊆ ΣCFL
4 ∩ΠCFL

4 .
2. CFL//OptCFL ⊆ ΣCFL

5 .

Proof Sketch. We will show only (1). Note that REG//OptCFL is closed under
complementation. Let L ∈ CFL and take an npda M recognizing L. Define N1 as
follows. On input x, guess a bit b. If b = 0, then output 0 in an accepting state.
Otherwise, simulate M on x and output 1 along only accepting computation
paths of M . Let h(x) be max{N1(x)} for all x’s. It follows that L = {[x

h(x)] |
h(x) 6= Ø}. This proves that L ∈ REG//OptCFL. Next, let L ∈ REG//OptCFL.
Since OptCFL ⊆ ΣCFL

4 SVt, we obtain L ∈ REG//ΣCFL
4 SVt. By Proposition 10,

this implies that L belongs to ΣCFL
4 ∩ΠCFL

4 . 2

T.Yamakami. Structural complexity of multi-valued partial functions

235

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: A general theory of translation. Math.
Systems Theory, 3, 193–221 (1967)

2. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase-
structure grammars. Z. Phonetik Sprachwiss. Kommunik., 14, 143–172 (1961)

3. Choffrut, C., Culik, K.: Properties of finite and pushdown transducers. SIAM
J. Comput., 12, 300–315 (1983)

4. Evey, R.J.: Application of pushdown-store machines. In: Proc. 1963 Fall Joint
Computer Conference, AFIPS Press, pp.215–227, 1963

5. Fenner, S.A., Homer, S., Ogihara, M., Selman, A.L.: Oracles that compute
values. SIAM J. Comput., 26, 1043–1065 (1997)

6. Fisher, P.C.: On computability by certain classes of restricted Turing machines.
In: Proc. 4th Annual IEEE Symp. on Switching Circuit Theory and Logical
Design (SWCT’63), IEEE Computer Society, pp.23–32, 1963

7. Holzer, M., Kutrib, M., Malcher, A.: Multi-head finite automata: characteri-
zations, concepts and open problems. In: Proc. of the Workshop on The Com-
plexity of Simple Programs, number 1 in EPTCS, pp.93–107, 2008

8. Kobayashi, K.: Classification of formal langauges by functional binary trans-
ductions. Inform. Control, 15, 95–109 (1969)

9. Köbler, J., Thierauf, T.: Complexity-restricted advice functions. SIAM J. Com-
put., 23, 261–275 (1994)

10. Konstantinidis, S., Santean, N., Yu, S.: Representation and uniformization of
algebraic transductions. Acta Inform., 43, 395–417 (2007)

11. Krentel, M.: The complexity of optimization problems. J. Comput. System
Sci., 36, 490–509 (1988)

12. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free
languages. Math. Systems Theory, 7, 185–192 (1973)

13. Selman, A.L.: A taxonomy of complexity classes of functions. J. Comput. Sys-
tem Sci., 48, 357–381 (1994)

14. Selman, A.L.: Much ado about functions. In: Proc. of the 11th Annual IEEE
Conference on Computational Complexity, pp.198–212, 1996

15. Tadaki, K., Yamakami, T., Lin, J. C. H.: Theory of one-tape linear-time Turing
machines. Theor. Comput. Sci., 411, 22–43 (2010)

16. Wotschke, D.: Nondeterminism and Boolean operations in pda’s. J. Comp.
System Sci., 16, 456–461 (1978)

17. Yamakami, T.: Swapping lemmas for regular and context-free languages. Avail-
able at arXiv:0808.4122 (2008)

18. Yamakami, T.: The roles of advice to one-tape linear-time Turing machines
and finite automata. Int. J. Found. Comput. Sci., 21, 941–962 (2010)

19. Yamakami, T.: Immunity and pseudorandomness of context-free languages.
Theor. Comput. Sci., 412, 6432–6450 (2011)

20. Yamakami, T.: Pseudorandom generators against advised context-free lan-
guages. See arXiv:0902.2774 (2009)

21. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities,
and the hierarchy over the family of context-free languages. In: Proc. of SOF-
SEM 2014, V. Geffert et al. (eds.), LNCS, vol. 8327, pp. 514–525 (2014). A
complete version appears at arXiv:1303.1717.

22. Yamakami, T.: Not all multi-valued partial CFL functions are refined by single-
valued functions. In: Proc. of IFIP TCS 2014, J. Diaz et al. (eds), LNCS vol.
8705, pp. 136–150 (2014)

T.Yamakami. Structural complexity of multi-valued partial functions

236

Proving termination of programs having
transition invariants of height ω

Stefano Berardi1, Paulo Oliva2, and Silvia Steila1

1 Università degli studi di Torino
2 Queen Mary University of London

Abstract. We study the proof of a recent and relevant result about
termination of programs, the Termination Theorem by Podelski and Ry-
balchenko [9]. We prove that in a special case, the only case which is used
in applications, all programs proved to be terminating may be described
by some primitive recursive map.

1 Introducing the Termination Theorem

Fix any transition relation R over the set S of possible states of a program P .
Assume In ⊆ S is the set of possible initial states of P , and that Acc is the set of
accessible states of P , if we start from some state in In and we use the relation
R finitely many times. The Termination Theorem by Podelski and Rybalchenko
[9] may be stated as follows. The transition relation R is terminating from any
initial state if and only if the transitive closure R+ of R, restricted to the set Acc
of accessible states, is included in some finite union of well-founded relations.

The authors formulate the Termination Theorem by introducing the con-
cept of “disjunctively well-founded transition invariant”. A disjunctively well-
founded transition invariant is any binary relation T which is the union of a
family T1, . . . , Tn of well-founded relations, and which includes the restriction to
Acc of R+. The original statement of the Termination Theorem is: “R is termi-
nating from any initial state if and only if R has some disjunctively well-founded
transition invariant T”.

By building over this result the same authors and Byron Cook designed
an algorithm they called Terminator [5], checking a sufficient condition for ter-
mination for a while-if program P in a simplified programming language. The
Terminator algorithm takes P and looks for a disjunctively well-founded transi-
tion invariant T = T1 ∪ . . . ∪ Tn for P , with T1, . . . , Tn well-founded relations of
height ω. The extra feature “of height ω” is found in the algorithm but not in
the Theorem. If the Terminator algorithm finds T1, . . . , Tn as above, it deduces
the termination for the program P using the Termination Theorem.

This particular application of the Termination Theorem raises an interesting
question: what is the status of a transition relation R having a disjunctively
well-founded transition invariant T = T1 ∪ . . . ∪ Tnwhere each Ti has height ω?
An answer to this question can lead to a characterization of the set of while-if
programs which the termination algorithm can prove to be terminating.

237

2 A characterization of the Termination Theorem in the
case of invariants of height ω

Our first result is the following. The Termination Theorem may derive that a
transition relation R is terminating using n relations T1, . . . , Tn of height ω if and
only if R has height ≤ ωn. Besides, in the case T1, . . . , Tn are primitive recursive
and R itself is (the graph of) the restriction of some primitive recursive map to
some primitive recursive subset, we may say more. In this case, indeed, the final
state of the program P is computable by some primitive recursive map in the
initial state.

As a corollary we derive that the set of functions, having at least one im-
plementation in Podelski-Rybalchenko while-if language with a well-founded dis-
junctively transition invariant where each relation has height ω, is exactly the
set of primitive recursive functions. This is an ongoing work: a preliminary draft
may be found in [1]. An independent proof of the same result, again in the form
of preliminary draft, may be found in [8]. The authors follow a completely dif-
ferent approach, they use a miniaturization of the Dickson Lemma to prove the
Termination Theorem.

3 A sketch of our proof

Our approach is based over the analysis a new intuitionistic proof of the Ter-
mination Theorem [2] (another intuitionistic proof already existed, by Thierry
Coquand [6]). The original proof of the Termination Theorem requires classical
logic and Ramsey’s Theorem. In order to intuitionistically prove the Termina-
tion Theorem we introduced a kind of contrapositive of Ramsey Theorem, the
H-closure Theorem [2], which we are going to explain.

First of all, we introduce the notion of H-well-foundation. Let T be any
binary relation on some set I. We say that a sequence s is T -homogeneous if
s ∈ H(T), where H(T) is defined as follows.

Let T be a binary relation on some set I. H(T) is the set of the T -decreasing
transitive finite sequences on I:

〈x1, . . . , xn〉 ∈ H(T) ⇐⇒ ∀i, j ∈ [1, n].i < j =⇒ xjTxi.

T is H-well-founded if H(T) is well-founded by one-step extension. If T is
well-founded that T is H-well-founded, but H-well-foundation is much weaker
than well-foundation. The notion of H-closure is new, therefore we provide some
examples. The relation T ≡ (6=) over {0, 1} is not well-founded because we have
the infinite chain 0 6= 1 6= 0 6= 1 Any sequence s ∈ H(T), by definition
unfolding, has any two elements in relation 6=, therefore has pairwise distinct
elements, hence has length ≤ 2. Thus, H(T) has height 2 w.r.t. the one-step
extension relation, therefore H(T) is well-founded, and T is H-well-founded.
Another example (for which we skip the proof): a relation T over a finite set is
well-founded if and only if there are no T -cycles, that is, there are no x0, . . . , xn ∈

S.Berardi et al. Proving termination of programs having transition invariants of height ω

238

I such that x0Tx1T . . . Txn = x0. A relation T over a finite set is H-well-founded
if and only if there are no T -loops, that is, there is no x ∈ I such that xTx. This
second condition is much weaker that the first one, a loop is a cycle but a cycle
in general is not a loop.

The H-closure Theorem says that if R1, . . . , Rk are H-well-founded then
(R1 ∪ · · · ∪ Rk) is also H-well-founded. H-closure has an intuitionistic proof,
and, as we said, intuitionistically derives the Termination Theorem. In order to
characterize the Termination Theorem in the case of height ω relations, we first
strengthen H-closure as follows. If each Ri has ordinal height less or equal than
αi, then H(R1∪· · ·∪Rk) has ordinal height less or equal than 2α1⊕···⊕αk , where
⊕ is the natural sum of ordinals, defined as the smallest binary function which is
increasing in both arguments w.r.t. the pointwise ordering [4]. The proof uses a
simulation of the ordering of H(R1 ∪ · · · ∪Rk) in the inclusion ordering over the
set of k-branching trees, whose branches are decreasing sequences in R1⊕· · ·⊕Rk
[1].

Eventually, we embed the ordering of H(R1∪· · ·∪Rk) into the ordering over
[0, ωk], and we use the characterization for the decreasing sequences over [0, ωk]
in order to characterize the sequences of transitions for a given program P .

After this proof was done, we were informed that Delhommé [7] and Blass
and Gurevich [3] have already observed that the computation of the ordinal
height of a relation proven to be well-founded by the Termination Theorem is
the natural product of the individual heights.

4 Conclusion and future work

We proved the following characterization of the Termination Theorem. Assume
we have a program P whose transition relation R is the graph of a partial
recursive map restricted to a primitive recursive domain. Assume we have a
disjunctively well-founded transition invariant T = T1 ∪ Tn for R, with
T1, . . . , Tn primitive recursive and of height ω. Then we may compute the number
of steps of R and the final state by some primitive recursive function in the initial
state.

We conjecture that the same result holds for the Terminator Algorithm based
on the Termination Theorem: a function has at least one implementation in
Podelski-Rybalchenko language which the Terminator Algorithm may catch ter-
minating if and only if the function is primitive recursive. One of the authors
is working on a proof of it. The result is not self-evident because there is much
more in the Terminator algorithm than just the Termination Theorem.

If compared to the characterization of Termination Theorem based on Dick-
son Lemma, our characterization has the advantage of being based over the
original proof of the Theorem. For this reason, we hope in a future work to be
able characterize the Termination Theorem in general, in the case of well-founded
relations of any ordinal height.

S.Berardi et al. Proving termination of programs having transition invariants of height ω

239

References

1. S. Berardi, P. Oliva, and S. Steila. Proving termination with transition invariants
of height omega. Preliminary Draft, 2014.

2. S. Berardi and S. Steila. Ramsey theorem as an intuitionistic property of well
founded relations. pages 93–107, 2014. RTA-TLCA.

3. A. Blass and Y. Gurevich. Program termination and well partial orderings. ACM
Trans. Comput. Logic, 9(3):18:1–18:26, 2008.

4. P. Carruth. Arithmetic of ordinals with applications to the theory of ordered abelian
groups. Bull. Amer. Math. Soc., 48(4):223–334.

5. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination.
In SAS, pages 87–101, 2005.

6. T. Coquand. An analysis of ramsey’s theorem. Inf. Comput., 110(2):297–304, 1994.
7. C. Delhommé. Height of a Superposition. Order, 23(2-3):221–233, 2006.
8. D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. Ackermannian and

primitive-recursive bounds with Dickson’s Lemma. In LICS 2011: Proceedings of
the 26th Annual IEEE Symposium on Logic in Computer Science, pages 269–278.
IEEE Press, 2011.

9. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages 32–41. IEEE
Computer Society, 2004.

S.Berardi et al. Proving termination of programs having transition invariants of height ω

240

Orthomodular algebraic lattices related to
combinatorial posets

Extended Abstract

Luca Bernardinello, Lucia Pomello, and Stefania Rombolà

DISCo, Università degli studi di Milano–Bicocca
viale Sarca 336 U14, Milano, Italia

1 Introduction

We extend some theoretical results in the frame of concurrency theory, which
were presented in [1]. In particular, we focus on partially ordered sets (posets)
as models of nonsequential processes [2] and we apply the same construction as
in [1] of a lattice of subsets of points of the poset via a closure operator defined
on the basis of the concurrency relation, viewed as lack of causal dependence.

The inspiring idea is related to works by C. A. Petri [6]. Petri proposed a
theory of systems based on abstract models to represent the behaviour and the
properties of concurrent and distributed systems, which takes into account the
principles of the special relativity. A crucial difference between the standard
physical theories and the framework in which Petri develops his own theory
comes from the use of the continuum as the underlying model in physics.

In the combinatorial model proposed by Petri, the usual notion of density of
the continuum model is replaced by two properties strictly related and required
for the posets modelling a discrete space-time: the so-called K-density and a
weaker form called N-density. K-density is based on the idea that any maximal
antichain (or cut) in a poset and any maximal chain (or line) have a non-
empty intersection. A line can be interpreted as a sequential subprocess, while
a cut corresponds to a time instant and K-density requires that, at any time
instant, any sequential subprocess must be in some state or changing its state.
N-density can be viewed as a sort of local density and was introduced by Petri
as an axiom for posets modelling nonsequential processes. Occurrence nets, a
fundamental model of such processes, are indeed N-dense, whereas for example
event structures [5] are in general not N-dense.

In [1] we have considered as model of non sequential processes a class of locally
finite posets and shown that the closed subsets, obtained via a closure opera-
tor defined on the basis of concurrency, correspond in general to subprocesses
which result to be ‘closed’ with respect to the Petri net firing rule. Moreover, we
have shown that if the poset is N-dense, then the lattice of closed subsets is or-
thomodular. Orthomodular lattices are families of partially overlapping Boolean
algebras and have been studied as the algebraic model of quantum logic [7].

241

In this paper we generalize our previous results for combinatorial posets and
we show that the N-density of the poset is a sufficient and necessary condition
for the orthomodularity of the lattice of closed subsets.

In an orthomodular lattice, each element is associated to its orthocomplement.
We show that under K-density, given a closed set, any line intersects the closed
set or its orthocomplement. Starting from this result we define the characteristic
map of the family of closed sets that cross the given line and show that this
map is a two-valued state of the lattice of closed sets of the poset. The notion
of two-valued state over orthomodular lattices is used in quantum logic, where
the elements of the lattice are interpreted as propositions of a language, and the
two-valued states on a lattice as consistent assignments of truth values to these
propositions. This suggests to look at the closed sets as propositions in a logic
language, where orthocomplementation corresponds to negation and any line
induces a logical interpretation. Following the same idea, we propose to consider
the dual relation between cuts and Boolean algebras, on the fact that any cut
of a K-dense poset generates a Boolean subalgebra of the lattice.

