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Networks of sensor nodes are usually employed to monitor large areas, col-
lecting data with regular frequency. This large volume of data has to be stored
somewhere for answering to external user queries [3]. There are usually two main
ways to store data. Source nodes, which are responsible for collecting data, can
either locally store the data or transmit them to the sink, a powerful node con-
nected to the external world. Both solutions present some disadvantages. If data
are locally stored, several problems may arise: (i) data cannot be accumulated
for long periods because nodes are equipped with only limited memory space;
(ii) stored data are lost once the energy of a source node – battery operated – is
depleted; and (iii) searching data for serving query demand results in network-
wide communications. Alternatively, source nodes can forward the collected data
to the sink. However, communicating data from the source nodes up to the sink
makes the network congested, especially if data are transmitted raw, that is,
uncompressed. Limitations to the number of packets a sensor can transmit to
the sink per time unit must be also considered [2].

Recently [9, 10], a hybrid solution has been proposed which makes use of a
limited number of “special” sensors, more powerful than standard ones in terms
of storage, energy, and computational capabilities. Under this model, source
nodes may forward their raw data to such special nodes, referred to as storage
nodes. Here, raw data are stored and compressed, i.e., reduced in size, to be
transmitted to the sink at the time a query demand from external users is sub-
mitted. With this two-tier model, if the number of storage nodes is kept limited,
the network becomes less congested at the price of a moderate increase of the
sensor cost of the network. Indeed, the integration of storage nodes in the tiered
architecture for sensor networks is made possible by the new storage-enriched
hardware [6, 11] considered to be very practical [5]. The introduction of the stor-
age nodes helps to alleviate the transmission bandwidth problem by distributing
the local data transmission to the storage nodes. This hierarchical structure has
been instantiated by the popular stargate device [11] and the memory-enhanced
sensor nodes by UC Riverside [6]. Those special powerful nodes take advantage
of their high transmission, storage and even computational capabilities to allevi-
ate the bandwidth limitation, and also provide auxiliary support for surrounding
vulnerable sensors for data back-up. In [9, 10] the problem of selecting a subset
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of storage nodes so as the overall communication cost is minimized is called opti-
mal storage placement problem. When the number of storage nodes is limited by
an integer k, we talk about the minimum k-storage problem, which is formally
stated in the next paragraph.

Problem statement. Let G = (V,E) be a connected directed graph of n nodes
representing a sensor network. Each node v ∈ V generates raw data of size s(v).
Arcs of the network have different weights. The energy cost propagation of a
message over the arc (u, v) ∈ E is denoted by w(u, v). When a communication
link is bidirectional, w(u, v) = w(v, u). Let d(u, v) be the minimum energy cost
for propagating a message from u to v which is given by the shortest path
distance from u to v in G. Each v ∈ V can be set to serve as storage node.
A solution is a set S ⊆ V of storage nodes such that |S| ≤ k, for some k ∈ N.
External users retrieve data from a special storage node r ∈ S, named sink. Each
node v in V is associated to a storage node in S, denoted as σ(v, S). Clearly, if
v ∈ S, then σ(v, S) = v. For replying to a query, a storage node compresses and
sends to r the last data generated from its associated nodes. The compressed
size of the data produced by a node v becomes αs(v), with α ∈ [0, 1]. The
compressed data cannot be further compressed if they reach another storage
node. A node v ∈ V is associated to the storage node s ∈ S that minimizes
s(v)d(v, s)+αs(v)d(s, r), ties are arbitrarily broken. The total cost for a set S of
storage nodes is given by: cost(S) =

∑
v∈V s(v) (d(v, σ(v, S)) + αd(σ(v, S), r)) .

The minimum k-storage problem (briefly, MSP ) consists in finding a subset
S ⊆ V , with |S| ≤ k that minimizes cost(S).

Related Work. There has been a lot of prior research on data collection in
sensor networks. Initially, no in-network storage was considered: the request for
data was routed from the sink to every sensor by flooding messages. The data
were sent to the sink by following the same path but in the reverse direction [4].
Recently, a two-tier model has been proposed [10] to ameliorate the problem
of communication congestion. The authors formulate the problem as an inte-
ger programming problem and propose a 10-approximation rounding algorithm.
Differently from us, they assume that (i) raw data have size independent from
the source nodes; and (ii) the energy spent for transmitting one unit of data
between any pair of sensors is proportional to their Euclidean distance. For us,
instead, different source nodes may generate data of different size, since sensors
can monitor different environment aspects. Moreover, we assume that commu-
nications follow an underlying network represented by a graph. Each edge of
the graph has its own weight that measures the energy required to traverse it.
In [9], the problem is solved assuming that the communication network topology
is a directed tree T , rooted at the sink. The arcs are directed towards the sink
to collect the data, and they are directed away from the sink to broadcast the
query. When a sensor s sends one unit data upwards to the sink the energy cost
is fixed, while when a sensor s sends one unit data downwards, the energy cost
can be high because it is proportional to the number of children of s in T . In this
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paper and in [10], instead, storage nodes simply send query replies in a proactive
manner with a predefined query frequency and hence the query cost is null.

Our results. In the following we summarize our results. In detail we first focus
on the case of directed graphs and then in that of undirected ones.

Directed graphs. First, we focus on the approximation properties of the problem
and we show that indeed the problem is not in APX , that is, we cannot devise
a polynomial time algorithm with a constant factor approximation guarantee.
This is stated in the next theorem.

Theorem 1. Unless P = NP , MSP in directed graphs does not belong to APX.