Finally, we extend to combinatorial posets the relation between the K-density
of a poset and the algebraicity of the lattice of its closed sets, as given in [1].

2 Preliminary Definitions

In this section, we recall basic definitions and notations for partially ordered
sets, lattices and orthomodular lattices, and closure operators.

A partially ordered set (poset for short) is a set P , together with a reflexive,
anti-symmetric, and transitive relation ≤ ⊆ P × P . By < we denote the related
strict partial order.

For x, y ∈ P , we write x l y if x < y and no z ∈ P satisfies x < z < y. Let
•x = { y | y l x }, and x• = { y |x l y }. A poset P = (P,≤) is combinatorial
iff ≤ = (l)∗, where (l)∗ is the transitive and reflexive closure of l. A poset
P = (P,≤) is of finite degree iff ∀x ∈ P : |•x| ∈ N and |x•| ∈ N.

Given a partial order relation ≤ on a set P , we can derive the relations
li = ≤ ∪ ≥, and co = (P × P) \ li. Intuitively, in our framework x li y means
that x and y are connected by a causal relation, and x co y means that x and y
are causally independent. The relations li and co are symmetric but, in general,
non transitive. Note that li is a reflexive relation, while co is irreflexive.

A clique of a binary relation is a set of pairwise related elements; a clique of
co ∪ idP will be called antichain, or co-set, whereas a clique of li will be called
chain or li-set. Maximal cliques of co ∪ idP and li are called, respectively, cuts
and lines: cuts(P) = {c ⊆ P | c is a maximal clique of co ∪ idP }, lines(P) =
{ λ ⊆ P | λ is a maximal clique of li}
Definition 1. P = (P,≤) is K-dense⇔ ∀c ∈ cuts(P),∀λ ∈ lines(P) : c∩λ 6= ∅.
Obviously, in general |c ∩ λ| ≤ 1.

In the following we are interested in a weaker form of density, called N-
density, strictly related to K-density and which can be viewed as a sort of local
density.

L.Bernardinello et al. Orthomodular algebraic lattices related to combinatorial posets

242

Definition 2. P = (P,≤) is N-dense ⇔ ∀ x, y, v, w ∈ P : (y < v and y < x and
w < v and (y co w co x co v))⇒ ∃z ∈ P : (y < z < v and (w co z co x)).

Definition 3. An orthocomplemented poset P = 〈P,≤, 0, 1, (.)′〉 is a partially
ordered set P = (P,≤), equipped with a minimum and a maximum element,
respectively denoted by 0 and 1, and with a map (.)′ : P → P , such that the
following conditions are satisfied (where ∨ and ∧ denote, respectively, the least
upper bound and the greatest lower bound with respect to ≤, when they exist):
∀x, y ∈ P , (i) (x′)′ = x, (ii) x ≤ y ⇒ y′ ≤ x′, (iii) x ∧ x′ = 0 and x ∨ x′ = 1.

The map (.)′ : P → P is called an orthocomplementation in P. In an orthocom-
plemented poset, ∧ and ∨, when they exist, are not independent: in fact, the
so-called De Morgan laws hold: (x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′. In the
following, we will sometimes use meet and join to denote, respectively, ∧ and ∨.

Two elements x, y ∈ P are orthogonal, denoted x ⊥ y, iff x ≤ y′.
Definition 4. A two-valued state on a poset P is a mapping s : P 7→ {0, 1}
such that (i) s(1) = 1, (ii) if {ai : i ∈ N} is a sequence of mutually orthogonal
elements in P, then s(

∨
i∈N ai) =

∑
i∈N s(ai).

A poset P is called orthocomplete when it is orthocomplemented and every
pairwise orthogonal countable subset of P has a least upper bound.

A lattice L = (L,≤) is a poset in which, for any pair of elements, meet and
join exist. A lattice L is complete when the meet and the join of any subset of
L exist.

Definition 5. An orthomodular poset P = 〈P,≤, 0, 1, (.)′〉 is an orthocomplete
poset which satisfies the condition: x ≤ y ⇒ y = x ∨ (y ∧ x′), which is usually
referred to as the orthomodular law.

Let X be a set, and α ⊆ X × X be a symmetric relation. Given A ⊆ X
we can define an operator (.)⊥ on the powerset of X: A⊥ = {x ∈ X | ∀y ∈
A : (x, y) ∈ α}. By applying twice the operator (.)⊥, we get a new operator
C(.) = (.)⊥⊥ = ((.)⊥)⊥. The map C on the powerset of X is a closure operator
on X; i.e.: for all A,B ⊆ X, (i) A ⊆ C(A); (ii) A ⊆ B ⇒ C(A) ⊆ C(B); (iii)
C(C(A)) = C(A) [4]. A subset A of X is closed if A = A⊥⊥. The family L(X)
of all closed sets of X, ordered by set inclusion, is then a complete lattice [3].

When α is also irreflexive, the operator (.)⊥, applied to elements of L(X),
is an orthocomplementation; the structure L(X) = 〈L(X),⊆, ∅, X, (.)⊥〉 then
forms an orthocomplemented complete lattice [3].

A complete lattice L is algebraic if, for each a ∈ L, a =
∨{k ∈ K(L) : k ≤ a},

where K(L) is the set of compact elements, and k ∈ L is compact if, for every
subset S in L, k ≤ ∨S ⇒ k ≤ ∨T , for some finite subset T of S, (see [4]).

3 A Closure Operator Based on Concurrency

In this section we consider the closed sets induced by the concurrency relation in
partially ordered sets by applying the construction recalled in the previous sec-
tion. We study the resulting properties of closed sets, investigating in particular
the relations with N-density and K-density of the poset.

L.Bernardinello et al. Orthomodular algebraic lattices related to combinatorial posets

243

Let P = (P,≤) be a poset. We can define an operator on subsets of P ,
which corresponds to an orthocomplementation, since co is irreflexive, and by
this operator we define closed sets.

Definition 6. Let S ⊆ P , then

(i) S⊥ = {x ∈ P | ∀y ∈ S : x co y} is the orthocomplement of S;

(ii) if S = (S⊥)⊥, then S is a closed set of P = (P,≤).

The set S⊥ contains the elements of P which are not in causal relation with
any element of S. Obviously, S ∩ S⊥ = ∅ for any S ⊆ P , however in general
S ∪ S⊥ 6= P . In the following, we sometimes denote (S⊥)⊥ by S⊥⊥. Note that:
∀c ∈ cuts(P), c⊥ = ∅ and c⊥⊥ = P .

We call L(P) the collection of closed sets of P = (P,≤). By the results on
closure operators recalled in the previous section and since the relation co is
irreflexive, we know that L(P) = 〈L(P),⊆, ∅, P, (.)⊥〉 is an orthocomplemented
complete lattice, in which the meet is just set intersection, while the join of a
family of elements is given by set union followed by closure.

Now we present our principal result for combinatorial posets: N-density is
necessary and sufficient for the orthomodularity of L(P).

Theorem 1. If P = (P,≤) is combinatorial, then L(P) is orthomodular if and
only if P = (P,≤) is N-dense.

Note that the orthomodular law requires that, if an element is strictly bigger than
another one, then the meet between the first element and the orthocomplement
of the second one should be different from the minimum element. Hence, if A ⊂ B
then B contains at least an element x concurrent with A.

The orthomodular law is weaker than the distributive law. Orthocomple-
mented distributive lattices are called Boolean algebras. Orthomodular lattices
can therefore be considered as a generalization of Boolean algebras.

Now we characterize the K-density of a poset P = (P,≤) by a property of
the closed sets. In particular, we show that the combinatorial N-dense posets are
K-dense if and only if, given a closed set, any line intersects either the closed set
or its orthocomplement.

Theorem 2. If P = (P,≤) is combinatorial and N-dense, then

P = (P,≤) is K-dense⇔ ∀S ∈ L(P),∀λ ∈ lines(P), λ ∩ (S ∪ S⊥) 6= ∅

From Theorem 2 it follows a crucial relation between lines and closed sets;
namely, given a closed set S, a line λ crosses either S or S⊥ (λ ∩ S 6= ∅ ⇐⇒
λ ∩ S⊥ = ∅).

We now define a map associated to a line of P = (P,≤): the characteristic
map of the family of closed sets that cross the given line.

Definition 7. Let λ ∈ lines(P). Define ∆(λ) = {S ∈ L(P) | S ∩ λ 6= ∅}, and
δλ : L(P) → {0, 1} such that: for each S ∈ L(P), δλ(S) = 1 if S ∈ ∆(λ),
δλ(S) = 0 otherwise.

L.Bernardinello et al. Orthomodular algebraic lattices related to combinatorial posets

244

Theorem 3. Let P = (P,≤) be a K-dense poset. The map δλ is a two-valued
state of the lattice L(P).

This result allows to state that any line in a combinatorial and K-dense poset
P = (P,≤) identifies a two-valued state in the lattice of closed sets L(P).

There is a dual relation between the cuts of P = (P,≤) and the Boolean
subalgebras in the lattice of closed sets L(P): any cut τ ∈ cuts(P) generates a
Boolean subalgebra of L(P) [7].

The next theorem states that, for combinatorial posets, K-density and degree
finiteness are sufficient for the algebraicity of the lattice of closed sets.

Theorem 4. The family L(P) of the closed sets of a combinatorial, K-dense
and degree finite poset forms an algebraic lattice.

In conclusion, we have proved that for combinatorial posets, N-density implies
the orthomodularity of the lattice of closed sets defined on the basis of concur-
rency. An orthomodular lattice is always regular ([7]) and hence can be seen as
a family of partially overlapping Boolean algebras.

Moreover, we have shown that for combinatorial posets the K-density de-
termines a crucial relation between lines and closed sets: given a closed set a
line crosses either the closed set or its orthocomplement. This suggests to look
at the family of closed sets as the set of propositions in a logic language and
at the lines as two-valued states and hence as interpretations (models) of the
propositions. In general, the lattice of closed sets is not a Boolean algebra, so
that the resulting logic is non-classical; we point to the cuts of the combinatorial
poset as the Boolean substructures of the overall lattice.

Finally, we proved that K-density, together with degree finiteness, is a suffi-
cient condition for the algebraicity of the lattice.

Acknowledgement
This work was partially supported by MIUR and by MIUR-PRIN 2010/2011
grant code H41J12000190001.

References

1. L. Bernardinello, L. Pomello, and S. Rombolà. Closure operators and lattices derived
from concurrency in posets and occurrence nets. Fundam. Inform., 105(3):211–235,
2010.

2. E. Best and C. Fernandez. Nonsequential Processes–A Petri Net View, volume 13
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

3. G. Birkhoff. Lattice Theory. American Mathematical Society; 3rd Ed., 1979.
4. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, 1990.
5. M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and domains,

part i. Theor. Comput. Sci., 13:85–108, 1981.
6. C. A. Petri. State-transition structures in physics and in computation. International

Journal of Theoretical Physics, 21(12):979–992, 1982.
7. P. Pták, P. Pulmannová. Orthomodular Structures as Quantum Logics. Kluwer

Academic Publishers, 1991.

L.Bernardinello et al. Orthomodular algebraic lattices related to combinatorial posets

245

246

Abstract argumentation frameworks to promote
fairness and rationality in multi-experts

multi-criteria decision making

Stefano Bistarelli1, Martine Ceberio2, Joel A. Henderson2, and
Francesco Santini3

1 Dipartimento di Matematica e Informatica
Università di Perugia

Via Vanvitelli, 1 – 06123 Perugia, Italy
bista@dmi.unipg.it

2 Computer Science Department
The University of Texas at El Paso

500 West University – El Paso, TX 79968, USA
mceberio@utep.edu, jahenderson@miners.utep.edu

3 Istituto di Informatica e Telematica, CNR-Pisa
Via Moruzzi, 1 – 56124, Pisa, Italy
francesco.santini@iit.cnr.it

Abstract. In this work, we propose to model Multi-Experts Multi-
Criteria Decision-Making (MEMCDM) problems using Abstract Argu-
mentation Frameworks. We specifically design our model so as to emu-
late fairness and rationality in the decision-making process. For instance,
when, of two expert’s decisions, one is unfair, we impose an attack be-
tween these two decisions, forcing one of the two decisions out of the
argumentation network’s resulting extensions. Similarly, we specifically
put irrational decisions in opposition to force one out. In doing so, we
aim to enable the prediction of decisions that are themselves fair and
rational. Our model is illustrated on a toy example.

Keywords: Multi-Experts Multi-Criteria Decision Making, Disagree-
ment, Fairness, Rationality, Argumentation Framework, Model.

1 Introduction

Expert analysis and decisions arguably provide high-quality and highly-valued
support for action and policy making in a wide variety of fields, from social
services, to medicine, to engineering, to grant funding committees, and so on.
However, the use of experts can be prohibitive due to either lack of availability,
high cost, or limited time frame for action – this is the case particularly more so in
impoverished areas. As such, it is desirable to be able to replicate / predict such
decisions when beneficial even in the absence of experts. Unfortunately, there
are many obstacles that still hinder an accurate simulation of expert decisions.
First, it is hard to understand, and therefore replicate, the way each expert

247

“aggregates” information/assessment along several criteria. In addition, even if
we had a reasonable insight about it, any expert may make inconsistent decisions
across similar scenarios. Finally, in the case of multiple experts, despite looking
at the same information, two (or more) experts may disagree on the decisions
to be made.

In spite of such challenges, traditional approaches seek to combine prior
known decisions of experts into a classification of scenarios (machine learning
approaches) or into some aggregation function that allows to best replicate the
experts’ decisions. Unfortunately, this line of approaches tends to overlook the
irrationality and/or lack of fairness of experts, aggregating all available prior
information regardless of quality.

In this work, we propose to model Multi-Experts Multi-Criteria Decision-
Making (MEMCDM) problems using argumentation frameworks. We specifically
design our proposed model so as to emulate fairness and rationality in decisions.
For instance, when, of two expert’s decisions, one is unfair, we impose an at-
tack between these two decisions, forcing one of the two decisions out of the
argumentation network’s resulting extensions. Similarly, we specifically put ir-
rational decisions in opposition to force one out. In doing so, we aim to enable
the prediction of decisions that are themselves fair and rational. Our model is
illustrated on two toy examples.

In what follows, we start by recalling preliminary notions, then we proceed
with describing our model in details and illustrate our model in the case of
Software Quality Assessment by multiple experts along multiple criteria.

2 Preliminary Notions

2.1 Multi-Criteria Decision Making (MCDM)

Multi-criteria decision-making (MCDM) involves selecting one of several differ-
ent alternatives, based on a set of criteria that describe the alternatives. However,
there are numerous problems that make comparing these alternatives difficult.
For instance, very often, decisions are based on several conflicting criteria; e.g.,
which car to buy that is cheap and energy efficient. In addition, what happens
when we have a group of decision makers that must come to some sort of consen-
sus? This is known as multi-expert multi-criteria decision making (MEMCDM).
In MEMCDM, there are several new problems to be addressed. One such prob-
lem is how to handle expert disagreement and come to a consensus/decision in
the first place. Another problem, as stated earlier, is that of predicting future
decisions based on decision data from multiple experts along multiple criteria.
Again, the question of “which expert/decision-making process to follow?” is a
major challenge in solving such problems.

Approaches to MCDM In general, on a daily basis, when the decision is not
critical, in order to reach a decision, we mentally “average / sort” these criteria
along with their satisfaction levels. This corresponds to aggregating values of

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

248

satisfaction with weights on each criterion, reflecting its importance in the overall
score (a.k.a. additive aggregation), that is, calculating the overall score of an
alternative with the weighted sum of the criterion scores. In other words, weights
assigned to different sets of criteria in the weighted-average approach form an
“additive measure”. Additive aggregation, however, assumes that criteria are
independent, which is seldom the case [2]. Non-linear approaches also prove to
lead to solutions that are not completely relevant [6].

This should change when considering possible dependence between criteria.
For example, if two criteria are strongly dependent, it means that both crite-
ria express, in effect, the same attribute. As a result, when we consider the set
consisting of these two criteria, we should assign to this set the same weight as
to each of these criteria – and not double the weight as in the weighted sum
approach. In general, the weight associated to different sets should be different
from the sum of the weights associated to individual criteria. In mathematics,
such non-additive functions assigning numbers to sets are known as non-additive
(fuzzy) measures. It is therefore reasonable to describe the dependence between
different criteria by using an appropriate non-additive (fuzzy) measure. Combin-
ing the fuzzy measure values with the criteria satisfaction can be done using the
Choquet integral, which integrals are actively used in Multi-Criteria Decision
Making [5].

However, to make this happen, fuzzy measures need to be determined: they
can either be identified by a decision maker/expert or by an automated system
that extracts them from sample data. Since human expertise might not always
be available and getting accurate fuzzy values (even from an expert) might be
tedious [9], fuzzy measures are usually automatically extracted from prior deci-
sion decision data. To the original problem, this approach adds an optimization
problem that can be tedious to solve. Although it was solved with success for
some data sets [10], the overall prediction quality is not satisfactory and the ap-
proach limits the number of criteria that can be taken into account (the number
of variables to determine is exponential in the number of criteria) [8].

2.2 Argumentation Frameworks

In this section we briefly summarise the background information related to clas-
sical AAFs [4]. We focus on the basic definition of an AAF (see Def. 1), on the
notion of defence (Def. 2), and on extension-based semantics (Def. 3).

Definition 1 (Abstract Argumentation Frameworks). An Abstract Argu-
mentation Framework (AAF) is a pair F = 〈A,R〉 of a set A of arguments and
a binary relation R ⊆ A × A, called the attack relation. ∀a, b ∈ A, aR b (or,
a� b) means that a attacks b. An AAF may be represented by a directed graph
(an interaction graph) whose nodes are arguments and edges represent the attack
relation. A set of arguments S ⊆ A attacks an argument a, i.e., S � a, if a is
attacked by an argument of S, i.e., ∃b ∈ S.b� a.

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

249

a b c d e

Fig. 1. An example of AAF.

Definition 2 (Defence). Given an AAF, F = 〈A,R〉, an argument a ∈ A is
defended (in F) by a set S ⊆ A if for each b ∈ A, such that b� a, also S � b
holds. Moreover, for S ⊆ A, we denote by S+

R the set S ∪ {b | S � b}.
The “acceptability” of an argument [4] depends on its membership to some

sets, called extensions: such extensions need to satisfy the properties required
by a given semantics, and they characterise a collective “acceptability”. In the
following, stb, adm, prf , gde, com, and sem, respectively stand for stable, ad-
missible, preferred, grounded, complete, and semi-stable semantics. The intuition
behind these semantics is outside the scope of this work (e.g., see [7, Ch. 3]).

Definition 3 (Semantics). Let F = 〈A,R〉 be an AAF. A set S ⊆ A is
conflict-free (in F), denoted S ∈ cf(F), iff there are no a, b ∈ S, such that
(a, b), (b, a) ∈ R. For S ∈ cf(F), it holds that:

– S ∈ stb(F), if foreach a ∈ A\S, S � a, i.e., S+
R = A;

– S ∈ adm(F), if each a ∈ S is defended by S;
– S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;
– S = gde(F) if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;
– S ∈ com(F), if S ∈ adm(F) and for each a ∈ A defended by S, a ∈ S holds;
– S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with S+

R ⊂ T+
R .

We recall that for each AF, stb(F) ⊆ sem(F) ⊆ prf (F) ⊆ com(F) ⊆ adm(F)
holds, and that for each of the considered semantics σ (except stable) σ(F) 6= ∅
always holds. Moreover, in case an AF has at least one stable extension, its
stable, and semi-stable extensions coincide. Finally, gde(F) is always unique,
and gde(F) ∈ com(F).

Consider the F = 〈A,R〉 in Fig. 1, withA = {a, b, c, d, e} andR = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, e)}. We have that stb(F) = sem(F) = {{a, d}}, and gde(F) =
{a}. The admissible sets of F are ∅, {a}, {c}, {d}, {a, c}, {a, d}, and prf (F) =
{{a, c}, {a, d}}. The complete extensions are {a}, {a, c}, {a, d}.

In the proposed model (precisely in Sec. 3.2) we take advantage of symmetric
AAFs [3]:

Definition 4 (Symmetric AAFs [3]). A symmetric (Abstract) Argumenta-
tion Framework is a finite Argumentation Framework F = 〈A,R〉 where R is
assumed symmetric, non empty and irriflexive.

This leads to some properties related to the computed semantics: for instance,
∀S ∈ prf (F) then S ∈ stb(F), cf (F) = adm(F), and, since each argument in
our model is attacked, gde(F) = ∅ always holds [3]. Note also that in symmet-
ric AAFs, the computation of the sceptical/credulous state (see Def. 5) of an
argument becomes easier [3] (e.g., P instead of NP).

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

250

Definition 5 (Acceptance state). Given a semantics σ and a framework F ,
an argument a is i) sceptically accepted iff ∀S ∈ σ(F), a ∈ S , and ii) credulously
accepted if ∃S ∈ σ(F), a ∈ S.

Since Argumentation-based decision-making checks the justification state of
arguments in order to rank decisions (see a brief summary in the following para-
graph), such decision process can benefit from this simplification derived from
using symmetric AAFs in our model.

Decision-making with Arguments In this section we simplify part of the
content in [7, Ch. 15]. Solving a decision problem amounts to defining a pre-
ordering, usually a complete one, on a set D = {d1, . . . , dn} of n candidate
options. Argumentation can be a means for ordering this set D, that is to define
a preference relation < on D. An argumentation-based decision process can be
decomposed into the following steps:

1. Constructing arguments in favour/against statements (beliefs or decisions).

2. Evaluating the strength of each argument.

3. Determining the different conflicts among arguments.

4. Evaluating the acceptability of arguments.

5. Comparing decisions on the basis of relevant accepted arguments.

We need to characterise the subsets of practical arguments that are respec-
tively in favour (Ff), or against (Fc) a given option in di ∈ D:

– Ff : D → 2A is a function that returns the arguments in favour of a candi-
date decision. Such arguments are said pros the option.

– Fc : D → 2A is a function that returns the arguments against a candidate
decision. Such arguments are said cons the option.

In Def. 6 we present one of the possible ways to prefer (<) one decision
instead of another. This unipolar principle only refers to either the arguments
pros or cons.

Definition 6 (Counting arguments pros/cons). Let DS = (D,F) be a de-
cision system, where F is an AAF, and Accstb(F) collects the sceptically accepted
arguments of a framework F under the stable semantics. Let d1, d2 ∈ D.

d1 < d2 ⇐⇒ |Ff (d1) ∩Accstb(F)| ≥ |Ff (d2) ∩Accstb(F)|

The aim of (part of) future work (see also Sec. 5) is to apply similar tech-
niques to derive the best decision about our model, e.g., an evaluation about the
software.

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

251

3 Proposed Model for MEMCDM using Argumentation
Frameworks

Here, we describe our model: given an MEMCDM problem with n criteria and
p experts, how do we “translate”/model it as an AAF? In other words, which
arguments and attacks should compose it? Note that, through this section we
will use letters S and R to identify “Software”, “Ranking” (unlikely to Sec. 2.2,
where these letters represent a subset of arguments and the attack relation re-
spectively).

3.1 Arguments

• What does the data we use (i.e., experts’ evaluation of software
in this case) tell us about the arguments to add to the network?
We differentiate arguments that come from the data (i.e., Expert i said that
Software j is good) from arguments that are implicit (i.e., Software k is Poor).

1. Expert i gives Item j a total quality Dij (which, in the case of Software
Quality Assessment – SQA, can be Bad, Poor, Fair, Good, or Excellent):

Argument (Ei, Sj , Dij)

Let us call such arguments, arguments of type ESD.

2. Expert i judges that Item j satisfies criterion m up to quality Dijm

Argument (Ei, Sj , cm, Dijm)

Let us call such arguments, arguments of type EScD.

• Which implicit arguments should be part of the argumentation net-
work for this specific type of problem?

1. For each item, independently from what experts say, there will be a decision
made. This decision will be in the form of a final ranking, ranging over
all possibly ranking values (in the case of SQA: Bad, Poor, Fair, Good,
Excellent). So regardless of ESD arguments, we add to the argumentation
network the following arguments:

∀ item Si,∀ ranking Dj : Argument (Si, Dj)

Let us call such arguments, arguments of type SD.

2. For each criterion of evaluation, regardless of which item is being evaluated
and of what experts will decide, a ranking will be associated. So regardless
of EScD arguments, we add to the argumentation network the following
arguments:

∀ criterion ck,∀ ranking Dm : Argument (ck, Dm)

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

252

Let us call such arguments, arguments of type cD. Such arguments are
expected to be useful for prediction of the decision of experts on items not
part of the original data, but for which we do have an indication of their
quality per criterion.

• Coalitions of Arguments Here we aim to model the fact the n decisions
of any expert on the n criteria of the problem at hand belong together: they
together form the “support” for the expert’s final decision on the given item. As
a result, for any expert Ei and any item Sj , we define a coalition of “supporting”
decisions as:

∀Ei,∀Sj , Coalition: {(Ei, Sj , ck, Di,j,k), k ∈ {1, . . . , n}}

Let us call such coalitions of EScDs, extended arguments of type CoEScD. The
result of modeling such coalitions is that all arguments in the coalition will be
forced to be altogether either in or out of extensions. Per se, we are enforcing
an equality constraint on the belonging of these arguments to any extension.

Note that here we do not use the term “support” as in classical Bipolar
AAFs [1] (or BAAFs), which exploit the notion of a support binary-relation
among arguments. There, the support relation is totally independent of the at-
tack one.

3.2 Attacks

In this subsection, we answer the following question: What are the attacks
(edges of the network) between these arguments (nodes)? Note: All attacks we
define are reciprocal, hence the edges are always set bidirectionally.

For attacks too, we differentiate between attacks that come from inconsistencies
in the decision data (disagreement between experts, inconsistency in decisions
of a single expert, lack of fairness, irrationality). An assumption that we make
in designing the network model is that experts should be rational: in this, we
mean that even if they are not (which we know), they should be and we aim to
elicit decisions that are as rational as can be.

• Attacks derived from lack of fairness Here, we assume that if an expert
is fair, then s/he should derive the same final ranking from the same criteria
rankings. For instance, if there are 3 criteria (c1, c2, and c3) to assess items and
an expert E has the following decision history:




E,Si, c1, D1

E,Si, c2, D1

E,Si, c3, D1

−→ E,Si, D

and: (with Si 6= Sj)

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

253




E,Sj , c1, D1

E,Sj , c2, D1

E,Sj , c3, D1

−→ E,Sj , D
′

where D 6= D′, then we should see arguments (E,Si, D) and (E,Sj , D
′) are a

lack of fairness in judgment and therefore add the following attack in the argu-
mentation network: (E,Si, D)←→ (E,Sj , D

′).

More generally, assuming that the criteria that are considered by the experts are
ck, with k ∈ K, and that the possible rankings are denoted by Dr, with r ∈ R,
then we add the following rule to our model:

∀E,Si, Sj , s.t. i 6= j and ∀k ∈ K, ∃r ∈ R, (E,Si, ck, Dr) and (E,Sj , ck, Dr) :

if (E,Si, Di) and (E,Sj , Dj) and Di 6= Dj

then Attack (E,Si, Di)←→ (E,Sj , Dj)

• Attacks derived from lack of rationality Let us recall that we assume
that the rankings Dr, with r ∈ R, are totally ordered. However, with n criteria,
the set of n-tuples of rankings is only partially ordered:

(D1, D2, . . . , Dn) ≺ (D′
1, D

′
2, . . . , D

′
n)

iff :
∀i ∈ {1, . . . , n} : (Di 6= D′

i) −→ Di < D′
i

Now: ∀Ei and ∀Sj , we denote by (D1,i,j , . . . , Dn,i,j) the set of n decisions made
by Expert Ei on each of the criteria c1, . . . , cn for Item Sj , and by Di,j the final
decision of Expert Ei on Item Sj .

Being rational for any given expert Ei means that if for Item Sj , s/he ranks
criteria lower (w.r.t. above partial order) than s/he ranks the criteria of Item
Sk, then his/her final ranking of Sj should not be higher than his/her ranking
of Sk. Formally, it is expressed as follows:

∀Ei, ∀Sj , ∀Sk(j 6= k) :
if: (D1,i,j , . . . , Dn,i,j) ≺ (D1,i,k, . . . , Dn,i,k) and: Di,j > Di,k

then: Attack (Sj , Ei, Di,j) ←→ (Sk, Ei, Di,k)

• Attack related to implicit arguments: SD and cD In this subsection,
we describe the following attacks:

– attacks between implicit arguments SD (resp. cD), and

– attacks across SD and ESD (resp. cD and EScD).

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

254

1. Attacks among SDs: SD Arguments associate an item with a ranking. For
each item Si, there are p SD arguments if there are p possible ranking lev-
els. Each of these p arguments attack each other (they form a complete
subgraph). In other words:

∀Si,∀r1, r2 ∈ R, with r1 6= r2,Attack: (Si, Dr1)←→ (Si, Dr2)

2. Attacks among cDs: In a fashion similar to attacks among SDs, we have:

∀cj ,∀r1, r2 ∈ R, with r1 6= r2,Attack: (cj , Dr1)←→ (cj , Dr2)

3. Attacks between SDs and ESDs: For any given item Sj , an argument saying
that Si is evaluated Dh is in contradiction (and therefore attacks – and
vice-versa) with any argument (Ei, Sj , Dk) as soon as Dh 6= Dk. As a result:

∀Ei, ∀Sj , (Dh 6= Dk) → Attack: (Sj , Dh)←→ (Ei, Sj , Dk)

4. Attacks between cDs and EScDs: Similarly as above, for any given criterion
cm, an argument saying that cm is evaluated Dh is in contradiction (and
therefore attacks – and vice-versa) with any argument (Ei, Sj , cm, Dk) as
soon as Dh 6= Dk. As a result:

∀Ei, ∀Sj , ∀cm, (Dh 6= Dk) → Attack: (cm, Dh)←→ (E,Sj , cm, Dk)

• Attacks between Coalitions and ESDs Here we aim to model the fact
that coalitions of decisions on criteria support experts’ decisions. In other words:

∀Ei,∀Sj , {(Ei, Sj , ck, Di,j,k), k ∈ {1, . . . , n}} supports (Ei, Sj , Di,j)

In terms of attacks, this is expressed as follows:

∀Ei, Ej∀Sk : Di,k 6= Dj,k →
Attack: {(Ei, Sk, cl, Di,k,l), k ∈ {1, . . . , n}} ←→ (Ej , Sk, Dj,k)

4 An Example

Here, let us look at a scenario in which experts independently assess given pieces
of software, based on several given evaluation criteria. We describe the result-
ing argumentation networks (arguments/nodes and attack/edges). Table 1 sum-
marises our example, by reporting all the Poor/Fair/Good quality-evaluation
about two different criteria (1 and 2) and the overall quality related to three
different software products (S1/S2/S3). Such scores are produced by three dif-
ferent experts (E1/E2/E3). For instance, E1 estimates that the overall quality
of S1 is fair, with Criterion 1 evaluated as poor, and Criterion 2 as good.