The above theorem implies that it is not possible to find any practical approxi-
mation guarantee for the general case. Therefore, we focus on a restricted case
where the topology is a tree rooted at the sink and all the arcs are directed
towards the sink. In this case, we show that MSP can be optimally solved by a
dynamic programming algorithm in O(min{kn2, k2P}) time, where P is the path
length of the tree [8].3 We observe that for a balanced binary tree P = Θ(n log n),
for random general trees P = Θ(n

√
n), and in the worst case P = O(n2).

Undirected graphs. The proof of Theorem 1 is strictly based on the fact that the
links of the network are unidirectional and does not hold if all the links of the
network are bidirectional, that is the underlying graph is undirected. This is a
realistic assumption as links of a sensor network are usually bidirectional.

As the minimum k-storage problem for undirected graphs is similar to the
well-known metric k-median problem [1], then it is easy to show that also in this
case the problem is NP -complete.4 However, we are able to show that for graphs
with bounded treewidth [7], the problem is optimally solvable in polynomial
time. We note that this result also holds for the metric k-median problem which
is interesting by itself.

Theorem 2. Given a tree-decomposition of size w, there exists an algorithm
that optimally solves MSP in O(w · k · nw+3) time.

Notice that the above theorem does not prove that MSP is fixed parameter
tractable and we leave such proof (or disproof) as an open problem.

We then characterize the minimum k-storage problem on undirected graphs
from the approximation viewpoint. To this aim, we first prove that it is NP -
hard to approximate the metric k-median problem within a factor of 1 + 1

e , and
then we extend such a bound to the minimum k-storage problem by means of a
polynomial time reduction that preserves approximation.

3 The path length of a tree is the sum of the lengths over all nodes of the paths from
the root to each node.

4 The metric k-median problem is defined as follows: Given a complete graph G =
(V,E), a metric distance function dist : V × V → N, and an integer k, find a set
V ′ ⊆ V such that |V ′| ≤ k and

∑
u∈V minv∈V ′ dist(u, v) is minimized.
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Fig. 1a. The two upper bound functions to
the locality gap. Fig. 1b. Function h′.

Theorem 3. It is NP -hard to approximate the metric k-median problem within
a factor γ < 1 + 1

e .

Corollary 1. It is NP -hard to approximate MSP within a factor γ < 1 + 1
e .

According to Theorem 3, we propose a local search algorithm which guaran-
tees a constant approximation ratio greater than 1+1/e. In detail, the algorithm
is denoted by L and defined as follows. Each solution is specified by a subset
S ⊆ V of exactly k nodes. To move from one feasible solution S to a neighboring
one S′, we define a swap operation between two nodes s ∈ S and s′ ∈ V \ S
which consists in adding s′ and removing s, that is S′ = S ∪ {s′} \ {s}. In L,
we repeatedly check whether any swap move yields a solution of lower cost. In
the affirmative case, we apply to the current solution any swap move that im-
proves the solution cost and the resulting solution is set to be the new current
solution. This is repeated until, from the current solution, no swap operation
decreases the cost, that is, the current solution represents a local optimum. To
give a bound on the locality gap, let us define the following three functions:
f : (0, 1] → R, f(α) = 2/α; g : [0, 12 ) → R, g(α) = 12α

1−2α ; h : [0, 1] → R,

h(α) =




g(α) if α = 0
min{f(α), g(α)} if α ∈ (0, 12 )
f(α) if α ∈ [ 12 , 1].

Theorem 4. The local search algorithm L for MSP with compression ratio
α ∈ [0, 1] exhibits a locality gap of at most 5 + h(α).

Theorem 4 provides two upper bounds to the locality gap given by 5 + f(α)
and 5+g(α). Functions f , g, and h are plotted in Fig. 1a. Function f is monotonic
decreasing, while g is monotonic increasing, in their intervals of definition. We
have that f(α) = g(α) for α = 1

6 (
√

7 − 1) ≈ 0.274 where f(α) = g(α) < 7.3.
For all the other values of α, one of the two functions is always below such a
threshold, that is the approximation ratio is always below 12.3.
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Actually, algorithm L is not yet an approximation algorithm, as the number
of iterations needed to find a local optimum solution might be superpolynomial.
To fix this problem, as in [1], we can change the stopping condition of L so it
finishes as soon as it finds an approximate local optimum solution, i.e., when
the solution S is such that every neighboring solution S′ of S has cost(S′) >
(1− ε)cost(S), for some ε ∈ (0, 1). This leads to the next corollary.

Corollary 2. There exists an 1
1−ε (5 + h(α))-approximation algorithm for MSP

for any ε ∈ (0, 1).

Finally, by following the arguments in [1], the algorithm can be improved
by allowing t simultaneous swaps. This leads to a locality gap of h′(α), where

h′ : [0, 1]→ R, h′(α) =




g′(α) if α = 0
min{f ′(α), g′(α)} if α ∈ (0, t

t+1 ) ;

f ′(α) if α ∈ [ t
t+1 , 1]

f ′ : (0, 1]→ R, f ′(α) = 1 + t+1
t

1+2α
α ; g′ : [0, t

t+1 )→ R, g′ = (3+α)t+2+α
(1−α)t−α .

Function h′ is plotted in Fig. 1b for t = 1, 2, 3, 4. To give an idea on the
improvement provided by this method, we computed the maximum value of the
upper bounds on the approximation ratio for t = 2, 3, 4, which is less than 8.67,
7.78 and 7.05, respectively. It follows that for t ≥ 2 and any value of α, our
algorithm improves over the 10-approximation algorithm provided in [10].
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