The graph in Fig. 2 represents the AAF given by following the model pro-
posed in Sec. 3 on the data in Tab. 1. The yellow nodes represent explicit ar-
guments from the data. The green nodes are the implicit arguments. The blue
nodes are the coalitions. The black bold lines represent attacks due to lack of
fairness and lack of rationality. The dotted line attacks are those based on im-
plicit arguments. Finally, the grey bold lines are coalition supports of expert
decisions.

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

255

Table 1. The explicit arguments that can be collected on our toy-example.

Software Expert Criterion 1 Criterion 2 Total Quality

S1 E1 Poor Good Fair

S1 E2 Good Poor Fair

S1 E3 Fair Fair Fair

S2 E1 Poor Good Poor

S2 E2 Poor Good Good

S2 E3 Poor Good Fair

S3 E1 Good Good Good

S3 E2 Good Good Fair

S3 E3 Fair Fair Fair

5 Conclusion and Future Work

In this work, we proposed a model for MEMCDM problems, based on classical
AAFs [4], that allows to emulate fairness and rationality. This allows discrimina-
tion among input decision data (from experts’ prior decisions) between data of
value and data that should just not be taken into account. Next steps include op-
erationalising the whole process (from input processing to results filtering) and
then adding weights to the attacks to simulate the extent of disagreements and
allow lineance towards small errors (e.g., unfairness / irrationality that are really
minimal, minor disagreements). Furthermore, we will take inspiration from clas-
sical decision-making techniques [7, Ch. 15] with the purpose to rank decisions
and decide, for instance, if a software is good or poor. We will even develop new
techniques exploring weights on attacks. Also part of future work, we plan to
explicitly acknowledge in the AAF that disagreement can be at two different lev-
els: epistemic and pragmatic, and to make use of argumentation frameworks to
identify disagreement configurations (epistemic and pragmatic, epistemic only,
pragmatic only).

Acknowledgments. S. Bistarelli was partially supported by MIUR-PRIN “Metodi
logici per il trattamento dell’informazione”. M. Ceberio’s work was partially supported
by the National Science Foundation, NSF CCF grant 0953339 and the American As-
sociation for the Advancement of Science, AAAS MIRC (agreement date 112612). F.
Santini was partially supported by MIUR PRIN “Security Horizons”.

References

1. L. Amgoud, C. Cayrol, and M.-C. Lagasquie-Schiex. On the bipolarity in argu-
mentation frameworks. In J. P. Delgrande and T. Schaub, editors, NMR, pages
1–9, 2004.

2. M. Ceberio and F. Modave. An interval-valued, 2-additive Choquet integral for
multi-criteria decision making. In Proceedings of the 10th Conference on Infor-
mation Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU’04), Perugia, Italy, July 2004.

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

256

Fig. 2. The AAF given by the model proposed in Sec. 3 on the data in Tab. 1.

3. S. Coste-Marquis, C. Devred, and P. Marquis. Symmetric argumentation frame-
works. In L. Godo, editor, ECSQARU, volume 3571 of LNCS, pages 317–328.
Springer, 2005.

4. P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–357, 1995.

5. M. Grabisch and C. Labreuche. A decade of application of the choquet and sugeno
integrals in multi-criteria decision aid. 4OR, 6(1):1–44, 2008.

6. F. Modave, M. Ceberio, and V. Kreinovich. Choquet integrals and OWA crite-
ria as a natural (and optimal) next step after linear aggregation: A new general
justification. In Proceedings of MICAI’2008, pages 741–753, 2008.

7. I. Rahwan and G. R. Simari. Argumentation in Artificial Intelligence. Springer
Publishing Company, Incorporated, 1st edition, 2009.

8. X. Wang, M. Ceberio, S. Virani, A. Garcia, and J. Cummins. A hybrid algorithm
to extract fuzzy measures for software quality assessment. Journal of Uncertain
Systems, 7(3):219–237, 2013.

9. X. Wang, A. F. G. Contreras, M. Ceberio, C. D. Hoyo, L. C. Gutierrez, and S. Vi-
rani. Interval-based algorithms to extract fuzzy measures for software quality
assessment. In Proceedings of Annual Conference of North American Fuzzy Infor-
mation Processing Society (NAFIPS’2012), Berkeley, CA, August 2012.

10. X. Wang, J. Cummins, and M. Ceberio. The Bees algorithm to extract fuzzy
measures for sample data. In Proceedings of Annual Conference of North American
Fuzzy Information Processing Society (NAFIPS’2011), El Paso, TX, March 2011.

S.Bistarelli et al. Abstract argumentation in multi-experts multi-criteria decision making

257

258

Optimal placement of storage nodes in a wireless
sensor network

Gianlorenzo D’Angelo1, Daniele Diodati2, Alfredo Navarra2, and
Cristina M. Pinotti2

1 Gran Sasso Science Institute (GSSI), L’Aquila, Italy.
gianlorenzo.dangelo@gssi.infn.it

2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy.
daniele.diodati@dmi.unipg.it; alfredo.navarra@unipg.it;

cristina.pinotti@unipg.it

Networks of sensor nodes are usually employed to monitor large areas, col-
lecting data with regular frequency. This large volume of data has to be stored
somewhere for answering to external user queries [3]. There are usually two main
ways to store data. Source nodes, which are responsible for collecting data, can
either locally store the data or transmit them to the sink, a powerful node con-
nected to the external world. Both solutions present some disadvantages. If data
are locally stored, several problems may arise: (i) data cannot be accumulated
for long periods because nodes are equipped with only limited memory space;
(ii) stored data are lost once the energy of a source node – battery operated – is
depleted; and (iii) searching data for serving query demand results in network-
wide communications. Alternatively, source nodes can forward the collected data
to the sink. However, communicating data from the source nodes up to the sink
makes the network congested, especially if data are transmitted raw, that is,
uncompressed. Limitations to the number of packets a sensor can transmit to
the sink per time unit must be also considered [2].

Recently [9, 10], a hybrid solution has been proposed which makes use of a
limited number of “special” sensors, more powerful than standard ones in terms
of storage, energy, and computational capabilities. Under this model, source
nodes may forward their raw data to such special nodes, referred to as storage
nodes. Here, raw data are stored and compressed, i.e., reduced in size, to be
transmitted to the sink at the time a query demand from external users is sub-
mitted. With this two-tier model, if the number of storage nodes is kept limited,
the network becomes less congested at the price of a moderate increase of the
sensor cost of the network. Indeed, the integration of storage nodes in the tiered
architecture for sensor networks is made possible by the new storage-enriched
hardware [6, 11] considered to be very practical [5]. The introduction of the stor-
age nodes helps to alleviate the transmission bandwidth problem by distributing
the local data transmission to the storage nodes. This hierarchical structure has
been instantiated by the popular stargate device [11] and the memory-enhanced
sensor nodes by UC Riverside [6]. Those special powerful nodes take advantage
of their high transmission, storage and even computational capabilities to allevi-
ate the bandwidth limitation, and also provide auxiliary support for surrounding
vulnerable sensors for data back-up. In [9, 10] the problem of selecting a subset

259

of storage nodes so as the overall communication cost is minimized is called opti-
mal storage placement problem. When the number of storage nodes is limited by
an integer k, we talk about the minimum k-storage problem, which is formally
stated in the next paragraph.

Problem statement. Let G = (V,E) be a connected directed graph of n nodes
representing a sensor network. Each node v ∈ V generates raw data of size s(v).
Arcs of the network have different weights. The energy cost propagation of a
message over the arc (u, v) ∈ E is denoted by w(u, v). When a communication
link is bidirectional, w(u, v) = w(v, u). Let d(u, v) be the minimum energy cost
for propagating a message from u to v which is given by the shortest path
distance from u to v in G. Each v ∈ V can be set to serve as storage node.
A solution is a set S ⊆ V of storage nodes such that |S| ≤ k, for some k ∈ N.
External users retrieve data from a special storage node r ∈ S, named sink. Each
node v in V is associated to a storage node in S, denoted as σ(v, S). Clearly, if
v ∈ S, then σ(v, S) = v. For replying to a query, a storage node compresses and
sends to r the last data generated from its associated nodes. The compressed
size of the data produced by a node v becomes αs(v), with α ∈ [0, 1]. The
compressed data cannot be further compressed if they reach another storage
node. A node v ∈ V is associated to the storage node s ∈ S that minimizes
s(v)d(v, s)+αs(v)d(s, r), ties are arbitrarily broken. The total cost for a set S of
storage nodes is given by: cost(S) =

∑
v∈V s(v) (d(v, σ(v, S)) + αd(σ(v, S), r)) .

The minimum k-storage problem (briefly, MSP) consists in finding a subset
S ⊆ V , with |S| ≤ k that minimizes cost(S).

Related Work. There has been a lot of prior research on data collection in
sensor networks. Initially, no in-network storage was considered: the request for
data was routed from the sink to every sensor by flooding messages. The data
were sent to the sink by following the same path but in the reverse direction [4].
Recently, a two-tier model has been proposed [10] to ameliorate the problem
of communication congestion. The authors formulate the problem as an inte-
ger programming problem and propose a 10-approximation rounding algorithm.
Differently from us, they assume that (i) raw data have size independent from
the source nodes; and (ii) the energy spent for transmitting one unit of data
between any pair of sensors is proportional to their Euclidean distance. For us,
instead, different source nodes may generate data of different size, since sensors
can monitor different environment aspects. Moreover, we assume that commu-
nications follow an underlying network represented by a graph. Each edge of
the graph has its own weight that measures the energy required to traverse it.
In [9], the problem is solved assuming that the communication network topology
is a directed tree T , rooted at the sink. The arcs are directed towards the sink
to collect the data, and they are directed away from the sink to broadcast the
query. When a sensor s sends one unit data upwards to the sink the energy cost
is fixed, while when a sensor s sends one unit data downwards, the energy cost
can be high because it is proportional to the number of children of s in T . In this

G.D’Angelo et al. Optimal placement of storage nodes in a wireless sensor network

260

paper and in [10], instead, storage nodes simply send query replies in a proactive
manner with a predefined query frequency and hence the query cost is null.

Our results. In the following we summarize our results. In detail we first focus
on the case of directed graphs and then in that of undirected ones.

Directed graphs. First, we focus on the approximation properties of the problem
and we show that indeed the problem is not in APX , that is, we cannot devise
a polynomial time algorithm with a constant factor approximation guarantee.
This is stated in the next theorem.

Theorem 1. Unless P = NP , MSP in directed graphs does not belong to APX.

The above theorem implies that it is not possible to find any practical approxi-
mation guarantee for the general case. Therefore, we focus on a restricted case
where the topology is a tree rooted at the sink and all the arcs are directed
towards the sink. In this case, we show that MSP can be optimally solved by a
dynamic programming algorithm in O(min{kn2, k2P}) time, where P is the path
length of the tree [8].3 We observe that for a balanced binary tree P = Θ(n log n),
for random general trees P = Θ(n

√
n), and in the worst case P = O(n2).

Undirected graphs. The proof of Theorem 1 is strictly based on the fact that the
links of the network are unidirectional and does not hold if all the links of the
network are bidirectional, that is the underlying graph is undirected. This is a
realistic assumption as links of a sensor network are usually bidirectional.

As the minimum k-storage problem for undirected graphs is similar to the
well-known metric k-median problem [1], then it is easy to show that also in this
case the problem is NP -complete.4 However, we are able to show that for graphs
with bounded treewidth [7], the problem is optimally solvable in polynomial
time. We note that this result also holds for the metric k-median problem which
is interesting by itself.

Theorem 2. Given a tree-decomposition of size w, there exists an algorithm
that optimally solves MSP in O(w · k · nw+3) time.

Notice that the above theorem does not prove that MSP is fixed parameter
tractable and we leave such proof (or disproof) as an open problem.

We then characterize the minimum k-storage problem on undirected graphs
from the approximation viewpoint. To this aim, we first prove that it is NP -
hard to approximate the metric k-median problem within a factor of 1 + 1

e , and
then we extend such a bound to the minimum k-storage problem by means of a
polynomial time reduction that preserves approximation.

3 The path length of a tree is the sum of the lengths over all nodes of the paths from
the root to each node.

4 The metric k-median problem is defined as follows: Given a complete graph G =
(V,E), a metric distance function dist : V × V → N, and an integer k, find a set
V ′ ⊆ V such that |V ′| ≤ k and

∑
u∈V minv∈V ′ dist(u, v) is minimized.

G.D’Angelo et al. Optimal placement of storage nodes in a wireless sensor network

261

Fig. 1a. The two upper bound functions to
the locality gap. Fig. 1b. Function h′.

Theorem 3. It is NP -hard to approximate the metric k-median problem within
a factor γ < 1 + 1

e .

Corollary 1. It is NP -hard to approximate MSP within a factor γ < 1 + 1
e .

According to Theorem 3, we propose a local search algorithm which guaran-
tees a constant approximation ratio greater than 1+1/e. In detail, the algorithm
is denoted by L and defined as follows. Each solution is specified by a subset
S ⊆ V of exactly k nodes. To move from one feasible solution S to a neighboring
one S′, we define a swap operation between two nodes s ∈ S and s′ ∈ V \ S
which consists in adding s′ and removing s, that is S′ = S ∪ {s′} \ {s}. In L,
we repeatedly check whether any swap move yields a solution of lower cost. In
the affirmative case, we apply to the current solution any swap move that im-
proves the solution cost and the resulting solution is set to be the new current
solution. This is repeated until, from the current solution, no swap operation
decreases the cost, that is, the current solution represents a local optimum. To
give a bound on the locality gap, let us define the following three functions:
f : (0, 1] → R, f(α) = 2/α; g : [0, 12) → R, g(α) = 12α

1−2α ; h : [0, 1] → R,

h(α) =




g(α) if α = 0
min{f(α), g(α)} if α ∈ (0, 12)
f(α) if α ∈ [12 , 1].

Theorem 4. The local search algorithm L for MSP with compression ratio
α ∈ [0, 1] exhibits a locality gap of at most 5 + h(α).

Theorem 4 provides two upper bounds to the locality gap given by 5 + f(α)
and 5+g(α). Functions f , g, and h are plotted in Fig. 1a. Function f is monotonic
decreasing, while g is monotonic increasing, in their intervals of definition. We
have that f(α) = g(α) for α = 1

6 (
√

7 − 1) ≈ 0.274 where f(α) = g(α) < 7.3.
For all the other values of α, one of the two functions is always below such a
threshold, that is the approximation ratio is always below 12.3.

G.D’Angelo et al. Optimal placement of storage nodes in a wireless sensor network

262

Actually, algorithm L is not yet an approximation algorithm, as the number
of iterations needed to find a local optimum solution might be superpolynomial.
To fix this problem, as in [1], we can change the stopping condition of L so it
finishes as soon as it finds an approximate local optimum solution, i.e., when
the solution S is such that every neighboring solution S′ of S has cost(S′) >
(1− ε)cost(S), for some ε ∈ (0, 1). This leads to the next corollary.

Corollary 2. There exists an 1
1−ε (5 + h(α))-approximation algorithm for MSP

for any ε ∈ (0, 1).

Finally, by following the arguments in [1], the algorithm can be improved
by allowing t simultaneous swaps. This leads to a locality gap of h′(α), where

h′ : [0, 1]→ R, h′(α) =




g′(α) if α = 0
min{f ′(α), g′(α)} if α ∈ (0, t

t+1) ;

f ′(α) if α ∈ [t
t+1 , 1]

f ′ : (0, 1]→ R, f ′(α) = 1 + t+1
t

1+2α
α ; g′ : [0, t

t+1)→ R, g′ = (3+α)t+2+α
(1−α)t−α .

Function h′ is plotted in Fig. 1b for t = 1, 2, 3, 4. To give an idea on the
improvement provided by this method, we computed the maximum value of the
upper bounds on the approximation ratio for t = 2, 3, 4, which is less than 8.67,
7.78 and 7.05, respectively. It follows that for t ≥ 2 and any value of α, our
algorithm improves over the 10-approximation algorithm provided in [10].

References

1. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local
search heuristics for k-median and facility location problems. SIAM Journal on
Computing, 33(3):544–562, 2004.

2. E. Duarte-Melo and M. Liu. Data-gathering wireless sensor networks: Organization
and capacity. Computer Networks (COMNET), 43(4):519–537, November 2003.

3. J. Gehrke and S. Madden. Query processing in sensor networks. IEEE Pervasive
Computing, 3(1):46–55, 2004.

4. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In Proceedings of ACM SIG-
MOD/PODS Conference, pages 491–502, 2003.

5. J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki, M. Vieira, J. Hicks,
D. Estrin, R. Govindan, and E. Kohler. The tenet architecture for tiered sensor
networks. ACM Transactions on Sensor Networks, 6(4):34:1–34:44, 2010.

6. Rise project. http://www.cs.ucr.edu/˜rise, 2014.
7. N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-

width. Journal of Algorithms, 7(3):309–322, 1986.
8. R. Sedgewick and P. Flajolet. An introduction to the analysis of algorithms.

Addison-Wesley, 1996.
9. B. Sheng, Q. Li, and W. Mao. Optimize storage placement in sensor networks.

IEEE Transactions on Mobile Computing, 9(10):1437–1450, 2010.
10. B. Sheng, C. C. Tan, Q. Li, and W. Mao. An approximation algorithm for data

storage placement in sensor networks. In Proceedings of the 2nd International
Conference on Wireless Algorithms, Systems and Applications (WASA), pages 71–
78. IEEE, 2007.

11. Stargate gateway (spb400). http://www.xbow.com, 2014.

G.D’Angelo et al. Optimal placement of storage nodes in a wireless sensor network

263

264

Engineering shortest-path algorithms for
dynamic networks

Mattia D’Emidio and Daniele Frigioni

Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Via Gronchi 18, I–67100, L’Aquila, Italy.
mattia.demidio@univaq.it, daniele.frigioni@univaq.it

Abstract. The problem of updating shortest paths in networks whose
topology dynamically changes over time is a core functionality of many
nowadays networked systems. In fact, the problem finds application in
many real-world scenarios such as Internet routing and route planning in
road networks. In these scenarios, shortest-path data are stored in differ-
ent ways and have to be updated whenever the underlying graph, repre-
senting the network, undergoes dynamic updates. This paper provides a
top-level overview of [13], where new dynamic shortest-path algorithms
for various real-world applications are proposed, engineered, analyzed
and compared to the literature, both theoretically and experimentally.

1 Introduction

In recent years, a massive interest has arisen in the scientific community for new
algorithms explicitly designed for nowadays computing systems, such as com-
puter networks, transportation infrastructures and distributed systems. This
impulse was motivated by the increasing complexity of such systems, which
required new methods and solutions able to overcome the limits of purely theo-
retical and mathematical approaches to solve problems. In fact, both increasing
demand for more efficient solutions to actual real-world problems and advance-
ments in computer hardware, which render traditional computing models more
and more unrealistic, have led to a rising gap between classical algorithm theory
and algorithmics in practice. The emerging discipline of algorithm engineering
aims at bridging this gap by complementing theory by the benefits of exper-
imentation. This area of studies has gained even more importance in the last
decade, when networked, therefore complex and in most cases dynamic, systems
have undergone an astonishing widespread diffusion (see [5, 12,18,21]).

In [13] we have focused on engineering new algorithms for the dynamic
single-source shortest paths problem, i.e. the problem of computing and up-
dating shortest-path trees in networks whose topology dynamically changes over
time. The study was motivated by the importance of this problem, which finds
application in many real-world scenarios, such as routing in communication net-
works and route planning in road networks. In these scenarios, shortest-path
data are stored in different ways and need to be updated whenever the underly-
ing graph undergoes dynamic updates. In details, the original contribution of [13]

265

consists of new dynamic shortest-path algorithms for various real-world appli-
cations. The work concentrates on problems related to three main categories
of networks: General Networks, Communication Networks, and Transportation
Networks, respectively. The proposed algorithms are analyzed and compared to
the literature, both theoretically and experimentally. In Sections 2–4 we summa-
rize the contributions for each of the aforesaid categories, while Section 5 gives
some concluding remarks.

2 General Networks

In this part, we focused on the problem of maintaining the shortest-path tree
from a given source of a general graph with positive real edge weights, whose
topology undergoes dynamic changes. This problem has been widely studied
both theoretically and experimentally. From the theoretical point of view, some
solutions have been proposed [14,15,17,20]. Some of them are only able to cope
with the update of one edge at a time [14, 15], while others can handle also
batch updates [17, 20], i.e., updates that consist of multiple edge changes at a
time. To the best of our knowledge, none of the above solutions is asymptotically
better than recomputing the shortest paths from scratch, by applying Dijkstra’s
algorithm in the worst case. From the experimental point of view, very few
studies are known. The most recent is that in [2], an experimental evaluation of
the algorithms in [15, 17, 19, 20] and some of their variants for batch updates.
The most important conclusion of this paper is the astonishing level of data
dependency within the problem. The second outcome is that it is useful to process
a set of updates as a batch when updated edges have strong interference w.r.t.
their impact on the shortest-path tree. While updates that are far away from
each other usually do not interfere, and hence they can be handled iteratively.

Our contribution to this area is the following: we have developed two new
dynamic algorithms for homogeneous batches [6], i.e. either incremental (con-
taining only insert and weight decrease operations) or decremental (containing
only delete and weight increase operations) batches which model realistic dy-
namic scenarios like node failures in communication networks. We have showed
that they extend the results of [14] to general graphs, and to batch updates,
and those of [15] to batch updates. We have proved the new algorithms to be
theoretically efficient in case of homogeneous batches. We have also provided an
extensive experimental study that compares the new solutions with the most ef-
fective known batch algorithms [7]. Our data show that the proposed algorithms
improve over the literature in a set of realistic scenarios. Our results complement
previous studies and show that the various solutions can be consistently ranked
on the basis of the type of homogeneous batch and of the underlying network.

3 Communication Networks

In this part, we considered the problem of routing in communication networks.
The most used approach for solving this problem is that based on shortest

M.D’Emidio et al. Engineering shortest-path algorithms for dynamic networks

266

paths [4, 16]. If the network is represented by a weighted graph, where vertices
model nodes of the network, edges model links connecting such nodes and the
weight of an edge models the time required by packets for traversing the cor-
responding link, the problem can be solved by the distributed computation of
all-pairs shortest paths. Known solutions for the problem are usually classified
as distance-vector and link-state [3]. Most distance-vector solutions are based on
the classical distributed Bellman-Ford’s method and hence converge very slowly,
due to well known looping phenomena, but require to store very little data and
are able to broadcast information about dynamic changes to a subset of nodes
of the network. Link-state algorithms require nodes to store the entire network
topology and to compute the shortest path to any destination, usually by run-
ning Dijkstra’s algorithm, thus requiring quadratic space per node. Link-state
algorithms are free of looping, however each node needs to receive and store
up-to-date information on the entire network topology after a dynamic change.

In the last decade, there has been a renewed interest in devising new light-
weight distributed shortest-path algorithms for a large number of applications
where routing devices can have limited storage capabilities, like i.e. wireless
sensor networks and large scale ethernet networks. In these applications, loop-
free distance-vector algorithms seem to be an attractive alternative to link-state
algorithms [21].

Our contribution to this area is twofold. First, we have presented a new
loop-free distance-vector algorithm, named LFR (Loop Free Routing), which
improves over previously known algorithms [9]. From the theoretical point of
view, the algorithm has the same message complexity of DUAL [16], one of the
best algorithms of the category, but it is always the best choice in terms of
memory requirements. From the experimental point of view, LFR outperforms
DUAL [9] in terms of messages on a set of real-world networks, whereas DUAL
is always the best choice on artificial instances. Second, we have developed a
new technique, named DCP (Distributed Computation Pruning), which can be
combined with every distance-vector algorithm to overcome some of their main
limitations (high number of messages sent, high space occupancy per node, low
scalability, poor convergence) in power-law networks [10]. We have provided
experimental evidences that the use of DCP in combination with DUAL and
LFR induces a massive improvement in their performance, in terms of both
message complexity and memory requirements.

4 Tranportation Networks

In this part, we studied the problem of computing best connections in transporta-
tion networks. The main effort of the study was dedicated to best connections
in road graphs, where vertices represent points on a map, edges represent road
segments connecting such points, and travel times for each segment are assigned
to the corresponding edge. This problem is a variant of the single-source shortest
paths problem and hence can be solved by applying Dijkstra’s algorithm. Unfor-
tunately, real-world transportation networks tend in general to be huge, yielding

M.D’Emidio et al. Engineering shortest-path algorithms for dynamic networks

267

unsustainable times to compute shortest paths by traditional approaches. For
this reason, many efforts have been done in the last years to accelerate the prac-
tical performance of Dijkstra’s algorithm on typical instances of road networks.
These research efforts have led to the development of a number of so-called speed-
up techniques, which compute additional data in a preprocessing phase in order
to accelerate the answer to shortest-path queries in an on-line phase. Theoret-
ically, none of such speed-up techniques is better than Dijkstra’s in the worst
case, while, in practice, some of them have been shown to be very effective. For
a comprehensive survey we refer to [1].

The main drawback of these techniques is that, in general, they do not work
well in dynamic scenarios, when edge weight changes occur to the network due
to, e.g., traffic jams. These scenarios are, of course, interesting, as they arise
frequently in practice. In order to keep shortest-path queries correct, the pre-
processed data need to be updated. The easiest way is to recompute the data
from scratch after each change. This is in general unfeasible, as even the fastest
methods need too much time. Therefore, in recent years some techniques for
updating shortest paths in dynamic scenarios [11,22] have been developed.

In our work, we focused on the speed-up technique named Arc-Flags and
proposed a new approach to efficiently use Arc-Flags in dynamic networks [8].
The new approach consists of a new data structure and a new fully dynamic al-
gorithm. Our study was motivated by the fact that some of the best performing
speed-up techniques, such as for example, CHASE and TNR+AF [1], rely on the
correctness and the performance of Arc-Flags. Hence, our dynamization of Arc-
Flags represents a first step toward the dynamization of these techniques. We
provided both theoretical and experimental evidences that confirm this state-
ment. In detail, our study shows that our dynamic approach overcomes previous
methods for maintaining the Arc-Flags in dynamic networks.

5 Conclusion

We have proposed a top-level overview of [13], which contains novel contributions
in the area of algorithm engineering. In details, we have given, analyzed and
compared to the literature, new dynamic shortest-path algorithms for various
real-world applications. The new algorithms improve over known approaches in
many interesting scenarios and represent a step forward in the development of
more efficient shortest-path solutions for dynamic networks.

References

1. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wag-
ner. Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s
algorithm. ACM Journal on Experimental Algorithmics, 15:Article 2.3, 2010.

2. R. Bauer and D. Wagner. Batch dynamic single-source shortest-path algorithms:
An experimental study. In 8th International Symposium on Experimental Algo-
rithms (SEA 2009), volume 5526 of Lecture Notes in Computer Science, pages
51–62. Springer, 2009.

M.D’Emidio et al. Engineering shortest-path algorithms for dynamic networks

268

3. D. Bertsekas and R. Gallager. Data Networks. Prentice Hall International, 1992.
4. S. Cicerone, G. D’Angelo, G. Di Stefano, and D. Frigioni. Partially dynamic ef-

ficient algorithms for distributed shortest paths. Theoretical Computer Science,
411:1013–1037, 2010.

5. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and V. Maurizio. Engineering
a new algorithm for distributed shortest paths on dynamic networks. Algorithmica,
66(1):51–86, 2013.

6. A. D’Andrea, M. D’Emidio, D. Frigioni, S. Leucci, and G. Proietti. Dynamically
maintaining shortest path trees under batches of updates. In 20th International
Colloquium on Structural Information and Communication Complexity (SIROCCO
2013), volume 8179, pages 286–297. Springer, 2013.

7. A. D’Andrea, M. D’Emidio, D. Frigioni, S. Leucci, and G. Proietti. Experimental
evaluation of dynamic shortest path tree algorithms on homogeneous batches. In
13th International Symposium on Experimental Algorithms, volume 8504 of Lecture
Notes in Computer Science, pages 283–294. Springer, 2014.

8. G. D’Angelo, M. D’Emidio, and D. Frigioni. Fully dynamic update of Arc-Flags.
Networks, (63):283–294, 2014.

9. G. D’Angelo, M. D’Emidio, and D. Frigioni. A loop-free shortest-path routing
algorithm for dynamic networks. Theoretical Computer Science, 516:1–19, 2014.

10. G. D’Angelo, M. D’Emidio, D. Frigioni, and D. Romano. Enhancing the compu-
tation of distributed shortest paths on real dynamic networks. In 1st Mediter-
ranean Conference on Algorithms (MEDALG 2012), volume 7659 of Lecture Notes
in Computer Science, pages 148–158, 2012.

11. D. Delling, A. V. Goldberg, T. Pajor, and R. F. F. Werneck. Customizable route
planning. In 10th International Symposium on Experimental Algorithms (SEA
2011), volume 6630 of Lecture Notes in Computer Science, pages 376–387, 2011.

12. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning
Algorithms. In Algorithmics of Large and Complex Networks, volume 5515 of
Lecture Notes in Computer Science, pages 117–139. Springer, 2009.

13. M. D’Emidio. Engineering shortest-path algorithms for dynamic networks. Ph.D.
Thesis, University of L’Aquila, Advisor: Prof. Daniele Frigioni, 2014.

14. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Semi-dynamic algorithms for
maintaining single source shortest path trees. Algorithmica, 22(3):250–274, 1998.

15. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms
for maintaining shortest paths trees. Journal of Algorithms, 34(2):251–281, 2000.

16. J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Trans. on Networking, 1(1):130–141, 1993.

17. P. Narváez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic algorithms for shortest
path tree computation. IEEE/ACM Trans. on Networking, 8(6):734–746, 2000.

18. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Al-
gorithmics, 12:2.4:1–2.4:39, 2008.

19. G. Ramalingam and T. Reps. On the computational complexity of dynamic graph
problem. Theoretical Computer Science, 158:233–277, 1996.

20. G. Ramalingam and T. W. Reps. An incremental algorithm for a generalization
of the shortest paths problem. Journal of Algorithms, 21:267–305, 1996.

21. S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed path
computation. IEEE/ACM Trans. on Networking, 18(1):307–319, 2010.

22. P. Sanders and D. Schultes. Dynamic Highway-Node Routing. In Proc. of the 6th
Workshop on Experimental Algorithms (WEA’07), volume 4525 of Lecture Notes
in Computer Science, pages 66–79, 2007.

M.D’Emidio et al. Engineering shortest-path algorithms for dynamic networks

269

270

Minimal models for rational closure in SHIQ

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2 ?

1 DISIT - Univ. Piemonte Orientale, Alessandria, Italy - laura@mfn.unipmn.it
2 Dip. di Informatica - Univ. di Torino, Italy - {gliozzi,pozzato}@di.unito.it

3 Aix-Marseille Université, CNRS, France nicola.olivetti@univ-amu.fr

Abstract. We introduce a notion of rational closure for the logic SHIQ based
on the well-known rational closure by Lehmann and Magidor [21]. We provide a
semantic characterization of rational closure in SHIQ in terms of a preferential
semantics, based on a finite rank characterization of minimal models.

1 Introduction

The growing interest of defeasible inference in ontology languages has led, in the last
years, to the definition of many non-monotonic extensions of Description Logics (DLs)
[23, 11, 19, 2, 20]. The best known semantics for nonmonotonic reasoning have been
used to the purpose, from default logic [1], to circumscription [2], to Lifschitz’s logic
MKNF [10, 22], to preferential reasoning [4, 15], and to rational closure [5].

In this work, we focus on rational closure and, specifically, on the rational closure for
SHIQ. Rational closure provides a significant and reasonable nonmonotonic inference
mechanism for DLs, still remaining computationally inexpensive. As shown for ALC in
[5], its complexity can be expected not to exceed the one of the underlying monotonic
DL. This is a striking difference with most of the other approaches to nonmonotonic
reasoning in DLs mentioned above, with the exception of some of them, such as [22, 20].
In particular, we define a rational closure for the logic SHIQ building on the notion of
rational closure in [21] for propositional logic. This is a difference with respect to the
rational closure construction introduced in [6] forALC, which is more similar to the one
by Freund [12]. We provide a semantic characterization of rational closure in SHIQ in
terms of a preferential semantics, generalizing to SHIQ the results for rational closure
for ALC in [16]. This generalization is not trivial, since SHIQ lacks a crucial property
of ALC, the finite model property. Our construction exploits an extension of SHIQ
with a typicality operator T, that selects the most typical instances of a concept C, thus
allowing defeasible inclusions of the form T(C) v D (the typical Cs are Ds) together
with the standard (strict) inclusions C v D (all the Cs are Ds).

We define a minimal model semantics and a notion of minimal entailment for the
resulting logic, SHIQRT, and we show that the inclusions belonging to the rational clo-
sure of a TBox are those minimally entailed by the TBox, when restricting to canonical
models. This result exploits a characterization of minimal models, showing that we can

? G. L. Pozzato is partially supported by the project ODIATI#1 “Ontologie, DIAgnosi e TIpicalità
nelle logiche descrittive” of the local research funds 2013 by the Università degli Studi di
Torino - part B, supporting young researchers.

271

restrict to models with finite ranks. We can show that the rational closure construction
of a TBox can be done exploiting entailment in SHIQ, without requiring to reason
in SHIQRT, and that the problem of deciding if an inclusion belongs to the rational
closure of a TBox is EXPTIME-complete. This abstract is based on the full paper [17].

2 A nonmonotonic extension of SHIQ

Following the approach in [13, 15], we define an extension, SHIQRT, of the logic
SHIQ [18] introducing a typicality operator T to distinguish defeasible inclusions of
the form T(C) v D, defining the (defeasible) properties of typical instances of C, from
strict properties of all instances of C (C v D).

We consider an alphabet of concept names C, role namesR, transitive rolesR+ ⊆ R,
and individual constants O. Given A ∈ C, R ∈ R, and n ∈ N we define:
CR := A | > | ⊥ | ¬CR | CR u CR | CR t CR | ∀S.CR | ∃S.CR | (≥ nS.CR) | (≤ nS.CR)

CL := CR | T(CR) S := R | R−

As usual, we assume that transitive roles cannot be used in number restrictions [18]. A
KB is a pair (TBox, ABox). TBox contains a finite set of concept inclusions CL v CR

and role inclusions R v S. ABox contains assertions of the form CL(a) and S(a, b),
where a, b ∈ O.

The semantics of SHIQRT is formulated in terms of rational models: ordinary
models of SHIQ are equipped with a preference relation < on the domain, whose
intuitive meaning is to compare the “typicality” of domain elements, that is to say x < y
means that x is more typical than y. Typical members of a concept C, that is members of
T(C), are the members x of C that are minimal with respect to this preference relation
(s.t. there is no other member of C more typical than x).

Definition 1 (Semantics of SHIQRT). A model M of SHIQRT is any structure
〈∆,<, I〉 where: ∆ is the domain; < is an irreflexive, transitive, well-founded, and
modular (for all x, y, z in ∆, if x < y then either x < z or z < y) relation over ∆;
I is the extension function that maps each concept C to CI ⊆ ∆, and each role R to
RI ⊆ ∆I ×∆I . For concepts of SHIQ, CI is defined as usual. For the T operator, we
have (T(C))I =Min<(C

I), where Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}.

SHIQRT models can be equivalently defined by postulating the existence of a function
kM : ∆ 7−→ Ord , and then letting x < y if and only if kM(x) < kM(y). We call
kM(x) the rank of element x inM. The rank kM(x) can be understood as the maximal
length of a chain x0 < · · · < x from x to a minimal x0 (s.t. for no x′, x′ < x0). Observe
that because of modularity all chains have the same length.

Definition 2 (Model satisfying a knowledge base). Given a SHIQRT model M=
〈∆,<, I〉, we say that: - a modelM satisfies an inclusion C v D if CI ⊆ DI ; similarly
for role inclusions; -M satisfies an assertion C(a) if aI ∈ CI ; andM satisfies an
assertion R(a, b) if (aI , bI) ∈ RI . Given a KB=(TBox,ABox), we say that:M satisfies
TBox ifM satisfies all inclusions in TBox;M satisfies ABox ifM satisfies all assertions
in ABox;M satisfies KB if it satisfies both its TBox and its ABox.

L.Giordano et al. Minimal models for rational closure in SHIQ

272

Given a KB, we say that an inclusion CL v CR is derivable from KB, written KB
|=SHIQRT CL v CR, if CL

I ⊆ CR
I holds in all models M =〈∆,<, I〉 satisfying

KB; similarly for role inclusions. We also say that an assertion CL(a), with a ∈ O,
is derivable from KB, written KB |=SHIQRT CL(a), if aI ∈ CL

I holds in all models
M =〈∆,<, I〉 satisfying KB.

Given a modelM =〈∆,<, I〉, we define the rank kM(CR) of a concept CR in the
modelM as kM(CR) = min{kM(x) | x ∈ CR

I}. If CR
I = ∅, then CR has no rank

and we write kM(CR) =∞. It is immediate to verify that:

Proposition 1. For anyM =〈∆,<, I〉, we have thatM satisfies T(C) v D if and
only if kM(C uD) < kM(C u ¬D).

The typicality operator T itself is nonmonotonic, i.e., T(C) v D does not imply
T(C u E) v D. This nonmonotonicity of T allows us to express the properties that
hold for the typical instances of a class (not only the properties that hold for all the
members of the class). However, the logic SHIQRT is monotonic: what is inferred
from KB can still be inferred from any KB’ with KB ⊆ KB’. This is a clear limitation
in DLs. As a consequence of the monotonicity of SHIQRT, one cannot deal with
irrelevance. For instance, one cannot derive from KB= {VIP v Person , T(Person) v
≤ 1 HasMarried .Person , T(VIP) v ≥ 2 HasMarried .Person} that KB |=SHIQRT

T(VIP u Tall) v ≥ 2 HasMarried .Person , even if the property of being tall is
irrelevant with respect to the number of marriages.

In order to overcome this weakness, we strengthen the semantics of SHIQRT by
defining a minimal models mechanism which is similar, in spirit, to circumscription.
Given a KB, the idea is to: 1. define a preference relation among SHIQRT models,
giving preference to the model in which domain elements have a lower rank; 2. restrict
entailment to minimal SHIQRT models (w.r.t. the above preference relation) of KB.

Definition 3 (Minimal models). GivenM =〈∆,<, I〉 andM′ = 〈∆′, <′, I ′〉,M is
preferred toM′ (M <FIMS M′) if (i) ∆ = ∆′, (ii) CI = CI′

for all concepts C, and
(iii) for all x ∈ ∆, kM(x) ≤ kM′(x) whereas there is y ∈ ∆ s.t. kM(y) < kM′(y).
Given a KB, we say that M is a minimal model of KB w.r.t. <FIMS if it is a model
satisfying KB and there is noM′ model satisfying KB s.t.M′ <FIMS M.

Differently from [15], the notion of minimality here is based on the minimization of the
ranks of the worlds, rather then on the minimization of formulas of a specific kind. It
can be proved that a consistent KB has at least one minimal model and that satisfiability
in SHIQRT is in EXPTIME such as satisfiability in SHIQ.

The logic SHIQRT, as well as the underlying logic SHIQ, does not enjoy the
finite model property. However, we can prove that in any minimal model the rank of each
domain element is finite, which is essential for establishing a correspondence between
the minimal model semantics of a KB and its rational closure. From now on, we can
assume that the ranking function assigns to each domain element in ∆ a natural number.

3 Rational Closure for SHIQ
In this section, we extend to Description Logics the notion of rational closure proposed
by Lehmann and Magidor [21] for the propositional case. Given the typicality operator,

L.Giordano et al. Minimal models for rational closure in SHIQ

273

the typicality assertion T(C) v D plays the role of the conditional assertion C |∼ D in
Lehmann and Magidor’s rational logic R.

Definition 4 (Exceptionality of concepts and inclusions). Let TB be a TBox and C a
concept. C is said to be exceptional for TB if and only if TB |=SHIQRT T(>) v ¬C.
A T-inclusion T(C) v D is exceptional for TB if C is exceptional for TB . The set of
T-inclusions of TB which are exceptional in TB will be denoted as E(TB).

Given a DL KB=(TBox,ABox), it is possible to define a sequence of non increasing
subsets of TBox E0 ⊇ E1 ⊇ E2 ⊇ . . . by letting E0 = TBox and, for i > 0,
Ei = E(Ei−1) ∪ {C v D ∈ TBox s.t. T does not occurr in C}. Observe that, being
KB finite, there is an n ≥ 0 such that, for all m > n,Em = En or Em = ∅. The
definition of the Ei’s is similar the definition of the Ci’s in Lehmann and Magidor’s
rational closure [21] except for the addition of strict inclusions.

Definition 5 (Rank of a concept). A conceptC has rank i (rank(C) = i) for KB=(TBox,
ABox), iff i is the least natural number for which C is not exceptional for Ei. If C is
exceptional for all Ei then rank(C) =∞, and we say that C has no rank.

The notion of rank of a formula allows us to define the rational closure of the TBox of a
KB. We write KB |=SHIQ F to mean that F holds in all models of SHIQ.

Definition 6 (Rational closure of TBox). Let KB=(TBox,ABox). We define, TBox , the
rational closure of TBox, as TBox = {T(C) v D | either rank(C) < rank(C u ¬D)
or rank(C) =∞} ∪ {C v D | KB |=SHIQ C v D}.

The rational closure of TBox is a nonmonotonic strengthening of SHIQRT which
allows us to deal with irrelevance, as the following example shows. Let TBox =
{T(Actor) v Charming}. It can be verified that T(Actor u Comic) v Charming ∈
TBox . This nonmonotonic inference does no longer follow if we discover that in-
deed comic actors are not charming (and in this respect are untypical actors): in-
deed given TBox′= TBox ∪ {T(Actor u Comic) v ¬Charming}, we have that
T(Actor uComic) v Charming 6∈ TBox ′. Also, as for the propositional case, rational
closure is closed under rational monotonicity: from T(Actor) v Charming ∈ TBox
and T(Actor) v Bold 6∈ TBox it follows that T(Actor u ¬Bold) v Charming ∈
TBox .

Theorem 1 (Complexity of rational closure over TBox). Given a TBox, the problem
of deciding whether T(C) v D ∈ TBox is in EXPTIME.

The proof of this result in [17] shows that the rational closure of a TBox can be com-
puted using entailment in SHIQ, through a linear encoding of SHIQRT entailment.
EXPTIME-completeness follows from the EXPTIME-hardness result for SHIQ [18].

4 A Minimal Model Semantics for Rational Closure in SHIQ
To provide a semantic characterization of this notion, we define a special class of minimal
models, exploiting the fact that in all minimal SHIQRT models the rank of each domain

L.Giordano et al. Minimal models for rational closure in SHIQ

274

element is always finite. First of all, we observe that the minimal model semantics in
Definition 3 as it is cannot capture the rational closure of a TBox.

Consider the TBox containing: VIP v Person , T(Person) v ≤ 1 HasMarried .
Person , T(VIP) v ≥ 2 HasMarried .Person . We observe that T(VIP u Tall) v ≥
2 HasMarried .Person does not hold in all minimal SHIQRT models of KB w.r.t.
Definition 3. Indeed there can be a model M = 〈∆,<, I〉 in which ∆ = {x, y, z},
VIPI = {x, y}, PersonI = {x, y, z}, (≤ 1 HasMarried .Person)I = {x, z}, (≥
2 HasMarried .Person)I = {y}, TallI = {x}, and z < y < x.M is a model of KB,
and it is minimal. Also, x is a typical tallVIP inM and has no more than one spouse,
therefore T(VIP u Tall) v ≥ 2 HasMarried .Person does not hold in M. On the
contrary, it can be verified that T(VIP u Tall) v ≥ 2 HasMarried .Person ∈ TBox .

Things change if we consider the minimal models semantics applied to models that
contain a domain element for each combination of concepts consistent with KB. We call
these models canonical models. Let S be the set of all the concepts (and subconcepts)
occurring in KB or in the query F together with their complements.

Definition 7 (Canonical model). Given KB=(TBox,ABox) and a query F , a model
M =〈∆,<, I〉 satisfying KB is canonical with respect to S if it contains at least a
domain element x ∈ ∆ s.t. x ∈ (C1 u C2 u · · · u Cn)

I , for each set of concepts
{C1, C2, . . . , Cn} ⊆ S consistent with KB, i.e. KB 6|=SHIQRT C1 uC2 u · · · uCn v ⊥.

In order to semantically characterize the rational closure of a SHIQRT KB, we restrict
our attention to minimal canonical models. Existence of minimal canonical models can
be proved for any (finite) satisfiable KB. Let us first introduce the following proposition,
which defines a correspondence between the rank of a formula in the rational closure
and the rank of a formula in a model (the proof is by induction on the rank i):

Proposition 2. Given KB and S, for all C ∈ S, if rank(C) = i, then: 1. there is a
{C1 . . . Cn} ⊆ S maximal and consistent with KB such that C ∈ {C1 . . . Cn} and
rank(C1 u · · · u Cn) = i; 2. for anyM minimal canonical model of KB, kM(C) = i.

The following theorem follows from the propositions above:

Theorem 2. Let KB=(TBox,ABox) be a knowledge base and C v D a query. We have
that C v D ∈ TBox if and only if C v D holds in all minimal canonical models of KB
with respect to S.

5 Conclusions and Related Work

In this work we have proposed an extension of the rational closure defined by Lehmann
and Magidor to the Description Logic SHIQ, taking into account both TBox reasoning
(ABox reasoning is addressed in [17]). There is a number of closely related proposals.

In [13, 15] nonmonotonic extensions of ALC with the typicality operator T have
been proposed, whose semantics of T is based on the preferential logic P. The notion
of minimal model adopted here is completely independent from the language and is
determined only by the relational structure of models.

L.Giordano et al. Minimal models for rational closure in SHIQ

275

The first notion of rational closure for DLs was defined by Casini and Straccia in
[5], based on the construction proposed by Freund [12] for propositional logic. In [6] a
semantic characterization of a variant of the rational closure in [5] has been presented,
generalizing to ALC the notion of minimally ranked models for propositional logic in
[14]. Experimental results in [7] show that, from a performance perspective, it is practical
to use rational closure as defined in [6]. The major difference of our construction with
those is [5, 6] is in the notion of exceptionality: our definition exploits preferential
entailment, while [5, 6] directly use entailment in ALC over a materialization of the KB.
In [17] we have shown that our notion of rational closure for the TBox can nevertheless
be computed in SHIQ by exploiting a linear encoding in SHIQ.

The rational closure construction in itself can be applied to any description logic.
As future work, we aim to extend it and its semantic characterization to stronger logics,
such as SHOIQ, for which the correspondence between the rational closure and the
minimal canonical model semantics of the previous sections cannot be established
straightforwardly, due to the interaction of nominals with number restrictions. Also, we
aim to consider a finer semantics where models are equipped with several preference
relations; in such a semantics it might be possible to relativize the notion of typicality,
whence to reason about typical properties independently from each other. The aim is
to overcome some limitations of rational closure, as done in [8] by combining rational
closure and Defeasible Inheritance Networks or in [9] with the lexicographic closure.

References
1. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in

treating specificity in terminological default logic. J. Autom. Reasoning 15(1), 41–68 (1995)
2. Bonatti, P.A., Lutz, C., Wolter, F.: The Complexity of Circumscription in DLs. Journal of

Artificial Intelligence Research (JAIR) 35, 717–773 (2009)
3. Booth, R., Paris, J.: A note on the rational closure of knowledge bases with both positive and

negative knowledge. Journal of Logic, Language and Information 7, 165–190 (1998)
4. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Brewka, G., Lang, J.

(eds.) Principles of Knowledge Representation and Reasoning: Proc. KR 2008, pp. 476–484.
5. Casini, G., Straccia, U.: Rational Closure for Defeasible Description Logics. In: Janhunen, T.,

Niemelä, I. (eds.) Proc. of JELIA 2010. LNAI, vol. 6341, pp. 77–90.
6. Casini, G., Meyer, T., Varzinczak, I.J., Moodley, K.: Nonmonotonic Reasoning in Description

Logics: Rational Closure for the ABox. In: DL 2013, CEUR W. Proc. 1014, pp. 600–615.
7. Casini, G., Meyer, T., Moodley, K., Varzinczak, I.J.: Towards Reasoning Practical Defeasible

Reasoning in Description Logics. In: DL 2013, 26th Int. Workshop on Description Logics.
CEUR Workshop Proceedings, vol. 1014. CEUR-WS.org (2013)

8. Casini, G., Straccia, U.: Defeasible Inheritance-Based Description Logics. In: Walsh, T. (ed.)
Proc. of the 22nd Int. Joint Conference on Artificial Intelligence (IJCAI 2011). pp. 813–818.

9. Casini, G., Straccia, U.: Lexicographic Closure for Defeasible Description Logics. In Proc. of
Australasian Ontology Workshop, volume 969, 2012.

10. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as
failure. ACM Transactions on Computational Logic (ToCL) 3(2), 177–225 (2002)

11. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Programming
with Description Logics for the Semantic Web. In: Dubois, D., Welty, C., Williams, M. (eds.)
Principles of Knowledge Representation and Reasoning: Proc. of KR 2004, pp. 141–151.

L.Giordano et al. Minimal models for rational closure in SHIQ

276

12. Freund, M.: Preferential reasoning in the perspective of poole default logic. Artif. Intell.
98(1-2), 209–235 (1998)

13. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential extension of
Description Logics. Fundamenta Informaticae 96, 1–32 (2009)

14. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A minimal model semantics for non-
monotonic reasoning. In: Luis Fariñas del Cerro, Andreas Herzig, J.M. (ed.) Proc. of JELIA
2012. LNAI, vol. 7519, pp. 228–241. Springer-Verlag, Toulouse, France (Sptember 2012)

15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic Description Logic for
Reasoning About Typicality. Artificial Intelligence 195, 165–202 (2013)

16. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Minimal Model Semantics and Rational
Closure in Description Logics . In: Eiter, T., Glim, B., Kazakov, Y., Krtzsch, M. (eds.) Proc.
of Description Logics (DL 2013). CEUR Workshop Proc., vol. 1014, pp. 168 – 180.

17. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Rational Closure in SHIQ. In: DL
2014, 27th International Workshop on Description Logics. To appear (2014)

18. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics.
Logic Journal of the IGPL 8(3), 239–263 (2000)

19. Ke, P., Sattler, U.: Next Steps for Description Logics of Minimal Knowledge and Negation
as Failure. In: Baader, F., Lutz, C., Motik, B. (eds.) Proc. of Description Logics. CEUR
Workshop Proceedings, vol. 353. CEUR-WS.org, Dresden, Germany (May 2008)

20. Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep it simple,
stupid! In: Proc. of Description Logics (DL 2011). CEUR Workshop Proceedings, vol. 745.

21. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelli-
gence 55(1), 1–60 (1992)

22. Motik, B., Rosati, R.: Reconciling Description Logics and rules. J. of the ACM 57(5) (2010)
23. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Bajcsy, R. (ed.)

Proc. of IJCAI 1993, pp. 676–681. Morgan Kaufmann, Chambéry, France (August 1993)

L.Giordano et al. Minimal models for rational closure in SHIQ

277

278

An algebraic characterization of
unary two-way transducers ?

(Extended Abstract)

Christian Choffrut1 and Bruno Guillon1

LIAFA, CNRS and Université Paris 7 Denis Diderot, France.

Abstract. Two-way transducers are ordinary finite two-way automata
that are provided with a one-way write-only tape. They perform a word
to word transformation. Unlike one-way transducers, no characterization
of these objects as such exists so far except for the deterministic case. We
study the other particular case where the input and output alphabets are
both unary but when the transducer is not necessarily deterministic. This
yields a family which extends properly the rational relations in a very
natural manner. We show that deterministic two-way unary transducers
are no more powerful than one-way transducers.

1 Introduction

In the theory of words, two different terms are more or less indifferently used to
describe the same objects: transductions and binary relations. The former term
distinguishes an input and an output, even when the input does not uniquely
determine the output. In certain contexts it is a synonym for translation where
one source and one target are understood. The latter term is meant to suggest
pairs of words playing a symmetric role.

Transducers and two-tape automata are the devices that implement the
transductions and relations respectively. The concept of multitape- and thus
in particular two-tape automata was introduced by Rabin and Scott [7] and also
by Elgot and Mezei [3] almost fifty years ago. Most closure and structural prop-
erties were published in the next couple of years. As an alternative to a definition
via automata it was shown that these relations were exactly the rational subsets
of the direct product of free monoids. On the other hand, transductions, which
are a generalization of (possibly partial) functions, is a more suitable term when
the intention is that the input preexists the output. The present work deals
with two-way transducers which are such a model of machine using two tapes.
An input tape is read-only and is scanned in both directions. An output tape
is write-only, initially empty and is explored in one direction only. The first
mention of two-way transducers is traditionally credited to Shepherdson [9].

Our purpose is to define a structural characterization of these relations in
the same way that the relations defined by multi-tape automata are precisely
? Paper accepted at the 39th International Symposium on Mathematical Foundations

of Computer Science, Budapest, August 25-29, 2014, to appear.

279

the rational relations. However we limit our investigation to the case where the
input and output are words over a one letter alphabet, i.e., to the case where
they both belong to the free monoid a∗ generated by the unique letter a. Our
technique does not apply to non-unary alphabets. The input is written over one
tape and is delimited by a left (.) and a right (/) endmarker which prevents the
reading head to fall off the input. An output is written on a second write-only
tape. Formally a two-way transducer can be defined as a pair (A, φ) where A is a
two-way automaton of transition set δ and φ is a production function, mapping
δ into output words.

We now state our main result more precisely. Let Σ and ∆ be respectively
the input and the output alphabets. Given a binary relation R ⊆ Σ∗ ×∆∗ and
a word u in Σ∗ we put R(u) = {v | (u, v) ∈ R}. We recall that R is rational if
it belongs to the smallest family of subsets of Σ∗×∆∗ which contains the finite
languages and which is closed under set union, componentwise concatenation
and Kleene star. We are able to prove the following

Theorem 1. A relation of the monoid a∗×a∗ is defined by a two-way transducer
if and only if it is a finite union of relations R satisfying the following condition:
there exist two rational relations S, T ⊆ a∗× a∗ such that for all x ∈ a∗ we have

R(x) = S(x)T (x)∗

The relation {(an, akn) | n, k ≥ 0} is a simple example. It is of the previous
form, however it is not rational. Indeed, identifying a∗ with the additive monoid
of integers N this relation defines the relation “being a multiple of”. However
rational subsets of N are first-order definable in Presburger arithmetics, i.e.,
arithmetics with addition only.

We now briefly mention the few results which to the best of our knowledge are
published on two-way transducers. Engelfriet and Hoogeboom showed links be-
tween two-way transducers and logic [4]. Filiot et al. have studied the simulation
of functional two-way transducers by one-way transducer in [5].

2 Formal series

As suggested in introduction by R(u) notation, a relation R ⊆ Σ∗ ×∆∗ can be
considered as a function from Σ∗ into P(∆∗) or, equivalently, as a series over Σ∗
with its coefficient in P(∆∗). The set of such series is denoted by P(∆∗) 〈〈Σ∗〉〉.
This representation is the most convenient for our work. Thus, we will identify
a relation R with its associated series fR : u → {v | (u, v) ∈ R}. In the same
spirit we will speak of the series accepted by a two-way transducer. We use the
traditional notation 〈s, u〉 in place of fR(u).

In addition to standard rational operations on series (sum, Cauchy product
and Kleene star), we need two operations which we called Hadamard- or simply
H-operations. The first one is the usual Hadamard product of two formal series:
the coefficient of a word in a product is the product of the coefficients in the two
series; the second happens to be new.

C.Choffrut et al. An algebraic characterization of unary two-way transducers

280

– the Hadamard product (or H-product): sH t : ∀u ∈ Σ∗, 〈sH t, u〉 = 〈s, u〉 〈t, u〉
– the Hadamard star (or H-star): sH? : ∀u ∈ Σ∗,

〈
sH?, u

〉
= 〈s, u〉∗

Denoting by Id the series associated to the identity relation, the series as-
sociated to the relation

{
(an, akn) | n, k ≥ 0

}
is equal to IdH?. The following is

general but provides, when restricted to the case where ∆ is unary, one direction
of our main theorem 4.

Proposition 1. If s and t are series accepted by two-way transducers, so are
the series sH t and sH?.

Rational series and beyond

The family of rational series over the semiring K, denoted RatK 〈〈Σ∗〉〉, is the
smallest family of series over Σ∗ with coefficients in the semiring K which con-
tains the polynomials, i.e., series with finitely many non empty coefficients, and
which is closed under rational operations. The following result is classical [1,
Theorem III. 7.1][2,8]:
Theorem 2. The family of series in P(∆∗)〈〈Σ∗〉〉 accepted by one-way trans-
ducers is equal to the family Rat∆∗ 〈〈Σ∗〉〉.
The family RatK 〈〈Σ∗〉〉 is not closed under H-operations for an arbitrary semir-
ing. However when K is commutative the following holds, [8, Thm III. 3.1]
Theorem 3. If K is commutative then RatK 〈〈Σ∗〉〉 is closed under H-product.
The H-star of a rational series is not necessarily rational, even when Σ is unary.
Therefore the following defines a broader family.
Definition 1. The family of Hadamard series, denoted HadK 〈〈Σ∗〉〉 is the set
of finite sums of Hadamard products of the form αHβH? with α, β ∈ RatK 〈〈Σ∗〉〉.
This family enjoys nice closure properties:
Proposition 2. If K is commutative, the family HadK 〈〈Σ∗〉〉 is closed under
finite sum, H-product and H-star.

3 Unary two-way transductions

From now on we concentrate on unary two-way transducers, i.e., on those with
input and output alphabets reduced to the letter a and characterize the relations
they define. We fix a transducer (A, φ).

The following is a reformulation of Theorem 1 in terms of series.
Theorem 4. Let K denote the semiring Rat(a∗). A series s ∈ P(a∗) 〈〈a∗〉〉 is
accepted by some two-way finite transducer if and only if s ∈ HadK 〈〈a∗〉〉, i.e.,
there exist a finite collection of rational series αi, βi ∈ RatK 〈〈a∗〉〉 such that:

s =
∑

i

αi HβH?i

C.Choffrut et al. An algebraic characterization of unary two-way transducers

281

The fact that the condition is sufficient is a direct consequence of Theorem 2
and Proposition 1. The other direction is more involved. We proceed as follows.
We first show that if the transducer performs a unique hit, i.e., it never visits
endmarkers except at the beginning and at the end of the computation, it defines
a rational relation. Then we use the closure properties of Property 2 to prove that
the full binary relation with the possibility of performing an arbitrary number
of hits, belongs to HadK 〈〈a∗〉〉.

We adapt a well-known construction based on crossing sequences, i.e., se-
quence of destination states of transitions performed between two successive
tape positions, in chronological order (see [6, page 36-42] for details). Using the
commutativity of ∆∗, we are able to simulate by a one-way transducer, any loop-
free run of (A, φ), i.e., run that never visit the same position twice in the same
state. Then, using again the commutativity of ∆∗ and the fact that Σ is unary
we extend this result to any hit, with or without loops. It is then possible to
restrict this simulation to hits whose first and last configuration matches some
fixed border points, i.e., elements from Q× {., /} (the second component is the
endmarker associated to the side of the tape).

Lemma 1. Given a transducer, and two border points b0 and b1, there exists a
computable one-way transducer that simulates any b0 to b1 hits.

The accepted relation is thus rational, by Theorem 2.

Simulation of an unlimited number of hits

We first adapt the matrix multiplication to the Hadamard product. Let N be
an integer and let be given two matrices X,Y ∈ (K 〈〈Σ∗〉〉)N×N . We define the
H-product of X and Y and also the H-star of X as the matrices:

X HY =
∑N
k=1 Xi,k HYk,j (X)H? =

∑∞
k=0

k times︷ ︸︸ ︷
X H · · · HX

Proposition 3. If the matrix X is in (HadK 〈〈Σ∗〉〉)N×N then so is (X)H?.

Now we are able to conclude the proof of Theorem 4.

Proof (Theorem 4). In one direction this is an immediate consequence of the fact
that the family of series associated with a two-way transducer is closed under
sum, Hadamard product and Hadamard star, see Proposition 1.

It remains to prove the converse. Let T be a transducer. Consider a matrix
X whose rows and columns are indexed by the pairs Q×{., /} of border points.
For all pairs of border points b0 and b1, its (b0, b1) entry is, by Lemma 1, the
rational series associated to b0 to b1 hits of T . The series accepted by T is the
sum of the entries of XH? in position ((q−, .), (q, /)) for q an accepting state.
Since all rational series are also Hadamard series, we conclude by Proposition 2.

C.Choffrut et al. An algebraic characterization of unary two-way transducers

282

4 Conclusion
Our main result of Theorem 1 gives a characterization of relations (series) ac-
cepted by two-way unary transducers. A key point is that crossing sequences
of loop-free runs have bounded size. In consequence, any loop-free runs can be
simulated by a one-way transducer. We point out that this simulation does not
require any hypothesis on the size of the input alphabet.

We fix a transducer T = (A, φ) accepting a relation R ⊆ Σ∗ × Γ ∗, with
|Γ | = 1. If A is deterministic or unambiguous (i.e., for each input word u, there
exists at most one accepting run of A on u), then every accepting run is loop-free.
Therefore, by the previous remark, T is equivalent to some constructible one-way
transducer. Another interesting case is when R is a function (T is functional).
Then for each u, all the accepting runs on u produce the same output word.
Hence, considering only loop-free runs preserves the acceptance of T .
Corollary 1. Let R ⊆ Σ ×∆ with |∆| = 1 be accepted by some two-way trans-
ducer T = (A, φ). If A is unambiguous or if R is a function then R is rational.

A rational uniformization of a relation R ⊆ Σ∗ × Γ ∗, is a rational function
F ⊆ R, such that the domain of F is equal to the one of R. Under the hypothesis
|Γ | = 1, it is possible to build a one-way transducer accepting such a F . Since the
transducer obtained from our work is not necessary functional, the construction
involves a result of Eilenberg [2, Prop. IX 8. 2] solving the rational uniformization
problem for rational relations.
Corollary 2. There exists a computable one-way transducer accepting a rational
uniformization of R.

As a consequence of Lemma 1, in the case of unary transducers, the change
of direction of the input head can be restricted to occur at the endmarkers only.
In the literature such machines are known as sweeping machines [10].

References
1. J. Berstel. Transductions and context-free languages. B. G. Teubner, 1979.
2. S. Eilenberg. Automata, Languages and Machines. vol. A, Academic Press, 1974.
3. C. C. Elgot and J. E. Mezei. On Relations Defined by Finite Automata. IBM

Journal, 10:47–68, 1965.
4. J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-

way finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.
5. E. Filiot, O. Gauwin, P. A. Reynier, and F. Servais. From two-way to one-way

finite state transducers. In LICS, pages 468–477, 2013.
6. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.
7. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3:114–125, 1959.
8. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
9. J. C. Shepherdson. The reduction of two-way automata to one-way automata.

IBM Journal of Research and Development archive, 3:198–200, 1959.
10. M. Sipser. Lower bounds on the size of sweeping automata. J. Comput. Syst. Sci.,

21(2):195–202, 1980.

C.Choffrut et al. An algebraic characterization of unary two-way transducers

283

284

Logspace computability and regressive machines

Stefano Mazzanti

Dipartimento di Culture del Progetto
Università Iuav di Venezia

Fondamenta delle Terese 2206, 30123 Venezia, Italy
email: mazzanti@iuav.it

Abstract. We consider the function class E generated by the constant
functions, the projection functions, the predecessor function, the substi-
tution operator, and the recursion on notation operator. Furthermore,
we introduce regressive machines, i.e. register machines which have the
division by 2 and the predecessor as basic operations. We show that
E is the class of functions computable by regressive machines and that
the sharply bounded functions of E coincide with the sharply bounded
logspace computable functions.

Keywords: recursion on notation, logspace computable functions.

1 Introduction

One of the main features of logspace-algorithms is their incapacity to copy the
whole input due to memory shortage, thus forcing them to read the data "on
the fly", every time they are needed.

This feature has been exploited in [3] where the set L of logspace computable
predicates has been shown to be the set of predicates recognized by read-only
while programs and in [4] where the closure with respect to substitution and
simultaneous recursion on notation of the constant functions and the projection
functions has been shown to contain the characteristic functions of the predicates
in L.

In this paper, we consider the class E of number theoretic functions defined as
the closure with respect to substitution and (unbounded) recursion on notation
of the predecessor function, the constant functions and the projection functions.

We show that E is a subset of the logspace computable functions which
contains all the sharply bounded logspace functions. Moreover, we show that
E is the set of functions computable by regressive machines, a kind of register
machines which have the division by 2 and the predecessor as basic operations
on registers.

Therefore, the present work can be considered an improvement of the char-
acterization of L given in [4] because we use recursion on notation instead of
simultaneous recursion and we characterize not only the {0, 1}-valued logspace
functions, but also the sharply bounded logspace computable functions.

285

2 Preliminaries

In this paper, we will only consider functions with finite arity on the set N =
{0, 1, . . .} of natural numbers.

From now on, we agree that x, y, z, i, j, n range over N, that a, b, c, k range over
N− {0}, that x,y, z range over sequences (of fixed length) of natural numbers,
that p, q range over integer polynomials with nonnegative coefficients and that
f, g, h range over functions.

A function f is a polynomial growth function iff there is a polynomial p such
that |f(x)| ≤ p(|x|) for any x, where |x1, . . . , xn| = |x1|, . . . , |xn| and |x| =
dlog2(x+1)e is the number of bits of the binary representation of x.1 Moreover,
f is sharply bounded iff there is a polynomial p such that f(x) ≤ p(|x|) for any
x, and f is regressive iff there is some constant k such that f(x) ≤ max(x, k)
for any x, see [2].

We will use the following unary functions: the binary successor functions
s0 : x 7→ 2x and s1 : x 7→ 2x + 1 ; the constant functions Cn : x 7→ n for any
n ∈ N; the division by two function div2 : x 7→ bx/2c ; the remainder function
rem2 : x 7→ x− 2bx/2c ; the length function len : x 7→ |x|.

We will also use the following functions: the modified subtraction function
sub : x, y 7→ x−̇y = max(x − y, 0); the predecessor function P : x 7→ x−̇1 =
max(x − 1, 0); the bit function bit : x, y 7→ rem2(bx/2yc); the smash function
smash : x, y 7→ x#y = 2|x|·|y|; the most significant part function MSP : x, y 7→
bx/2yc. Recall that bit(x, y) is the y-th bit of x and thatMSP (x, y) is the number
represented in binary by the |x|−̇y leftmost bits of x. Finally, we will use the
substitution operator SUBST (g1, . . . , gb, h) transforming functions g1, . . . , gb :
Na → N and function h : Nb → N into the function f : Na → N such that
f(x) = h(g1(x), . . . , gb(x)) and the recursion on notation operator RN(g, h0, h1)
transforming function g : Na → N and functions h0 : Na+2 → N and h1 : Na+2 →
N into the function f : Na+1 → N such that

f(0,y) = g(y) ,

f(si(x),y) = hi(x,y, f(x,y))

where i ∈ {0, 1}. Let E be the closure under substitution and recursion on nota-
tion of the set comprehending the predecessor function P , the constant functions
Cn for any n and the projection functions Ia[i] : x1, . . . , xa 7→ xi (1 ≤ i ≤ a)
with any arity a.

3 Regressive machines

Now, we introduce regressive machines, a kind of random access machines which
have the division by 2 and the predecessor as basic operations.

1 Here, the notation |x1, . . . , xn| is just an abbreviation for the sequence |x1|, . . . , |xn|.
However, |x1, . . . , xn| is also interpreted as |x1| + . . . + |xn|.

S.Mazzanti. Logspace computability and regressive machines

286

A regressive machine operates on a finite number of variables (the registers)
X1, . . . , Xb and its program is built up according to the following rules:2

P ::= Xi := e|pred(Xi)|half(Xi)|P1; P2|loop Xi do P end

where instruction Xi := e sets the value of register Xi to the value of expression
e, and e can be any natural number constant, any register, or the least signif-
icant bit lsb(Xj) of register Xj. Moreover, instructions pred(Xi) and half(Xi)
compute the predecessor and (the quotient of) the division by 2 of Xi, respec-
tively. Finally, the program loop Xi do P end executes |x| times program P, where
x is the value held by Xi.

From now on, we adopt the notation of [4], so that registers and programs
are denoted by capital letters and we will write programs with the typewriter
font.

For any program P with b registers, a memory state of P is a sequence x =
x1, . . . , xb where xi is the value of Xi.

Consider the function mP : Nb → Nb such that mP(x) is the state of P

after the computation of P starting from state x. The following lemma states
that regressive machines compute regressive functions and that they operate
in polynomial time as long as instructions are executed sequentially and each
operation is executed in constant time.

Lemma 1. For any program P with b registers there is a constant c such that
Ib[i](mP(x)) ≤ max(x, c) for any 1 ≤ i ≤ b and there is a polynomial p such that
the running time of P starting from memory state x is bounded by p(|x|).

A program P with b registers computes a function f : Na → N with respect to
input registers X1, . . . , Xa and output register Xj iff for any x1, . . . , xa the value
f(x1, . . . , xa) is returned in register Xj when P is executed with Xi having initial
value xi for 1 ≤ i ≤ a and all the other variables are initialized to zero.

4 Main results

Let SB be the set of sharply bounded functions, let RM be the set of func-
tions computable by regressive machines and let FL be the set of logspace
computable functions. The following statement summarizes the relationships be-
tween logspace functions, class E and regressive machines.

Theorem 1.
FL ∩ SB ⊆ E ⊆ RM ⊆ FL ∩E.

2 The loop predecessor machines of [2] do not have either the assignment X:=lsb(Y)
or the division instruction, and use the LOOP X DO P construct, which iterates x many
times P, where x is the value held by X. In [3], counter machines with only decrement
instructions have been considered, but the registers’ contents are bounded by the
length of the input.

S.Mazzanti. Logspace computability and regressive machines

287

Proof (Sketch). We first show that class E contains sharply bounded versions
of the arithmetic operations (e.g. addp(x, y, z) = y + z for y, z ≤ p(|x|)) and
is closed with respect to the sharply bounded maximization operator MAXp(g)
transforming function g : Na+1 → N into the function f : Na → N such that
f(x) = max{i ≤ p(|x|)|g(x, i) 6= 0} if {i ≤ p(|x|)|g(x, i) 6= 0} 6= ∅, otherwise
f(x) = 0. Then, we set bitf (x, i) = bit(f(x), i) and show that bitf ∈ E for
any f ∈ FL. The proof is carried out by induction on the characterization of
FL given by Clote and Takeuti [1] which defines FL as the least function class
closed with respect to substitution, concatenation recursion on notation and
sharply bounded recursion on notation of the set comprehending the projection
functions, the binary successor functions, the bit, the length and the smash
functions.

Then, the first inclusion of the theorem is true because for any g ∈ FL such
that g(x) ≤ p(|x|) for some polynomial p, we have

g(x) = max{y ≤ p(|x|)|∀i<|p(|x|)|bit(y, i) = bitg(x, i)}

and the characteristic function of the predicate ∀i<|p(|x|)|bit(y, i) = bitg(x, i) is
in E. The second inclusion can be easily obtained by showing (by induction on
E) that for any function f ∈ E there is a regressive machine computing f .

To show the third inclusion, we introduce counter machines and show that
they simulate regressive machines using only a logarithmic amount of memory
space. Then, counter machines can be easily simulated by functions in FL∩E and
we obtain that RM ⊆ FL ∩E. A counter machine operates on a finite number
of read-only input registers and a finite number of read/write registers called
counters. Input registers are denoted as Y1, . . . , Ya and counters are denoted as
Z1, . . . , Zb for some a and b. Let y = y1, . . . , ya be the input values and let
z = z1, . . . , zb be the values of the counters. A counter machine program is
defined according to the following rules:

Q ::= Zi := e|succ(Zi)|half(Zi)|Q1; Q2|if (e1 = n) then Q1 else Q2

|loop Ei do Q1 end

where e is any constant, any counter or lsb(Ej), expression e1 can be Zi,
bit(YZi , Zj) or lsb(Zi), and Ei is an expression whose value is

ei(y, z) =

{
zi+2 if zi = 0,

MSP (yzi , zi+1)−̇zi+2 otherwise
(1 ≤ i ≤ b− 2).

Furthermore, we define the function MQ : Na+b → Na such that (y,MQ(y, z))
is the memory state returned after the computation of a counter machine pro-
gram Q starting from the state (y, z). Then, every regressive machine program P

with b registers is simulated by a counter machine program Q with 3b registers.
This means that for any x ∈ Nb, y ∈ Na and z ∈ N3b, if Ib[i](x) = e3i−2(y, z)
for any 1 ≤ i ≤ b, then Ib[i](mP(x)) = e3i−2(y,MQ(y, z)) for any 1 ≤ i ≤ b.
In other words, the value of register Xi of program P is represented by coun-
ters Z3i−2, Z3i−1, Z3i of program Q so that e3i−2(y, z) = xi. If Xi has been set

S.Mazzanti. Logspace computability and regressive machines

288

to a constant value, then z3i−2 = 0 and z3i is the value of Xi. Otherwise,
an input value has been assigned (or copied) to Xi and decrement or divi-
sion instructions have been performed on it. In that case, the value of Xi is
MSP(yz3i−2 , z3i−1)−̇z3i (z3i−2 is the index of the input value, z3i−1 is the num-
ber of divisions and z3i is less than or equal to the number of decrements). Then,
pred(Xi) is simulated by succ(Z3i) (if Xi is positive) whereas half(Xi) is sim-
ulated by succ(Z3i−1); half(Z3i) (Z3i could also be increased according to its
parity and the value of bit(yz3i−2 , z3i−1)).

So, for any function f : Na → N computed by a regressive machine program
P with b registers, there is a counter machine Q with 3b counters such that

f(x) = e3j−2(x,MQ(x, 1, 0, 0, . . . , a, 0, 0, . . . , 0))

where j is the index of the output register of P. Moreover, by Lemma 1 there
is a polynomial p such that p(|x|) bounds all the counters at any step of the
computation of Q. Therefore, we encode the counters with a single number
cp(x, z) = z1p(|x|)(3b−1)+. . .+z3b−1p(|x|)+z3b < p(|x|)3b and we define functions
ẽp,i, M̃p,Q : Na+1 → N belonging to FL ∩E such that ẽp,i(x, cp(x, z)) = ei(x, z),
M̃p,Q(x, cp(x, z)) = cp(MQ(x, z)) and

f(x) = ẽp,3j−2(x, M̃p,Q(x, cp(x, 1, 0, 0, . . . , a, 0, 0, . . . , 0))).

Since cp ∈ FL ∩E, we obtain that f ∈ FL ∩E.

From Theorem 1 we obtain immediately that E is a subset of logspace com-
putable functions and coincides with the class of functions computable by re-
gressive machines.

Corollary 1. E = RM ⊆ FL.

Moreover, by Theorem 1, we are also able to state that the sharply bounded
logspace functions coincide with the sharply bounded functions in E.

Corollary 2. FL ∩ SB = E ∩ SB.

Finally, from the corollary above we obtain the following new characterization
of L.

Corollary 3. The characteristic functions of logspace predicates coincide with
the {0, 1}-valued functions in E.

References

1. P. Clote and G. Takeuti, First order bounded arithmetic and small boolean circuit
complexity classes, in Feasible Mathematics II, Birkhäuser Boston, 1995.

2. P. C. Fischer, J. C. Warkentin, Predecessor Machines, J. Comput. System Sci. 8
(1974) 190-219.

3. N. D. Jones, LOGSPACE and PTIME characterized as programming languages,
Theoret. Comput. Sci. 228 (1999) 151-174.

4. L. Kristiansen, Neat algebraic characterizations of LOGSPACE and LINSPACE,
Comput. Complexity 14 (2005) 72–88.

S.Mazzanti. Logspace computability and regressive machines

289

290

Author Index

Agrawal, Mohit 183

Berardi, Stefano 237
Bernardinello, Luca 241
Bernardo, Marco 21
Bertoni, Alberto 45
Bilò, Vittorio 213
Bioglio, Livio 11
Bistarelli, Stefano 247
Boyacı, Arman 45
Bucciarelli, Antonio 59

Calamoneri, Tiziana 73
Carpi, Arturo 81
Carraro, Alberto 59
Casagrande, Alberto 93
Ceberio, Martine 247
Cherubini, Alessandra 109
Chierichetti, Flavio 9
Choffrut, Christian 279
Coletti, Giulianella 121
Corradini, Flavio 21

D’Alessandro, Flavio 81
D’Angelo, Gianlorenzo 259
D’Emidio, Mattia 265
Das, Sandip 183
De Nicola, Rocco 1
Diodati, Daniele 259
Dou, Liang 147

Ekim, Tınaz 45

Favro, Giordano 59
Formisano, Andrea 133
Frigioni, Daniele 265

Ghosh, Sasthi C. 183
Giordano, Laura 271
Gliozzi, Valentina 271
Goldwurm, Massimiliano 45
Guillon, Bruno 279

Henderson, Joel A. 247

Kisielewicz, Andrzej 109

Li, Chao 147
Lin, Jianyi 45
Liotta, Giuseppe 3

Mantaci, Roberto 159
Marino, Andrea 15
Massacci, Fabio 197
Massazza, Paolo 159
Mazzanti, Stefano 285
Montanari, Angelo 171

Nandi, Soumen 183
Navarra, Alfredo 259
Ngo, Minh 197

Oliva, Paulo 237
Olivetti, Nicola 271
Omodeo, Eugenio 93

Panigrahy, Nitish 183
Pazzaglia, Marco 171
Petturiti, Davide 121
Pini, Linda 45
Pinotti, Cristina M. 259
Pomello, Lucia 241
Pozzato, Gian Luca 271

Rombolà, Stefania 241

Sala, Pietro 171
Salibra, Antonino 59
Santini, Francesco 247
Shalom, Mordechai 45
Sinaimeri, Blerina 73
Steila, Silvia 237

Tesei, Luca 21

Vantaggi, Barbara 121
Vella, Flavio 133
Vinci, Cosimo 213

Yamakami, Tomoyuki 225
Yang, Zongyuan 147
Yunès, Jean-Baptiste 159

Zaks, Shmuel 45

291

